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Abstract. Let n random points be uniformly and independently distributed in the
unit square, and count the number W of subsets of k of the points which are covered
by some translate of a small square C. If n|C| is small, the number of such clusters
is approximately Poisson distributed, but the quality of the approximation is poor. In
this paper, we show that the distribution of W can be much more closely approximated
by an appropriate compound Poisson distribution CP (A1, Ag,...). The argument is
based on Stein’s method, and is far from routine, largely because the approximating
distribution does not satisfy the simplifying condition that ¢)\; be decreasing.
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1 Introduction

Assume that n points, denoted by &1,...,&,, are uniformly and independently dis-
tributed in the unit square A in IR?, and let C C A be a small square of side ¢. A
subset consisting of k points, where 1 < k < n, will be called a k—subset. There are (Z)
different k—subsets of points, some of which are covered by translates C* := C 4 a of C.
Number the k—subsets in some way, independently of the positions of the points, and
let W denote the number of k—subsets which actually are covered by some C®. Then
W can be written as

W = Zli’ (1.1)
where

I — 1 if the ith k—subset is covered by some C?,
1 0 otherwise.

To avoid problems with the boundaries of A, the torus convention is used throughout
the paper. Furthermore, for convenience, we let C' have its lower left corner at the
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origin; thus C'* has its lower left corner at a. We shall study the distribution of W
when k is fixed, n is large and the density of points is not too great, in the sense
that P(C > some k subset of &1,...,&,) is small. For asymptotics, we therefore always
assume that n|Cy| — 0, where | - | denotes area.

In Mansson (1997), Poisson approximation of the quantity W, in some contexts
called a multiple scan statistic, is studied by means of the Stein-Chen method. Some
of the results in that paper are presented in Section 3.1. As can be seen in Theo-
rem 3.2, the total variation distance tends to zero whenever lim,, o, n|C,,| = 0. How-
ever, the rate of convergence is typically of order n|C,,|, which is slower than might be
hoped, if £ > 3. To get an idea of what an ideal convergence rate might be, let J; =
I[¢; is the leftmost member of a k—cluster], 1 < i < n; then p = E[J;] < (n|Cy|)F~!. If
the J; were independent, then approximation to U = >"" | J; by Po (E[U]) would have
accuracy of order (n|Cy|)¥~! if E[U] > 1. Thus we shall be satisfied if we can achieve
this order of accuracy for our sum W of dependent random indicators; clearly, for k > 3,
a rate of order n|Cy,| is markedly inferior.

That it is not only the bounds for the Poisson approximation which are crude, but in
fact the approximations that are bad, can be seen in Mansson (1999), where simulations
are carried out. The inaccuracy stems from the strong dependence between k—subsets
with many common points: if two k—subsets have kK — 1 points in common, then given
that one of these k—subsets is covered, the probability is high that also the other one is
covered. To be a little more precise: as we will see in (3.1), P(I; = 1) = k?|C|*~!, while
if the 4th and jth k-subsets have kK —1 points in common, then P(I; = 1| I; =1) > |C|.
This latter probability is critical in determining the order n|Cy| of the bound on the
total variation distance given in Theorem 3.2, when E[W] > 1. Hence the troublesome
part in the Poisson approximation arises because the covered k—subsets tend to occur
in clumps. A natural step is thus to approximate W by some distribution in which
clumps can be taken into account, and an obvious candidate is a compound Poisson
distribution. The aim of this paper is to investigate such approximations.

Some early references concerning the distribution of W are Eggleton and Kormack
(1944), Silberstein (1945) and Mack (1948,1949). The main focus of these articles is the
expectation of W for different shapes of C, but Mack (1948) also argues for a Poisson
limit of W as the total number of points tends to infinity. A more recent reference of
interest is Aldous (1989), who handles the case where C is a disc or a square. In the
special case where k = 2 and C is circular, the number of k—subsets that are covered
equals the number of pairs of points with interpoint distance less than the diameter
of C. Convergence of this number to a Poisson limit is discussed in Silverman and
Brown (1978, 1979).

In Silverman and Brown (1978), the number of close pairs is given as an example of
a classical U-statistic. Poisson approximation for U-statistics and sums of dissociated
variables are treated by Barbour and Eagleson (1984) and Barbour, Holst and Jan-
son (1992). In these two references, the Stein-Chen method is used to bound the total
variation distance for Poisson approximations to the sums.

In terms of the scan statistic, the maximal number of points covered by C, the
problem is investigated by Loader (1991) when C is rectangular. In Alm (1997), C
can be any convex set, and the suggested approximations are verified by means of
simulations.

Another problem related to ours, but one-dimensional, is that of m-spacings, defined
as follows. Take n points from a uniform distribution on the unit interval, and let



X(1)s--+»X(n) denote the ordered sample. Then the m-spacings are defined by Sy, =
X(m+i) — X(i)» ¢ = 1,...,n — m, and, using the torus convention, Sy, =1 — X(;) +
X(mti-n); 8 =n—m+1,...,n. Barbour et al. (1992) showed that the total variation
distance between the number of m-spacings smaller than a, say, W = > 7" | 1{Sim, < a}
and L(Po(E[W])) tends to zero at the rate na whenever na — 0 and E[W] > 1. In
Roos (1993) it is shown that a suitable chosen compound Poisson approximation for W
yields rates of order O(w(1 + log™ (2n7)), where m = O((na)™/m!). Note that S, < a
means that m + 1 points lie in an interval of length a; hence, except for the logarithmic
term, the order Roos achieved corresponds to the order we aim at in our problem.

2 Compound Poisson approximation by Stein’s method

Let W =} cr Xa, where I' is a finite family of indices, and the X, take values in IN;
in our case, the X,’s are indicator variables. Here, we consider the compound Poisson
approximation of W by means of Stein’s method. The relevant compound Poisson
distributions are defined by

CP(A) =LY iN; ], (2.1)

i>1

where (N;, i > 1) are independent with L(N;) = Po(\;), and A = ), 6;\;, with §;
the unit mass at the point 7. Note that this definition is equivalent to

CP(A) =L (Z V) : (2.2)

where L(N) = Po(>°,5; Ai) and Vj, i = 1,2,..., are independent of each other and of
N, with P(V; = j) = )\]/ EiZI A

Barbour, Chen and Loh (1992) showed that there exists a bounded solution g : N —
R of

S idig( +4) — jgi) = £),
i>1

for all j > 0, if and only if E[f(Z)] = 0 where £(Z) = CP (A). Letting g4 be the
solution when f(j) = 1{j € A} — CP (A){A}, it follows that

dry (L(W),CP(A)) = Sup. |P(W € A) — CP (A){4}|
= Asggr E Zi)\igA(W +1i) —Wga(W)||. (2.3)

Roos (1994a, 1994b) showed that it is often possible to find £y and &1 such that

E > iXg(W+i) —Wg(W)|| < eolgl+e1lAg], (2.4)
i>1



for all bounded g : IN — R, where
lgl =sup|g(j)| and [Ag| =suplg(j +1) —g(5)l,
j>1 j>1

and the quantities \; are appropriately defined; and if (2.4) is satisfied, then
dry(L(W),CP(A)) < eoHo(A) +e1Hi(A), (2.5)
from (2.3), where

Hy(A) = sup |ga| and H;(A) = sup |Agal-
ACZt ACZ+

Note that letting Ay = A and A\; = 0, ¢ > 2, the above reduces to the Poisson case:
dTv(ﬁ(W), Po ()\)) < €0H0(>\) +e1H;y ()\),

in which case there exist good bounds on Hy(\) and H;(\), given respectively by
min(1, \~/2) and A\~!(1 —e~*). Bounds on Hy(A) and H;(A) as sharp as these cannot
be found in the compound Poisson case for general A. In Barbour, Chen and Loh (1992)
the following bounds are given:

Ho(A), Hy(A) < min (1, %) exp {Z /\Z} , (2.6)

valid for any A = >">°, \;d;, and the considerably better bounds

o) <min {1 e |2 - e 27
and
Hi(A) < min{l, " _12)\2 [4()\1 i2/\2) +log™ 2(A; — 2/\2)] } (2.8)

valid only if 4A; N\, 0. The difficulties in deriving bounds in the compound Poisson
approximation case is thoroughly discussed in Barbour (1995).

If i)\; does not decrease, as is the case in the current problem, (2.7) and (2.8)
unfortunately cannot be used. Because of the exponential term, (2.6) is unsatisfactory
when )., A; is large, and in particular it is useless in the regime where it tends to oo.
There is however an alternative way to handle the case when ) ,o; A; is large. First
we introduce the notation Q, = 3", Ain, and fiin, = Ain/Qy, with the index n explicit
for now; then the following theorem can easily be deduced from Theorems 1.10 and TV
and Equations (1.24)—(1.28) of Barbour and Utev (1998).

Theorem 2.1 If a sequence (A, n > 1) satisfies the conditions
(1) limy, o0 fhin = pi for each i > 1;

(4) supPp>1 i1 pinTh < 00 for some oy > 1;

(#1) infp>1Qy > 27 infp>q pin >0,

and if, for each n, (2.4) is satisfied with €y = €o, = 0 for some non-negative integer
valued random variable W = W,,, then there exist positive constants K < 0o and ca < 1

such that, for any x satisfying co < z < 1 and any n such that E[Wy,] > (z —c2) !,

drv(L(W,),CP (A,)) < K(1—2) ' (Q, 1, + P(W, < (1 + 2)E[W,))) .(2.9)



3 Results

3.1 Poisson approximation

In this subsection we discuss the approximation of W, defined in (1.1), by a Poisson
variable with parameter E[W]. Hence we need the expectation of W,

n

EW] = (k)P(h:n,

where P(I; = 1) = P(3a € A : &,...,& € C%. Since C is a square, P(I; = 1)
is easy to derive, because the z—coordinates of the points &; are independent of the
y—coordinates, and therefore each dimension can be considered separately. Hence it is
enough to find the probability that k¥ points uniformly distributed on a circle (by the
torus convention) with circumference 1 are covered by some interval of length c. If
c < i, this is easily seen to be kck~1 since any one of the points can be the leftmost,
and c*~1 is the probability that the rest of the points lie in an interval of length ¢ to its
right. Thus we get

P(I; =1) = (k¢F 12 = B2|CF L, (3.1)

when using the torus convention; the result would be similar for rectangular sets. Hence
_ (") 2| k-1
wl = ()i, (32)

a result true also for rectangles, and easily generalized to R¢ as P(I; = 1) = k¢|C|*~L.

The probability P(I; = 1) for any convex set C' can be found in Mansson (1997).
It depends on the shape of C, to be more precise on the so-called mixed area of C' and
its reflection at the origin. However, it is of minor importance here, and we just state
bounds for the probability:

KICIF < P =1) < (28 — k)|CIF,

where there is equality on the left if and only if C is centrally symmetric and on the
right if and only if C is a triangle.

The following two theorems, which are proved in Mansson (1997) by means of the
Stein-Chen method, hold for any convex set C' which is not too large, by which we mean
that {a: CNC* # 0} C A.

Theorem 3.1 Let W be defined by (1.1). Then

dry (L(W), Po(E[W])) <

(2 S () e e,

=1

—

B

Il

where a; = 2i% — 1.

The next result concerns the rate of convergence when {C,}5; is a sequence of sets
with areas decreasing with n.



Theorem 3.2 (i) For any sequence of sets {Cp}n>1 such that n|Cy| — 0,

drv (L(W,), Po(E[W,])) = O (min{l,nk|Cn|k_1}n|C’n|> .

(ii) If |Cy] = O(n™Y), where t > 1 is constant, the bound tends to zero and is of order

drv (L(Wy), Po(E[W,]))
O(n'=t) ifl<t<k/(k—1), (E[W,]— ),
= O(n~Y&=1D) ift=k/(k —1), (E[W,]stays away from 0, c0),
Om*=D+1) ift > k/(k —1), (E[Wy]— 0).

Extensions of this theorem to associated point processes were also proved in Mansson
(1997). As can be seen, the rates obtained above in the case E[W,] > 1 are slow for
k > 3, when compared to the ideal rate (n|Cy|)* L.

3.2 Compound Poisson approximation

We now turn to compound Poisson approximation. Recall the definitions of the com-
pound Poisson distribution given in (2.1) and (2.2). In our case, it is natural to think
of N as the total number of clumps (where clumps are yet to be defined) of covered k—
subsets, V; as the number of covered k-subsets in the sth clump, and N; as the number
of clumps of size j. In the Poisson case, the choice E[W] of parameter in the approx-
imating distribution was obvious, and easy to derive. Here the situation is different,
since we first need to define the clumps, and this definition can be rather arbitrary.
The one that we choose is not intuitively clear, but it is convenient for the purpose of
bounding the total variation distance. A drawback is that it seems to be difficult to find
exact formulae for the parameters; however, determining them numerically is a very
much smaller problem than the original distributional approximation.

Let I' be the family of subsets a = {a1,...,a} C{1l,...,n}. Then W =3 I,
where I, =1if &,,,...,&,, are covered by some C'*, and 0 otherwise. For each o € T,

)

pick one of the q; arbitrarily, and denote it by a*. Defining RZ(-m to be the square of

side mc centred at &;, let

Zo =Y Ig1{€s € RY for all §; € ).
per

Then Z, is the number of k—subsets which are covered and have all their points in Rgl*),

which means that they are in one sense close to the k—subset a. These k—subsets
constitute the a—clump.
Our first attempt is to approximate W by a compound Poisson distribution with
parameters
1 . 1 .
=) SBllaI{Zs = i}] = ZEWP(Zy = |l = 1), (3.3)
a€cl’
by means of (2.5). It turns out that this approach works well for small E[W]. When
the expectation is large, we need to use Theorem 2.1 instead, but its Condition (ii) is
not satisfied with the \; defined in (3.3). In order to define the alternative parameters

that we use, another random variable has to be introduced: let S, be the number of
(4)

points falling in R/, apart from those belonging to the k—subset . Then we define

N =i 'EWP(Z = i|[, = 1,5 < so), (3-4)



for a suitably chosen sy which is independent of n, and we set

—k
&1 = (Z) {16(”k >k4|C|2k1
k-1
E\ (n—k n—~k
4) v12(k—1)
e (52 (5) (18 e o)

+ 32k OfF (%)k‘l(n_k)@:@}. (3.5)

Note that E[W] = (})E[1] and that
EW) 2= A2 (1) ElnIPS, =02 ([ ) BILI0 - 160" ~ E7]  (36)

if n|Cy| — 0, so that E[W] and Q are then asymptotically equivalent. We are now in a
position to state the main results of the paper. We begin with the theorems which are
relevant when E[W] is not too large.

Theorem 3.3 With the above notation, let A = .., X\id;, where \; is defined as in
(8.3). Then -

1 o
dTv(,C(W), CP(A)) S <1 A /\—> €Xp {Z Az} £1- (37)
! i=1
If {Cy} is a sequence of sets such that E[W,] stays bounded away from oo as n — oo,

then

dry (L(W,),CP(A,)) = Om*71C,|*2). (3.8)

Corollary 3.4
(i) If |Cn| = O(n=*/E=10)) then E[W,] stays bounded away from 0 and co, and

dry(L(W,),CP(Ay)) = O('n,fl) — 0.
(i3) If |Cn| = O(n™Y), t > k/(k — 1), then E[W,] — 0 and
dry (L(W,,),CP(A,)) = O(n?(-0+2=1y g,

The next pair of results are useful when E[W] is large.

Theorem 3.5 Assume that n|Cy| — 0 and E[W,] = (})k*|Cp|F 1 — 00 as n — oo,
(i) If A, = > ;51 N, 0i, where X, is defined as in (3.4), then there exists a constant
cy € (0,1) such that for o' = (14 ¢c5)/2, v = (1 4+ 2')/2 and any z € (y'*/*,1)

dry (L(Wr),CP(A7)) = O((n|Cul)* " + exp{—E[Wa]D2(y', 2)}),
where Dy is defined in (4.31) below.



(ii) If Ay, = > ;51 Ain0i, where Ny, is defined as in (3.3), then there exist constants
c2,¢h € (0,1) such that for y' and z defined as in (i), and z = (1 + c3)/2

— T 2 .
dry (L(W,),CP(A,)) = O((n|Cul)* ' + exp {—E[Wn] (Dﬂy”z) + w) } :

Corollary 3.6 If |C,| = O(n™"), 1 <t < k/(k — 1), then E[W,] — oo and

dTV(»C(Wn),CP(An)) = dTV('C(Wn)acP(A;L))
= O((n|Cu))*") = OmI=9E=D) — .

In all cases, we obtain the ‘ideal’ rate of (n|Cy,|)*~! min{1, E[W,]}, unless, in Theo-
rem 3.5, the term which decays exponentially with E[W,,] is actually the larger, which
is only the case when E[W,,] grows extremely slowly.

4 Proofs

The proofs of Theorem 3.3 and Theorem 3.5 are based on the following two lemmas.
The first, Lemma 4.1, is the main ingredient in establishing (2.4) in the two theorems;
the second is used to bound P(W < 1(1 + z)E[W]) in the application of Theorem 2.1.

Lemma 4.1 For any bounded function g : N — IR,

EWg(W) =Y iXg(W +i)]| < |Agler,
i>1

where €1 is given in (3.5).

Proof. To use the results in Roos (1994a,1994b) to derive bounds on &y and ¢; in (2.4),
it is required that for each a € I" the indices can be divided into four disjoint subsets,
{a}, T? Tb, T% in such a way that I 3, B € I'y’, is in some sense strongly related to
I,, and that, Ig, B € T'y", is weakly related to I, v € {a} UT’. In our case there is no
obvious way to make such a division. There is a natural way to divide the indices into
three groups; {a}, {# € T\ {a}: BNa # 0} and {B € T\ {a}: BN a = 0}, which is
used in Mansson (1997) to bound the error when approximating £(W) with a Poisson
distribution; see Theorem 3.1. A finer division can however be achieved by taking the
positions of the points into account, but this cannot be done in advance. Therefore the
results of Roos cannot be used directly, but much of the reasoning below is in the same
spirit as in her articles.

Recall from Section 3.2 that o is an arbitrarily chosen number in the k—subset «,
and that R
of C. The reason for this choice of R(aﬁ) will become clear later. We use the following
simple equality

Iy = Ij1{VBi € B:&5 € RV +151{38,8; € B: &5, e RY, &5, € A\ R}
+Ig1{VB € B: &5 € A\ RW,

is the square centred at £,~ with side length 4¢, where c is the side length

8



and let

Us = . Isl{V¥pief:&, eRY), (4.1)
per\{a}
Xo = Y Isl{36:,6; €6: & e RY 65, € A\RY)
ser\{a}
+ Y I{vpief:g e A\RY), (4.2)
per\{a},anp#d
Y, = S I{vB ef: ¢ € A\RYY.

Ber\{a}:anp=0

and
Zo = 1, + U,,.

Then Z, is the number of covered k-subsets such that all points lie in R((f*), our a-

clump. Y, is the number of covered k—subsets ‘far’ from the a-clump; all their points lie
in A\ R((f*) and no point is common with the k—subset . X, handles the ‘boundary’ of

R(4) and k—subsets outside R 4)

a* a*

W can be split as

with points in common with . With these definitions,

W=I,+U,+X,+Y,

for each a € T.

In order to bound |E[Wg(W) — Zz(i)l iAig(W + 1)|, we make the following decom-
position:

(%)
‘ EWg(W) =Y iXig(W +1)
=1
()
Z E[1,1{Zy = i} (9(Ya + Xo +14) — g(Ya +1))] ‘
a€cl =1

<

()
+1 3" El1.1{Z, = i})E[g(Ya + i) — g(W +1i)] ‘

a€l’ =1
()
+| D> Ellal{Za = i}g(Ya +1)] - Ellal{Za = }]Elg(Ya +1)] | . (43)
a€l =1
The first two expressions on the right-hand side are bounded by
|Ag] {Z EIoXs)+ Y Ell|BE[Xo + Us + Ia]} . (4.4)
a€el a€l

To bound the third, we need the random variable S, introduced in Section 3.2, which

(4)

is the number of points &;, ¢ ¢ «, which lie in R/, and which is independent of I,.



Note also that the distribution of Y, given S, is independent of I,1{Z, = i}. Thus we
find that

E[Ial{za = Z.}g(Yoz + Z)] - E[Ial{Za = i}]E[g(Ya + Z)] ‘

BIB[T01{Za = i}9(Ya + ) | Ta Zas Sall — Ella1{Z0 = i} Elg(Ya + )] ‘

n—k
< Y P(la=1,7Z4 =14,8, =)
s=0
Elg(Ya+1) | I, =1,Z4 =1,8, = s] — E[g(Yy +1)] ‘ . (4.5)

We bound |E[g(Yy +1) | I =1, Z4 = 1,84 = 5| — E[g(Ya +7)]| by means of a coupling.
For each « € T and s =0,...,n—k, let Y/ and Y] be random variables defined on the
same probability space such that

‘C(Yolz;) = 'C(Yoc | Sa = 5) and 'C(Yolz) = 'C(Ya)a

constructed as follows. First note that Y. is determined by n — k — s independent
uniformly distributed points in A \ Rfﬁ), while Y] is determined by n — k — N, such
points, where L(N,) = Bi(n — &, 16|C|). Set

Mys =max{n —k —s,n—k — Ny}; mgs =min{n —k —s,n—k— N},

and let (n;, 4 > 1) be uniformly and independently distributed on A\Rgl*) , independently

of N,. Let the k—subsets consisting of points 7,..., 7y, be numbered from 1 to (m,;”),

and the k—subsets also involving the M,s; — mqys remaining points from (m‘“) + 1 to

(]V%S) Then the variables below have the required distributions:
(") (")
Yo=Y Ju and Y= > Ja, (4.6)
i=1 i=1

where J,; is 1 if the ith of the k—subsets of the points 71, ..., 1, is covered by some C?,
and 0 otherwise. Then, for s =0,...,n — k, it follows that

‘E[Q(Ya‘}'i) |Ia:1aZa:iasazs]_E[g(Ya‘Fi)] < |A9|E|Y” - | (4'7)

since the conditioning on I, = 1 and Z, = 1 is superfluous when S, = s is given. Hence
we obtain

(+)
ZE[Ial{Za = Z.}g(Ya + 7')] - E[Ial{Za = i}]E[g(Ya + Z)] ‘

=1
(Z) n—k

< |Ag)Y Y PIa=1,Zy =1i,5 = s)E|Y}, — Y}

=1 s=0

10



n—=k k
|Ag) Y EIYY, Y Y  P(la=1,20 =i,5 = 5)
s=0 =1

n—k
|Ag|E[Ia] Y E|Ygy — Y4 P(Sa = ), (4.8)
s=0

where the last equality follows from the independence of I, and S,. (4.4) and (4.8)
inserted in (4.3) now give the following bound valid for any bounded g : N — IR:

)
E[Wg(W) — Y ixg(W +i)

=1

< |Ag| (Z E[IoXs] + Y E[I.)E[Xq + Ua + 1]

acl acl

+ Y Ell) Z = s)E|Y/" — |>. (4.9)

ael s=0

The next step is to bound the probabilities and expectations involved in (4.9).

The summands in X, defined in (4.2), concern k—subsets with at least one point in
A\ R ) When I, = 1, all the points &,,, a; € a, lie clustered close to the midpoint
Eqr of R( Y, Because of the choice of size of R((x*), this means that if I, =1, BNa # 0

and {3, € A \ Ra* for at least one 3; € 3, then Ig = 0. Hence only those 8 for which
an B = 0 contribute to E[I,X,]. If aN B =0, then I3 is independent of I,, and, since
there are (";k) such 3, we get

E[IaXa] = E[Xa | I, = 1]P(Ia = 1)

=E[ Y I;{36,0€0: &, eRY &5 € ANRYY [ I, = 1]P(I, = 1)
BeT\{a}:anp=0

— (n ; k)E[Iﬁl{Hﬁiaﬁj € ,8 : éﬁi S Rg{),fﬂj = A\R&*)}]P(Ia _ 1)
— (n ; k')P(H/BZwBJ € ,3 : 5@; S Rgi),fﬁj €A \ Rgi) | Iﬂ — 1)P(Ia _ 1)2' (410)

If Ig = 1, then CX, for X with coordinates the (torus) minima of the coordinates of
s, Bi € B, in each direction, covers all {g,. Furthermore, since all {3, are uniformly
distributed on A, X is also uniformly distributed on A. The conditional probability

above is therefore less than the probability that CX intersects any of the edges of R((f*).
Thus

P(EB;, B €B: &5 e RY g5, € A\RY | Iy =1) < P(C¥n (edges of R(Y) # 0)
= 16/|C), (4.11)

which together with (3.1) and (4.10) yields

E[lL.X,] < 16(”;k>k4|0\2k1. (4.12)
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By the definitions of U, and X,, given in (4.1) and (4.2), respectively,

EX,+U,]=E [ Z Ig + Z Ig1{3B; € B : &g, € R;*)}] . (4.13)
ﬁEF\{C\!},ﬁﬂC\t;ﬁw ﬁel“\{oz},ﬁﬂa:(l)

There are (Ilc) (k l) different k—subsets with exactly [ points in common with the k—

subset a, I = 1,...,k — 1, and there are (" . ) different k—subsets with no point in
common with a. By changing the index of summation in (4.13), we get the following
equality:

k—1
EN\ (n—k n—k
XUl = ) (z) (k —I)E[Iﬁ] ! ( b )E[Iﬂl{ﬂﬂz €p: &, € R
1=1
By arguments similar those that led to (4.11),
P@EB; € B:&s, e RY | 15 =1) < 25C,
and hence we get

E[I]E[Xo + Ua + Ia] <

k—
k4|C[2k=D) (Zl (’“ (” h k) +25 (” - k) IC| + 1) (4.14)
1)\k—1 k ' '
=1

It remains to bound

n—k
E[I.) ) P(Sa = s)E|Yy, — Yy
s=0
n—k
= E[l]) P(Sa = s) (E[Yz, — Yol + 2B[(Yy — Ya) H{Ya, < Y2})
s=0
n—k
< E[L)Y P(Sa = s) (B!, - Y2+ 2B[(Y] — Y)1{Na < s}]) . (4.15)
s=0

First, it follows directly from the definitions of Y. and Y/, given in (4.6), that

n—k
Y P(Sa=s)E[Y,-Y}] = 0, (4.16)
s=0

since L(S,) = L(N,), and that
E[(Y, — Ya5)1{Na < s}]
= BV, Y| Na=1]P(Na = 1)
r=0
s—1

> [(” _Z _’"> _ (” _:_ 3)] P(Jo1 = 1)P(N, =1). (4.17)
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Then, from the definition of J,1, given below (4.6), it follows that

P(Ja=1)=P(Is=1|&s,,...,¢5 € A\RY)

_ P({Is=1}N{,,---, 5, € A\RLY} [ €5, € A\RY) P(¢5, € A\RYY)
B P&, ... 65 € A\RY)

_ PUp=1]&, € A\RY)(1-16/C))

- (1—16|C|)k
_ P(lz=1)
- (1 —-16|C|)k1
k—1
9 C|
g <71 _ 16‘C|> , (4.18)

where the second last equality follows by the torus convention and the uniform distri-
bution of the points, and the last equality by (3.1).

Furthermore,
n—k—r ~— (n—k—r—i n—k—r—(s—r)
( k ) - ;( k-1 )*( k )
< n—k—r—1 (s— 1) + n—k—s
= k—1 T k
and hence

(”—:—T)_(n—:—s> s (n_z::_l)(s—r)- (4.19)

Combining (4.15)—(4.19) yields

AN

n—k
E[l.] Y P(Sa = s)E[Y) — Y|

s=0

C k—inkl=l .
<EIa22|7 —7)P(N, =1)P(S, =
< Bl (o) 52_;”:0( )= nPie =P, =)
2 IC]| hot n—k
Ella] 2k (1—16|C|> BlSa] k-1

— 324 C)k (%ﬁ“q)kl (n — k) (Z - ’;) (4.20)

where the last equality follows from (3.1) and since L£(S,) = Bin(n — k, |Rgé4*)|) and

|R((x4*)| = 16|C|. Since (4.9), (4.12), (4.14) and (4.20) hold for all & € T, Lemma 4.1 is
now proved. [ |

We now turn our attention to estimating P(W < 1(1+ z)E[W]), for suitable values
of z € (0,1). Our argument is based on:

Janson’s inequality. (Janson (1990)) Consider a collection (J;,i € Q) of independent
indicator variables and a (finite) family (Q(a),a € T'y) of subsets of the index set Q,

13



and define I, = HieQ(a)Ji and W = Zaera I,. Partition Ty into TF U I‘fl, where
Tt ={8+#a:Q)NQ(B) £0}. Then, if 0 <e<1,

T 52E[W]} : (4.21)

where

6= ﬁ >N EllL).

@ gerd

Using the inequality (4.21), we establish the following lemma.
Lemma 4.2 For any 0 <y < 1 and y'/* < z < 1, we have

P(W, < yE[W,]) < (2mn) Y/2(1 — 2)"te "D1() 4 ¢ EWn]D2(y2) (4.22)
where D1(z) and Ds(y, z) are as given in (4.24) and (4.81) below.

Proof. To apply Janson’s inequality to establish (4.22), we proceed in a roundabout
way. First, we construct another random variable W, from the sequence (¢;, i > 1),
in the same way as W, is constructed, but now based on the M points &1,..., &N,
where M ~ Po (nz) is independent of the &;; note that Wy, < W,, whenever M < n.
Thus we have

P(W <yEW]) < P(W <Wy)+ P(Wy <yE[W]).
Now, for any fixed t € IN, divide A into #? small squares Ki(t), 1 < i< t?, of equal size,
with

M
v =311t € K] ~ Po (nat™?)
7j=1

the number of points in square 4, 4 = 1,...,t2. Then, defining B; = ﬂ;?z:l{Yi(t) < 1},
and letting Pp, denote probability conditional on the event B;, we have

P(W < yE[W))
< P(W < W) + Pp,(Was < yE[W))P(B,) + P(Wys < yE[W] | Bf)P(B)
< P(M >n)+ Py, (W < yE[W]) + P(BY). (4.23)

The first and third probabilities on the right-hand side of the above inequality are easily
bounded; defining
Di(z) = (1= 2)*/{2(1 + 2)}, (4.24)

using Barbour, Holst and Janson (1992, p259), and letting m = nz, we have

( n )exp{—m}m"

P(M >n) n—m n!

n—m

( n )exp{_(n—m)Q/(2(m+n))}/\/ﬁ

= (2rn)"Y2(1 — z)"tenP1(®) (4.25)
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and then

2PV > 2) = (1 — e ™" (1 + m/2))
t*(1— (1= m/t*)(1+m/t?))
= m?/t? = n?22/t, (4.26)

P(B) <
<

so that limy_, ., P(Bf) = 0.

We now use Janson’s inequality to bound the remaining part of the right hand side
of (4.23). Conditional on By, {Yl(t), cee t2 } are independent Bernoulli Be (m /(2 +m))
random variables, and can be used for the J; in Janson’s inequality. To exploit this
idea, let T, consist of all k-subsets a = {aq,...,a;} of {1,...,%}, such that UleK((l?
is covered by some C°®. Then, on the event By,

WM > Z I~a = WM,t7

a€cly
where ~
In= ] v¥,
a;cx
and .
~ m/t?
Pp,(Io=1) = (m) :

Hence, if we set
0 = 1-yE[W]/Ep,[Wngl,
then, by Janson’s inequality (4.21), if 0 < 6, < 1, it follows that

Pp,(Wn <yE[W]) < Pp,(Wnmy<(1—6,)Ep,[Whar])

0; Ep, [Wr ]
exp {—ﬂ} , (4.27)

IN

where

"= Ep, Wy WM ZZEBtIIﬁ ZPBt(fﬂ:Ufl:l),
t t o] ﬁer+ ﬁel‘;r

and '} consists of the indices of those k-subsets of squares which have at least one
square in common with the k—subset a.

Now observe that lim; ;o P(B;) = 1, that limy 0o Wit I[Bi] = Wi a.s. and that
WarI[By) < ( ), so that

. M
lim Ep,[Wiri] = E[Wy] =E [( )] P(I;=1)
t—00 k
—k2\0|k > EW]Z*
by (3.1) and (3.2), since m = nz, and hence

2
Tim 62E, Wi > (1-y2 %) EWI2k, (4.28)
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To bound &y, let r? be the maximal number of small squares that fit in C. Then

2 142 . ky\ (4r2—k .
r7/t> < |C], and there exist less than () (/") k—subsets of small squares which have I
squares in common with the first k—subset. Hence, since if « and 3 € '} have [ common

squares, then

Py =111 =1 = (720)
we find that
v (0 ()
- e
< £()apmer

N
I
-

where the right-hand side is independent of ¢. Inserting (4.29) and (4.28) into (4.27)
yields

Jlim Pg, (Wi < yE[W]) < e~ EWID:(y:2) (4.30)
— 00
where . o
.
Ds(y,z) = cd-ya) (4.31)

22 (DY k- Y
provided that z*¥ > y. Now insert (4.25), (4.26) and (4.30) into (4.23), to get

P(W < yE[W]) < (27_(_”)—1/2(1 - Z)—le—nD1(z) + e—E[W]D2(y,z),

for any z such that y'/¥ < z < 1. [ |

Proof of Theorem 3.3. By (2.5) and Lemma 4.1,
dry(L(W),CP(A)) < e Hi(A),

where ¢; is given in (3.5), and all that remains is thus to bound H;(A). There are two
possibilities: (2.6) and (2.8). In our case, i\; does not in general decrease, and so (2.8)
does not apply. This leaves us with (2.6), from which (3.7) is obtained directly. If E[W,,]
stays bounded away from oo, then the bound in (3.7) is of order O(e1); the critical part

of g1 is
N\ 4 21 (T k _ 2k—1) v 2(k—1)
(7)1 ox(y 2 ) = o Hicpe ),

from which Theorem 3.3 and Corollary 3.4 follow.
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Proof of Theorem 3.5 (7). In trying to apply Theorem 2.1, we immediately encounter
problems; the probability of ‘large’ clumps is not small enough for Condition (ii) of The-
orem 2.1 to be satisfied. To circumvent this problem, we truncate the clump size dis-
tribution as follows. Recall that S, is the number of points in R(a{), not counting those

in the k—subset a. As in (3.4), and suppressing the index n where possible, define

N=i' Y Ella1{Za =i} | Sa <so] =i 'EWIP(Zy=i| L =1,8 <s), (4.32)
acl

where we now fix
so > 2max{k,supn|Cyp|},
n>1

and set Q' =Y., Al and p} = A[/Q'. Conditioning on S; < s implies that there are at

most sg + k points in R%), from which there can be at most (solj'k) covered k—subsets;

thus Z; < (*9F%), and X} =y} = 0 for i > (*%), so that Condition (i) of Theorem 2.1
is satisfied. With this definition, we still have )i\, = E[W], because I, and S, are
independent, while the expected number of clumps Q' has increased, and the expected
number of covered k—subsets in a clump, E[W]/Y, has decreased. Furthermore

(Soljk) (Solj-k)
O = Z X, = E[W] Z %P(Z1=i|11:1asl SSO]{ § 5%’/(30;1@), (4.33)

so that Q' is of the same order as E[W]. Conditions (¢) and (iii) of Theorem 2.1 are
satisfied because ), pul, =1 for all n, and because

pi, = (BEW]/Q¥)P(Z1=1|1L=1,5 < sg)
> P(S1=0|I=1,5 <sy) > P(S1 =0),

with £(S1) = Bi(n — k,16|C|), so that lim,_,, p1},, = 1 if n|Cy| — 0.

It remains to bound the right hand side of (2.9) in Theorem 2.1 for our particular
sequence W,. The first step is to show that (2.4) is satisfied with ¢yp = 0 and with some
suitable €1, and now with A} instead of ;. By the triangle inequality,

E [Wg(W) = > iXg(W +i)|| < (4.34)

E|\Wg(W) =Y iXig(W +i) ||+ |E | D iXg(W +1i) =Y iXig(W +1) ||,

i>1 i>1 i>1

in which the first term is bounded by |Agle; by Lemma 4.1. For the second, from the
definition dy (P, Q) = supy. |ag/<1 U gdP— [g dQ‘ of the Wasserstein distance between
probability measures on Z™, we have

E > idg(W +i) =Y iNg(W +i) || < |Ag|E[W]dw (P, P'), (4.35)
i>1 i>1

where P{i} = i\;/E[W] and P'{i} = i)\;/E[W], i > 1: and, from the definitions of )\;
and A,
dw(P, P,) = dw(ﬁ(Zl |Il = 1),£(Z1 |Il = 1, Sl < 80)).
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Observe that, in view of the natural coupling, £(Z; |I; = 1, S; = s) is stochastically
increasing in s, and hence that

dw(ﬁ(Zl |I1 = 1),£(Z1 |Il =1, S < 80)) < E(Zlf[Sl > 80] |I1 = 1)

< B{ (" M) > sl

where S} ~ Bi(n — k,16|C|). But now Bi(m,p){j} < Po(mp){j} for all j > 2mp + 1,
and {(G+k)G+E—-1)...(G +1)}/{i(G—1)...(j —k+1)} < 2% whenever j > 2k — 1,
giving
dw(L(Z1| I = 1), L(Z1| [ =1, 81 < s0)) < (2°/K!)(16n|C|)*Po (16n|C|) (30, ),
(4.36)

since sp > 2max{k,n|Cy|}.
Combining (4.34)—(4.36), it thus follows that

E |Wg(W) =Y iXg(W +1) || < €l|Ag],
i>1

where
6'1 =&+ (2k/k!)(16n|C|)kPo (16n|C|)(Ls0,00) E[W],

and € is given in (3.5). Thus, and using (4.33), (2.4) is satisfied with e, = 0, and
gl = O((n|Cpn])¥~10) as n — oo.

The remaining element, a bound on P(W,, < 1(1 + z)E[W),]) for suitable values of
z € (0,1), is given in Lemma 4.2, the proof of Theorem 3.5 being completed by choosing
z=1(1+¢),y=1(1+z)and z any value between y'/* and 1.

Proof of Theorem 3.5 (7i). By the triangle inequality
drv(L(Wn),CP(An)) < drv(L(Wy), CP(Ay)) +dryv(CP(An), CP(AL)). (4.37)

In order to bound dyy(CP(A,), CP(AL)), let W, = >i>11Ni, where N;, i > 1, are

independent and L(N;) = Po(\i,), so that L(W),) = CP (A,). We will use Theorem 2.1,
and hence we need a bound on

i>1

E lz iNing (W + ) - ’an@)] <

E | iNggWo +4) = iXing(Wo +3) || + | B | Y iding(Wa +1) — Wag(Wy,)
i>1 i>1
The first term on the right-hand side of the above inequality is bounded by

|Ag|(2%/E!) (16n|Cn|)*Po (16| Cn) (3 50, 00),
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as in the proof of (i), while the second term is zero for those g of interest. In the
proof of (i) we also confirmed that assumptions (i)—(i7i) of Theorem 2.1 are satisfied
for (A],,n > 1), and hence

dry(CP(A,),CP(A})) = drv(L(W,),CP(A}))
< 0 (Gl + P(W, < 0+ )W) . (438)

By Markov’s inequality and by the definition of Wn, it follows that

P(W, <yEW,)) = P (exp{~tW} > exp{—tyEW,]})
< Elexp{~tW,}]exp{tyE[W.]}
< exp{)_ Ain(e " — 1 +ity)}
i>1
< exp{ 3 Minlit(y — 1) + (10)2/2)}, (4.39)
i>1

for ¢ > 0. Furthermore, by the definition of \;,, given in (3.3),

> Aini® = E[Wn]E[Z|I; = 1]

R )
< E[Wn]((zlf!) +E[<Slljk>1{51>k}D.
e ) _ y—z+k G—i—k) _ (2R _ 2k

() L (4 —1)? (k12 k'’

if j > k, and E[(Sl;l)] < (16(n — l<:)|Cn|)’c <1 as n — oo, it follows that

> Aini? < E[W, ](17’“),
i>1 )
which inserted in (4.39) yields
P(W, <yE[W,]) < exp{E[W,](t(y—1)+ t>(2k)*/k!)}. (4.40)

Letting y = (1 + z)/2, where z = (1 + ¢)/2, and t = (1 — y)k!/(2k)*, the right-hand
side of (4.40) inserted in (4.38), yields

dry(CP(A,),CP(A))) < O((n|Cn|)k+exp{ E[W, n]( o ;2’“'}>,

which together with the bound achieved in (i) and (4.37) completes the proof.
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