A Parallel Rational Krylov Algorithm For
Eigenvalue Computation

Daniel Skoogh *
November 1998

Abstract

An implementation of a parallel rational Krylov method for the gen-
eralised matrix eigenvalue problem is discussed. The implementation has
been done on a MIMD computer and a cluster of workstations. The ra-
tional Krylov algorithm is an extension of the shift-and-invert Arnoldi
method where several shifts are used to compute basis vectors for one
subspace. In this parallel implementation, the different shifted matrices
are factorised each on one processor and then the iteration vectors are
generated in parallel.

Keywords: eigenvalues, eigenvectors, sparse, parallel, rational, Krylov,
shift, invert, Arnoldi
AMS subject classification 65F15, 65F50, 65Y05

1 Introduction and Purpose

Arnoldi [2] and Lanczos [4], the currently most successful iterative eigenvalue
algorithms, are both based on Krylov subspaces. They start with an arbitrary
starting vector and build up a basis one vector at a time, letting the matrix
operate on the most recent basis vector and including this new direction into the
subspace. Any vector in the Krylov subspace can be expressed as a polynomial
of the matrix applied to the starting vector.

The rational Krylov algorithm developed by Ruhe [7, 8, 9, 10] does the same
thing by operating with shifted and inverted matrices with different shifts on
linear combinations of previous basis vectors. Every vector in the subspace can
now be expressed as a rational function of the matrix times the starting vector.
In theory it is possible to generate the basis vectors in parallel by operating
with shifted and inverted matrices with different shifts, one on each processor.
The purpose of this work is to investigate if this can be done in practice [12].

Our algorithm computes one matrix factorisation on each processor. In
ARPACK “ARnoldi PACKage” [5] one the other hand, where at most one shift
is used, the matrix vector multiplication is parallelised and each basis vector is
distributed among the processors; for details see P_ ARPACK [6].

*Report No 1998-45 in “Bl4 serien” preprint series, available at TURL:
http://www.math.chalmers.se/Math/Research/Preprints. Author’s address: Depart-
ment of Mathematics, Chalmers University of Technology and the University of Goteborg,
S-41296 Goteborg, Sweden (skoogh@math.chalmers.se). This work was partly supported by
Swedish National Board for Industrial and Technical Development, grant 8902538-5.

2 Rational Krylov Algorithm

The rational Krylov method is a generalisation of the shift-and-invert Arnoldi
method. In the latter method we choose one shift p in the complex plane where
we want the eigenvalues to converge fast, while in the rational Krylov method
we choose several shifts py, ..., u; . Let us first consider the eigenvalue problem

Au = u. (1)
The space Sg, in the rational Krylov method is
SE+1 = Spa‘n{vh(A - l"’lI)_l’Ub LR (A - /‘LlI)_J vy,

(A _/LQI)_I'IJl,___ 7(A _HZI)_J2U17

(A—pi D) vr,.e (A= pe DT vy},

where k = j; + j, + ... +Jj; and Dim(S;,,) < k+ 1. In the rational Krylov
method every vector & € S; can be written as

where

andjl Sjlaj? SJ_Q"“ 5j1_ SJ_i

Different rational and polynomial matrix functions of the same matrix com-
mute, and thus in creating a basis for Sz, (2) it does not matter in which order
the operators (A —puy I)~Y, ..., (A —p; I)~! are applied. This is the key to the
parallel algorithm.

Let us first describe a sequential rational Krylov method, but apply it to the
generalised eigenproblem

Awu = \Bu. (3)

If we replace A with B~'A in (2) the operators become
(B™'A — u;I)~' = (A — u; B)""B. All shifts pu; have to be chosen so that
A — p; B is nonsingular. In the algorithm below we use a total of ; shifts and
k iterations, i < k. The variable i;, stands for the shift p;, 1 <i < i which is
used in the k:th iteration.

Rational Krylov Algorithm 1
1 Choose start vector v; of unit length

2 fork=1:k

3 r = Vit Choose starting combination
4 r=(A-yu;, B)"'Br

5 hy=Vir

6 r=7-— Vk:hk

7 Ptk = 7 (|2

8 Vg1 =7 /hpyik

9 end

By eliminating the intermediate vector r in the rational Krylov algorithm,
we get

Uk+1hk+1,k = (A — uikB)_lBthk — thk-

Replace hy, with | b]

Riot1,k
Vigihi = (A — p;, B) "' BV ity
and multiply by (A — u;, B) to get
(A — pii, B)V jy1hy, = BV ity

Separate terms with A and B, and replace t; with [%] to get the relation at
the k:th step,

AV ipihy = BV (hgps, + tg).

Set Hy 15 = [h1,-..,hg] and T4y 5 = [t1,... ,t;] with appropriate zeros
added to the bottom of each hy, t;. Introduce the new matrix

K15 = Hyyq pdiag(p,) + Trya 5 (4)

Note that both Hy; ; and Kp 4 j are Hessenberg matrices. We finally get the
relation

AVE+1HE+1,E = BVIE+1KE+1,E- (5)
From now on we will denote the matrices Hy,; and K., 5 by H and K
respectively.
2.1 Approximate Eigensolution

If S; is invariant under (A — p; B)™'B then hg,; ; = 0 and the relation (5)
becomes

AV Hp ;= BV Ky ;. (6)
If

then, inserting it in (6), we get
AViHp;y = ABV Hp ;y.

Thus if (A,y) is an eigenpair to (7) then (A, V3 Hp zy) is an eigenpair to (3).
Add _’YBVEHIE,E to (6):

(A—yB)ViHp; = BVi(Kp;—7Hpp)-

Multiply with (A —yB)~! from the left and (K 7 —vHp z)~" from the right,
yielding

ViH; ((Ky;—vHp ;) ' =(A—yB) 'BVy.

We see that Sj is invariant under any (A — yB) !B for which (A — vB) is
nonsingular.

Now assume that S, is not invariant, which will be the most usual case. Let
(Xj,ﬁj) be an eigenpair of (7) and take

uj = VE+1Hﬂj (8)

as the approximate eigenvector and S\j as the approximate eigenvalue to (3).
The residual will be

(A—XB)i; = (A-X\B)Vi Hy;
=BV (K- Z\j{I)yj)

= Bogy, (kg5 — Aihir1p)€er v;

= Bugy (i — Nj)hig1ieh Y-

The first equality comes from (8), the second from (5), the third from (7) and
the fourth from (4). Note that if B is nonsingular then the residual is orthogonal
against span{ B~ ¥V }.

3 Parallel Rational Krylov Algorithm

3.1 Parallel Rational Krylov Algorithm

In the parallel algorithm which we are now going to describe, the basis vectors
are generated in parallel. The matrix operations themselves are not parallelised.

The key to the parallel algorithm is that it does not matter in exact arith-
metic in which order the operators (A — u; B)™'B, i = 1,...,7 are applied in
building a basis for the subspace Sz (2).

There are several possible parallel rational Krylov algorithms. We have made
two different algorithms, a SPMD (Same Program Multiple Data) algorithm and
a Master/Slave algorithm. They differ in the way orthogonalisation is done.
Both algorithms use p different processors to compute 7, = (A — p, B) "' Br,,.
The SPMD algorithm which is described below lets each processor orthogonalise
its own vector. The Master/Slave algorithm which is described in [12] uses an
additional processor to do the orthogonalisation. In exact arithmetic, given the
same conditions, the different algorithms generate identical matrices H, K and

Vi.41- We have made two implementations of the SPMD algorithm, which differ
in how the communication is done.

The algorithm below uses a total number of ; shifts, uq,...,u; . Each shift
pi, 1 < i < 7,is used j times in the matrix operator (A — u;B)"'B. At a
given moment at a processor p, 1 < p < p, the letter k stands for the total
number of basis vectors. The vector vr4+1 is the basis vector being calculated
in the current iteration, and vy, is the vector that the matrix (A — y;B)~'B
is applied to. When the algorithm has run to completion, the total number of
basis vectors is k + 1, where k = 77 = mpj and each processor takes 1 shifts.

Parallel Rational Krylov Algorithm

1 Choose v such that || v; ||=1 (the same vector on all processors)
2 start program on p processors,p=1:p

3 form=1:m

4 i=(m-1)p+p

5 LU = A — u; B (factorise)

6 forj=1:)

7 k=(m-17p+ (G —-1)p+p

8 kp, =max(1,k—p+1)

9 ri+1 = U ' L™ "By, (operate)

10 H(1:kpk)= Vﬁ"'k.ﬁrl (Gram-Schmidt part I)

11 Tk4+1 = Tk+1 — Vka(l : k‘p,k‘)

12 receive v; and h;_; from its processor, !l =k, +1:k
13 H(kp+1:k,k) = Vil 1 47eq1 (Gram-Schmidt part TT)
14 Thtl = Tht1 — Vkp+1;kH(k‘p +1: k‘,k)

15 Pit1 e = e ||

16 Vg1 = Tht1/Pr+1,k (deliver new vector)

17 (vr41 will be the start vector v, in the next iteration on line 9)
18 send vyy1 and hy, to the other processors

19 end

20 end

21 receive v; and h;_ from its processor, | =k+2:k+ (p—p) +1
(from processor p+1,...,p)

Each processor (or node) keeps a copy of all basis vectors that are gener-
ated. After the processor p has carried out the operation on line 9, rpy; =
U _IL_IB'ka, the vector 741 is first (in Gram-Schmidt part I on line 10) or-
thogonalised against the basis vectors located at the local processor. The last
basis vectors are not yet available because the other processors are working on
them. After the first part of the orthogonalisation is finished, the processor is
now ready to receive the last basis vectors and (in Gram-Schmidt part IT on line
13) orthogonalise 7,11 against them, and to send the resulting vector vy to
the other processors.

3.2 Subspace

The subspace Sg,; spanned by the basis vectors vi,...,vz,; is a union of
Krylov spaces
7
Si1 = JKi 1((A - iB) ' B,wa), (10)
i=1

where K (C,v) stands for the Krylov subspace
Ki(C,v) = span{v, Cv,C%v,... ,C* v}. (11)
The particular order in which the subspace is built up is
Sg41 = span{vi,(A — p1 B)"' Buy,... ,(A — pzB) "' By,
(A~ mB)™'B)*vy,..., (A~ uB) ™ B)?vy,

(A= mB)™'BY vi,...,((A = ppB) "' B) vy,

(A —pi _p1B)'Buy,... (A - p; B)"'Buy,
(A= pi p1B) 'B)’vi,...,((A - p; B)"'B)?vy,

((A — M *13+1B)_IB)]7”17 R ((A — M B)_IB)jUb }
(12)

The first k, 1 < k < k basis vectors generated by the parallel rational Krylov
algorithm span the same subspace as the first k, 1 < k < k basis vectors in
(12).

On a particular processor p, 1 < p < P, let us now express the vectors vy,
V41 and vy, in terms of these Krylov spaces.

First let m =1 and j = 1, then

Vg, = V1, (]‘3)

P

vy, € S = span{vi, (A — 1 B) "' Bvy,...,(A — uy—1B) ' Bv} (14)
and
vit1 € Sk | Jspan{(A4 — p, B) "' Bus }. (15)
If either m or j is larger than 1, then

(m—1)p
ve€S = |J Krn((A—wB)™"'B,w)
i=1
mp
U Ki(A-wB)"B,w) (16)
i=(m—1)p+1
(m=1)p+p-1
U span{((A - wB) ' B)iv:},
i=(m—1)p+1

Vi1 € Skr1 = Sk U span{((A — ,u(m—l)ﬁ+pB)_lB)j'Ul}a (17)

and vy41 will be the start vector vy, in the next iteration on line 9.

4 Structures in the H-matrix

4.1 The Nonzero Structure in the H-matrix

In this section we will show how the nonzero structure in the H-matrix of the
parallel rational Krylov algorithm applied to Hermitian matrices is related to
different parameters of the algorithm. We will focus on how the total number
of processors p and the total number of shifts at each processor m will influence
the nonzero structure.

By its definition H will be a Hessenberg matrix. The sub-diagonal elements
are all real and, as long as we do not have an invariant subspace, they will
also be all nonzero. Let us concentrate on the elements of the upper triangle,
hi gl < k.

Assume that the matrix A is Hermitian, B = I and the shifts y;, i =1,... ,4
are real. On a particular processor p, 1 < p < p, let us now describe how column
k in the matrix H is computed. If we use only one shift (; = 1) and run on one
processor (p = 1), then we get the shift-and-invert Arnoldi algorithm, and the
matrix H is real, symmetric and tridiagonal. If we use more than one processor
(p > 1) and only one shift per processor(m = 1), then

hl,k = ((A — upI)_lvkp,Ul),l =1,...,k
= ('Ukp:(A_/J‘pI)_H'Ul)
= (Vk,» (A — pp 1) "oy).

Note the relation between the index of the start vector vy, and the index
of the basis vector vgy1 being calculated. If we have operated with the matrix
(A — ppI)7" only once (j = 1), then k + 1 = k, + p; otherwise k + 1 = k, + p,

Tht1 = Thyip = (A= ppl) og,, j > 1.

Now assume that we have operated more than two times with the matrix
(A—p,I)" L (j>2). f1<1<k,—pthen

(A - /,sz)*lvl € span{vy,... , V%, —p}-
Because we have an orthonormal basis, this means that
hr=0,1=1,...) kp—p—1.
If k, — p <1< kp then
(A — p,I)"tv; € span{vy, ... Uk,

and the element Ay j is nonzero in general. A similar argument for k, <1 < k
shows that the element h;j is nonzero in general.
The number of nonzero elements in each column will be

k+1—(kp—p—-1)=ky+p—(kp—Dp—-1)=2p+ 1.

If we now look at the first 2p columns (j < 2) of the H-matrix, we can use
a similar argument as above, and conclude that each column H(1 : k + 1, k),
1<k <2pis full.

Next assume that each processor uses several shifts (n > 1). In the first
7P columns in the H-matrix, the nonzero structure is the same as above. Now
assume that we just enter the m loop with the value m = 2 (and j = 1). In
lines 4 and 5 we get a new shift and a new LU factorisation is performed. Note
that this is the first time when the shift p;4, is used in the shifted and inverted
matrix (A — ppipI) ! in the matrix vector product

Tt = (A = pprpl) " os,,
and the element h; ; becomes
h'l,k = ((A - IU/I_H-II)il/Ukp;Ul):l =1,... 7k

= (Vk,, (A = pipipD) "M 01)

= (Vi (A — piprpI) ' 01).
Because the vector (A — ppy,I) 11 does not belong to the subspace Sk, the
vector (A — ppypI) "', cannot be expressed as a linear combination of the basis
vectors in the subspace S for any | < k. This means that the element h;y is

nonzero in general for [< k.
In the next iteration j = 2 and 1 <1 < k, we have

(A — ppyp D)~ v, € spanfvy, ... vk, }

Because the vector vy, belongs to this subspace, the element h; ; is nonzero in
general. If k, <1 <k, then

(A — ppipI)'vy € spanfvy, ... vk, 45}

and note again that k, +p = k+ 1. Thus the element h; ; is nonzero in general.
First when j = 3 and 1 <1 < k, — P, we have

(A — ppipI)'vr € spanfvs, ... vk, 5}

and thus the element h;; = 0. Using a similar argument as above, one can see
that the element by j, is nonzero for k, —p <1 < k.

We can conclude that, every time the shifts are changed (m := m + 1), we
get twice the number of processors (2p) of columns with nonzero elements.

4.2 Real Elements in the H-matrix

In this section we will show that, if we apply the rational Krylov algorithm to a
standard Hermitian eigenvalue problem with real shifts, we obtain a real matrix
H.

By construction the matrix H is upper Hessenberg, and the elements hyy1 x
on the sub-diagonal are real. Let us concentrate on the elements of the upper
triangle, by, < k.

Let v1,...,v; be the orthonormal basis vectors generated by the rational
Krylov algorithm. Let us express the basis vectors with rational functions,

vy=r(Av, l=1,... k

and also the continuation vector V t;:
Vit = qr(A)v1. (18)
In a rational Krylov algorithm the element h; in the matrix H is given by
huk = vi (A — p)7 V ity
= vi 1 (A)T(A = pi 1)~ g (A)vs.

The element h; i, is real if the matrix r;(A)? (A — p;, I) 'qr(A) is Hermitian.
Since different rational matrix functions of the same matrix commute, and since
the matrix (A —p;I)~! is Hermitian, it remains to prove that the matrices r;(A)
and ¢ (A) are Hermitian. The matrix g, (A) is just a linear combination with

real coefficients of the matrices r1(A), ... ,r;(A) and will also be Hermitian if
the matrices r1(A),... ,r;(A) are Hermitian.
Let us now show by induction that the matrices r;(A),... ,rk+1(A) are

Hermitian and thus that the matrix H 9 1 is real. The first two basis vectors
and the first column in the matrix H in the rational Krylov algorithm are the
same as in the shift-and-invert Arnoldi algorithm for the matrix (A — pu; I)~1.
This means that the elements hq ; and ho; are real and that

v = 7‘1(A)’U1 = I’Ul.

It is clear that ri(A) is Hermitian.

If we now assume that the matrices r1(A),...,rx(A) are Hermitian and
thus the matrix Hy1,; is real, we will prove that the matrix 741 (A) will be
Hermitian and thus the matrix Hy2 ;41 will be real. The vector vy can be
expressed as

=k

Vi1 = (A — pi, 1) 7 Vit — Z hikxv1) [Pk, k
=1

I=k
= (A= pa)7 g (A)or = Y hugri(A)vr) /By
=1

=41 (A)v1.

Hence the matrix 741 (A) will be Hermitian because the matrices (A — p; 1) ™!

gr(A) and r1(A),... ,ry(A) are Hermitian and the elements hy, { = 1,... ,k+1
are real. As a consequence the matrix H s ;41 will be real.

4.3 Related Work

The biorthogonal rational Lanczos algorithm is similar in behaviour, regarding
the nonzero structure for general matrices, to the rational Krylov algorithm for
Hermitian matrices; see the paper by Gallivan, Grimme and Van Dooren [3].
The nonzero structure discussed here is also related to the case where the DIOM
(FOM with incomplete orthogonalisation) generates orthonormal basis vectors;
see page 186 in the book by Saad [11].

5 Implementation

5.1 Introduction

The parallel programs described in this section are intended for a multiple in-
struction multiple data (MIMD) computer with distributed memory or a cluster
of workstations connected through a network.

In exact arithmetic, given the same conditions, the different programs dis-
cussed below give rational Krylov factorisations (5) that are identical with the
factorisation generated by the parallel rational Krylov algorithm discussed in
section 3. The programs are implemented in Fortran and use PVM (Parallel
Virtual Machine) for communications between the different processors.

5.2 Parallel Program 1

This program has been implemented in a Master/Slave way and uses p+ 1 pro-
cessors. The Master program does all program control and all orthogonalisation.
The Slave programs do all operations r, := (A — pp,B) ' Br,,p=1,...,p; for
details see [12].

The main problem with the Master /Slave implementation is that the slave
processors become idle while orthogonalisation is done in the Master program.
The time the Master processor spends in each orthogonalisation grows linearly
with k. The Master processor is idle while the slaves do the factorisation. We
will comment more on this in the tests.

The advantage of this implementation is that the communication grows lin-
early with the number of processors and the total communication time is smaller
than in the second implementation. This will be an advantage on a slow net-
work. If the operations 7, := (A—pu,B) "' Br,,p = 1,... ,p take relatively long
time, so that the Master processor has time to orthogonalise while the slaves
work, this implementation will serve relatively well.

5.3 Parallel Programs 2A and 2B

The second implementation can be described as same program multiple data
(SPMD). The same programs are started on p different processors. Processor
number p, 1 < p < p operates r, := (A — p,B)"'Br, and orthogonalises
T, against v;,l = 1,...,k. For this to be possible, the processors exchange
the orthogonalised vectors with each other, and each processor keeps a copy of
the basis vectors. The main idea is described for the parallel rational Krylov
algorithm in section 3. We have implemented two versions, which differ in how
the communication is done.

5.3.1 Parallel Program 2A

Parallel program 2A uses blocking receive and send. A rearrangement of the
receive and send part of the parallel rational Krylov algorithm is needed.

10

12 receive v; and h;_; from its processor, [= k—p+2:k

(from processor 1,...,p—1)
13 H(k,+1:k,k) = V,prH:krkH (Gram-Schmidt part IT)
14 Thtl = Tht1 — Vkp—‘,-l:kH(kp +1:kk)
15 Pt = Th |l
16 Vg1 = Tht1/Pr+1,6 (deliver new vector)
17 (vr41 will be the start vector v, in the next iteration on line 9)
18 send vy1 and hy, to the other processors
19 receive v; and h;_; from its processor, |l =k+2:k+ (p—p) +1

(from processor p+1,...,p)

For a full program description see [12].

Every processor sends and receives p — 1 vectors of length n. A particu-
lar processor waits while the others send and receive. This means that every
processor slows down by the system communication time,

te=Cp(@—1)n+ Lp(p— 1)

where C is a constant which depends on the network and on what precision is
used in the program, L is the latency in the network, and n is the dimension of
the matrix A.

Besides the communication time, every processor has to wait while the others
do the second orthogonalisation, implying a total delay

tortho = (1+2+...+p—-1)D

where D is the time it takes to orthogonalise against one vector of length n.

This implementation works well up to around 6 processors on the IBM-SP2;
see the test results. The volume of communication grows quadratically with
the number of processors p and hence this algorithm will never work on a large
number of processors.

5.3.2 Parallel Program 2B

The parallel program 2B is a straightforward implementation of the parallel
rational Krylov algorithm described in section 3 (no rearrangement is needed).
It uses a blocking receive and a non-blocking send.
The volume of communication for each processor grows linearly with the
number of processors p, but the total communication grows quadratically.
Every processor sends and receives p — 1 vectors of length n. So every
processor slows by with the communication time

te=C(E—1n+LE-1),

as long as the system can absorb it. On the other hand, the system has a
communication time of

te=Cp(p—Vn+ Lp(p - 1).

11

The idea behind this version is to receive the data first when you need it,
and to work while the other processors communicate.

The process of sending a message with PVM is composed of (1) initiating a
sending buffer, (2) packing data into the buffer and (3) sending the buffer. An
arriving message is first stored into a temporary buffer and is later unpacked by
the program that receives the message.

That the sending process is blocking means that it returns first when the
receiving process has unpacked the data. In order for the parallel program 2B to
work properly the send operation should be non-blocking, so that the sending
process can do useful work and not have to wait until the receiving process
unpacks the data. We did not manage to get this version to operate on the
IBM-SP2, probably due to a bug in the PVM implementation (PVMe) at that
time.

5.4 Implementation Details
5.4.1 Solvers

We have used direct band solvers from LAPACK [1]. Other solvers are possible,
such as general sparse solvers. However, there is a problem with using general
sparse solvers. The factorisation part of many general sparse solvers can be split
into analysing the nonzero structure and numerical factorisation. The analysing
phase needs to be done only once for factorisation of different matrices with the
same structure, like those we have in this report (A—p;B). The analysing phase
can take, for example, 3 to 10 times as long as the numerical factorisation. In
order for the algorithm to give good speedup results when using direct general
sparse solvers, the analysing phase needs to be done in parallel on all processors,
and then be distributed to the different processors.

5.4.2 Subroutines in Linear Algebra

It is a nontrivial task to write efficient and accurate subroutines for solving equa-
tions and doing vector and matrix operations. These subroutines are needed in
order to implement the parallel rational Krylov algorithm. Whenever appropri-
ate, we have used LAPACK and BLAS routines; see [1].

The BLAS routines are a collection of subroutines for basic matrix opera-
tions such as matrix-matrix multiplications, matrix-vector multiplications and
scalar products. Many computer manufacturers have their own optimised BLAS
routines. The speed of these optimised routines can be significantly higher than
matrix operations implemented in the naive way, because modern computers
use memory with different access time in a hierarchy.

The LAPACK routines are a collection of linear algebra routines such as lin-
ear system of equations solvers and eigenvalue solvers. LAPACK uses the BLAS
routines. The main work in this implementation is done in the factorisation,
solving and multiplication routines; see Table 1 for the specific routines used.

5.4.3 Orthogonalisation

To ensure that the basis is orthonormal to working precision, every vector 7y, is
orthogonalised twice against the basis.

12

Subroutines in Linear Algebra

double complex | double precision | library
matrix-vector product zgemyv dgemv BLAS
scalar product zdotc ddot BLAS
norm dznrm2 BLAS
scaling zdscal dscal BLAS
general band factorise zgbtrf dgbtrf LAPACK
general band solve zgbtrs dgbtrs LAPACK
generalised eigenvalue solver | zgegv dgegv LAPACK

Table 1: The linear algebra subroutines from BLAS and LAPACK used in the
test programs.

5.4.4 Program Code

The code is experimental and is only intended for research purposes.

The code for the IBM-SP2 and the cluster of SUN workstations is basically
the same. The different versions used by the different computer configurations
are made by the preprocessor cpp from a generic program.

On the cluster of SUN workstations, the programs are written in Fortran77
together with the libraries BLAS, LAPACK and PVM. The nonstandard For-
tran77 statements malloc and pointer are used for memory management.

On the IBM-SP2 the xIf Fortran compiler is used. The xIf compiler pro-
vides maximum compatibility with existing Fortran77 programs and uses many
features in Fortran90. The Fortran90 feature allocate is used for memory man-
agement in the code. The libraries used are LAPACK, BLAS from the ESSL
library and PVMe, the IBM version of PVM.

All programs have a double complex version. Program 1 is the only program
with a double precision version.

MATLAB is used to process the data from the tests and to draw the graphs.
A semi-parallel code for convergence tests is implemented in MATLAB.

6 Test Results
6.1

The main aspects tested are efficiency, speedup and convergence. Efficiency
and speedup are related to the speed performance of the algorithm. In section
3.1 of this report we predicted that it should not matter in which order the
matrix operators (A — uxB)"1B, k=1,...,p are applied; we should get the
same approximation if we do it in parallel or sequentially, and thus we should
get similar convergence behaviour. Is this true on a computer with floating-
point arithmetic? We will discuss this issue in subsection 6.8. Most tests and
all timing tests in this section are taken from the Licentiate Thesis [12].

Introduction

13

6.2 Test Sites

The IBM-SP2 was chosen because it was the best available MIMD computer in
Sweden for research purposes. The SUN configuration was chosen because it
was available at the Department.

The IBM-SP2 is a distributed memory MIMD computer. The machine used
at the Center for Parallel Computers, Royal Institute of Technology, Stockholm,
Sweden, had 55 nodes (the configuration is now upgraded). Each node contains
a processor and memory. The nodes share data via message passing over a high-
performance switch. There are two types of nodes, thin nodes with 128Mbyte
memory and wide nodes with 512Mbyte memory. We have only used thin nodes
in our tests.

The SUN configuration contains SUN ELC workstations connected through
an Ethernet network.

In Table 2 we give some information about the nodes and network used. In
Table 2 we give peak performance, and in Table 3 we give measured performance.
For the test of the communication bandwidth, we have used PVM on the SUN
workstations and PVMe on IBM-SP2 (PVMe is the IBM version of PVM). The
data transferred in the tests are double precision vectors of length 10000. The
number of flops is measured for a scalar product (ddot in the BLAS).

IBM-SP2 SUN

Processor RS/6000 SPARC
Architecture POWER2 | SPARC
Clock frequency 66.7MHz 33MHz

Floating point
operations per cycle | 4
Peak performance 266Mflops | 10Mflops

Main memory 128Mbyte | 24Mbyte
Data cache 64Kbyte

Instruction cache 32Kbyte

Bandwidth network | 35Mbyte/s | 1Mbyte/s
Latency 40us 2ms

Table 2: Some performance data about the nodes and network used.

IBM-SP2 SUN
Performance 23Mflops 2.4Mflops
Bandwidth network | 13.3Mbyte/s | 0.27TMbyte/s

Table 3: measured performance. The number of flops is measured for a scalar
product.

14

6.3 Test Problem

The test matrices consist of a finite difference discretisation of the differential
equation

Pu ’u qydu _

w+a—y2+zay—)\u.

The test problem is artificial but related to a convection diffusion problem;
it is intended for testing convergence and efficiency. This problem has been
chosen for the following reasons: it is easy to vary the size of the problem,
the eigenvalues are known, and the eigenvalues can be arbitrarily ill or well
conditioned. The matrix A, generated from the discretisation, is a sparse matrix
with 5 diagonals and the matrix B is the identity matrix. The matrix A is
real and non-symmetric. Some facts about the test problems for the different
configurations are given in Table 4. The eigenvalue distribution and the nonzero
structure for the test problem for the IBM-SP2 are given in Figures 1 and 2
respectively. The larger test problem chosen for the IBM-SP2 would not fit on
the cluster of SUN workstations due to their small memory. The bandwidth is
chosen in such a way that the same time ratio for orthogonalising and solving
the linear system of equations is obtained for both test sites.

IBM-SP2 SUN
Upper and lower bandwidth | 100 100
Dimension 10000 1000
Number of nonzero diagonals | 5 5
Amount of memory
for the LU factor 48M byte 4.8M byte
Amount of memory
for the basis (m=150) 24M byte 2.4M byte
Precision double complex | double complex

Table 4: Facts about the test problems for the different configurations.

6.4 Tests of the Sequential Algorithm

The tests of the sequential algorithm are made in order to obtain data to com-
pare the sequential and parallel algorithms.

6.4.1 Shifts

We use every shift with the same number of iterations in each test; this is because
we want to compare these tests with the tests on the parallel algorithms where
it is impractical to have different numbers of iterations with different shifts.

6.4.2 Timing

We have kept time on the different parts of the algorithm and the results are
given in Table 5. In these tests we have not timed the computation of the
approximate solution step. The algorithms can roughly be divided into factori-
sation LU = (A — uB), multiplication » = U 'L~ Bv, and orthogonalisation.

15

eigenvalues

30

20

10

imaginary
(=]

-10

-20

4 6 8 10 12 14 16 18
real

Figure 1: IBM-SP2 exact eigenvalue distribution.

nonzero elements
0

1000} 1

2000r 1

3000r 1

4000} |

5000 1

6000 1

7000 1

8000 1

9000 1

10000 - - - -
0 2000 4000 6000 8000 10000

nz = 49600

Figure 2: IBM-SP2, the nonzero structure.

16

The time it takes to orthogonalise a vector against the basis grows linearly with

the number of iterations.

Test Results

Configuration IBM-SP2 | IBM-SP2 | SUN | SUN
Test No. 1 2 3 4
Shifts 6 3 6 3
Tterations with
each shift 25 30 25 30
Total no. of
iterations 150 90 150 90

Timing Results (in seconds)
One factorisation 16.6 17.0 22.8 24.3
One multiplication 0.483 0.485 0.656 | 0.648
Factorisation total 99.6 51.0 136.8 | 73.0
Multiplication total 72.45 43.65 98.4 | 58.3
Orthogonalisation total | 103.5 38.42 113 40.9
Other 0 0 3.6 3.6
Total program 275.6 133.1 351.8 | 175.8

Table 5: Test results for the sequential algorithm.

6.4.3 Convergence

The convergence is measured by the norm of the residual see (9). In Figure 3
the norms of the residuals are plotted in each iteration with a plus +. Lines
are drawn between residuals corresponding to the same eigenvalue in different
iterations. The plot is for test number 1.

In Figure 4 the exact eigenvalues are plotted with a dot -, the approximate
eigenvalues with a residual less than 10~° are plotted with circle o and the shifts
are plotted with a plus +. The plot is for test number 1.

6.5 Parallel Program 1

How well this implementation works depends on how much time it spends in
orthogonalisation, compared to factorisation and multiplication. The problem
with this algorithm is that the processors become idle. The communication time
is negligible in the test compared to the idle time.

The advantage of this implementation is that the basis is located on only one
processor and the slaves only have to keep the matrices and the factorisation.
The communication grows linearly with the number of processors, so the total
communication time is short compared to the other parallel algorithms. The
test results are given in Table 6.

In Figure 5 we show idle time, working time and communication for the SUN
configuration. For this particular test we have used 15 iterations (3 - 15 = 45
total iterations), 3 shifts, 1 master and 3 slaves. The white area in the bars
corresponds to idle time and the black to working time. The lines between
the bars symbolise communication. In the first iteration the master is idle
while the slaves do the factorisations; only part of the factorisation time is

17

Test Results Parallel Program 1
Configuration IBM-SP2 | SUN
Test No. 5 6
Slaves 3 3
Master 1 1
Shifts 3 3
Tterations with
each shift 30 30
Total no. of
iterations 90 90

Timing Results On One Slave (in seconds)
One factorisation 17.0 24.2
One multiplication 0.485 0.66
Factorisation total 17.0 24.2
Multiplication total 14.5 19.8
Communication estimated | 0.72 3.6
Idle time 29.18 27.7
Total time 61.4 75.3

Timing Results On Master (in seconds)
Orthogonalisation total 38.4 39.3
Communication estimated | 2.16 10.8
Idle time 20.84 25.2
Total time 61.4 75.3
Timing Results Total (in seconds)

Parallel Program 61.4 75.3
Sequential Program 133 176
Speedup 2.2 2.3

Efficiency 54% 58%

Table 6: Test results for parallel program 1.

18

6 shifts 1 processor, 150 iterations
2 ‘ ‘

+ T v‘
+ AT
W% + FroET

4.+

log10(residual)
b
(@] [e0)

I
BN
N

T

|
[y
N
T

_16,

-18 ‘ ‘
0 50 100 150

total number of iterations

Figure 3: IBM-SP2, Convergence plot for test 1.

shown in the figure. In the second iteration, a particular slave is idle while
the master orthogonalises its vector, and the master is idle while it is waiting
for the next slave. After a number of iterations the master has no idle time.
Orthogonalisation grows linearly with the number of iterations, and so do the
slaves’ idle time. The speedup and efficiency will depend on the total number
of iterations. In Figure 6 we show the average efficiency in each iteration for
test 5.

The tests show low efficiency for this algorithm. The algorithm can work
rather well if the time spent in factorisation and multiplication is large compared
to the orthogonalisation time. If the opposite is true, this algorithm will achieve
poor results.

6.6 Parallel Program 2A

This algorithm gives much better performance than the previous one. The
algorithm communicates more and the idle time is considerably less. It was the
idle time that gave the previous algorithm poor performance. The test results
are given in Tables 7 and 8.

In Figure 7 we show speedup from the tests using 6 shifts on the IBM-
SP2 configuration. The straight line is the ideal speedup; the pluses + are the
speedup from the tests on parallel program 2A.

In Figure 8 we show idle time, working time and communication for the SUN
configuration. First every processor factorises; only part of the factorisation
time is shown in the figure. Then at each iteration each processor multiplies,
orthogonalises its own vector and exchanges the vector with the other processors.

19

eigenvalues

T T
5| ®0- e ® i
.
@O O ©® O ® ® ® ® ® ®
4l]
.
@O O ©® O ® ® ® ® ® ® ® ®
3r i
> +
®
c
a @O O ©® O ® ® ® ® ® ® ® ®
& ol]
€2+
@O O ©® O ® ® ® ® ® ® ® ®
1F + 1
@O O ©® O ® ® ® ® ® ®
or + |
© 0 ® ®
Il Il Il Il Il Il
2 2.2 2.4 2.6 2.8 3

real

Figure 4: IBM-SP2, Converged eigenvalue distribution for test 1. Exact eigen-
values are plotted with a dot -, approximate eigenvalues with a circle o and the
shifts are plotted with a plus +.

Test Results Parallel Program 2A
Configuration IBM IBM IBM | IBM
Test No. 7 8 9 10
No. of processors 3 6 3 2
Shifts 3 6 6 6
Tterations with
each shift 30 25 25 25
Total no. of
iterations 90 150 150 150

Timing Results On One Processor (in seconds)

One factorisation 18.6 18.65 | 17.44 | 17.05
One multiplication 0.4933 | 0.4908 | 0.486 | 0.485
Factorisation total 18.6 18.65 | 34.88 | 51.15
Multiplication total 14.8 12.27 | 24.3 | 36.37
Orthogonalisation total 12.4 16.8 34.41 | 51.55
Communication + idle time | 3.43 11.07 | 5.48 | 3.56
Total time 49.23 | 58.79 | 99.07 | 142.6
Sequential Program 133 275.6 | 275.6 | 275.6
Speedup 2.7 4.7 2.8 1.9
Efficiency 90% 78% 93% | 97%

Table 7: Test results for parallel program 2A.

20

The first iterations

[W R [T |
T I O T O O
] ui]]]]]]

E_JV.I-I'II- PN TN A N N Y N . T O T
P] I]]]]]

The last iterations

Figure 5: Time graphs on the SUN configuration, 15 parallel iterations. One
master processor and three slave processors. The black area in the bars corre-
sponds to working time, and the white area to idle time.

Every processor has to wait while the others communicate.

In Figure 9 we show the average efficiency at each iteration for test 7. In the
first iteration most time is spent in factorisation, then in the second iteration
the efficiency drops. In the following iterations, the efficiency grows since the
orthogonalisation time grows in each iteration. Note that the scaling for the
efficiency axis is different from the corresponding graph in the tests for parallel
program 1.

The convergence is measured by the norm of the residual see (9). In Figure
10, the norms of the residuals for test 8 are plotted in each iteration with a plus
+. Lines are drawn between residuals corresponding to the same eigenvalue in
different iterations. Note that the residuals come down together because we use
different shifts on different processors at the same time, compared to the sequen-
tial algorithm where they come down at each shift. The levels of the residuals
are not so good as in the sequential algorithm. The parallel algorithms have
some difficulties with the numerical computations that the sequential algorithm
does not have. We will discuss the difference in numerical computation between
the parallel and sequential algorithms in subsection 6.8.

This algorithm gives much better results than the previous one, even though
the total communication time is longer here. The next program obtains even
better results.

6.7 Parallel Program 2B

The difference between the parallel program 2A and 2B is how the vectors are
exchanged. In 2A the processors waited for each other while the data were
exchanged. In 2B an arriving vector is stored in a temporary buffer and the
processor unpacks it first when it is needed. The communication measured
in Table 9 is the sending and receiving operations. However, there is hidden
communication; when a vector arrives at a processor it is stored in a temporary
buffer, and this takes processor time. The multiplication and orthogonalisation
seem to take longer time as the operations are measured by a real clock. This
algorithm did not work on the IBM-SP2, apparently due to a bug in the PVMe,

21

average efficiency in each iteration

l —
0.9¢
0.8F
0.7+ -
>06 [= o
(&) _
GC.) e
£ —
0.41 T
0.3F
0.2+
0.1+
0 Il Il Il Il Il Il J
0 10 20 30 40 50 60 70
time
Figure 6: The average efficiency in each iteration for test 5.
Test Results Parallel Program 2A
Configuration SUN | SUN | SUN | SUN
Test No. 11 12 13 14
No. of processors 3 6 3 2
Shifts 3 6 6 6
Iterations with
each shift 30 25 25 25
Total no. of
iterations 90 150 150 150
Timing Results On One Processor (in seconds)
One factorisation 26.4 24.3 24.2 22.8
One multiplication 0.675 | 0.658 | 0.661 | 0.662
Factorisation total 26.4 24.3 48.4 68.4
Multiplication total 20.3 16.5 33.1 49.7
Orthogonalisation total 13.1 17.8 36.6 54.8
Communication + idle time | 10.9 33.2 18.9 16.7
Other 1.0 1.0 1.8 2.6
Total time 71.7 92.8 138.8 192.2
Sequential Program 176 351.8 | 351.8 | 351.8
Speedup 2.45 3.79 2.53 1.86
Efficiency 81.8% | 63.2% | 84.5% | 92.8%

Table 8: Test results for parallel program 2A.

22

10

speedup

10 1
10 10
number of processors

Figure 7: Speedup graph for the IBM-SP2 configuration. The pluses + are the
speedup for parallel program 2A.

o TS SN, S A S _——f p—
| . N [1] I 1] 11

Figure 8: Time graphs on the SUN configuration for parallel program 2A. The
black area corresponds to working time, and the white area to idle time.

23

efficiency

log10(residual)

0.98

0.96

0.94

o
©
N

o
©

0.88

0.86

0.84

0.82
0

average efficiency in each iteration

10 20 30 40 50
time

Figure 9: The average efficiency in each iteration for test 7.

6 shifts 6 processors, 25 iterations on each processor

|
iy
T

|
(<2}
T

|
[0
T

_lO,

_12,

H

Il

-14
0

50 100 150
total number of iterations

Figure 10: Convergence plot for test 8.

24

the implementation of PVM on the IBM-SP2. The test results for parallel
program 2B are given in Table 9.

Test Results Parallel Program 2B
Configuration SUN | SUN | SUN | SUN
Test No. 11 12 13 14
No. of Processors 3 6 3 2
Shifts 3 6 6 6
Tterations with
each shift 30 25 25 25
Total no. of
iterations 90 150 150 150

Timing Results On One Processor (in seconds)

One factorisation 23.6 23.8 22.7 23.1
One multiplication 0.73 0.808 | 0.712 | 0.691
Factorisation total 23.6 23.8 45.4 69.2
Multiplication total 22.1 20.2 35.6 51.8
Orthogonalisation total 13.1 19.4 37.2 55.2
Communication measured | 3.1 5.2 5.6 6.7
Other 1.5 1.6 2.5 3.5
Total time 63.4 70.2 126.3 186.4
Sequential Program 175.8 | 351.8 | 351.8 | 351.8
Speedup 2.77 5.01 2.79 1.89
Efficiency 92.4% | 83.5% | 92.9% | 94.4%

Table 9: Test results for parallel program 2B.

In Figure 11 we show speedup from the tests using 6 shifts on the SUN work-
stations. The straight line is the ideal speedup, the pluses + are the speedup
from the tests on parallel program 2A; and the circles o are the speedup from
the tests on parallel program 2B.

In Figure 12 we show idle time, working time and communication for the
SUN configuration. First every processor factorises; only part of the factorisa-
tion time is shown in the figure. Then at each iteration each processor multiplies,
orthogonalises its own vector and exchanges the vector with the other proces-
sors. A particular processor unpacks a vector first when it is needed; the idle
time is reduced by this procedure compared to the parallel program 2A.

In comparing the timing results with parallel program 2A, this implementa-
tion get considerably better results, due to the different way of exchanging the
vectors as discussed before.

6.8 Convergence

In this section we will discuss the convergence of the algorithms. The parallel al-
gorithms differ mainly in how communication is organised. The only numerical
difference is in the orthogonalisation process, and these algorithms have almost
the same numerical behaviour. The big difference is between the sequential algo-
rithm and the parallel algorithms. Here we will discuss the numerical difference
between the parallel algorithms and the sequential algorithm.

25

10

speedup

10 1

number of processors

Figure 11: Speedup graph for the SUN configuration. The pluses + are the
speedup for the parallel program 2A and the circles o are the speedup for the

parallel program 2B.

_Ar"j‘——u.r"ﬂr"ﬂ-—* i

Figure 12: Time graphs on the SUN configuration for the parallel program 2B.
Each bar corresponds to a processor. The black area in the bars corresponds to
working time and the white area corresponds to idle time.

26

Tests
Test No. 15 16
No. of processors | 2 1
Shifts 2
Tterations with
each shift 30 30
Total no. of
Tterations 60 60
1 100.5 | 100.5
L2 110.5 | 110.5

Table 10: Some facts for the convergence tests

6.8.1 Test Matrices
In these tests we have chosen A = diag(1 : 500), B = I.

6.8.2 Tests

The tests show that the matrices K and H are more unstable numerically in
the parallel algorithm than in the sequential algorithm.

As the first two tests we choose 2 shifts, one sequential test and one parallel
test. Some facts about the tests are given in Table 10.

In Figure 13 we show the normalised singular values for the matrices H and
K as the number of iterations progresses for test 15, the parallel test. The
corresponding sequential test, test 16, is given in Figure 15. The pluses + are
the singular values of the matrix H and the circles o are the singular values of
the matrix K.

The test shows that the matrices H and K get a null space of dimension
one in the parallel test. A singular value decomposition of the matrices shows
that they get the same null space in this case.

However, if we take into consideration the null space when the approximate
eigenvalues are calculated, we get the same convergence for the parallel and the
sequential case; see Figures 14 and 16 for convergence plots for the parallel and
sequential tests respectively.

From the convergence graphs for the sequential and parallel algorithms, we
can conclude that we get almost the same convergence. The null space in the
H and K matrices in the parallel algorithm does not affect the convergence if
dealt with properly in this case. However, the null space could be a source of
trouble and generally the parallel rational Krylov programs get fewer converged
eigenvalues than the corresponding sequential program. In general it seems that
we get a null space of dimension p— 1 where p is the number of processors used.
For more tests see [12].

6.8.3 Distance Between the Shifts

How does the distance between the shifts affect the singular values of the ma-
trices if the number of iterations is kept constant? If the distance is zero, we
get the same shifts and linear dependence between the basis vectors.

27

singular values in the H and K matrices

aag#a%%;;;g 8$s§§ S
0 89,050 of
-2 | 5 Pef8e,2%0.0
00 50 gartB s

10 r +5o i

=
o
T
5]
€2
L

singular values (normalized)
= B
o o
AN N
o N o
T T
(@)
®
©
Ot
+0
O+
n
O+
(o]
L 1

=
ol
=
@
T
4O
+0
&

|
N
o

=
o

10 20 30 40 50 60
total number of iterations

o

Figure 13: Normalised singular values for the matrices H and K for test 15,
the parallel test with 2 shifts and 2 processors. The pluses + are the singular
values of the matrix H and the circles o are the singular values of the matrix
K.

2 processors, 2 shifts

4
N
2,
PR
IR
oF V&’Q 'ﬁ’n‘}\‘ ,
-2t &A %
] M
3
S -ar
=
a o
(o))
S
_87
_lo,
_12,
_14 I I I I I
0 10 20 30 40 50 60

total number of iterations

Figure 14: Convergence plot for test 15, the parallel test.

28

singular values in the H and K matrices

10 E hd A R sl [N#iN; 7N [N#iNvinal

[®
-1
Glo E
8 B
— O
EE r 8 o ¢ Q ogo+0 28385
= 1072 °C*¥ oo Lot +Oig8+@+$®¢3 Edes &
010 ¢ o + 0~000 o O+©$@@®@Q géé 88
£ © 0 0 ooco O oioio+o+©+8 0°6835e go+9 o oez§¢®
3 © 1 T or o R0RRR5 5204691 08
g ° oI e I
=) r © +.0 o o*o o)
© o+t +0%+ o+ N o
T - + o+ 4+ + ot T T ® o+, .+
>0 7 N o + of O EOToT ot g Oty
@ 3 o ©c o 35 O
3 F o o t 45 O+ o O ¢
> [o +0 o
£ , + ° o
)
-4
10 ¢ o E
3 o
10_5 L L L 1 |
0 10 20 30 40 50 60

total number of iterations

Figure 15: Normalised singular values for the matrices H and K for test 16,
the sequential test with 2 shifts. The pluses + are the singular values of the
matrix H and the circles o are the singular values of the matrix K.

1 processor, 2 shifts
4 T T T T

+

+ o+ 4+
+ 4+ o+ o+ Tt
ol *+#+*+¢+¢+¢+¢+#+*+*++l+*+$+i++i++i++ i++¢+ S
+ o+ F 0)& Rk AT

*%

log10(residual)

_10,

_12,

-14
0 10 20 30 40 50 60
total number of iterations

Figure 16: Convergence plot for test 16, the sequential test.

29

svd(H)/max(svd(H)

In Figure 17 we have tested how the singular values in the matrix H for the
parallel algorithm depends on the distance between the shifts. The shifts are
p1 = 100.5 and pe = 100.54+ 5% j,5 =1,...,6. The total number of iterations
is 60, 30 iterations on each processor. As we can see in the figure, if we fix the
number of iterations and increase the distance between the shifts, the smallest
singular value of H increases in the parallel algorithm.

10

2 shifts 2 processors 30 iterations on each processor

* * j(
4 ¥ * * &]
-8 *
-10 L |
-12| * |
-14 | i
-16 | i

18>€ * | | |
5 10 15 20 25 30

distance between shifts

Figure 17: The smallest singular value as function of the distance between the
shifts, for the parallel algorithm with 2 processors and 2 shifts.

Below we give a summary and conclusions for the convergence tests. There
remains work to do before theorems and proofs can be stated from these con-
clusions.

1.

If pa,...,pp, i # p; shifts are chosen and applied in parallel with the
parallel rational Krylov method, with the same number of iterations with
each shift, then the matrices H and K get p — 1 singular values that
are significantly smaller than the others. As the number of iterations
increases, these singular values can be considered zero and the matrices
H and K have the same null space of dimension p — 1.

. If pa, ..., pp, i # pj shifts are chosen initially and applied in parallel

with the parallel rational Krylov method, and the numbers of iterations
are fixed and equal on each processor, then the matrices H and K will
have p — 1 singular values that are significantly smaller than the others
when the shifts are close enough. A larger distance between the shifts
makes the smallest singular value larger.

The null space appears gradually, and the above can only be a rough de-
scription of what actually happens with the parallel rational Krylov algorithm.

30

6.8.4 Some Explanations of the Convergence of the Parallel Algo-
rithm

Why do the parallel and sequential algorithms behave differently? According to
the theory, in exact arithmetic they build up the same subspace. Somehow the
floating-point arithmetic makes them behave differently.

One explanation is in the way the basis is built up. In the parallel version,
different Krylov spaces are intermixed to build up a larger space, while in the
sequential version one Krylov space at a time is added to build up a larger space.
If the shifts are the same, then the parallel version stops in the orthogonalisation
step in the first iteration, because the different processors produce identical
vectors. But for the sequential version, if the shifts are the same, the algorithm
becomes the shifted and inverted Arnoldi algorithm and does not break down.
What happens when the shifts are close but not the same? We have some idea
from the tests.

Comparing Figures 13 and 14, we see a clear connection between the con-
vergence of the eigenvalues and the gradual appearance of the null space in the
H and K matrices.

Consider a parallel rational Krylov algorithm run on 2 processors and 2
shifts. In the first iterations, the convergence regions of the two shifts are sepa-
rate and all singular values of the H and K matrices are at normal levels. When
the convergence regions begin to grow together, there will be an eigenvector that
converges in both regions before the other common eigenvectors. Except for the
start vector v, the Krylov spaces K;((A — p1I)™!,v) and K;((A — pI)~%, v)
will have a common vector, the eigenvector that has converged in both spaces.
We could generalise this for p processors and p shifts.

Another explanation lies in the orthogonalisation process. The sequential
algorithm builds up the basis one vector at a time, while the parallel version
builds up the basis with p vectors at a time. The parallel version operates on
each processor p, 1 < p < p:

i1 = (A = pi, B) "' Bvg_pia

Ti+1 is orthogonalised against v1,... ,v;. The vectors vy_p42,...,V; cannot
be included in the the starting combinations because they are not calculated
when the processor needs them. This process could cause numerical instability.

6.9 The Nonzero Structure in the H-matrix

In these tests the matrix A = diag(1 : 300), and the matrix B is the unit matrix.
As long as u; # p, @ # 1 it is not relevant what the shifts are.

The graph in Figure 18 shows the nonzero structure for the H-matrix. We
used three processors (p = 3), one shift per processor (m = 1), and each shift
was applied ten times (7 = 10). The maximum number of nonzero elements in
each column (and row) is 2p+1 =2 x 3+ 1 =7 as predicted.

The graph in Figure 19 shows the nonzero structure for the H-matrix when
we used three processors (p = 3), two shifts per processor (m = 2), and each
shift was applied five times (j = 5). Note how the number of nonzero elements
in each column changes when the shifts change; the change occurs after column
p) = 3 x5 = 15. First we get 2p columns with nonzero elements from the

31

10+ ececcooc e

15+ eecocce e

20+ eecocce e

25+ eeccoo o

30’ LIS

0 5 10 15 20 25 30
nz =195

Figure 18: The nonzero structure for the H-matrix. We used 3 processors, 1
shift per processor and each shift was applied 10 times.

sub-diagonal down to the bottom; after that, the nonzero structure is as before
the change of shifts.

There exist many other ways to implement a parallel rational Krylov algo-
rithm that generates the basis vectors in parallel. The nonzero structure of the
H-matrix will depend on the shift strategy, the number of processors and how
the vector vy, is chosen.

6.10 The Rational Krylov Method Compared to the Shift-
and-Invert Arnoldi Method

In this section we compare the rational Krylov method with the shift-and-invert
Arnoldi method. In these tests, we have used a diagonal matrix A and unit B
with eigenvalues in the complex integers.

In Figure 20 we show the converged eigenvalues for the parallel rational
Krylov algorithm with a total of 160 iterations. Approximate eigenvalues with
a relative error between 10~% and 10~8 are plotted with a circle o. Approximate
eigenvalues with a relative error between 108 and 107! are plotted with a plus
+. Approximate eigenvalues with a relative error below 10711 are plotted with a
cross X. The shifts are plotted with a star . The exact eigenvalues are plotted
with a dot -.

One advantage with the (parallel) rational Krylov method is that the shifts
can be chosen to mark up other regions than circles; see Figure 20. The corre-
sponding convergence test for the 5 shift-and-invert Arnoldi methods is shown
in Figure 21. The (parallel) rational Krylov method builds up one subspace of
dimension 160, while the 5 shift-and-invert Arnoldi methods build up 5 different

160

subspaces, each of dimension == = 32.

32

15¢

20

25

30

0 5 10 15 20 25
nz =270

w
o

Figure 19: The nonzero structure for the H-matrix. We used 3 processors, 2
shifts per processor and each shift was applied 5 times.

rational Krylov 5 processors 5 shifts 32 iterations

T T T T T
16+ 1
14+ 1
12
10
T R R SN S SRR IRR IR
@ 8+ - ® 0 000000 OO0 OO O + + + + + « -
o O X X X X X X X X X X X XXX XXXXO06
56» XX X XX X X X X X X X X X X X X X X X -
© * * * * *
< XX X X X X X X X X X X X XX XXX XX
%4» © X X X X X X X X X X X X X XXX X X0 1
E ~~~~~~ Q0O 00000 OOOOO @ « « « «
'_2
O
_2
_4
L L L L L
10 15 20 25 30
real part

Figure 20: Convergence region for parallel rational Krylov algorithm.

33

5 arnoldi 5 shifts 32 iterations

16 1
14+ 1
12
10
T R S SR SRR R
‘58
R ++ 00+ +00++00++00++0
56» + X X 4+ X X 4+ 4 X X+ + X X+ + X X+ g
[} * ES * * ES
c + XX+ 4+ XX 4+ + XX+ + XX+ + XX+
34 ~~~~~~ ++ 00+ + 00+ +0060++00++0 4
E e
2
0
_2
_4
10 15 20 25 30
real part

Figure 21: Convergence region for 5 separate Arnoldi methods.

The type of problem where the rational Krylov method is likely to perform
better than a standard shift-and-invert Arnoldi is where the desired eigenvalue
region differs to a great extent from the typical circular convergence region of
the shift-and-invert Arnoldi. For more tests see [12].

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide, Release 2.0. SIAM, Philadelphia,
1995. 324 pages.

[2] W.E. Arnoldi. The principle of minimized iteration in the solution of the
matrix eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

[3] K. Gallivan, E. Grimme, and P. Van Dooren. A rational Lanczos algorithm
for model reduction. Numerical Algorithms, 12:33-64, 1996.

[4] C. Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. Journal of Research, Nat. Bur.
of Standards, 45:255-282, 1950.

[5] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK USERS GUIDE:
Solution of Large Scale FEigenvalue Problems with Implicitly Restarted
Arnoldi Methods. STAM, Phildelphia, PA, 1998.

[6] K. J. Maschhoff and D. C. Sorensen. P_ ARPACK: an efficient portable
large scale eigenvalue package for distributed memory parallel architectures.
In Applied Parallel Computing in Industrial Problems and Optimization, J.

34

Wasniewski, J. Dongarra, K. Madsen, and D. Olesen, eds., Volume 1184 of
Lecture Notes in Computer Science,. Springer-Verlag, 1996.

[7] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation.
Lin. Alg. Appl., 58:391-405, 1984.

[8] Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue prob-
lems, II: Matrix pairs. Lin. Alg. Appl., 197/198:283-296, 1994.

[9] Axel Ruhe. The Rational Krylov algorithm for nonsymmetric eigenvalue
problems. ITI: Complex shifts for real matrices. BIT, 34:165-176, 1994.

[10] Axel Ruhe. Rational Krylov, a practical algorithm for large sparse non-
symmetric matrix pencils. SIAM J. Sci. Comp., 19:1535-1551, 1998.

[11] Y. Saad. Iterative Methods For Sparse Linear Systems. PWS Publishing
Co., 1996.

[12] Daniel Skoogh. An implementation of a parallel rational Krylov algorithm.
Licentiate Thesis, Chalmers University of Technology, Goteborg, Sweden,
1996.

35

