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ABSTRACT. Stability and analyticity estimates in maximum-norm are shown for spa-
tially discrete finite element approximations based on simplicial Lagrange elements
for the model heat equation with Dirichlet boundary conditions. The bounds are
logarithm free and valid in arbitrary dimension and for arbitrary polynomial degree.
The work continues an earlier study by Schatz et al. [5] in which Neumann boundary
conditions were considered.

1. Introduction. In the earlier work Schatz et al. [5], stability and analyticity
bounds in maximum-norm were derived for spatially semidiscrete finite element
methods for parabolic equations with natural Neumann boundary conditions. The
finite element spaces were given on quasiuniform partitions but were otherwise quite
general. In the present paper we consider homogeneous Dirichlet boundary condi-
tions in the specific context of simplicial Lagrange elements on a smooth convex
domain; for notational convenience we shall treat only the model heat equation.
The presentation will be based on that in [5] but, in our concrete situation, certain
technical details will be less cumbersome, which will allow for a shorter but still
selfcontained account.

Let © be a bounded convex domain in RN, N > 2, with a sufficiently smooth
boundary and consider the homogeneous heat equation with homogeneous Dirichlet
boundary conditions,

(1.1) ug = Au, in Q x (0,00),
u=0, on 9 x (0,00), u(-,0) =wv, in Q.

Let h > 0 be a parameter and let 7, be a partition of a subset of €2 into open
disjoint face-to-face N-simplices 7 = T;‘ with maxjdiam(rjh) = h such that their
union determines a domain € C Q with all its boundary vertices on 02 and,
consequently, dist(z, Q) < Ch? for all z € 9Qy. Further, let S;, C HJ(Q) be the
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continuous piecewise polynomial functions of total degree » — 1,7 > 2, on €2} which
vanish on the boundary,

Sr={x€C(); x| €1, x=0 on Q\Q}.

We then define the semigroup Fp(t) on Sp as the solution operator of the semi-
discrete analogue of (1.1),

(1.2) (unt, X) + (Vup, Vx) =0, Vx € Sp,t >0, with up(0) = v,

where (-,-) is the Ly inner product over Q. Our object is to show that, under the
appropriate assumptions, Ej(t) is an analytic semigroup, uniformly in A. We recall
that this is equivalent to a resolvent estimate for the generator of Ej(t), the discrete
Laplacian defined in S}, and that this makes it possible to derive stability estimates
for certain fully discrete methods for (1.1), cf. [4] and [7, Chapter 8].

We refer to [5] for a discussion of the earlier literature on this subject and to
such applications. We emphasize that, as in [5], the bound in our main result stated
below does not contain any factors log(1/h), which simplifies the application to the
analysis of fully discrete schemes, and is essential when Gronwall’s lemma is used
in some arguments for integro-differential equations, cf., e.g., [1].

We shall make the assumption that the family of partitions is globally quasiu-
niform so that, with ¢y and Cj fixed constants, coh < p(B1(7)) < p(B2(7)) < Coh
for all simplices 7 = 7/, where p(By(7)),l = 1,2, are the radii of the largest in-
scribed and smallest circumscribed balls, respectively. Our main result is then the
following.

Theorem. Let A\ be the smallest eigenvalue of —A with homogeneous Dirichlet
boundary conditions, and let \y < A\1. Then under the above assumptions on Sy,
there is a constant C such that

1Bh(t)lLe +tIEL®)l|z. < Ce™, fort > 0.

2. Preliminaries. We first note that, because of the quasiuniformity of the parti-
tions, we have the well-known inverse property, valid for all piecewise polynomials

x of fixed total degree and all simplices 7 = Tjh,

(2.1) 1D*xllpr < CH™*D=NG=D)|Dix |7, 1 <pg <00, k>1>0.

Here and below we denote || D*vl|,,p = 37, |D*v|l,p, where ]
for spatial domains D, with D omitted when D = ().

Let I, denote the standard piecewise linear interpolant defined by (Ipw)(&) =
w(§) for all vertices £ and functions w which vanish on 9. Then, as is well known,
for each simplex T,

(2.2) Ihw — oo, + BV Irw — w)]|oo,r < Ch*||D*w||o,r, w € C*(F), s =1,2.

For s = 2 and N = 2 or 3 we also have the corresponding property in Ly based

norms, but for N > 4, Iyw is not well defined in H?(7); for s = 1 the Ly analogue

of (2.2) does not even hold for N = 2. In our technical work, however, we shall

need an “interpolation” operator which has such approximation properties in Lo,
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~ o
and we therefore define Iw for w € W} as a piecewise linear function in Sy such
that, for interior vertices &,

~ 1
0O = ooy o

where B,(¢) the ball with center £ and radius p = c¢1h small enough that B,(&)
does not meet 0€2. To describe the result, we also introduce balls B,(&) for the
boundary vertices, and, for any simplex 7, set N (7) = conv hull (UgezB,(£)) N Q2

Lemma 2.1. Under our above assuptions there exists a constant C such that, for

all simplices T = TJh and 1 < p < oo,

(23) Vv — wlpr < ChIV0lpny s for w € WHE)
and
(2.4) ”ihw - w”p,T + h'“v(jhw - w)”p,T

< Ch?(||Vw pNn(r))y forw € W?,(Q)

|p,Nh('r) + ||D2w|

Proof. Consider first a simplex 7 which has no vertex on 0€2. Then I, maps affine
functions on Np(7) into their restrictions to 7, and since Np(7) is convex, (2.3) and
(2.4) follow from the Bramble-Hilbert lemma and quasiuniformity.

For a simplex 7 with one or more vertices on the boundary we shall first consider
an auxiliary interpolant I, for functions in Wi (N (7)), which do not necessarily
vanish on 02, into the linear functions on 7. For the interior vertices n of 7 we
set Tnbw(n) = Inw(n). For ¢ a boundary vertex, let F' 5 ¢ be the closure of an
(N — 1)—face of a simplex 7 € T}, which has all its vertices on 02, and define

Thw(e) = m /F Be (s)w(s) ds,

where f¢(s) is an affine function, which is bounded on F, uniformly in h, and
chosen so that I, x(€) = x(&) for x affine (see Scott and Zhang [6]). By the standard
Bramble-Hilbert argument it is then clear that (2.3) and (2.4) hold with I h replaced
by In. To prove (2.3) and (2.4) as stated, it now suffices to show that Inw — Ipw
may be appropriately bounded. We carry this out for the first term in (2.4); the
proof for the gradient term follows by an inverse estimate and the proof of (2.3) is
implicitly contained. Since I rw(€) = 0 for boundary nodes this amounts to showing
that

(25)  WYPlIhw(E)] < CR(IVwllpny () + 1D?wllp (7)), for 1< p < oo

Let 0 = (2 \ Qp) N Np(7) denote the local skin-layer. We assume that, for the
boundary vertices &, the radius p in B,(§) is taken large enough so that N(7)
contains a cylinder in 2 with base F' and height ch. We have, using w = 0 on 0f2,
because the width of o is O(h?) in the normal direction,

Hhw(€)] < Ch_N“/ lwlds < Ch=" | Vw|l1o < Ch™¥ P max [Vl 1, ),
F v
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where v are the intersections with o of the planes parallel with F. For p = oo this
implies (2.5) at once because meas(c) < ChN*1. For p < co we shall use the easy
to prove trace inequality

Ifllzyoy < CRHIS

LN, () T IV llLw,n)-
Applying Holder’s inequality this shows, with p=! + ¢~ =1,

||Vw”L1(u) < C(h_1||Vw 17Nh(7'))
< C(hN/q_IHVMHp,Nh(T) + hN/q||D2w||p,Nh(T))’

1,Np(7) + ||D2w

which proves (2.5) (with an extra factor h in the last term). O
It will be convenient to use a “smooth discrete delta-function”.

Lemma 2.2. Let y € 7. Then there exists a function § = Sy € C§°(7) such that

x(y)=/x5da¢, VX € Sh.

Furthermore, there are constants ¢ > 0 and Cy independent of y and h such that

(2.6) dist (supp 8,07) > ch
and
(2.7) | D*8]|0o.r < Ckh™ N7k, VEk>o0.

Proof. Let 7 be the open unit size reference simplex in RY and let w € C§°(7)
be fixed and nonnegative. Set (9,w), = [.0wWwdZ and let ¢1,...,¢p be an
orthonormal basis for the finite dimensional space II,._; under this inner product.
Then §(3) = Zf\il @i (9) pi(Z) w(Z) has the required properties on 7, with h = 1.
A standard affine mapping argument using quasiuniformity establishes the lemma
as stated. O

Another basic ingredient of our proofs is the detailed behavior of the Ly-projec-
tion Py : L1(Q2) — Sh, cf., e.g., [8, in particular Lemma 7.2].

Lemma 2.3. (i) With 6, given in Lemma 2.2 we have
(Puv)(y) = (v, Pud,) fory € Q.
(ii) There exist constants C and ¢ > 0 such that
|PLoy(z)| < ChNe~cle=ul/h - yp 4y e Q.

(iii) There exists a constant C' such that |Py||z, < C for 1 < p < co.

We shall also need the following estimates for the Green’s function in the con-
tinuous problem (1.1), see, e.g., Eide’'man and IvasiSen [3].
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Lemma 2.4. The solution of (1.1) may be represented in terms of a Green’s func-
tion G(x,y;t),t > 0,2,y € Q, as

(2.8) u(z, t) = (B(t)v)(x) = /Q Gz, y: 1) v(y) dy.

For any integer ly, multi-integer |, and T > 0 there exist constants C' and ¢ > 0
such that

DI DLG (w,y;t)] < C(|w — y| + ¢1/2) - W+t emcla—sl™/t = 5y Q 0<t<T.

3. Proof of the Theorem. We begin by observing that the semigroup Fp(t) is
generated by the discrete Laplacian Ay : Sy, — Sp defined by

(Ah¢7X) = _(Vwa VX), VwaX € Sh-

To show the desired bound for Ej,(t) = e®** for t bounded away from zero, we apply
the inequality |x|lcc < C||Afx|l2, ¢ > N/2 (see [2, Lemma 4.1] and [5, (3.6)]),

together with the obvious Ly operator norm estimate (using A; p > A1 > Ao)

|ATEL(t)||lL, < sup ()\qe_”) < Ct= e Pot,
A>A

and similarly for E; (). We may therefore assume below that ¢ < 1.

We shall first reduce the proof to certain estimates for approximate Green’s
functions and then prove these. Starting with the stability estimate, let xy be any
point in €2;,. This point will be fixed throughout this section and often suppressed

in the notation. Let zp € 7o = 7)! and let § = d,, be the regularized delta-

function of Lemma 2.2 with y = xy. We define the discrete Green’s function
Iy, = Fmo’h(.’L‘,t) € Sy by

The— Ay =0, fort>0, with Ty(0) = Py,
and we may then write
(En(t)vn)(x0) = (Ta(t), vn)-
Further, letting I' = ', (z,t) be the solution of the continuous problem
I, —AI'=0, fort>0, withI'(0)=24,
we find, with F = F, (x,t) =T - T,
(En(t)vr)(zo) = (F(t),vrn) + (L(t),vn), for vy € Sh.
Here |(T(t), v)| < ||vnlloolT(#)[1 and, since T(z,t) = [ G(z,y;t)d(y) dy, we have
by the Green’s function estimates of Lemma 2.4 and by (2.7) that ||[['(¢)||; <

C||8]|; < C. In order to secure the stability estimate, it hence remains to bound
5



IF(#)|l1,0,. But F(t) = Py — & + [ Fy(s)ds and, by the stability of Py in Ly
(Lemma 2.3), the desired bound would follow from

(3.1) ||Ft||L1(Qh) < C, where Qh = Qh X [0, 1].
Similarly, for the smoothing estimate of the Theorem we write
t(ER(t)von)(zo) = (LF(t),va) + (tLe(t), vn),

and using again the Green’s function estimates, and tF;(t) = fg (sFs)s ds, the proof
is reduced to showing that (since (tF;); = F; + tFy and assuming (3.1)),

(32) 164l 2, (@n) < C-

We shall now prove (3.1) and (3.2). For brevity we shall suppress h in Qp, etc.
Thus @ will mean , x [0,1] and all spatial domains occurring will be inside €y,
unless explicitly stated to the contrary. We shall decompose ) into “parabolic
annuli”. For this, let d; = 277, j integer, and let Q; = {(z,t) € Q;d; < p(z,t) <
2d;}, where p(x,t) = max(|z — zo|,t*/2) denotes the parabolic distance to (o, 0),
and similarly Q; = {2 € Qp;d; < |xr—2x0| < 2d;}. Then, with J; fixed small enough
that p < 2d;, = 21=Jo in @, and any J, > Jy,

Q=0Qn= (jziijo Qi) UQu, where Q. = {(z.1) € Q: plx.1) < dy.}.

We shall refer to Q4 as the “innermost” set, and ultimately we shall choose J, =
J«(h) such that dj, < p«h < 2d;, for small h, where p, is a sufficiently large
number to be fixed later. Note that then J, ~ C'log(1/h). Constants C will, as
usual, change freely but will be independent of u, for u, large. We shall write Z* j
when the innermost set is included and }_; when it is not.

In this proof, almost all norms occuring will be Ly based, and we shall write
|lvl|p and ||v]||, for Ly-norms over space and space-time sets D and R.

Since meas(Q;) < Cd§+N we have by Cauchy-Schwarz’s inequality
(3.3)

1Fllz. @ < C D di ™2 Fllg, = Cluh) N2 |F|o, + C Y d 27,

j

*,J

where we have introduced F; = H\F15|||QJ —l—dJTI |||VF|||QJ,, with the latter term added

for the purpose of a later kickback argument. To estimate the first term in (3.3)
we note that, by extending the integration to the whole domain @} and applying
standard energy arguments, we have, using also (2.7),

(3-4) [[Fillq, < lTh

o+ ITellg < IVPSI| + IVS]l < Ch™H8]| < ChN72,

so that (suh) V2| Fyllg, < .
To bound the F; we shall use local energy estimates for functions e = z, — 2
satisfying

(3.5) (et, x) +(Ve,Vx) =0, Vxe€ Sh, t>0;

note that this equation holds for e = F' and F;. We set Qg- =Qj—1UQ; UQjt1
and correspondingly for Q; The following proposition will be proven in Section 4.
Recall that all domains occurring are inside {2; in the spatial directions.
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Proposition 3.1. For any q > 0 there exists C such that the following holds. Let
zn € Sy and let z be smooth, and assume that e = z, — z satisfies (3.5). Then, with
(=1Ipz — 2z,

(3.6) lledlllg, +dj 1 Vellg, < C(G;(e(0)) + H;(¢) + hd; |lexlllg, + d5 *llelllg: ),
where

Gj(v) = [Vollay +d; vl

H,(Q) = d;{IV Gl g + 116y + 5 119¢ gy + d511< s

Application of this proposition to F' =T'y, — I" shows, with v, = I,I' — T,
Fi < C(Gj(F(0) + Hj(vn) + hid; || Flll g + d5 2| Flllgr)-
J J

We shall show that, with ¢ = 2 + N/2,

(3.7) G;(F(0)) + H; () + hd; |||l g, < Ch; ™2

so that

(3:8) D4 TE < ony a0 d IR g,
J 7 j

We shall then apply a duality argument to bound [[|F[|5, in such a way that the
J
last term in (3.8) is bounded by CuN'? 4+ Cuy 'y, dN/ZH}'j, whence

(3.9) Z AN E < N 4 D + oplt ZdN/2+1

For p. sufﬁmently large the latter term may be kicked back so that, with p, fixed
in this way, (3.3) and (3.4) show (3.1).

For the proof of (3.7) we begin with G;(F(0)). Since F(0) = P,é — & = P,6 on
Q; (if p4 is large enough), we obtain, using an inverse estimate and d; > h (where,
with a slight abuse of notation, we may assume that Q; is a meshdomain), and the
decay estimates of Lemma 2.3,

(310)  G;(Pud) < Ch™Y|[Padllgy < Ch1NdjPem e/t < Chd NP7,

We next consider the approximation terms Hj;(yy) in (3.7). For the highest
order term we obtain by Holder’s inequality, the maximum-norm approximation
error estimates (2.2), the Green’s function estimates of Lemma 2.4, and (2.7),

24+N/2 2+N/2
(3.11) , < Od; / i, < O / BlI[D°T ]| oo 1
< CdTNPhd7N416), < Chd; NP7, where QY = UZ__,Qj4s;
and where we also use the notation || - ||, r = [l - [z (r)- For the lowest order

term we have similarly
(312)  dlmlllg < Cd7 TR DT|, op < ChPd; 7% < Chd; M2,

The remaining terms in H;(-y;) are bounded in a similar fashion.
To complete the proof of (3.7), we use standard energy arguments (cf. (3.4)) to
derive, with ¢ = 2 + N/2,
(313)  hed;"|Flq < hed; +[ITellg) < Chd 2.
Having thus shown (3.8) we now estimate [||F |||Q; by a duality argument.
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Lemma 3.1. We have
(3.14) I1F g, < Chd;M? + Oty d2 min(dj T2, 1) F

*'L

Proof. In this proof we write [v,w] for the inner product in Ls(Q) where Q =
Q x [0,1], i.e., the whole space domain is now included. We have

1Fllg, = sup{[F.vlssupp v € Q). [[vlg = 1}
For each fixed such v, let w solve the backward (dual) problem
—wy—Aw=v, withw=0 ondQ, w(l)=0 inQ.
Integrating by parts we then obtain
(3.15) [F,v] = (F(0),w(0)) + [F}, w] + [VF, Vw].
Here, for any x € Sy (and p, large enough),
(F(0),w(0)) = (Pnd — 8,w(0) — x)
= (Pud,w(0) = X)ay + (Prd — 8, w(0) — X)a,\ar = J1 + Ja.

N/2

Choosing x = I,w(0) with Ij as in Lemma 2.1, using ||Ph5||Qu < Cd; ||Ph5||oo,93/

the exponential decay properties of P with dist(zo,$2}) > cdg, and the standard
a priori estimate ||[Vw(0) < [||v][, =1,

1| < CdY PR Nemedi/hp)| v (0)|| < Cd) /N +lemedi/h < Chd; /2.
Since P, is stable in Ly and [|d]],, < C,
2| < CllIxw(0) = w(0)||oo,a\0 < Chl[Vw(0)]lco,p,

where we used (2.3), and where Dj; is a set containing €2\ Q7 but whose distance

to Q’ is greater than cd;. By Duhamel’s principle we have w(0) = fo s) ds,
Where E(s) is defined in (2 8), and since suppv(s) C £}, we have by Lemma 2 4 that
IVE(s)v(s)lloo,n; < Cdy ¥ Hu(s)ll10; < C’dj_N/2_1||v(s)||. Since v(s) = 0 for
s > (4d;)?, integration and the Cauchy-Schwarz inequality show ||[Vw(0)|lc,n, <
cd; M2l = Cd; 2. Thus |(F(0),w(0))| < Chd; ?, which bounds the first
term on the right in (3.15) by the first term on the right in (3.14).

We now consider the remaining two terms on the right of (3.15). Setting

B = [I't, wlo\a,)x[0,1] + [V, VWl o\, x[o,1]
we have, recalling that Qp = (U;Q;) U Q. and using Lemma 2.1,
[Fy, w] + [VF, Vw] = [Fy, w — [yw] + [VF, V(w — I[hw)]
< CY (I1F g, IHnw = wllo, + IV F oIV (Thw = w)lllg,) + B

*,1

< CY (B2 Eilllg, + IIVElg)ID?w]| g, + B.
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Here, since h/d; < p;! < 1, h2H\Ft|||Qi + hl[VF[lg, < Cu;*d?F;. To show
|||D2w|||Q; <C min(dz-ljfv/z, 1) we begin with ¢ > j+3 and we write as above w(t) =
ftl E(s —t)v(s) ds. From Lemma 2.4 we have in this case |||D?E(s — t)v(s )|||OO’Q; <
Cd;N72d;?||o(s)|| whence [|D?wllg, < Cdi/**d; N7 = Cd}PT. For i <
j + 3 we use the standard a priori estimate |||D2w|||Q,i < |||D?*wl|| < C|||U||| =C

It remains to estimate B. Since I'y = A" we have integrating by parts

B\—|/ / —wdsdt|< / — | |w| ds dt.
| (197 Z (891, x[0,1])NQ; ‘8n|

Here, we may estimate |0T /0n| < Cd; M~ on (99, x [0,1]) N Qy; this is also valid
when @Q; = Q. due to (2.6). Integrating dw/dn in the direction normal to 012,
we also have, using that the width of Q \ €, in this direction is O(h?) and the
Cauchy-Schwarz inequality, since meas(((2\ Q) x [0,1]) N Q%) < Ch2dN T,

|mwwsc/ Vol dodt < ChdY* 2|V,

/(thx[o,l])nQi ((2\Q2r)x[0,1)NQ;]

In the same way as above |||Vw|||Q, < C’dN/}'rld_N/2 for 1 > j+3, and since w(t) =
0 for t > (4d;)?, a standard energy argument shows that [[Vwlg, < [IVwl| < Cdy,
which we use for 7 < j + 3. Thus

1/2 ,—N/2 —N/2-1/2 —N/241/2 —N/2
B<cn( Y @4 Y g d;) < Chd; < Chd; M.
*,02J+3 1<j+3
This completes the proof of the lemma. 0
Continuing the proof of Proposition 3.1, Lemma 3.1 shows for the last term in

(3.8)

ZdN/2 IE g <Cth +C _1ZdN/2 1Zd2mm ;2 ) F

Clearly the first term is bounded by Chd;*1 < p;! and, after changing the order of
summation and estimating elementary geometric sums, the second is bounded by

YRR ) < Ot S A
Here by (3.4) [[[Ft[|g, < Ch=1=N/2 and similarly [IVF(lg, < Ch=N/2 5o that the

term corresponding to @), is bounded by C,u_ldN/2+1h 1-N/2 — C’uN/z We have
thus estimated the last term in (3.8) as desired so that (3.9) is shown. As indicated
above the proof of (3.1) is thus complete.

We now turn to (3.2). Here, since ¢t < 4d§ on @);, we have

3+N/2
0. +CY TN Fyllg, -
J

(3.16) 1t Eselly @) < Clueh)> 72|
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Similarly to (3.4) we have

(3.17) 13

0. STheelllg + Teelllg < Ch=3-N/2,

so that the first term on the right of (3.17) is bounded by C,ui’-"N/ ?. To estimate

the second we apply Proposition 3.1 to Fy; to obtain
IFulllg, < C(G5(Fi(0) + Hj(yne) + hd; || Fiell g + 5 * [ Eilllgr)-
We now show that
(3.18) G5(Fy(0)) + Hj(yn,) + h9d; | Fielll g < Chd; N
and hence, with the sum in F; bounded from the above,

(3.19) S d|Fulllg, < CRY dit+CY ditNPE < C

J J J

Together (3.16), (3.17), and (3.19) complete the proof of (3.2).
For (3.18) we have F;(0) = ApPpd — Ad = —Ap Py on ) and hence, cf. (3.10),

G;(F(0)) < Ch_1||AhPh5||Q;. = Ch™ ' sup(Ap Py, v),

where the supremum is taken over v with supp v C €} and ||v|| o = 1. For each

such v, we obtain by considering separately the contributions from Q7 and Qj \ 7,
by inverse estimates and decay properties and Lq-stability of the Lo-projection, see
(2.1) and Lemma 2.3,

[(ARPRS,v)| = |(V PR, VPyo)|

< CH2 (| Pudllay | Puoll + P25 < Oh=TN ¥/ 2g=es/n,

L2 1Pt lloo,0n\2)

Thus
GJ (Ft(o)) S Ch_S_Ndj.v/ze_Cdj/h S Chdj_N/2_4'
Finally, the terms H; (7,1) and hqd;q|||Ftt|||Q; are bounded as in (3.11),(3.12), and

(3.13) with ¢ = 44+ N/2, in the latter case using (3.17). The proof is thus complete.
0

4. Local energy estimates. To show Proposition 3.1 we now prove the following.

Lemma 4.1. Let D C Qp,, I = [to,t1] C [0,1], and consider the space-time cylinder
Q =D x1I. Let Dg = {x € Qp; dist(x,D) < d}, Iz = [to — d?,t1] N [0,1], and
Qi =Dgx1Izp. Let e = zp, — z with zp, € Sy, satisfy (3.5). Then for any q > 1 there
exist C' and ¢ > 0 such that, for d > ch,

lleelllq +d=*Vellly < Cra(lVe(0)llp, + d~*{le(0)]Ip,)

+C(dIVallg, + llzllg, + a7 IVzlllg, +d~*llzllg,)

+C(h/d)lleclllq, + Cd™*lellq,-
10



Here, kg =1 if tg < d?, kq = 0 otherwise.

Proof of Proposition 3.1. Since the sets (Q; in Proposition 3.1 are built up of the
two cylinders Q; x [0, d?] and {x € Qp; |z — 20| < 2d;} x [d3,4d3], (3.6) with H;(z)
instead of H;(¢) follows by application of Lemma 4.1 with ¢, = 0 for the first
cylinder and ¢ty = d? for the second, with d = d;/2 = dj41 for both. Writing
e=zp — 2= (zn — Inz) — (2 — Iy 2) establishes it as stated. O

Proof of Lemma 4.1. For simplicity of presentation we shall first treat the case of
piecewise linears, » = 2. The case r > 3 will be considered at the end.

Let wi(z) € C(Q) be a nonnegative piecewise linear function on 73, (not nec-
essarily vanishing on Q) such that w; = 1 on D, |Vw;| < Cd™!, and w; = 0
outside Dy; such a functions exists if d > 2h, say. Let wo(t) € C'[0,#;] be nonneg-
ative with wy(t) = 1 on I, |wh| < Cd~2%, and wy = 0 outside Ig2 when to > d?,
and set w(z,t) = wi(x)wa(t). Note that Qg4 is obtained by enlarging @ using the
parabolic distance.

Consider the identity

d
(4.1) %£||w2e||2 + [|w?Vel|? = (e, whzp) — (whes, 2) + 2w wy e, €)

+(Ve, V(w*zp)) — 4(wiVe, Vw z,) — (w*Ve, Vz) = Z Jj.
j=1
We have by simple estimates (for brevity we omit subscripts Dy and Q4)
[ Ja| + | 5] < 3e2d*[|whes]|® + Ced™2|[2]|* + Cd 2 |e|?,
5| < Cd™H|w?Vel| [|zn]l < Zllw?Vel* + Cd™2|le]|* + Cd™?| 2|,
[J6| < §llw?Vel* + C|[V2|%.
Using the error equation (3.5) we obtain
Ji+ Jy = (er,wzn — x) + (Ve, V(w'zy — X)) = K1 + Ko.

Choosing x = Ih(w4zh) where I; is now the standard interpolant, we have the
superconvergent, type estimates

(42) llwzn — xll < Chd™Hlznll,  IV(@h2n = x)|| < C(hd™?[|2n]| + hd ™| Vn]);

In fact, it suffices to show these bounds for each 7, and for the first one we have
by the maximum-norm error estimate (2.2), the fact that D%z, = 0 on each 7, an
inverse property for z, and h/d < C,

lw*zn — In(W*2n)||lr < CRN2||when — In(w*28)[|so,r < CRN/2 T2 D2 (w2) [loo,r
< ChN2(h2d72||zn)loor + h2d7 Y|V 2]l 0o.r)
< ChY2hd™ Y 2]l oo.r < Chd™Y|24]|+;

the second bound is shown in the same way. We hence have
[K1| < Chd™ el [lznll < Ch?|leql|* + Cd2(Jlel” + [|2[1*),
|K2| < Chd™||Vel[(d™"||znll + [Vzal|)

< Chd™*||Vel|* + Cd™*(|le||* + [|2]*) + ClI V2™,
11



Entering our bounds for the J; into (4.1) and kicking back ||w?Ve||?, we obtain

d
Zlw’ell + [lw*Vel* < Edl|we | + Ced™?||2]|* + C[[V2|I*
+ Cd7?|le||”> + Ch?|let||” + Chd™ || Ve||>.
Hence integrating over I, taking square roots, and multiplying by d~! we obtain
(4.3) d7M|[w*Vell| < d7 " wallw®e(0)| + elllwes]| + Ce(d™ V2l + d™2|l|]ll)
+C(h/d)2(lllell| + d~H[[Vell) + Cd2|llel]

This bounds |[Vel||, as in the lemma, with ¢ = 1/2, except for the additional
term (h/d)/2d=|||Vel|| and the term |||w%es|/| which we now turn to. We have

d
(4.4)  ||wes]|® + %a||w4Ve||2 = (e, w2nt) — (WBet, 2¢) + 4(w'w; Ve, Ve)

6
+(Ve, V(wizht)) — (Ve, V(wB2)) — 8(Ve,w' Vwey) = Z J;
j=1

Here, by elementary estimates,

[ 3]+ 73] < §llwtes]| + Cllzel|* + Cd~?||w?Ve| %,
T4 = [8(Ve,w Vw2, + w®V2,)| < Cd™Y|[w?Vel| | z]| + Cl|w? Vel V]
< Cd7?||wVel|* + Cllze||* + Cd? || V1%,
gl < Cd™Hlw?Vel| lw'erll < gllwer]|* + Cd™?|lw Ve,

Using the error equation we have now, with x = I (w32 1),
Ji+ Jy = (er,wlzns — x) + (Ve, V(wBzn s — X)) = K; + K}.
Using zp+ = e: + 2z we find, cf. (4.2),
[K1| < Chd™ e |2nll < Chd™led” + Cllze*.

To study K4 we have to be a little bit more delicate in the superapproximation
argument. We note that by our choice of w; the functions involved are polynomials
on each simplex 7 so that we may use the inverse inequalities of (2.1). Thus, using
(2.2) and D%z, = 0 for |a| = 2,

IV (@*zh,e = X)llr < CRY2|V (W 2n0 = X)lloo,r < OB D? (0% 2,4) oo, r

< ChN 2 (hd=2||wb2n tlloor + Cd ™ ||w  2n 4|
< CHN2dM|wzp tllco,r < Cd™H|wE2p 4

00,7')

T

Since Ve = Vz, — Vz, it follows that

K] < Cd7Y|[Val| lw8znll + Cd™ Y I Vanllrllwznellr = Kiy + Koy

12



Here, writing again e; = zp, 1 — 2,
K| < gllwleel|” + Cllze]l* + Cd~2|[ V.
For K, we note that since Vzj is constant on 7,

IVl lw®2n,ellr < CRN2V 247 ([P loo,rllw* 20l

r < Ollw?Vapllr|w*zn ¢l -,
and hence
K| < Cd™Hw?Vap||[lw*zn el < llwe]|” + 2] + Cd~?||w? Vel + Cd ™2 ||V 2.

Using our estimates for the J} in (4.4), kicking back [|w*e;||?, integrating over
I42, and taking square roots we arrive at

llwesll < Kallw*Ve(0)l| + Cd~ | Vell| + C(h/d)*?[les |
+C(d|| Vel + [llzlll + d=H [ V2]]).

Adding a sufficiently small multiple of this inequality to (4.3), kicking back |[|w?Vell,
and then taking € small enough that ||w%es||| may also be kicked back, we obtain

llweell] + d~ [|w?Velll < Cra(llw*Ve(0)l] + d~* [lwe(0)]])
+ C(d|IVaelll + lllzelll + a= V2] + d=2[l1]])
+ C(h/d)2(llecll| + d~H || Vell) + Cd~2 [l

which shows the lemma with ¢ = 1/2, with the additional term (h/d)'/2d~1(|Ve]|.
The case of a general ¢ follows by iteration (and changing d), now with the addi-
tional term (h/d)2d~'|||Vel||. For ¢ > 1 this may be eliminated using the inequality
Vel < Izl + [IVznlll < [IV2l] + CR= (lllell| + [|2]l]) and A < d.

In the case of general simplicial Lagrange elements of order r > 3, we estimate
instead the quantity |[|w?"es|||[+d~1|]|w"Ve|||. For the standard pointwise interpolant
I, » to the principal lattice we have, corresponding to (2.2),

”Ih,rw - wHOO,T + h”V(Ih,Tw - w)Hoo,T < Chr”Drw”oon'a

for functions which vanish on 0Q, N 7. As a consequence, (4.2) still holds (with 4
replaced by 2r). In the argument for K3, since D%z, = 0 for |a| = r, it is not
difficult to see that now

R HIDT (@ 2 t)loo,r < Cd™HIw® 2 tlloo,r-

Finally, instead of using that Vzj, is constant on 7 as in the piecewise linear case,
we now use that [[¢1loc,r[¥2lcc.r < Covlrtballcc,r for r, bz € T, to show

IV 2l 1 2 el < ORIV 2 oo,z ™ o, 1607 210

|r < Cllw" Va7 |lw® 25,4l

T-

The proof of Lemma 4.1 is then complete. 0
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