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Abstract

An algorithm to compute a reduced-order model of a linear dynamic
system is described. It is based on the rational Krylov method, which is
an extension of the shift-and-invert Arnoldi method where several shifts
(interpolation points) are used to compute an orthonormal basis for a sub-
space. It is discussed how to generate a reduced-order model of a linear
dynamic system, in such a way that the Laplace domain transfer func-
tion of the reduced order model interpolates the Laplace domain transfer
function of the dynamic system in the interpolation points to appropri-
ate degree. It is also discussed how to compute an error estimate of the
Laplace domain transfer function of the reduced-order model. Further it
is shown how to create a passive reduced-order model in an efficient way
by congruence transformation of a dynamic system that models a RLC
circuit. The rational Krylov method is applied to several examples in
circuit theory.
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1 Introduction

1.1 General Introduction

This report is concerned with the use of one-sided subspace methods and mul-
tipoint approximation methods for solving linear time-invariant large-scale dy-
namic systems. The main application area in mind is simulation of large elec-
trical circuits. However, the theory and algorithms developed are suitable also
for other application areas.

A time-invariant electrical circuit can be described by the system of linear
first-order differential algebraic equations

Ci(t) = —Ga(t) + bu(t)

y(t) = d2(t) + qu(?) @
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G,C e R z,bdeR", u,y € R.

The matrix G' contains the contributions from memory-less elements such as
resistors, and the matrix C from memory elements such as capacitors and in-
ductors. The vector (t) contains the state variables, u(t) is the known input,
and y(t) is the unknown output.

In model order reduction we want to create a reduced-order model (i, G , ¢
and b of the exact model d, G, C and b in such a way that the dynamic system
of the reduced-order model,

Cit) = —Ga(t) + bu(t)

k<n,

approximates the original dynamic system (1) in a good way in some measure
and the dimension of the reduced-order model should be smaller or much smaller
than the dimension of the original system.

Apply the Laplace transform to the system (1), assume zero initial condi-
tions, and ignore the term qu(t):

sCx(s) = —Gx(s) + bu(s)
y(s) = dTx(s).

Here y(s), (s) and u(s) denote the Laplace transforms of y(¢t), x(t) and u(t)
respectively. From (2) it follows that the Laplace domain transfer function
defined as H(s) = y(s)/u(s) is given by

(2)

H(s) =d" (G +sC)™'b. (3)

Notation

Matrices are written with upper-case bold letters like A, vectors are written
with lower-case bold letters like v and scalars are written with non-bold letters
like s or H. By f; ; we mean the element F(i, j), by F; ; we mean the leading
i X j submatrix of F', and by f; we mean the j:th column of F. By V; we
mean the first j columns of the matrix V.

1.2 Multipoint Rational Approximation

The matrix (G + sC) ! from the expression (3) of the transfer function H(s)
can be expressed as

(G +5C) 1 = adj(G + sC)

~ det(G + sC) )

where adj(G + sC) stands for the adjugate of the matrix (G + sC), namely the
transpose of the matrix of cofactors, and det(G +sC) stands for the determinant



of the matrix (G + sC). The matrix adj(G + sC) is a polynomial in s of
maximum degree n — 1, and the scalar det(G + sC) is a polynomial in s of
maximum degree n. From (4) and (3) we see that the transfer function H(s)
can be expressed as a rational function

_ (s)
H) = 56)

where ¢(s) and ¢(s) are polynomials of maximum degree n — 1 and n respec-
tively. A natural way to approximate H(s) is by a rational function of lower
degree,

Bq(s)
_ bq_18q71 + ...+ bis+ by
a8t t...tas+1

f{(s) XQ*l(S)
(5)

Y

where x,—1(s) and ¢,(s) are polynomials of degree ¢ — 1 and ¢ respectively, and
q<n.
Set s = s; + 0 and expand H(s) by Taylor expansion around s;:

H(s) =Y oim;(si), (6)
=0

where mj(s;) is the j:th moment around the interpolation point s;:

_ 1 9H(s)
gl Osi

m;(s;) s=s5;"

Now choose 7 interpolation points s;,7 = 1,...,7. Here and later we use
overbar 7, j and k to denote the last largest member of a sequence of integers.
If the coefficients by_1,... ,bg and ag,... ,a; are chosen in such a way that the
moments around the interpolation points of the approximate transfer function
H(s) match the moments of the transfer function H(s),

and

then the approximation is a multipoint Padé approximation. If ; = 1 then it
is a Padé approximation. This is the maximum number of moments one can
hope to match, given (5). A Padé approximation is a rational function where
the maximum number of moments is matched around an interpolation point;
see [3].

A Padé-type approximation or a multipoint Padé-type approximation is a
rational approximation where the maximum number of moments is not matched



around the interpolation points s;,¢ = 1,...,7. The method presented in this
report is a multipoint Padé-type approximation.
Matching the moments at the interpolation points s;,¢ = 1...7 means that

H(s) interpolates H(s) in the interpolation points s;,i =1,... ,7:
d7H(s) D H(s) . _ . _
D5l SZSZ’:W s=s,'7.7:07"'7.7i_177':]-7"'571'

1.3 Relation Between Eigenvalues and Poles

Consider the eigenvalue problem

Gu; = —)\;jCu;. (7)

Assume that the pencil (7) is diagonalisable and C nonsingular:
wigUu =-D, wWHcU =1,
where
D = diag(A1,--- , A n)-
Now (G + sC) ! can be expressed as
(G+sC) ' =W H(-—D+snUH!
=U(-D +sI)7'wH.

Set r = Wb and | = U™d; the transfer function H(s) (3) can be expressed
as

The poles A; of the transfer function H(s) are equal to the eigenvalues of the
eigenproblem (7).
1.4 Moments

Let us now describe how the moments can be expressed with matrix algebra.
Set s = s; + 0 and expand (G + sC)~! around s; in a power series

(G+5C)' =(G+(si+0)C)"
=T +0(G+sC)'C)(G+s,C)!

oo (8)
=> (1)’ ((G + 5:C) 'C)!(G + 5:C) .
j=0
From (6) and (8) we see that the moments can be expressed as
m;(s;) = (=1)7d” (G + 5;,C) 1 C)* (G + 5;C)'b. (9)



1.5 Explicit Moment Computation Methods

In explicit moment-matching computation methods, the moments m;(s;), j =

0,...,7;—1,i=1,...,7 (9) are computed, and the coefficients by_1,... ,bo
and ag, . .. , a1 of the approximate transfer function (5) are chosen in such a way
that the moments m;(s;), j =0,...,7; —1, i =1,...,7 of the approximate

transfer function will match those of the original transfer function. Examples of
methods which compute the moments are the asymptotic waveform evaluation
AWE [24], which is a single-point Padé approximation method, and the methods
discussed in [4] which are multipoint Padé approximation methods.

The major disadvantage with computing the moments explicitly is that the
sequence of vectors

v;(s:) = (G + 5;,C)"'C) (G + 5;,C) ™',

j=1,...,7; — 1, needed in the computations of the moments (9) will become
more linearly dependent with increasing 7 ;. The sequence of vectors v;(s;), j =
1,...,00 will converge to the eigenvector corresponding to the dominant eigen-
value of ((G + s;C)~1C)~!. This is the power method; for example see [32].
Before the convergence of the eigenvector, the vectors v;(s;), j =0,...,7;,—1
will become nearly linearly dependent, and thus the explicit moment computa-
tion methods will suffer from numerical instabilities.

1.6 Krylov Subspace Methods

Instead of explicitly matching the moments, we want to use a numerically stable
method to create a reduced-order model d, G, C and b in such a way that the
approximate transfer function

~ T A ~ ~
H(s)=d (G+sC)'b
matches as many moments around the interpolation points s;, ¢ = 1,...,7 as
possible, given the restrictions of the method used.
The reduced-order model is computed by the rational Krylov method, which

builds up an orthonormal basis v1, ... ,v; for a union of Krylov spaces
v
Si = UK, (G +50)7'C,(G +5.0)7'b), (10)
i=1

where as usual K;(A, b) stands for the Krylov space
K;(A,b) = span{b, Ab, A®b,... , A’"'b}. (11)

We do not need to compute the moments explicitly; it is enough to find an
approximation H(s) that interpolates H(s) to the appropriate order. The ap-
proximation H(s) is computed as follows. First an approximation &(s) € Sj to
the linear system of equations

(G+sC)x(s)=b (12)

is found and then H(s) is approximated by H(s) = dAT.'Egs) From the solution
procedure we can identify a reduced-order model d, G, C and b. The reduced-
order model of the main method discussed in this report matches the first j;



moments of the original model around the interpolation points s; ¢ = 1,...,7.
The total number of moments matched is equal to the dimension of the subspace
Sy (10), and to the dimension of the reduced-order model

7
k=) 7
i=1

This is the best one can hope for, given the basis (10), but it is half the number
of moments matched by a multipoint Padé approximation of the same degree.

Since the maximum number of moments is not matched, the approximation
will not be unique. In fact we will derive ; different reduced-order models; they
are equally good in that the transfer function will match the same number of
moments around each interpolation point.

To match the maximum number of moments, in addition to building a basis
for the subspace (10) one needs to build a basis for the left subspace

2= ks (C7(G +5:0) " d), (13)

i=1

One-sided and two-sided methods use the same number of basis vectors to
match the same number of moments.

An advantage with two-sided methods is that, by using a pair of biorthogonal
bases, short-term recurrences can be developed; see [18] and [9].

One disadvantage with the biorthogonalisation process is that it is not as
stable as the orthogonalisation process. The biorthogonalisation process can
break down in a way that the orthogonalisation process cannot do; this can be
remedied with look-ahead [16, 15, 37]. For an orthogonal basis the matrix V' =
[v1,...,v5] has optimal Euclidean condition number, cond(V;) = 1, whereas
the condition numbers for the corresponding matrices for the biorthogonal basis
have no upper bound.

Another possibility would be to build up two orthonormal bases for the
subspaces Sj, (10) and Zj, (13), similar to the two-sided Arnoldi algorithm [26].
This is more expensive than the biorthogonalisation process.

1.7 Related Work

A comprehensive treatment of Krylov subspace methods for model order reduc-
tion is made by Grimme in his PhD thesis [20]. An overview of Krylov subspace
methods for model order reduction in circuit theory is given by Freund [11].
The first proof about the connection between the two-sided Lanczos and
Padé for the single-input single-output was given by Gragg [19]. Feldmann
and Freund introduced the Lanczos process in circuit simulation with the PVL
algorithm (“Pade Via Lanczos”) [8, 9], and about the same time this was done
by Gallivan, Grimme and Van Dooren in [17]. Further development with the
PVL algorithm by Feldmann and Freund includes small-signal circuit analysis
and sensitivity computations [13], the symmetric PVL algorithm SyPVL [12],
a block Lanczos algorithm [10], and a symmetric block Lanczos algorithm [14].
Grimme, Sorensen and Van Dooren describe how to generate a stable reduced-
order model via an implicitly restarted Lanczos method [21]. Bai, Feldmann and
Freund described how to generate a stable and passive reduced-order model via



the PVLr algorithm [1]. Bai and Ye develop an error estimate for the transfer
function computed by Padé via Lanczos [2].

The rational Lanczos algorithm discussed by Gallivan, Grimme and Van
Dooren in their later work [18] is a multipoint Padé approximation; the method
builds up a biorthogonal pair of bases. Multipoint Padé and Padé-type methods
are also discussed by Grimme in his PhD thesis [20]. Nguyen and Li discuss a
block rational Lanczos algorithm [22].

Silveria, Kamon, Elfadel and White create a passive reduced-order model
through an L-orthogonal Arnoldi algorithm [33]; the algorithm is further dis-
cussed by Elfadel and Ling [7].

Odabasioglu, Celik and Pileggi[23] use the Arnoldi method to generate the
basis, and congruence transformation to generate passive reduced-order models.

The Block Rational Arnoldi algorithm by Elfadel and Ling [6] is a multipoint
approximation method. They basically use a block version of the algorithm
discussed in this report; however, they use a different strategy to derive the
reduced-order model. They use congruence transformation to generate passive
reduced-order models.

2 The Rational Krylov Iteration

The rational Krylov algorithm was originally developed by Ruhe for eigenvalue
computations [27, 28, 29, 30]. This version is adapted for model order reduction.
In eigenvalue computations the first basis vector is often a normalised random
vector; in model order reduction the choice of the first basis vector is given in
the system (1), and here it is v; = (G + 5:C)7'b/ || (G +5:C) " 'b ||

Rational Krylov Algorithm

1 r=5»b

2 k=0

3 fori=1:7

4 for j=1:3;

5 r=(G+sC)'r

6 [Vk+1, fr] = GramSchmidt (Vi,r)
7 k=k+1

8 r = Viti, (choose continuation combination for next step)
9 r = Cr (prepare for next)

10 end

11 b; = VE(G +5,C)'b,

12 end

13 r=(G+s;C)"'r
14 [vg41, fr] = GramSchmidt (V)

The right-hand sides of the reduced-order models b; are computed in line 11
of the algorithm; the reduced-order model is further discussed in section 5. The
GramSchmidt function is just the standard Gram-Schmidt orthogonalisation;
however, it is implemented with one reorthogonalisation.



Gram-Schmidt
function [v, f] = GramSchmidt(V,r)
if V=] then

1

2

3 fo=lrll

4 v=r/fi

5 else

6 f = VHr (orthogonalise)
7 r=r-Vf

8 k = length(f)

9 St =[]

10 v = r/fr+1 (new basis vector)
11 end if

12 return

Set i, to be the shift number at step k. Eliminate the intermediate vector r
in the rational Krylov algorithm and we get

Vit = (G+5,C) 'CVity, 1 <k<k.
Multiply from the left by (G + s;,C):
(G +5;,C)Viq1 [ = CVity.
Put a zero at the bottom of ¢; and rearrange the equation:
GVi1f, = CVipi(=si fr +tr). (14)

Set Fri15 = [f1,--.,f5l and Ty 5 = [t1,... ,tz] with appropriate number
of zeros added to the bottom of each f; and t;. Join the columns k =1,... ,k
and get

GVE+1FE+1,E = CVE+1LE+1,E7 (15)
where
Ly z= —FE+1,Ediag(5ik) +Tri1 5 (16)
We have represented the pencil (G, C) by the smaller pencil (L, F) in the
basis V.

From now on we omit subscripts when submatrices are not taken, and let F'
and L stand for F,; and Lz, ;. Note that we have not included f in the
relation (15).

Since the last row of the matrix T is zero, we get from (16)

iy k= =55 fovr ke (17)
3 Subspace
The rational Krylov algorithm generates basis vectors v1, ... ,v; that span the
subspace

K;, (G +5C)™'C, (G +5:.C)"'b) |

7
U K541((G+5C)7'C, (G + 5:.C)'b).

=2



Compare to (10) and see [28, 29, 30]. However, with the use of the lemma below
another view can be taken.

Lemma 1. If a and B are two non-identical interpolation points, then
(G+aC)'C((G+BC)'C) (G +BC)'b
€ span{(G + aC)~'b}| JK;((G + BC)™'C,(G + BC)~'b)

The proof is given in [18].
From the lemma and the rational Krylov algorithm we can draw the conclu-

sion that the basis vectors vy, ... ,vj span the subspace
0
Si = J K5 (G +5:C)7'C, (G + 5:C)'b). (18)
i=1
If we include the last vector vy, the basis vectors vy,... ,vz,; will span the
subspace
Sp1 = Sg | Jspan{((G + 57 C) 7' C)’ (G + 5 C) 'b}. (19)

In our approach the approximate solution Z(s) to the linear system of
equations(12) will belong to the subspace (18), and under a certain condition
the residual will be a scalar times vz, ; and thus belong to the subspace (19);
see section 4.

4 Approximate Solutions

4.1 General Introduction to Approximate Solutions

In this section we will describe how to use the rational Krylov algorithm to
compute an approximate solution to the linear system of equations

(G + sC)z(s) = b. (20)

One of the solution methods described can be viewed as an oblique projection
method, which solves the equivalent premultiplied linear system of equations

(G +5;,C) (G + sC)x(s) = (G + 5;,C) ™', (21)

by using orthogonal projection. The other solution methods are closely related
to projection methods.

Lemma 2. If Vi, L and F are the results of the rational Krylov algorithm,
then for any a,3 € C we have

(G+aC)Vi (L +BF)=(G+BC)Vi (L +aF) (22)
Proof: Rewrite equation (22) as

GVi,L+aCVi L+8GVi F+afCVi, F

23
=GV L+aGV; F+3CV;,  L+a8CVy,, F. (23)



By using (15) we see that equation (22) holds. O
To see how to calculate the approximate solution, set & = s and 8 = s;:

(G+sC)Vi (L +siF)=(G+sC)Vi(L+sF).
Multiply from the left by (G + s;C)~1:
(G +5C) (G +sC)Vi (L+s;F)=Vi (L +sF). (24)

The point s;, 1 < ¢ < ¢ is an interpolation point used in the rational Krylov
algorithm. The point s is an arbitrary point in the complex plane. Make
the approximation V(L + 8;F) ~ Vi (Lg ; + 8:F ;); from (17) we see that
(lg41,5 + 87 fr41,5) = 0 and thus equality holds for s; = s; . Multiply (24) from
the I‘ight by (LE,E + SiFE’E)_ll

(G+5iC) " (G+35C)Vi Vi (L+sF)(Lgj+siFrz) " (25)

where equality holds for s; = s; .

4.2 Approximate Solutions

From (25) and (21) we see that one way of calculating the approximate solution
to the linear system (20) is to solve the k x k system

(Lig+sFrp)yi(s) =VE(G+sC)™'b, 1<i< 7 (26)
for y,(s) and take
Zi(s) = Vi(Lrp +s:Frp)y(s), 1 <i<q (27)

as the approximate solution. The point s;, 1 <7 < 7 is an interpolation point.
To simplify the notation in the following, set

b; = VE(G+50)"b.

This is the right-hand side of the reduced-order model; it is calculated in line
11 of the rational Krylov algorithm. The reduced-order model will be further
discussed in section 5.

The right-hand side of the premultiplied system (21) belongs to the subspace
(18), so it can be expressed as a linear combination of the basis vectors

(G + 5;C)~'b = V3b;. (28)

Note that we have ; different approximate solutions; they are equally good
in the sense that the corresponding transfer functions match the same number
of moments around each interpolation point s;, 1 < ¢ < 4. This is discussed in
section 5.

From (25) we see that for s; = s; an approximate solution is found by using
orthogonal projection of the premultiplied linear system of equations (21) onto
the subspace spanned by the basis vectors vy, ... ,v;.

10



4.3 Residuals

We will derive an expression first for the residual to the premultiplied linear
system of equations (21) and then for the original linear system of equations
(20), where the approximate solution is calculated by (26) and (27).

Rewrite the relation (24) as

(G +5C) (G +sC)(Vi(Ly g+ 5iFr 5) + vey1 (ga s + sifriip)€r)
=Vi(Lgg+sFrp) + v (o + sl p)er
To simplify the notation, set
pi(s) = fry1n€3 ¥i(9). (30)

Solve the approximate problem (26),(27) and the residual of the premulti-
plied linear system of equations (21) will be

(29)

ri(s) =(G + 5;C)'b— (G + 5;C) ' (G + sC)%;(s)
=Vib; — (G + 5;C) 7 (G + sC)Vi(L ;s + siF7)yi(5)
=Vibi — (Vi(Lgg + sFg0)yi(s) + Vi1 (g i + sfrrp)er vils)
— (G +5:C) (G + sC)vp1 (lpr1 f + sifry17)er Yi(s)
=(G + 5;C) (G + sC)vz 1 (g1 + Siferr0)€r Yi(5)
— v gk + sfirnp)er i(s)
=(G + 5:C) (G + sC)vjyy (si — 57 )pi(s)

— Vj1(8 — 87)pi(s)

(31)

where y;(s) is the solution to (26). The second equality follows from (27) and
(28). The third equality follows from (29), the fourth from (26) and the fifth
from (17) and (30).

The quantity p;(s) will be small if fz ;7 is small; in that case we have a
nearly invariant subspace and we will get a good approximation for the whole
complex plane. If the solution has converged in some regions in the complex
plane, the quantity e,—cTyi(s) will be small in those regions.

Note that for s; = s; we get a simple expression for the residual:

i (8) = —vj11(s — si)pi(s)- (32)
Multiplying (31) by (G + s;C), the residual of the original system (20) is
r(s) =b— (G + sC)Z;(s)
=(G + sC)vz 1 (si — s7)pi(s)
— (G + 5iC)vp (5 — 5 )p(s):

Corollary 1. If the approzimate solution &;(s), 1 <i < ¢ is calculated by (26)
and (27) at the interpolation points s = sq, ¢ = 1,...,7, then the residual at
each interpolation point s,

ri(sq) = (G + 5C)"'b— (G + 5;,C) (G + $4C)Z;i(sq)
- 0.

The proof is given in section 6.
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5 Reduced-Order Model

5.1 Transfer Function

If we use the approximate solution (26) and (27) derived in the previous section,
we can approximate the transfer function
H(s)=d" (G +sC)'b (33)
by
Hi(s) = d"&i(s) (34)
=d"Vi(Ly;+siFrp)(Lgg +sFrp) Vi (G + 5C)'b.

Since we can choose i different approximate solutions z;(s), 1 <4 < ¢ (27) we
will get i different transfer functions H;(s), 1 <4 < 7. In theorem 1, we will
prove that the 7 different transfer functions will all match the same number of
moments around each interpolation point s4,4 =1,... ,7 of the original model.
For a given point s in the complex plane, which interpolation point s; should
be chosen in the approximate transfer function (34)? One strategy would be
to choose the interpolation point s; which is closest to s, and thus use differ-
ent transfer functions in different regions of the complex plane. On the other
hand, the simple form of the residuals (32) suggests that s; could be a suitable
interpolation point, giving us the same transfer function in the entire region.

5.2 Reduced-Order Model

From (33) and (34) we suggest the reduced model b; = VEH(G +5;C)~ b,

T A N

d, = dTV,—C(LE’,; +5:Ft5), G = L ; and C = Fp ;. The approximate trans-
fer function H;(s) can be written as

~

Hi(s) = d; (G + sC)~1b;

In the theorem below, the letter ¢, 1 < ¢ < ¢ corresponds to a particular
choice of the approximate solution x;(s) (27) and its corresponding transfer
function H;(s) (34). The letter ¢ corresponds to a particular expansion point
54, 1 < g <7, one of the interpolation points.

Theorem 1. Let the jt* moments of the original and reduced-order systems
about the interpolation point s, be m;(s,) = (=1)7d” (G + 5,C)~'C) (G + 5,C)'b

and 1;;(sq) = (-1 )'JT((é+qu) 1CY(G +5,C) b, respectively. If
b = VI(G +5,C) b, d; =d"Vi(Lyj;+siFsp), G=Lgg and C = Fij
where L, F and Vi, are the result of the rational Krylov algorithm, then
mj(sq) = myi(sq) fori=1,...,0,¢=1,...,7,5=0,...,7,— 1L

Before we prove the theorem we will prove some lemmas needed in the proof.

Lemma 3. If Vi, L and F are the results of the rational Krylov algorithm,
then

VI(G+5C) NG +sC)Vi = (Lgj +sFpp)(Lgz+s
- V;':I(G + SiC)_l(G + SC)UE+1(ZE+1,E + sifE+1 ) %( EETS siFg E)_l-

12



Proof: Multiply (24) from the left by Vf and from the right by (Lg z + s:F 5)~"
and rearrange the equation. O

The following lemma, can be proved directly from lemma 3 by letting s — oo.
We state the lemma and provide a separate proof, as we will refer to the lemma
and the proof later on.

Lemma 4. If Vi, L and F are the results of the rational Krylov algorithm,
then

VI(G+5C)'CVy = Fpi(Lpj+siFrp) ™"

_ _ (35)
— VG +5C) ' Copga (g 5 + sifrprp)er Lpi+siFpp)™"
Proof: Add 5;CVy,, F to equation (15), and we get
(G + 5OV F = OV (L + i), (36)

Multiply from the left by V§ (G + s;,C)~%:

Frr=Vi(G+5C) 'CViy (L +s;F).
Multiply from the right by (Lz 7 + s;F )" and rearrange the equation, and
we get equation (35). O

Lemma 5. If Vi, L and F are the results of the rational Krylov algorithm,

then
et (Lpf+5:iFp5) ' VE (G +5C)7'CY (G +5C)'b=0 (37)
i=1,. 0 §=0,...,7;—2.

Proof: From the rational Krylov algorithm and section 3 we see that

(G + 5,C)'C) (G + 5;C) b € span{vy,... Upi ;)
i—1
Pij=J+1+Y jni=1...5,j=0,...,7;— L

r=1

From the relation (16) we see that the matrix Ly, ; + s;F, ;, is triangular in the
columns:

1,...,7, -1 ifi=1
k=9 i (T dn) —1 ifi#landi#7 (38)
21;111_7-:---7(Z:~=1]_r) ifi=1
The rest of Ly, i + siF'j, i has Hessenberg structure. This means that
(G+5C) 'CY(G+5C) '"b=Vi(Lis+s:Frp)y
where y is the solution to
(Lij +5iFp )y = V(G +5:C) 'CY (G +5.C) '

and further
i—1 B
ye =0, k=j+2+> 7.,k j=0,...,5,-2

r=1

and thus equation (37) holds. O
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Lemma 6. If Vi, L and F are the results of the rational Krylov algorithm,
then for i # q

e} (Lyz+5.F55) ' VI(G+5C)'b=0. (39)

Proof:
The case ¢ > g. Set s = s4 and rewrite equation (24) as

(G +s5,C)" G + SqC)VE(LE,E + siF,—c,,—C)
+(G+sC)" NG+ 54C) V1 (lpgr 5 + 3z’fl}+1,l})e% (40)
= ViLig +50F55) + V5 Gyt + safinr)er -

From the rational Krylov algorithm and section 3 we see that

G +5,C)7'b € span{vy,... ,v
q Pq

= (41)
pq = ZJ_T' + 1.
r=1
Further, (G + 5,C) b can be written as
(G +5,C) b= Vi(Lig +siFrp)y, (42)

where y is the solution to
(LE,E + s,-F,—cy,-c)y = V,-CH(G + SqC)_lb.

From (16) we see that the matrix Ly ; +s;F7, ; is triangular in the columns (38).
The rest of Ly,  + s, F'f, ; has Hessenberg structure. Now we have ¢ > ¢ and thus
the index p, in (41) is less than the lowest column index of the triangular part
of Ly + s:F ; (38). This means that the elements y, = 0, k = Z:;ll Jr+
2,...,k are equal to zero. Multiply equation (40) with the vector y and replace
Vi(Ly; + s:F5 5)y with (G + 5,C)~'b, and we get the relation

(G +5,C)'b= V(L + 5.Fg 1)y (43)

Put the relation above into (39) and the proof is complete for the case i > q.

The case i < ¢q. Using similar arguments as for equation (42) we get the
relation (43) and at least the last element of y is zero. Substitute equation (43)
into (39), and the proof is complete for the case i < ¢. O

The relation (39) can be proved to hold for i = ¢ and j,; > 1.

Proof of Theorem 1. From the rational Krylov algorithm and section 3 we
have

G +5,C)7'C) (G +5,C)"'b € spanfvy,... , V%
q q

. _ (44)
g=1,...,1,7=0,...,5,— 1
With equation (44), lemma 4 and lemma 5 we can express
(G+5,0)71CY (G +5,C)bforg=1,...,i,j=1,...,7,—Las
(G +5,C)tCY (G +5,C) b
=ViVE (G +5,C)7'CViVE((G +5,C)7C)HG +5,C)7'b 45)

= ViFripLgg +5,Fr ) 'VE(G +5,0)7'C) (G +5,C)7'b
= Vi(Frp(Lgs+sFp5) V(G +5,C)7'b

14



The first equality follows from (44), the second from lemma 4 and lemma, 5.
The third equality follows from repeated application of lemma 4, lemma 5 and
(44). Let us express V§ (G +5,C) 'bforg=1,...,7,i=1,...,7,i #q as

V(G +5,C)7'b

=VHG+5,C)7(G +5C)(G +5C)"'b

=V (G +5,C)H (G +s,.C)ViVE(G +5C)'b

= (L + siFrp) Lag + 5oFrp) 7' Vi (G +5C)7'b

(46)

The second equality follows from (44). The third equality follows from lemma
3 and lemma 6. If i = ¢ then multiply V;—:I(G + 5;C)~1b by the unit matrix

VE(G +5C)"'b= (Lgj + siFrp) Lz + siFpp) VI (G + 5,C) 7.
(47)

If we put (45), (46) and (47) together we can express ((G + s,C) 1C)!(G + 5,C) 'b
forg=1,...,¢,i=1,...,4,5=1,...,5,— 1las

=ViLziFrp wFp+siDFr i Frp(LpFrp +s40)7'b;
= + SqI)ij (Lg F_}‘c + SqI)ﬂBz

The third equality is a consequence of the fact that rational and polynomial

functions of the same matrix commute. By taking b; = V(G + 5,C)"'b,

dT = dTVk(Lk % + Ssz k) G = Lk % and C = Fk k as the reduced-order

model, we see that the moments of the orlglnal and reduced-order systems
about the interpolation point s, are equal for ¢ = 1,...,7, ¢ = 1,...,7,
j=1...,5,—-10

6 Errors

In this section we will derive error expressions. They are not computable by
quantities of the reduced-order model, but they give insight into the approxi-
mations, and into which quantities need to be estimated in order to get an error
estimate. The error estimates are further discussed in section 10.

Theorem 2. If H i(8) is the transfer function of the reduced-order model defined
in theorem 1, and the approximate solution &;(s) to the premultiplied linear
system of equations

(G +5:.C) (G +sC)x(s) = (G +5:.C)"'b

15



is given by
Zi(s) = V(L +5:F5 ;)y;(s) (49)

where y,(s) is the solution to

(Li i + sF5 1)yi(s) = Vi (G + 5,C)7'b,
and p;(s) is defined by

pi(s) = f/‘c+1,1'ce%yi(5);
then
AZ;(s) =x(s) — Z(s)
=041 + (G +5C) ' Copy(s7 — 5))(si — 5)pi(s)

the error and the derivatives of the error at the interpolation points sq, g =
1,...,7 become zero:

8’A5:, (8)
Osi

and the error for the approzimate transfer function is

e(s) = H(s) — H(s)

(50)

ey =0, j=0,...,7;—1 (51)

=dTAz;(s)
Proof:
x(s) — &i(s) =(G + sC) (G + 5;C)r;(s)
=Vj41(8i — 87 )pi(8s) (52)

— (G +5C) "G + 5iC)vg 1 (s — 57 )pis)

where 7;(s) is the residual. The second equality follows from the expression of
the residual 7;(s) (31). We get (50) by using the relation

(G +sC) MG +s5,C)=1I+(s; —5)(G+sC)"'C.
By using theorem 1 we have

07 Ae(s)
0sI

where €(s) = H(s) — H(s) = d” AZ;(s). Now d is not used when the basis is
built up; and therefore (53) must hold for d chosen arbitrarily, and thus (51)
holds.

The error for the transfer function of the reduced-order model follows from
the error of &;(s) (52) and from the expressions for the transfer function H(s)
(3) and the expression for the transfer function of the reduced-order model H(s)
(34). O

In order to use theorem 2 in an error estimate, we need to estimate
| (G +5:C)~'Cvzy, || in a good and efficient way. This is discussed in section
10.

Proof of corollary 1 in section 4.3: 'The proof follows directly from (51) of
theorem 2.

In theorem 3 we develop an expression for the error of the first non-matching
moment of the reduced-order model.

szsqzoaj:()a"'aj_i_]- (53)
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Theorem 3. If my; i(sq), ¢ =1,...,7, i =1,...,i are the moments of the
reduced-order model defined in theorem 1, then

€(8¢) =mj, (8¢) — m]'q,i(sq)
:(—1)jda(UIE+1fE+1,IEe;}T - (G + ch)_lcvk+1(lk+1,k + 5qf15+1,15)e%)
(Lig + 8eF i) ™ (L + 8iFr ) (L + s Fr ) Frg)e ™
(Lzz + sqFE,,;)’ll;i.

(54)
Proof: From (48) we have
mj,_1,i(s4) =(=1Ys'd" (G + 5,C) ' CY+ (G + 5,C) " 'b
=(=1Y1 ' d" V(Fr (L g + 3o Fpp) Y (Lg g + siFrp) (55)
(Liz + s4F ) b
= miq—l,i(sq);
and
miq,z'(sq) =
(1) d" Vi(Frip(Lpg + 54F75) "V (L + s Frp) (L + SqFE,fc)_lizgﬁ)

The vector ((G + s,C) 1C)I (G + s,C) b belongs to the subspace spanned by
the basis vectors v1,... vy for j =7, — 1, but not for j =7,.

Replace s; by s, in (36), multiply from the right by (Lg ; + sF3 ;)" and
from the left by (G + 5,C)~!, and rearrange the equation:

(G+5,C)'CVy =ViFri(Lig+s,Fp )"

+ (Vi friiger — (G+3,C) "Copy (lpy1 5+ Seferin)er) Lpg +s¢Frp)
(57)

By using (55) and (56) we can express the error of the moments as
mj, (sq) — 1z, i(sq) = (=1Y2d"((G + 5,C) " 'CV — Vi F i (Lis + 5.Fr5) ™)
(Fra(Lpg+seFpp)™ Yo (Lgg + siFrp)(Lrg + s, Fp ) bi.

Substitute (57) into the equation above and use (48), and we get (54). O

7 Alternative Way of Calculating the Approxi-
mate Solution

7.1 Introduction

In section 4.3 we get a simple expression of the residual (31), only for ¢ = 7,
without the matrices (G + s;C) ! and (G + s;C).

In this section we will develop ; methods such that for each i, 1 < i < ¢
gets a simple expression of the residual without the matrices (G + s;C)~! and
(G + 5;C). However, the methods will not match the maximum number of
moments given the information in the basis, except for ¢ = 7.

17



7.2 Approximate Solution
Now we solve the equation (26) for y,(s) and take

Zi(s) = Vi (L + s:iF)y;(s)

as the approximate solution. It differs from the solution &;(s) (27) of section
(4) only in that we have retained the last row of (L + s;F).

From (17) we have (If;1 % + 87 fr41,5) = 0 and thus (27) and (7.2) are
equivalent for s; = s;. For s; = s; an approximate solution is found by using
orthogonal projection of the system (21) onto the subspace spanned by the basis
vectors vi,... ,Vg.

For i # i, the solution (27) from the previous discussion belongs to the
subspace span(V';), while the alternative solution (7.2) is taken from the larger
subspace span(Vz ).

7.3 Residuals

We will derive an expression first for the residual to the premultiplied linear
system of equations (21) and then for the original linear system of equations (20),
where the approximate solution is calculated by (26) and (7.2). The residual of
the premultiplied system (21) is
ri(s) =(G + 5;,C)"'b — (G + 5;C) (G + sC)&;(s)
=Viiabi = (G +5:C) (G +5C) V(L + 5:F)y,(s)
=V (B — (L + sF)y,(s)) (58)
== V51 (g s + 5fE+1,E)e;;Tyi(5)
=— Vg1 (s — 57)pi(s),
where y;(s) is the solution to (26). The second equality follows from (7.2) and
(28), the third equality from (24), the fourth from (26), and the fifth from (17)
and (30).
By multiplying (58) by(G + s;C) we see that the residual for the original
system (20) is
ri(5) =b — (G + sC)&;(s)
=— (G + 5iC)vg (s — si)pi(s)
Corollary 2. If the approzimate solution ;(s), 1 < i < 7 is calculated by (26)
and (7.2), then the residual at each interpolation point sq is

ri(s4) = (G + 5,C)"'b — (G + 5,C) (G + 5,C)%(s,)

)0 q#i
10 g=donlyforj;>1

The corollary can be proved in a similar way as Corollary 1.
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7.4 Transfer Function
From (26) and (7.2) we see that the transfer function (33) can be approximated
by

H;(s) = dT:Ei(s)

59
= dTVjH_l(L + SiF)(L]}J} + SFE’E)_IVEH(G + S,'C)_lb. (59)

7.5 Reduced-Order Model

From (33) and (59) we suggest the reduced model b; = V(G +5,C)"'b,
cilT =d"Vi (L+sF), G = Lj  and C= Fj ;- The approximate transfer

function H;(s) can be written as

. %N An 1%

H,(S):d,l (G+SC) b;.
Theorem 4. Let the ji* moments of the original and reduced-order systems
about the interpolation point s, be m;(s,) = (=1)7d” (G + 5,C)~'C) (G + 5,C)'b
and 1 i(sg) = (—1)111?((61' +5,8)71C) (G + 5,C)'b; respectively. If
b =VE(G+5C)b, d; =d Vi (L+sF), G = Ly and C = Fp
where Ly i, Fy . and Vi, are the result of the rational Krylov algorithm, then
mj(sq) = Myi(sq) fori#q,j=1,...,5,—landfori=q,j=1,...,5,—2.

Proof: The theorem can be proved by using similar techniques as in the
proof of theorem 1

From theorem 1 and section 3 we find that the reduced-order model of the-
orem 1 matches as many moments of the original model as one can hope for,
whereas from theorem 4 and section 3 we see that the reduced model of theorem
4 matches one moment less than possible when ¢ = ¢, i.e. when the expansion
point s, is used in the preconditioner (G + s;C)~'.

7.6 Errors

Theorem 5. If fI,(s) is the transfer function of the reduced-order model de-
fined in theorem 4, and the approximate solution &;(s) to the linear system of
equations

(G +5,C) (G +5C)x(s) = (G+5,C)'b
is given by
Zi(s) = Vi (L + s:iF)y;(s) (60)
where y,(s) is the solution to
(L i + sFp pyi(s) = VE(G + 5:C) 7',
and p;(s) is defined by

pi(s) = fE+1,Ee%yi(s)>
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then
AZ;(s) =z(s) — Zi(s)
=(I+ (s; — 8)(G + sC) ' C)vg1(si — s)pi(s)

The error and its derivatives at the interpolation points sq,q =1,...,7 become
zero fori#q,j=1,...,5,—land fori=q,j=1,...,7,—2:
8]A521 (S)
0si

s=8q — 0,
and the error of the approximate transfer function is

e(s) = H(s) — fI,(s)
= dTA&;(s)

The proof of theorem 5 can be done in a similar way as the proof of theorem

8 Stability and Passivity

It is often important that the reduced-order model inherit properties of the
original dynamic system; two such properties are stability and passivity.

A system is stable if the output y(t) is limited for a limited input w(t). A
system is passive if it does not generate energy internally. A passive system
is stable. The connection of two passive systems is a passive system, but the
connection of two stable systems is not necessarily a stable system.

The system (1) is stable if all poles of the transfer function (3) are in the
left half of the complex plane. Recall that the poles of (3) are equivalent to the
eigenvalues of (7), as was shown in section 1.3. The stability of the reduced-
order model can be checked by calculating the corresponding eigenproblem.
If the reduced-order model of a stable dynamic system is not stable, then by
creating a new reduced-order model in a new basis of lower dimension than the
old, in such a way that unwanted eigenvalues are discarded. This can be done
by using implicit restarts similar to [21], and by using techniques developed in
[35] and [5]. Further work needs to be done before this can be used successfully
in connection with the reduced-order models discussed in this report.

A single-input single-output (SISO) system is passive, if the following con-
ditions are fulfilled:

1. H(s®) = HH(s)
2. H(s)+ H"(s) >0, Re(s) >0

A RLC network is a passive network. In the case of a RLC network, the state
vector and matrices are partitioned as follows by the Modified Nodal Analysis
(MNA):

[l e l3 Y @
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Further, we will assume that d = b. The matrices N, Q and H contain the
contribution from resistors, capacitors and inductors respectively. The matrices
N, Q and H are symmetric positive definite. The matrix F is the incidence
matrix of the inductor branches. The vectors v and ¢ correspond to the nodal
voltages and inductor currents respectively.

In [23] and [6] it is shown that the use of congruence transformation to create
a reduced-order model preserves passivity of a multiport RLC nework with the
G and C matrices composed as (61). The basis is generated by a block Arnoldi
method and a block rational Arnoldi method, respectively. The reduced-order
model is created through congruence transformation by

C=vicv;
G=vigv;
and
b=V{b

The approximate transfer function can now be written as

~ ~H
(

H(s)=b (G+sC)'b.

We will show in the following how to generate such a congruence transforma-
tion in a efficient way by using only a few extra matrix vector multiplications
involving the matrices G and C. If we choose the continuation vector t; on
line 8 of the rational Krylov algorithm be equal to ej, then we obtain the ma-
trix vector product Cwvy without any additional work. The matrix C can be
computed as

C=Vvi(CVy)
where we have obtained CV';, from the rational Krylov algorithm. Rewrite (15)
GViFri+ Goiy firipei = CViLlig + Copyiliy req
Multiply by V' from the left and F, ; from the right:

H H -1 H H -1 H T —1
VHGV = VICVi Ly Fik — VE Gupy fripel Frk + VieCopiali ref Frb

which can be written as

A — AT - He, - _Hp-1 H g Tp-1
G=CL;;Fr = Vi G frprer Frp+ VinCvrpiliyorer Fry

Elld

l_‘:’

In order to compute G, the only quantities of the original model we need to
compute are Gvg,; and Cvg,,.

Another possible approach to create a passive reduced-order model is to
rewrite the rational Krylov factorisation (15) as an Arnoldi factorisation [30]
[31]. Further work needs to be done in this area before it can be used for
creating passive reduced-order models.
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9 Implementation Aspects

In this section we will discuss a variant of rational Krylov where the iterations
are started directly on b, instead of a linear combination of the basis vectors
like the algorithm discussed in section 2 when a new interpolation point s; is
used. We will call this version the restarting rational Krylov algorithm.

Restarting Rational Krylov Algorithm

1 k=0

2 fori=1:4

3 for j=1:3;

4 if j =1 then

5 r= (G+SiC)_1b

6 else

7 r = Vti, choose continuation combination
8 r=(G+s;C)"'Cr

9 endif

10 [Vit1, fr] = GramSchmidt (Vi,r)
11 k=k+1

12 end

13 end

14 r = thk:

15 r=(G+s;C)"'Cr
16 [vi41, fip] = GramSchmidt (Vi,r)

The case when (G + 5;C)~1C operates on Vt; in lines 8 and 9 of the
algorithm above the rational Krylov relation (15) for column k is identical with
equation (14) derived from the rational Krylov algorithm discussed in section 2.

We will now derive the rational Krylov relation (15) for column k for the
case when (G + 5;C)~! operates on b in line 6 of the restarting rational Krylov
algorithm.

Let a =|| (G + 5:C)7b ||, From lines 6 and 11 we have

Vi fy, = (G+5,C)"'b

1 (62)
=a(G +5;,C) " (G+s.C)Vyier.

The last equality comes from av; = (G + s;C)~'b. Multiply equation (62)
from the left by (G + s;,C), and we get
(G+ 5, C)Vis1 [, = a(G + s1C)Vies. (63)
Put a zero at the bottom of e; and rearrange equation (63) to get
GV (fp —ael) =CViyi(asier — s, ) (64)

Use (14) and (64), join the column and we finally get (15).

The block rational Arnoldi algorithm discussed by Elfadel and Ling [6] is a
block version of the restarting rational Krylov algorithm. The rational Lanczos
algorithm discussed by Gallivan, Grimme and Van Dooren [18] is similar to a
two-sided version of the restarting rational Krylov algorithm.
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Given the same conditions, the restarting rational Krylov algorithm and the
rational Krylov algorithm discussed in section 2 generate basis vectors that span
the same subspace. However, they are not equivalent with regard to floating-
point arithmetic. In the rational Krylov algorithm of section 2 it is always
possible to operate with the matrix (G + s;C)~'C on the last basis vector; this
is a stable process. Whereas in the algorithm below, when the interpolation
point s; is changed, the matrix (G + s;C)~! operates on b, and then the result
is orthogonalised against the basis vectors. If (G + s;C)~'b is nearly linearly
independent of the basis vectors, then this leads to numerical problems similar
to those in the parallel rational Krylov algorithm [34].

The more stable algorithm discussed in section 2 comes at an extra cost.
the calculation of b; = Vf (G + 5;C)~'b needs to be done explicitly, whereas
it is included in the process of building a basis in the restarting rational Krylov
algorithm.

10 Error Estimates

10.1 General Comments

In this section we will derive error estimates for the approximate solution &;(s)
and for the approximate transfer function H;(s), both for the main method
discussed and for the alternative method discussed in section 7. In all cases the
quantity we need to estimate in the original model is || (G + sC)~'Cvz,, |
the other quantities of the error estimates can be computed with quantities of
the reduced-order model.

For the first reduced-order model computed from the square F ; and Ly
matrices (theorem 1 and theorem 2), its corresponding approximate solution
Z;(s) (49) has an error bounded by

| AZi(s) < (1 +[s7 — 8| [| (G +5C) ' Cogyy DIwils)l,
and its transfer function has an error bounded by

le(8)] < (1d7 vz 4] + |s7 = 3| | (G + sC) ™ Cvgyy [)Iwi(s)]
< (Id"vg| + sz = s 1 d [lIl (G +5C) ™' Cogyy IN]wils)]

where
vi(s) = (si — 8)pi(s)-

For the second reduced-order model computed from the rectangular F' and
L matrices (theorem 4 and theorem 5), its corresponding approximate solution
Z;(s) (60) has an error bounded by

| AZi(s) [I< (1 +[si = 8] [| (G + sC) ™' Cvgpy D]yils)] (65)
and its transfer function has an error bounded by

le(8)] < (|7 vgqa| + |si — 5| [| 7 (G + sC) ' Cvgys IDi(s)]
< (|d"vqal +Isi = sl 1 d lll (G + sC) " Cvgyy Di(s)]
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where

7i(s) = (55 — 8)pi(s)- (67)

The only quantity in these expressions for the errors that involves compu-
tation of matrices of the original model is || (G + sC)'Cvj,, ||. We need to
estimate it in a good and efficient way, in order to get a good error estimate.

The rest of this section deals with how to estimate || (G + sC)'Cvz,, ||.

In our approach, we will estimate the norm || (G + sC)~'Cwvy,, ||, but not
the vector (G+sC)~'Cvy, 1, s0 we cannot use the quantity || d” (G + sC)~'Cvp,, ||
to get a closer error bound of the approximate transfer functions.

10.2 Eigenvalue Distribution

The error estimates are mainly intended for the frequency response function
H(s),s = jw. Their use for more general s needs further investigations. In a
typical model-order reduction problem, some eigenvalues are close to the imagi-
nary axis in the desired frequency range, but most eigenvalues are located further
down in the left half-plane. In order to get a good approximation, the eigenval-
ues with corresponding right eigenvectors need to converge in the desired region
in the complex plane, as discussed in section 10.3. In order to get a cheaply
computable error estimate, we need some convergence of the left eigenvectors
in the desired region, as discussed in section 10.4.

10.3 Estimating the Error by Calculating the Left Eigen-
vectors

Consider the eigenvalue problem
GU]' = —/\jC’U,j, (68)

and the shifted and inverted eigenproblem

(G+sC)"'Cu; = (69)

w;
“Uj
§—Aj

where ); is an eigenvalue of (68). We assume that v, can be expressed as a
linear combination of the eigenvectors u; normalised to unit length,

n
’ch_H: E a;U;
j=1

=Uaq,

(70)

and a can be computed by
-1
a=U "vg,,,

but it would be far too expensive to actually compute it.
Assume for the moment that the matrix C is nonsingular, which will not be
necessary in the general context. Multiply (68) from the left by C™*:

CilG’u,j = —)\juj.
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Each column of U™ is a left eigenvector of the shifted and inverted eigenprob-
lem (69), and an eigenvector of the eigenproblem

GHC_H’IUj = —ijj (71)
and also to
C_ij = —;\jG_ij, (72)

but it is not a left eigenvector of (68) in general. If we compute the left eigen-
vectors w; and normalise w; such that

wiu; =1
then we will get

Operate with the matrix (G + sC)~'C on the vector vg_:

s
(G +sC) 1C2aju] = Z I, (74)
= = s — )\j
and thus
1(G +5C) Oy 1< 12| (75)
i=1 ’
If we assume that none of the a; are too big, then it is only the terms |sff\j |

with eigenvalues A; close to s that contribute significantly to the error.

Let us now look at how the approximate solution Z;(s) depends on the
convergence of eigenvalues with corresponding right eigenvectors around s. For
the exact solution x(s) we have

z(s) = (G +sC)"'b
= (G +sC) (G +5,C)(G+5C)"'b

Set
v=(G+sC) b
and we get
x(s) = (I + (s; — 8)(G +sC)"'C)v.

If not || (s;—s)(G'+sC)~1Cw ||<]| v || then it is necessary that (G +sC)~'Cwv
can be approximated in the basis in a good way. Assume that v can be ex-
pressed as a linear combination of the right eigenvectors similar to (70). From
(74) we find that, if none of the a; are too big, then it is only the terms |Sfj}'\j
with eigenvalues ); close to s that contribute significantly to the solution. So a
necessary condition seems to be that the eigenvalues close to s with correspond-
ing right eigenvectors need to converge in order to get a good approximation of
the exact solution x(s).
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One possibility would be first to run a rational Krylov method with shifts
81,---,8; until all eigenvalues with corresponding right eigenvectors have con-
verged around the region in the complex plane where we want a good approx-
imation of x(s); and then to calculate the corresponding left eigenvectors of
C~'G and thus the a; by (73). To see how this can be done efficiently, we
may run a rational Krylov algorithm on the eigenproblem (72) with the matrix
operators CH (G + s;C)~H, i = 1,...,7 with the same shifts s;, i = 1,... ,7
as the original rational Krylov run, and calculate the left eigenvectors w; for
the region where we have convergent right eigenvectors, and thus calculate the
corresponding a; by (73). We could reduce the computation time by using
the same LU factorisations of the matrices (G + s;C), i = 1,...,7 in the two
rational Krylov runs, but this would still be costly.

10.4 Estimating the Error Without Calculating the Left
Eigenvectors

Replace s; by s in (36), multiply from the left by (G + sC)~! and we get
Vi F =(G+sC)"'CVy, (L + sF).
Multiply from the right by the pseudo inverse of (L + sF):
Vi F(L+5sF)t =(G+sC)"'CVi (L+sF)L+sF)t.  (76)
Set
P(s) = (L +sF)(L +sF)*

where P(s) is an orthogonal projector from C**+! onto the subspace
span(L + sF'). Multiply (76) by a random vector y,. and normalise:

| F(L+sF)ty, || _ |[(G+sC)"'CV;y, P(s)y, ||
| P(s)y, |l I P(s)y. |l
Set q(s) to be the vector
q(s) = P(s)y,/ || P(s)y, || - (77)

Under what conditions is || (G + sC) " 'CVy1q(s) || a good estimate of
1(G +5C) *Cugyy | 2

If some right eigenvectors have converged in the basis Vz, then those eigen-
vectors are orthogonal to vg,. This will cause the corresponding a; (70) to be
equal to zero. From (75) we see that || (G + sC)~'Cwvj_, || tends to be smaller
than || (G +sC)™'CVi4q(s) |-

We have observed that in some cases the left eigenvectors converge to some
extent in the basis V'z. In this lies another explanation of why the error estimate
should work in those cases. If the left eigenvectors corresponding to converged
right eigenvectors have converged to some extent in the original rational Krylov
basis vy, ... ,v;, then v, is close to being orthogonal to the partly converged
left eigenvectors w;. Set aé- = wJH v; and its absolute value will decrease for
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increasing [ for those j that correspond to partly converged left eigenvectors w;.
Thus for any vector z € span{vi,...,v;} we have

|'wfz| 2 |'w51'”7c+1|-
Finally we can conclude that

| F(L+sF)*y, |
I P(s)y, |

=l (G +sC)"'CVi1q(s) || (78)

2l (G +sC) 7' Cogy, ||

for the s that belongs to the region of converged right eigenvectors and partly
converged left eigenvectors.

10.5 Estimating the Convergence of Right and Left Eigen-
vectors

In order for the error estimate (78) to be valid we need convergence of the
right eigenvectors, and in some cases some convergence of the left eigenvectors
corresponding to eigenvalues in the approximation region.

We will derive an alternative way of calculating the eigenvalues and corre-
sponding right eigenvectors, rather than as discussed in [28, 29, 30]. In the
process we get an efficient way of calculating the residuals of the eigenproblem.
Then we will describe how to calculate the left eigenvectors and estimate the
convergence. The subspace that the rational Krylov method is building up for
the solution of the eigenproblem (68) gives generally much better estimates of
the right eigenvectors than the left. Consider the eigenproblem (72) We have
assumed that the pencil is regular, which means that (G + sC) is invertible for
most s. It is then natural to calculate the spectrally transformed left eigenprob-
lem.

— L w; = CY(G +sC) Huw,,
s — /\j

where )\; is an eigenvalue to (71). From the above, and from the relation between
the eigenproblems (68) and (69) for the right eigenvector, we get the following
approach.

Let vy,... ,V%,V%,1,--- , ¥y be an orthonormal basis that spans C™ in such
a way that the first £ + 1 basis vectors are generated by the rational Krylov
algorithm. Set

A=(G+s;0)C, (79)
V,=V;y,

Vy = Vl_c+1:na

and we get

(80)

AV, V] = [V.V3) [Ha,a H, ,,]

H,, H,.

)
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The matrices H, , and H} , are known, and we get them from (79) through

(80), and by multiplying (36) from the right by (Lz 7 + s7 F 5)~" and from the

left by (G + s;C)~". Note that (I, + s7 fz11,5) = 0- Thus
H,o=Fr;(Lgz+si Frp)™

and

H,, = elfﬁ+1,ke%(LE,E + 87 F,;’E)_l. (81)

Consider the eigenproblem

Auj =nju; (82)
Let (7;,y;) be an eigenpair of
Ha,ayj = ﬁjyj (83)
and take
u; =V,ay, (84)

as the approximate eigenvector and 7j; as the approximate eigenvalue. The
relation between the eigenvalue 7; of (82) and the eigenvalue A; of (68) is

From (80) we get the relation
AV, = VaHa,a -+ Vbe’a (85)
and the residual will be
Aaj — ;= AVayj - ﬁjVayj
= Avayj - VaHa,ayj
=VyH,,0y,
= ”E+1fk+1,EeET(LE,IE + 87 FE,E)fl'yj-

The first equality follows from (84), the second from (83), the third from (85),
and the fourth from (81).
Multiply (80) from the left by V¥ = [V, V,]¥:

VEAV = H (86)

Complex transpose (86) and multiply by V to get

HYE HE
ARV, V| =[V,V, { % ’};] (87)
[ 1=1 ] H Hi

Consider the eigenproblem

H — _. .
A w; = njw;
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Let (7;,9;) be an eigenpair of

Hf,ayj = ﬁjyj (88)
and take
w; = V,y; (89)

as the approximate eigenvector and ﬁj as the approximate eigenvalue. From
(87) we get the relation

A"V, =V, HI +V,HI, (90)
and the residual will be
Aw; — i = A"V oy, — 7, Vay,
=A"V,y, - V.H y, (91)
= Vngbyj.
E[‘he) first equality follows from (89), the second from (88), and the third from
90).

The matrix H gb is unknown, but we may get a crude estimate of its norm
by multiplying (90) by a normalised random vector y,.:

| Heyy, | =l A"V oy, — Vo H ]y, |

(92)
<[l Hgly |l -

A crude estimate of the convergence of the left eigenvectors would be to
calculate the norm of the normalised residual:

1

H .
m | A"V .y, - V. H | Hapy, |l
a,byT

oY 1=
T Hyyy, |

10.6 Invariant Subspaces

In the following we will describe a connection between a right invariant subspace
and the corresponding left subspace, which is not invariant in general. It will
give insight into why the left eigenvectors sometimes converge to some extent
in the basis V.

We will assume that the subspace span{vi,...,v;} builds up an invariant
subspace under A, and thus H , = 0. From (80) we get
H H,,
AV, V] =[V.V o &
vavil = v [foe fet]
If we solve the eigenproblem
H,.y; =ny;
then 7; will be an eigenvalue of A and
u; = Vay,

will be the corresponding eigenvector of A.
The following theorem gives a connection between a right invariant subspace
and a left subspace.
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Theorem 6. Let A € C™*™ be a matrix with only simple eigenvalues. Further-

more let, v1,... , V5, Vfy1,--- »Un be an orthonormal basis of C™ in such a way
that A is invariant under the subspace span{vy,... ,v5}. If Vi, = [v1,... ,05],
Vi = [Vgy1,--- V0] and H is defined by the relation
H H
AWV = vovi] [fpe Joe]

then there exists a similarity transformation such that

[Ha,a 0

1
; Hb,b]_X AX,

X and X~ being given by
X = [Va,; VaQ + Vb];

X =V, -V,Q",vy)"
where Q is the unique solution to the equation
Ha,aQ - QHb,b = _Ha,b- (93)

Proof: For proof of Theorem 6 see the proof of theorem 1.5 in Chapter V,
on invariant subspaces, in the book by Stewart and Sun [36].
From theorem 6 we get

[Hga 0

— XHAHX—H
0 H,,f{,,]

If we solve the eigenproblem
H _
H,,y; =1;Y;
then 77; will be an eigenvalue of A" and

w; =Vay; — VbQHyj

will be the corresponding eigenvector; the matrix @ is the solution to the equa-
tion (93).
Let a be a scalar such that
H
o= max M@l (94)
mexH2,) Iyl

where @ is the solution of (93). The scalar « gives a measure of the convergence
of the left eigenvectors corresponding to converged right eigenvectors in the
basis generated by the rational Krylov algorithm. If « is large, then some left
eigenvalues have not yet converged.

The scalar a (94) is not computable with known quantities, but the magni-
Q% y,ll
lly;ll
is of the same order of magnitude corresponding to converged eigenvalues and

right eigenvectors, then it is sufficient to test the convergence of a few left eigen-
vectors by calculating the residual (91). The matrix H, ; is not known, but its
norm can be estimated by (92).

tude of a can be estimated by residual calculations. If we assume that
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11 Testing

11.1 Introduction

If not otherwise stated, the tests are with regard to the reduced-order model
presented in theorem 1. The version of the rational Krylov algorithm presented
in section 2 is used in all tests.

The objective of these tests is to test the rational Krylov algorithm, the error
estimate, and the quantities that are needed for the error estimate to work.

We will test several different strategies to choose the vector y, of the error
estimate (78). One strategy is to choose the vector y, as a normalised random
vector; this will in many cases be an overestimate of the error as discussed in
section 10.4. We will refer to this strategy as random-vector error estimation

One way to come a bit closer to the real error is to choose the initial parts of
the vector y, to be zero. The idea behind this strategy is that the vector g(s)
(77) becomes closer to the vector ez, ; in some sense, and thus the estimate
becomes closer to || (G + sC) 'Cvj,, ||. We will refer to this strategy as
random-vector error estimation with initial zeros.

Another way to come closer to the real error is to initialise the vector y, as
a random vector, and then discard the eigenvectors of the matrix

Fri(Lig+sFrp) !

that corresponds to converged eigenvalues of (7). We will refer to this strategy
as discarded-eigenvectors error estimation.
By choosing the second smallest right singular vector of the matrix

F(L+sF)* (95)

of the error estimate (78) as the vector y,., we will in many cases get an under-
estimate of the error. Note that the matrix (95) generally has a null space of
dimension one, so the smallest singular value is equal to zero. The norm of the
vector P(s)y, of (78) is usually close to 1, and its upper bound is 1. We will
refer to this strategy as small-singular-values error estimation.

We will test the convergence of both right and left eigenvectors of the matrix
A (79) in the subspace S;. The residuals corresponding to the right eigenvec-
tors are normalised by || Hp,, || and the residuals corresponding to the left
eigenvectors are normalised by an estimate of || Hgp || (92).

Another way to test the convergence is to compute the exact right and left
eigenvectors of the matrix A (79), and then check how much they have converged
in the subspace span(V';). One measure is to compute

1— || VEuy, | (96)

for the normalised right eigenvectors of A (79), and a corresponding measure for
the normalised left eigenvectors. Of course this is useful in evaluating methods,
but not for practical use in error estimates. If an eigenvector has converged in
the subspace span(V';), then (96) is equal to zero. We will refer to the measure
(96) as a projected-eigenvector measure.

In several of the plots we plot the amplitude characteristic of the approximate
transfer function |H(jf)| together with the error [H(jf) — H(jf)| and error
estimates, where j = v/—1 and f is the frequency.
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11.2 Crosstalk Via PEEC

This test circuit is a full wave analysis of three conducting strips modelling a
crosstalk problem via PEEC. It is provided by Zhaojun Bai and is of dimension
n = 256. The rational Krylov algorithm is applied with the shifts s; = j3 x 102,
sy = j2 x 10° and s3 = j8 x 10°, where j = v/—1. The shifts are applied 3, 6
and 8 times respectively, so the dimension of the reduced-order model is ]_c =17.

In Figure 1, | H3(j2n f)| is plotted together with the error |H (j2x f)—Hs (j2r f)|
and error estimates, where we have used the interpolation point s3 in the ap-
proximate transfer function Hs(s) (34). The error estimates differ only in how
the vector y, of (78) is chosen. The two error estimates based on choosing the
vector y,. as a random vector are overestimates almost all the way. The variant
where we have chosen the initial elements to be zero (initial 80%) gets closer
to the real error. The discarded-eigenvectors error estimate gets closest to the
real error of all estimates, in some parts an overestimate, and in other parts
an underestimate. The eigenvalues corresponding to discarded eigenvectors are
plotted in Figure (3) together with eigenvalues in the approximation region.
The small-singular-values error estimate is an underestimate of the error all the
way. R

In Figure 2, | H; (j27 f)| is plotted together with the error |H (j2r f)—H1 (j2r f)|
and error estimates. Note that the error estimate based on choosing the vector
Y, as a random vector gets closer to the real error, and that the small-singular-
value error estimate gets even more of an underestimate than the corresponding
estimates to Hs(s).

The eigenvalue distribution is given in Figure 3. Compare the eigenvalue
distribution with the plots for the transfer function and error estimates, and
note that the transfer function, and the error and error estimates, have a top
near the imaginary part of each eigenvalue.

In Figure 4, we show the normalised residual corresponding to approxima-
tions of the right and left eigenvectors in the subspace span(V'y) of the matrix
A (79). The norm of the residuals is plotted against the imaginary part of the
original eigenvalue (68). To get a measure of how much the left eigenvectors have
converged, we have plotted the normalised residual where the left eigenvector is
replaced by a normalised random vector. We have also plotted the approximate
transfer function. The residual test indicates that the right eigenvectors have
converged in the approximation region and some of the left eigenvectors have
converged to some extent.

In Figure 5, we show how much the right and left eigenvectors have converged
in the subspace span(V';). We have plotted the projected-eigenvector measure
(96) for the right and left eigenvectors. We have also plotted the corresponding
measure for normalised random vectors, to get a measure of how much the
left eigenvectors have converged. The projected-eigenvector measure (96) is
plotted against the imaginary part of the original eigenvalue (68). We have also
plotted the approximate transfer function. Similar to the residual test, this test
indicates that the right eigenvectors have converged in the approximation region
and some of the left eigenvectors have converged to some extent.

32



11.3 The RF Circuit

This test circuit models the pin package of an RF circuit; it is provided by Peter
Feldmann [14] and is of dimension n = 1841. The rational Krylov algorithm
is applied with the shifts s; = j27 x 108, s = j87 x 10° s3 = jl07 x 10°
and s3 = j127 x 10? | where j = y/—1. All shifts are applied 7 times, so the
dimension of the reduced-order model is k= 28. .

In Figure 6 |H1(jf)| is plotted together with the error |H(jf)— H1(jf)| and
error estimates, where we have used the interpolation point s; in the approxi-
mate transfer function H;(s) (34). The error estimates differ only in how the
vector y, of (78) is chosen. We have chosen the same error estimates as in the
previous test problem, except that the initial 95% of the vector y,. is zero in the
random-vector error estimate with initial zeros.

The trend for the error estimates is similar to the previous test problem.

The eigenvalue distribution is given in Figure 7.

In Figure 8, we show how much the right and left eigenvectors have converged
in the subspace span(V';). We have plotted the projected-eigenvector measure
(96) for the right and left eigenvectors. The projected-eigenvector measure (96)
is plotted against the imaginary part of the original eigenvalue (68). The test
indicates that the right eigenvectors have converged in the approximation region;
in contrast to the cross talk via PEEC test problem, the left eigenvectors have
not converged.

11.4 The PEEC Circuit

This test circuit is generated from the PEEC discretisation [25] of an electromag-
netic problem. The dimension of the problem is n = 306. The rational Krylov al-
gorithm is applied with the shifts s; = j2rx10°x[1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5];
they are applied [2, 5, 5, 5, 5, 5, 5, 5, 2] times respectively, so the dimension
of the reduced-order model is k = 39. X

In Figure 9, [H3(j f)| is plotted, and in Figure 10 [H3(j f)| is plotted together
with the error |H(jf) — H3(jf)| and error estimates, where we have used the
interpolation point s in the approximate transfer function Hsz(s) (34). The
error estimates differ only in how the vector y,. of (78) is chosen. We have chosen
the initial 80% of the vector y,. to be zero for the random-vector error estimate
with initial zeros. Here it gets more of an overestimate than in previous test
problems. We have also chosen the small-singular-values error estimate. This
estimate comes rather close to the real error in this case.

In Figure 11, we show how much the right and left eigenvectors have con-
verged in the subspace span(V). For the right and left eigenvector we have
plotted the projected-eigenvector measure (96). The projected-eigenvector mea-
sure (96) is plotted against the imaginary part of the original eigenvalue (68).
The test indicates that the right eigenvectors have converged in the approxi-
mation region; similar to the RF circuit test problem and differently from the
crosstalk via PEEC test problem the left eigenvectors have not converged.

11.5 RC Circuit

The RC circuit is of dimension n = 13875, it models the interconnect on a chip.
The test problem is provided by Roland Freund. The matrices G and C are
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symmetric and positive definite and thus a stable reduced-order model can be
created through congruence transformation. The rational Krylov algorithm is
applied with the shifts s; = [10", 107, 10%, 10°, 10'°] * 2 x 7 one time each, so
the dimension of the reduced order model is k = 5, further d = b. In figure 12
we have plotted |H(j f)| of the reduced order model created through congruence
transformations together with the error [H(jf) — H(jf)| . We have also plotted
the error |H(jf) — Hs(jf)| as a comparison.

By inspection the matrices G and C of the reduced-order model created
through congruence transformation are symmetric and positive definite, which
they should be according to theory, and thus we have a passive reduced-order
model.

5

10

10

10

10

10

2 mf

Figure 1: |ﬂ 3(j2n f)| of the crosstalk via PEEC is plotted by a thick solid line
—, and the error |H(j2wf) — H3(j2nf)| by a thin solid line —. The random-
vector error estimate is plotted by a thick dashed line — —, the random-vector
error estimate with initial zeros by a dotted line - -, the discarded eigenvectors
error estimate by a dash dot line — -, and the small singular value error estimate
by a dashed line — —.
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Figure 2: |H, (j27 f)| corresponding to |H3(j2nf)| of Figure 1 is plotted together
with the error |H(j2nf) — H1(j27 f)| and error estimates.
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Figure 3: The eigenvalue distribution of the test matrices of the crosstalk via
PEEC. The eigenvalues are plotted with a dot -. The eigenvalues correspond-
ing to discarded eigenvectors for the discarded-eigenvectors error estimate are
plotted with a 4. Note that the real parts are plotted with a linear scaling on
the y-axis, and the imaginary parts with a logarithmic scaling on the x-axis.
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Figure 4: Residual-based test for convergence of left and right eigenvectors of the
test matrices of the crosstalk via PEEC. The normalised residuals corresponding
to approximations of the right and left eigenvectors in the subspace span(V'y)
are plotted by a star x and a circle o respectively. The normalised residuals
for the left eigenvector replaced by a random vector are plotted by a plus +.
|H(j2n f) is plotted by a solid line —.
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Figure 5: This plot shows how much the right and left eigenvectors of the test
matrices of the crosstalk via PEEC have converged in the subspace span(Vy).
The measure 1— || V' u || corresponding to the right eigenvector, left eigenvec-
tor and a normalised random vector are plotted by a star %, a circle o and a
plus + respectively. |H (j2n f)| is plotted by a solid line —.
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Figure 6: |H1(jf)| of the RF circuit is plotted by a thick solid line —, and the
error [H(jf)— H, (7 1)] is plotted by thin solid line —. The random-vector error
estimate is plotted by a thick dashed line— —, the random vector error estimate
with initial zeros by a dotted line - -. the discarded-eigenvectors error estimate
by a dash dot line — -, and the small-singular-value error estimate by a dashed
line — —.
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Figure 7: The eigenvalue distribution for the test matrices of the RF circuit.
The eigenvalues are plotted with a dot . The eigenvalues corresponding to
discarded eigenvectors for the discarded-eigenvectors error estimate are plotted
with a +. Note that the real parts are plotted with a linear scaling on the y-axis,
and the imaginary parts with a logarithmic scaling on the x-axis.
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Figure 8: This plot shows how much the right and left eigenvectors for the
test matrices of the RF circuit have converged in the subspace span(V';). The
measure 1— || V£ u || corresponding to the right eigenvector and left eigenvector
and left eigenvector is plotted by a star * and a circle o respectively.
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Figure 9: |H3(jf)| of the PEEC circuit is plotted by a solid line —.
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Figure 10: |I-:T 3(j )| of the PEEC circuit is plotted by a thick solid line —, the
error |H(jf) — Hs(jf)| by thin solid line —, the random-vector error estimate
with initial zeros by a dotted line - -, and the small singular value error estimate
by a dashed line — —.
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Figure 11: This plot shows how much the right and left eigenvectors of the test
matrices of the PEEC circuit have converged in the subspace span(V). The
measure 1— || V}—;I u || corresponding to the right eigenvector and left eigenvector
is plotted by a star % and a circle o respectively.
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Figure 12: |H(jf)| of the reduced-order model created through congruence
transformation of the RC circuit is plotted by a thick solid line —, the error
|H(jf) — H(jf)| by thin solid line —. The error |H(jf) — H3(jf) is plotted by
a dashed line — —.
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