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Abstract
A new method to solve linear systems of equations with several right-
hand sides is described. It uses the basis from a previous solution to reduce
the number of matrix vector products needed to solve a linear system of
equations with a new right-hand side. It builds up a subspace of a union of
Krylov spaces. Some numerical examples are given where variants of the

method are compared to Krylov subspace methods, particularly a block
Arnoldi (GMRES) algorithm.
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1 Introduction

Consider a set of k linear systems with the same matrix A, but with several
right hand sides b;, i = 1,... , k:

A.’Bi:b,’,izl,...,k (1)
AeC™" b,z €C™. (2)

We are going to describe a new method that reduces the total number of matrix
vector products needed to solve the system (1) compared to when the system is
solved for each right-hand side separately. We will discuss cases when all right
hand sides are known before the iterations begin, as well as cases when they are
not.

If all right-hand sides are known before the iterations begin, then the block
Arnoldi method can be used to solve the set of systems (1). It generates or-

thonormal basis vectors v1,... ,v,,+ that span the subspace
k
Sm—i—k = U IC(%—H)(A: bz): (3)
i=1
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which is a union of Krylov spaces. As usual, a Krylov subspace is defined by
Ki(A,v) = span{v, Av, A%v,... , AF"1v}. 4)

In this report we will introduce new algorithms that generate orthonormal basis
vectors which span a subspace of a union of Krylov spaces, whereas block Arnoldi
generates basis vectors that span the whole union (3). The new algorithms are
more flexible, and the convergence behaviour will depend on how the subspace
is chosen. We reduce the number of matrix vector products needed to solve a
linear system for a new right-hand side by using bases of previous systems.

In section 2 we describe a band and a staircase algorithm where the basis
vectors span a union of Krylov subspaces. The band algorithm starts on k&
orthonormal vectors which are a basis of the subspace spanned by the k right-
hand sides, and generates basis vectors that span the same subspace as a block
Arnoldi method. The only difference is that the basis is expanded by one vector
at a time, whereas in a block Arnoldi method the basis is expanded by k vectors
at a time. The staircase algorithm on the other hand starts on the first right-
hand side, and the other right-hand sides are incorporated one after another
into the basis at later stages of the iterations. Each time a new right-hand b; is
incorporated into the basis, the bandwidth of the computed matrix in the new
basis is expanded by one.

In section 3 we make extensions to those two basic Krylov methods where
the matrix A operates on a linear combination of the basis vectors. This will
cause the basis vectors generated by the algorithms to span a subspace of a
union of Krylov spaces.

In section 4 we show test results for these new algorithms and compare them
to the basic Krylov methods.

In section 5 we draw conclusions as to when the algorithms developed in this
report are suitable for practical use.

1.1 Related Work

The first Krylov subspace method was developed by Lanczos [5], another early
work was done by Arnoldi [2]. The first methods built on multiple Krylov
subspaces were developed by Cullum and Donath [4] for the eigenvalue problem,
and by O’Leary [8] for linear systems. Krylov subspace methods for linear
systems are described in detail in the book by Saad [16].

Parlett [10] described how new right-hand sides could be incorporated into
a basis. This is further discussed by Saad [15]. Saad calls the method modified
Lanczos algorithm. The method is intended for symmetric matrices. Orthog-
onal projection is used to solve the approximate problem. A new direction is
orthogonalised against the basis v1,... ,v; and the normalised result replaces
v,41. This method will work well only if the residual has a small part in v, .
Neither Parlett nor Saad have reported any numerical tests in their work.

Schmitt and Weiner describe methods that incorporate new right-hand sides
into the basis in [18]. Their methods are intended for unsymmetric matrices.
Orthogonal projection is used to solve the approximate problem. For one of
the approaches described, the matrix operates on the basis vector that has the
largest part of the residual.

Several works [3, 19, 9, 20] deal with the selection of one seed system that is
solved by a Krylov method. The other systems are solved by using orthogonal



projection onto the subspace generated by the seed system. The procedure then
continues either with solving each system individually [9], or by repeating the
selection of seed system [3, 19, 20], and using orthogonal projection for the other
systems onto the seed system until all systems have converged. The advantage
with these methods is that the memory requirement for the basis vectors and
the time spent in (bi)orthogonalisation can be kept low by using restarts or by
developing recurrences for the solutions. The disadvantage is that these methods
are best suited for problems where the right-hand sides are known before the
iterations begin.

In our work, we have not assumed that the right-hand sides are close in any
way. Some methods may take advantage of right-hand sides that are close, for
example in time stepping.

Notation

Matrices are written with upper-case bold letters like A, vectors are written with
lower-case bold letters like v and scalars are written with lower-case letters like
w. By h;; we mean the element H(¢,5), by H;; we mean the leading ¢ x j
submatrix of H, and by h; we mean the j:th column of H. By V; we mean
the first j columns of the matrix V.

2 Basic Krylov Subspace Methods

The algorithms described in this section are variations of the block Arnoldi algo-
rithm. They are given here as reference methods since they build on established
theory, although the goal of this report is to extend the theory to the methods
we will describe in the next section.

2.1 Band Method

The basis vectors generated by this algorithm span the same subspace (3) as
a standard block Arnoldi algorithm, provided that m/k is an integer. In this
form the method was developed by Ruhe and is described in [11] for Hermitian
matrices. The matrix A operates on one basis vector at a time, whereas in a
block method the matrix A operates on several basis vectors at a time.

Band Algorithm

1 Choose k orthonormal vectors v;, i =1:k
2 forj=1:m

3 r = Av; (operate)

4 [Vj+k, hj] = GramSchmidt(V p_1,7)
5 Solve approximate problem

6 end

The number of matrix vector products m is chosen dynamically accord-
ing to some stopping criterion, for example when the norms of all residuals
ri=b; — Ax;, i =1,... ,k are below some threshold value. We will explain
how the approximate solution is calculated at line 5 of the algorithm in section
2.3.



The GramSchmidt function is just the standard Gram-Schmidt. However,
for the numerical tests to ensure that the basis is orthonormal to working pre-
cision, the vector r is orthogonalised twice against the basis.

Gram-Schmidt
function [v, h] = GramSchmidt(V,r)
if V=] then

1

2

3 h=[r|

4 v=r/h

5 else

6 h = V7 (orthogonalise)
7 r=r—Vh

8 j = length(h)

O hpa=|rl

10 v =r/hjy1 (new basis vector)
11 end if

12 return
After j iterations with the band algorithm, the Arnoldi factorisation
AV =Vt Hjir, (5)

holds. The (j + k) x j trapezoidal matrix H has lower bandwidth k.

The starting vectors vy,...,v; are an orthonormal basis of the subspace
spanned by the right-hand sides by, ... ,bg. They are computed by a QR fac-
torisation

B=V,S, Be(C™* Vv, ecvk §cchxk, (6)

2.2 Staircase Method

This algorithm starts on one vector, the normalised first right-hand side

v; = b1/ || b1 ||, and the other right-hand sides are incorporated into the basis
one after another at later stages of the iteration. This algorithm is described by
Schmitt and Weiner [18].

Staircase Algorithm

1 j=0

2 fori=1:k

3 [’Uj_H', Si] = GramSchmidt(Vj_H-,l y bz)

4 forl=1:m;

5 j=7+1

6 r = Av; (operate)

7 [Vj+i, hj] = GramSchmidt(V ;4;_1,7)
8 Solve approximate problem

9 end

10 end



The number of matrix vector products m; for each incorporated right-hand
side is chosen dynamically, according to some stopping criterion, for example
when the norm of the residual r; = b; — AZ; is below some threshold value.

After m, iterations in the loop on lines 4 to 9, the usual Arnoldi factorisation
holds:

Ale = Vm1+1 Hm1+11m1 .

Before the iterations continue, the next right-hand side b, is orthogonalised
against the basis by the Gram-Schmidt and the basis is expanded with the
resulting vector v, 2. A row of zeros is added to the matrix Hp,,41,m, and
the factorisation will be

Ale = Vm1+2Hm1+2,m1

similar to block Arnoldi with block size 2. The iterations will continue with
the expanded matrix V,,,+2. Each time a new vector is included in line 3 of
the algorithm, the lower bandwidth of the matrix H is increased by one in the
iterations that follow. See Figure 9 for a typical structure of the matrix H. At
step j and the inclusion of ¢ new right-hand sides, the relation

AV; =V il ; (7)
holds.

2.3 Approximate Solution

We see from (5) and (7) that the band algorithm and the staircase algorithm
have similar Arnoldi factorisations. We can can compute the approximate so-
lutions in the same way for both methods. However, they will have different
convergence properties.

From line 3 of the staircase algorithm and from the initial QR factorisation
(6) of the band algorithm, we see that the right-hand sides b;, [ = 1,... ,i can
be expressed as

by = Vjyisi (8)
with the appropriate number of zeros added to the bottom of s;, I = 1,... ,1.
If for each [ = 1,... ,i we solve the problem

n;in I st — Hjti iy ll2
1

and take
% = Viniy 9)
as the approximate solution, then the residual will be
T = bl - A£1~31

=Vjtisi - AVjy,
=Viisi = ViriH iy
= Vivi(si — Hjtijy)-
The second equality follows from (8) and (9), and the third from (7).

This corresponds to the standard GMRES algorithm by Saad and Schultz
[17].



2.4 Subspaces

Both the band algorithm and the staircase algorithm build up bases that span
a union of Krylov spaces.
The basis vectors of the band algorithm span the subspace

k
Smtk = U Kz 41)(A,b;)

i=1

where m is the total number of matrix vector products and K (A, v) stands for
a Krylov subspace (4).
The basis vectors of the staircase algorithm span the subspace

k k
m
Sm—i—k: UIClIi(Aabi)a Qz:1+ E Tla
=i

i=1

where now m, the total number of matrix vector products, is

3 Adaptive Methods

We will now extend the two basic Krylov algorithms to operate on linear com-
binations of the basis vectors. This is similar to the rational Krylov algorithm
developed by Ruhe [12, 13, 14], for eigenvalue computation.

Adaptive Band Algorithm

1 Choose k orthonormal vectors v;, i =1 :k

2 forj=1:m

3 Choose continuation combination V jr_1t;
4 r = AV ji,_1t; (operate)

5 [Vj+k, bj] = GramSchmidt(V i 5_1,7)

6 Solve approximate problem

7 end

In the algorithm above, the basis vectors vy, ... , vy are an orthonormal basis
of the subspace spanned by the right-hand sides, just as in the band algorithm.



Adaptive Staircase Algorithm

1 7=0

2 fori=1:k

3 [’U]'_H', Si] = GramSchmidt(Vj_H_l y bz)

4 forl=1:m;

5 j=J3+1

6 Choose continuation combination V;;_1t;
7 r = AV ;_1t; (operate)

8 [’Uj_,_z',hj] = GramSchmidt(Vj_H,l,'r)
9 Solve approximate problem

10 end

11 end

For both algorithms the choice of continuation combination V;i;_1t; is
essential for the success of the algorithms; it is discussed in section 3.3.

Let us now see how the original problem is expressed in the new basis
V1i,...,V;4i, Where j is the total number of matrix vector products, and i
is the number of incorporated right-hand sides. From the algorithms above, we
see that in step j

T = AVj_H;_l tj
and Gram-Schmidt implies that
r=Vjiih;

where h; is a vector of length j 4+ 1. Add a zero to the bottom of ¢; and denote
t;
tl]

AVjyit; = Vjtih;.

and we get

Join the columns and get
AV j1iTjtij = Vil jtij-

Note that T is not necessarily triangular, but the index of the last nonzero in
each column of the matrix T is one less than the corresponding index of the
matrix H; compare Figures 9 and 10 for the adaptive staircase algorithm.

If the matrix T is chosen to be the unit matrix, the algorithms discussed in
this section are identical to those discussed in the previous section.

3.1 Approximate Solution

Let us now describe how to solve the approximate problem at step j. Assume
that we have incorporated 4 right-hand sides. Factorising the matrix T';,; ; with
a QR factorisation

Tjtij = Qjti;Rj;



and setting
Hjy iy =Hj iR
the basic recursion (3) then becomes
AV 4iQjriy = ViriH j1a;. (10)

Just as in the previous section, the right-hand sides b;, [ = 1,...%, can be
expressed as

by =Vjus (11)
with the appropriate number of zeros added at the bottom of s;, I = 1,... ,1.
If for each [ = 1,... ,i we solve the problem
min | s — Hjtijy 2 (12)
and take
T =V;i1iQiti i (13)

as the approximate solution, then the residual will be
r = bl — A:El
=Vjrisi— AV ;inQy, iy

; (14)
=Virisi = ViriH iy,

= Vivi(si — Hjijyy)-

The second equality follows from (11) and (13), and the third from (10). Since
V j+: has orthonormal columns, we have for each I =1,... 1

A

| by — A%y [|2=]| 81 — Hjyi 9, |2 -

3.1.1 Solution by Orthogonal Projection

Expand the matrix @
Then (10) becomes

— . . H ] . . .
AVj+in+i,j - VJ+zQj+i,j+in+i,j+iHJ+z,J-

j+i,; With ¢ columns into an orthogonal matrix Q;; ; ;.

Set
Witi=ViriQjyi i (15)
and

~
A A~

_nH L
Hj+i,j - Qj+z',j+z'HJ+w

o . (16)
=QjtijriHjvii Ry ;

whence we get



AW =W, iHjyi . (17)

If the matrix A is Hermitian, then the matrix H j.j is Hermitian; further,
from (16) we see that the matrix H ; ; is not Hermitian in general and the vector
7 = AV j1;_11; needs to be orthogonalised against all basis vectors.

For the right-hand sides b;,l = 1,... ,7 we find that even if

b, € span{vy,... ,v;},
the right-hand side b; does not belong to the subspace
span{wsi,... ,w;}
in general, because
W;=V;iQjii;-
This means that important information is kept in all the basis vectors w1, ... , wjy;.
If we solve the approximate problem by an orthogonal projection method
Wb — AZ) = Wi (b — AW jy,)
=Wib - W] AWy,
H 2
=W;jb —Hj;y
=0,
then the approximate solution &; = W ;y; may in some cases not be a good

approximation, because the last 4 basis vectors wj41,... ,w;4; will not be used
to compute the approximate solution.

3.1.2 Solution by Residual Minimisation

An alternative way of calculating the approximate solution (13) can be derived
from the modified Arnoldi factorisation (17).
Ifforeachl=1,...,7 weset § = Wﬁibl, and solve the problem

A

rr;iln | 3 — Hjtijy; |2

and take &; = W ;y, as the approximate solution, then the residual will be
b — Ax; = W8 — AWy,

=W;i8 — Wj+iﬁ1j+z',jyl (18)

A

=W;yi(81 — Hjyijy;)

where the second equality comes from (17). Note that

~

b — AZ; = Vj+in+i,j+i('§l — Hjiijy))

~
N

= Viti(Qjyijyidt — Qjpijrijvijyr)
H H H 2
= Vj-i-i(Qj+i,j+in+i,j+iVj+ibl - Qj+i,j+iQj+z',j+z'Hj+i7jyl)

=Vyi(si— Hjyijy)



which is equivalent to (14). The first equality follows from (15) and (18), and

~

the third from that & = W, ;b; and the definition (16) of H ;.

3.2 Subspaces

In both the adaptive band algorithm and the adaptive staircase algorithm, the
matrix A operates on a linear combination V't of the basis vectors V. As a
result, for each of the two algorithms, the basis vectors that are generated span
a subspace of a union of Krylov spaces. Note that the band algorithm and the
staircase algorithm discussed in section 2 generate basis vectors that span a full
union of Krylov spaces.

The basis vectors of the adaptive band algorithm span a subspace of dimen-
sion m + k of the space

k
Skmak = | Kma1(4, b;)

i=1

where m is the total number of matrix vector products. The basis vectors of the
adaptive staircase algorithm span a subspace of dimension m+ k& of the subspace

k k k
Sy =JKu(A by), lezjlmwk, g =1+12ml
=1 =1

i=1

where now m, the total number of matrix vector products, is

3.3 Continuation Vector

The continuation vectors ¢; are essential for the success of the algorithms. For
the first right-hand side (i = 1) and t;; # 0, the basis vectors span a Krylov
subspace, and choice of continuation vectors is not critical. For later right-hand
sides (i > 1), different choices of continuation vectors ¢; will generate different
subspaces.
We have had success continuation on a normalised residual vector. Solve the
small problem (12) and take t; as
_ s Hyyijy,
= . .
Il 8t — Hjyijyy ll2

This is closely related to Arnoldi’s method for linear systems with one right-
hand side. The residual for the FOM (Full Orthogonalisation Method) variant
of Arnoldi’s method will be

r=b— AZ
=PBvjn
if the right hand-side b belongs to the span of the basis vectors v1,... ,v;. The

vector v;41 is the next basis vector and the matrix A will operate on it in the
next iteration.

10



The choice of right-hand side s; in (12) has a great impact on the conver-
gence behaviour. In the adaptive band algorithm, one possibility is to alternate
between the different right-hand sides s;,l = 1,... , k. In the adaptive staircase
algorithm, a natural choice is to take the latest incorporated right-hand side in
the new basis s; as the right hand side in the minimisation (12).

See Figure 10 for a typical structure of the T matrix of the adaptive staircase
algorithm.

4 Test Results

The algorithms are implemented in MATLAB for the non-normal test and the
clustered normal test. For the CEM test, the matrix A is generated by the
Fortran program NEC2 [7, 6], and the algorithms are implemented in MATLAB.

4.1 Non-Normal Test

This test matrix is upper triangular with bandwidth 5, and the eigenvalues
ai; = (i+ 1)% —1 along the diagonal. The parameter g controls the compactness
of the spectrum; increasing g gives a cluster nearer to zero. The spectrum is
similar to a spectrum of a typical preconditioned matrix.

The 5 diagonals above are filled with normally distributed random numbers
with mean —p and variance 2p. The parameter p controls how normal the matrix
is; increasing p gives a more non-normal matrix.

In Figure 1 we plot the spectrum of A of dimension n = 50 and for the
parameter g = 3.

In Figures 3, 4, 5 and 6 we show test results for the algorithms, band al-
gorithm, staircase algorithm, adaptive band algorithm and adaptive staircase
algorithm respectively.

In these tests we have chosen the dimension of the matrix A to be n = 2500
and the parameter values to be p = 0.2 and ¢ = 3. The objective is to solve the
matrix equation for 3 right-hand sides to an accuracy measured by the norm
of the residual, to be less than 1070, All right-hand sides are generated by
normally distributed random numbers and are normalised for unit length. This
implies that the different right-hand sides are close to being orthonormal. This
is the worst case and the methods cannot take advantage of right-hand sides
that are close to each other.

In the figures, the norm of the residual is plotted against the number of
iterations for the different right-hand sides.

In Figures 3 and 5 we show the test results for the band algorithm and the
adaptive band algorithm respectively. The convergence behaviour is similar; the
band algorithm converges in 162 iterations and the adaptive band algorithm
converges in 157 iterations. Note that the use of the T" matrix in the adaptive
band algorithm makes it possible to drop a linear system as soon as the norm
of its residual is below 107!°, whereas in the band algorithm we must iterate
on every linear system until all of them are below 10710,

In Figure 4, the test result for the staircase algorithm is plotted. First,
the method starts on the first right-hand side and iterates until the norm of
the residual is below 10710 (74 iterations). Before the iterations proceed, the
second right-hand side is incorporated into the basis. After that, the algorithm

11



continues with the iterations until the norm of the residual for the second right-
hand side is below 10710 (additional 84 iterations). Note that the residual norm
for the linear system number 1 continues to drop until it reaches roundoff. Last,
the third right-hand side is incorporated, and the iterations continue until its
residual norm is below 10719 (additional 99 iterations). The algorithm needed
a total of 257 iterations. Note that the number of iterations to solve a linear
system increases with the number of incorporated right-hand sides. It is evident
that this algorithm is not better than any of the others, so we leave it out of
the further tests.

In Figure 6, the test result for the adaptive staircase algorithm is plotted.
The first linear system needs 74 iterations to converge, the second needs 49
iterations and the third needs 37 iterations. The total number of iterations for
the method is 160. Note that the residual norms of the first two linear systems
never go much below 1071°, and that the later systems need fewer iterations.

In Table 1 we give test results for the band algorithm, the adaptive band
algorithm and the adaptive staircase algorithm. The objective in these tests is
to solve the matrix equation with six right-hand sides and the residual norms
to be smaller than 107'°. The dimension of the matrix A is n = 2500 and the
parameters p and ¢ are given different values. The total number of iterations
is almost the same for the adaptive staircase algorithm and adaptive band al-
gorithm, whereas the band algorithm needs about 5% more iterations. If the
matrix gets less normal (the parameter p increases), or the spectrum gets less
compact (the parameter ¢ decreases), then the number of iterations increases
for all methods and the ratio of the number of iterations for the last right-hand
side to the number of iterations for the first right-hand side decreases for the
adaptive staircase algorithm.

4.2 Clustered Normal Test

This test matrix is diagonal, and thus the eigenvalue distribution is given by
the diagonal elements. The first n; + 1 diagonal elements (eigenvalues) are
placed on a circle in the complex plane with centre 0 and radius r, with ny — 1
single eigenvalues and one double in (r,0). The remaining diagonal elements
(eigenvalues) are placed on the real line and are chosen similar to the non-
normal test.

rezﬂ("kl_l)j k=101<k<n;+1
ary =4 (k—(ni+1)7 k=l n+2<k<n
0 k#1,

where j = +/—1. In Figure 2 we show the spectrum for the case where the
dimension of the matrix A is n = 50, the radius of the circle is 7 = 0.8 and the
number of different eigenvalues on the radius of the circle is ny = 10.

In Figure 7 the test results for the adaptive staircase algorithm are given.
In this test, the dimension of the matrix A is n = 2500 and the radius of the
circle is 7 = 0.1, the number of different eigenvalues on the circle is n; = 10 and
the parameter value is ¢ = 3. The algorithm needs 93 iterations to solve the
first linear system, 32 to solve the second and 25 to solve the third. The large
difference between the number of iterations needed to solve the different linear

12



systems can be explained as follows. All eigenvalues on the disc have modulus
r = 0.1; the smallest eigenvalue that does not belong to the disc has modulus
1. Thus the eigenvalues on the disc have a great impact on the solution. When
the first linear system is solved, the eigenvalues on the disc need to converge
with corresponding eigenvectors. When the second linear system is solved, the
information about the n; eigenvalues with the corresponding eigenvectors is
already in the basis; however, there is one double eigenvalue on the disc (r,0) and
it needs to converge with the corresponding eigenvector. When the third linear
system is solved, all eigenvalues with corresponding eigenvectors on the disc
have already converged, so the third linear system needs even fewer iterations
to converge.

In Table 2 we give test results for the band algorithm, the adaptive band
algorithm and the adaptive staircase algorithm. The objective in these tests is
to solve the matrix equation with six right-hand sides and the residual norms
to be less than 1071°. The dimension of the matrix A is n = 2500, the param-
eter value is ¢ = 3 and the parameters r (the radius of the disc) and n; (the
number of different eigenvalues) are given different values. The total number of
iterations is almost the same for the adaptive staircase algorithm and adaptive
band algorithm, whereas the band algorithm needs about 5% more iterations.
If more eigenvalues are placed on the disc (the parameter ny increases), or the
radius of the disc decreases (the parameter r decreases), then the number of
iterations increases for all algorithms and the ratio of the number of iterations
for the last right-hand side to the number of iterations for the first right-hand
side decreases for the adaptive staircase algorithm.

4.3 CEM Test

This test matrix comes from a computational electromagnetic field problem. It
was generated by the numerical electromagnetic code NEC2, developed for the
US Navy by Lawrence Livermore Labs in 1981; see [7] and [6]. The analysis in
NEC?2 is done by numerical solution of integral equations for induced currents.
This yields dense complex matrices (double complex in Fortran). The test
problem consists of a simple wire model of an airplane; see Figure 8. The
wire model is excited with plane time-harmonic electromagnetic waves. The
structure of the wire model at a given frequency yield the test matrix. The
angle, the polarisation and the frequency of the incident electromagnetic waves
yields the different right-hand sides. .

In this case we use a sparse preconditioner. A sparse matrix A is created
from A by

G = Q@i iflaigl > e maxigij<n laigl
I 0 otherwise

The matrix A and thus A are nearly symmetric in that |a; ;| ~ |a;|. The

matrix A is first ordered by minimum degree (symmmd in MATLAB) and later

factorised by incomplete factorisation with drop tolerance e; (luinc in MAT-
LAB),

LU ~ PAPY,



where P is the permutation matrix. The adaptive staircase algorithm is now
applied to the linear system

P 'L ' PAZ, = PPU 'L P,

The wire model of the airplane is excited with an electromagnetic wave of
a frequency of 30 MHz. The wires are approximately 0.07 wavelengths apart.
This gives a test matrix of dimension n = 3549. The different incident electro-
magnetic waves are orthogonal to each other.

The test problem is solved for three different preconditioners (different values
of the parameters €; and €;). The adaptive staircase algorithm is compared to
the block Arnoldi algorithm. Block Arnoldi is mathematically equivalent to our
band algorithm, but block Arnoldi is faster since it operates on several vectors
at a time. The approximate solution is calculated as described in section 2.3.

In Table 3 we show the test results with regard to the number of matrix
vector produc:cs. The number r; is defined as the ratio of filled elements in
A and r2 in L + U. From the table we see that the total number of matrix
vector products decreases as the preconditioner gets denser (r; and r increases).
We see also that the ratio m4/m; increases as the preconditioner gets denser.
In each test the adaptive staircase algorithm needs approximately 12% fewer
matrix vector products than the block Arnoldi algorithm.

In Table 4 we show timing results. The algorithms are implemented in MAT-
LAB and run on one processor on a SUN Enterprise 10000. It is a multiprocessor
machine with shared memory. The dominant part is the matrix vector product
Az. In each test block Arnoldi needs less than half the time.

In Table 5 we show comparisons between MATLAB and LAPACK/BLAS
[1] for matrix vector product and Gaussian elimination. For the matrix vector
product, the BLAS routine zgemv is 14 times faster than MATLAB, and the
Gaussian elimination routine in LAPACK zgesv is 1.5 times faster than MAT-
LAB. Note that the Gaussian elimination in MATLAB is faster than solving
the linear system by the adaptive staircase algorithm.

The tests with regard to timing are somewhat artificial. To get a realistic test
one needs to implement the algorithms on a parallel computer with FORTRAN
and MPI (message passing interface) and run on a large problem.

5 Conclusions and Extensions

From the test problems we see that both the adaptive band algorithm and the
adaptive staircase algorithm perform better than basic Krylov methods in terms
of the number of matrix vector products needed to solve the linear systems.

Even though the timing tests of the CEM test are somewhat artificial, it
indicates when the adaptive band method and adaptive staircase algorithm can
be useful. The methods use all basis vectors in every step, both for creating
the continuation combination V ;t; and for the orthogonalisation. This means
that the methods are suitable for problems where the time spent computing
the matrix vector product is the dominant part of the algorithm, for example
matrices created from integral equations. Further, if the right-hand sides are
not known when starting the iterations, the adaptive staircase algorithm can be
a suitable choice, since then block Arnoldi cannot be used.
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We have not assumed in our work that the right-hand sides are close. If
the right-hand sides are close as in time stepping, then the performance of the
adaptive staircase algorithm is likely to improve considerably.

When all right-hand sides are known in advance, a combination of the adap-
tive staircase algorithm and a block method could be used. First the adaptive
staircase algorithm is used to solve for the first few right-hand sides. After the
initial basis has been built, a block method could be used to solve for the rest
of the right-hand sides, all at once or a few of them at a time by deleting the
last basis vectors generated by the preceding block run.

Non-Normal Test

Adaptive Staircase Band Algorithm

Algorithm Adaptive
) q|my | mg | m3 | myg | ms | mg | Tot %fli m m
0 2179 51 | 42 |40 | 36 | 35 | 283 | 0.44 | 298 282
01|28 |53 |46 |38 |37 |34 | 292 | 0.40 | 306 292
02292 |53 |45 |40 |37 |36 | 303 |0.39 | 323 303
042|105 |58 |46 |44 |39 | 36 | 328 | 0.34 | 339 326
0 3|53 [36 |31 |29 |28 |26 | 203|049 | 212 202
01364 40 | 35 | 31 | 29 | 28 | 227 | 0.44 | 236 225
02 |3 |74 |49 |37 |34 |31 |30 | 255 | 0.41 | 263 254
04 |3|104 |57 |50 |40 |39 |35 | 325 | 0.34 | 359 320

Table 1: Test results for the band algorithm, adaptive band algorithm and
adaptive staircase algorithm applied to the non-normal test solved for six right-
hand sides, to residual accuracy 107'°. The dimension of the matrix A is
n = 2500; the parameters p and g are given different values.

Clustered Normal Test

Adaptive Staircase Band Algorithm
Algorithm Adaptive
r ny | mi | ma | ms | my | ms | mg | Tot | 226 m m

m
0110 136 |30 |27 |25 |24 [23 | 165 | 0.64 | 169 165
0115 |65 |33 |25 [24 |23 [23 [ 193 | 035 | 212| 193

011093 |32 |25 |23 |23 |22 |218 | 0.24 | 228 217
0.1 |20 |147 |30 |23 |23 |22 |21 | 266 | 0.14 | 277 265
025 61 |33 |26 |24 |24 |23 | 191 | 0.38 | 203 189
02108 |32 |25 |24 |23 |22 | 211 | 0.26 | 218 211

022013230 |24 |23 |22 |22 |253|0.17 | 261 251

Table 2: Test results for the band algorithm, adaptive band algorithm and
adaptive staircase algorithm applied to the clustered normal test solved for six
right-hand sides, to residual accuracy 107!%. The dimension of the matrix A is
n = 2500, the parameter ¢ = 3, and the parameters n; and r are given different
values.
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CEM Test
Adaptive Staircase
Algorithm B. A.
€1 € 71 ro my1 | ma | mz | ms | Tot Z—;‘ m
2.5-107% 1 25-107% [ 0.034 [ 0.044 | 190 | 25 | 21 | 17 | 253 | 0.09 | 288
1-10~* 1-1073 0.082 [ 0.093 | 101 |22 |18 |14 | 155 | 0.14 | 180
5.107° 8.10~* 016 [ 015 |67 |19 [16 |13 |115] 0.19 | 136

Table 3: Test results for adaptive staircase algorithm and block Arnoldi al-
gorithm applied to the CEM test, solved for four right-hand sides, to residual
accuracy 10~7. The matrix A is a dense complex matrix of dimension n = 3549.
In the table B. A. stands for Block Arnoldi.

CEM test, timing results (seconds)
Adaptive Staircase Algorithm
€1 2.5-107% 1-107* 5-107°
€2 2.5-1073 1-10°° 8-10°1
time | % of tot | time | % of tot | time | % of tot
Ordering 37.1 | 0.33% 235 | 3.21% 2250 | 29.6%
incomplete
factorisation 364 | 0.32% 155 | 2.12% 327 4.31%
matrix vector
product Az 9880 | 87.8% 6250 | 85.6% 4490 | 59.1%
apply
preconditioner | 190 1.7% 260 | 3.56% 312 4.12%
create start
vector (V't) 165 1.46% 59.9 | 0.82% 32.12 | 0.42%
Gram-
Schmidt 802 7.12% 290 | 3.96% 155 2.04%
other 146 1.3% 534 | 0.773% | 31.2 | 0.41%
total 12600 | 100% 7300 | 100% 7590 | 100%
Block Arnoldi
total | 4200 | | 3000 | | 4550 |

Table 4: Test results for adaptive staircase algorithm and block Arnoldi algo-
rithm applied to the CEM test, solved for four right-hand sides. The time is
measured in seconds.

comparing MATLAB with BLAS and LAPACK

MATLAB | LAPACK/BLAS

(seconds) | (seconds) e In BEAS/LAPACK
matrix vector
product (Az) 39.0 2.79 (BLAS) 14.2
Gaussian elimination | 4960 3170 (LAPACK) | 1.55

Table 5: Comparing MATLAB with BLAS and LAPACK for the CEM test. The
tests are done on one processor on a SUN Enterprise 10000. It is a multiprocessor
machine with shared memory.
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Figure 1: The spectrum of the matrix A for the non-normal test for the case
where the dimension of the matrix A is n = 50 and the parameter value is ¢ = 3.
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Figure 2: The spectrum of the matrix A for the clustered normal test for the
case where the dimension of the matrix A is n = 50, the radius of the circle
is r = 0.8 and the number of different eigenvalues on the radius of the circle is
ny = 10.
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Figure 3: Test results for the band algorithm applied to the non-normal test

solved for three right-hand sides. The dimension of the matrix A is n = 2500;
the parameter values are p = 0.2 and ¢ = 3.
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Figure 4: Test results for staircase algorithm applied to the non-normal test

solved for three right-hand sides. The dimension of the matrix A is n = 2500;
the parameter values are p = 0.2 and ¢ = 3.
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Figure 5: Test results for the adaptive band algorithm applied to the non-

normal test solved for three right-hand sides. The dimension of the matrix A
is n = 2500; the parameter values are p = 0.2 and ¢ = 3.
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Figure 6: Test results for adaptive staircase algorithm applied to the non-normal

test solved for three right-hand sides. The dimension of the matrix A is n =
2500; the parameter values are p = 0.2 and ¢ = 3.
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Figure 7: Test results for adaptive staircase algorithm applied to the clustered
normal test solved for three right-hand sides. The dimension of the matrix A
is n = 2500; the parameter values are n; = 10, r = 0.1 and ¢ = 3.
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Figure 8: Wire model of an airplane. This model is used to generate a dense
test matrix for the CEM test, by integral equations for induced currents.
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Figure 9: Typical nonzero structure for the matrix H generated by the stair-
case algorithm and the adaptive staircase algorithm. This particular graph is
generated from test results on the adaptive staircase algorithm applied to the
non-normal test solved for 3 right-hand sides. The residual norms are smaller
than 10~!. The dimension of the matrix A is n = 30; the parameter values are
p = 0.05 and ¢ = 3. Note how the bandwidth increases at two different points,
when new right-hand sides are incorporated into the basis.
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Figure 10: Typical nonzero structure for the matrix T generated by the adaptive
staircase algorithm. This particular graph is generated from test results on the
adaptive staircase algorithm applied to the non-normal test solved for 3 right-
hand sides. The residual norms are smaller than 10~!. The dimension of the
matrix A is n = 30; the parameter values are p = 0.05 and ¢ = 3. Note how
the bandwidth increases at two different points, when the new right-hand sides
are incorporated in the basis.
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