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Abstract

The setting of this paper is Euclidean space with the Gaussian measure. We let L
be the associated Laplacian, by means of which the Ornstein-Uhlenbeck semigroup is
defined. The main result is a multiplier theorem, saying that a function of L which
is of Laplace transform type defines an operator of weak type (1,1) for the Gaussian
measure. The (distribution) kernel of this operator is determined, in terms of an
integral involving the kernel of the Ornstein-Uhlenbeck semigroup. This applies in
particular to the imaginary powers of L. It is also verified that the weak type constant
of these powers increases exponentially with the absolute value of the exponent.
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1 Introduction

We shall be working in a finite-dimensional Euclidean space R?, where we shall consider the
Gaussian measure dy(z) = e~l7” dz and also Lebesgue measure dz. The operator

L= —%A + x - V, defined on the space of test functions (i.e., the space C$°(R?) of smooth
functions with compact support on R?), has a self-adjoint extension to L?(7), also denoted
L. The spectral properties of L are well known: L is positive semi-definite with discrete
spectrum {0, 1,...}. For d =1, the eigenfunctions are the Hermite polynomials, given by

22 dr _x2?
d"e ,n=0,1,...
T

H,(z) = (=1)"e

The eigenfunctions for arbitrary d are tensor products H, = ®§i:1Hai, where « is a multiin-
dex, and the corresponding eigenvalue is the length |a|. For each nonnegative integer k, we
shall denote by P, the orthogonal projection of L2(7) onto the subspace generated by the
Hermite polynomials of degree k. The operator L is the infinitesimal generator of a “heat”
semigroup, the so-called Hermite or Ornstein-Uhlenbeck semi-group (e *);>o, defined in the
spectral sense as

+oo
€_tL = Z e_tkPk.
k=0
t

In other words, e~** is the bounded operator on L?(y) which maps each H, to e " H,. It
can be shown that the semi-group (e **);5 is also given by the Mehler kernel

1 le tx — y|?
ndl2(1 —e—2tyiz “P\ T “ e )0

in the sense that e ‘L f(z) = [ My(z,y)f(y)dy for f € L?(). See [Me, pp. 172-3] and also
the survey article [S3].

During the last two decades, a considerable effort has been devoted to the study of
several operators naturally associated with the operator L and their boundedness properties
between different spaces given by the Gaussian measure <, mainly the spaces LP(y) and
weak —L' (). At this time, a whole area of research, which is sometimes called Gaussian
Harmonic Analysis, is already well established. As a significant but incomplete sample of
these investigations, we can cite the papers [S2], dealing with the maximal function associated
to the semigroup, [F-G-S], [F-S], [G-S-T], [Gz], [My], [Mu2], [P€], [Pi], [U] and our recent
article [GMST], dealing with Riesz transforms of different orders.

In [GMST] we prove the weak type (1, 1) boundedness for the Riesz transforms of order 2.
Our method consists in decomposing the operator in a “local” part, given by a kernel living
close to the diagonal, and the remaining or “global” part. The local part is essentially a
Calderén-Zygmund singular integral, and the global part is delicately analysed by estimating
its size in different regions and using the “forbidden regions” method coming from [S2].

In the present paper we use the same philosophy to deal with multipliers of Laplace
transform type (in the terminology of [St1]) associated to L. Their boundedness in L?(7y),
for 1 < p < oo, is a result of the general theory given in [St1]. The main result of this paper

Mt(x: y) =
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is the weak type (1, 1) of these multipliers, with respect to 7. Two main aspects distinguish
the present work from [GMST]. First of all, we improve the treatment of the local part by
making a smooth truncation and reducing the estimates to the general Calderén-Zygmund
theory. Then the global part can be immediately bounded by the maximal Mehler kernel
used by P. Sjégren in [S2], so that the delicate estimates of [GMST] to deal with the global
part are now simply replaced by an appeal to the bounds in [S2].

We also investigate how to define the multiplier operator in terms of its kernel, as a limit
of truncated integrals. In particular, we see under what conditions the multiplier is given by
a principal value integral.

Boundedness is also proved for the maximal multiplier operator, via a vector-valued
version of the estimates.

Our result applies in particular to the imaginary powers of L. Here the growth of the
operator (quasi-)norm for large imaginary powers is of special interest, for reasons which we
shall briefly describe.

The assumption that the function m is of Laplace transform type implies that m extends
to a holomorphic function on the right half plane {z : ®z > 0}, which is bounded on every
sector Sy = {z: |argz| < 6}, 0 < @ < m/2. Since the spectrum of the operator L on L!(7)
is the closed right half plane [D, pp. 115-116], it is natural to impose a holomorphy condition
on the multiplier m if we want the operator m(L) to be defined on L!(y). On the other
hand, since the spectrum of L on LP(7y), 1 < p < 00, is the set N of nonnegative integers,
it seems too stringent to require holomorphy of the multiplier m to obtain boundedness of
m(L) on LP(v).

In [M], S. Meda gave a sufficient condition for the existence of a nonholomorphic func-
tional calculus for the generator A of a symmetric contraction semigroup on LP(M), 1 <
p < 0o, where M is a o-finite measure space. He proved that, if the norms of the imagi-
nary powers A’ of the generator, as an operator on L”, grow polynomially as |a| tends to
infinity, then the multiplier operator m(A) is bounded on L?; provided that the function m
satisfies a Hormander condition of sufficiently high order on (0,+oc) [M, Theorem 4]. In
particular there exist nonholomorphic functions m on (0,+o0) such that m(A) is bounded
on LP. The polynomial growth condition for the imaginary powers is satisfied for instance
by an invariant Laplacian or sublaplacian on groups of polynomial growth.

A standard method to obtain estimates of the norms of A on LP is via complex in-
terpolation between a weak type (1,1) estimate and the L? estimate. The L? estimate is
trivial, since by the spectral theorem the operators A are unitary on L2.

In view of these remarks it is important to obtain sharp estimates of the weak type
(1,1) quasinorm of the imaginary powers of the operator L. Since L has a nontrivial kernel,
to define imaginary powers we must first restrict L to the orthogonal complement of the
kernel. This amounts to considering L**Ily, where IIy = I — P,. This is a particular case of a
multiplier operator m(L) of Laplace transform type, to which we can apply our main result.
From its proof, one can see that the weak type (1,1) constant of L*II, increases at most
exponentially as |a| — 0o. We prove that this estimate cannot be improved to polynomial
growth. We also show that for negative powers of L there is not even a weak type (1,1)
estimate.



This paper is organized as follows. Section 2 contains the setup, the derivation of the
kernel of the multiplier operator outside the diagonal and some estimates for it. In Section 3
the weak type (1,1) estimate is proved. Section 4 is devoted to the expression of the operator
in terms of the kernel. The maximal multiplier operator is estimated in Section 5. Finally,
Section 6 contains the discussion of the imaginary and negative powers of L.



2 The multiplier operator and its kernel

For every complex-valued function m defined on the set N of the nonnegative integers, the

multiplier operator
+o00

m(L) = Z m(k) Py

k=0

is a densely defined operator on L?(y) with domain
+0o0
Do = {1 € 126): X @) 177 < oo}
k=0

The operator m(L) is bounded on L?(7) if and only if the function m is bounded and the
norm of m(L) qua operator on L?(y) is the supremum of |m|. The projection P, onto the
kernel of L is a bounded operator on each LP(y), 1 < p < oo. By subtracting m(0)P, if
necessary, we can thus assume that m(0) = 0. Following [St1], we say that the function m
is of Laplace transform type if

m(k) = k /0 T settdt, k>0,

where ¢ is a bounded measurable function on (0, +00). Performing the change of variables
e ' =r, we see that a function m is of Laplace transform type if and only if

(2.1) m(k) = k/ol Y(r)yr*dr/r, k>0,

where ¢(r) = ¢(—logr). It follows from the general Littlewood-Paley theory for semigroups
that, if m is of Laplace transform type, then m(L) is bounded on all the spaces L?(v),
1 < p < oo, [Stl, Chapter IV, §6]. Our aim in this paper is to show that m(L) is also
of weak type (1,1) with respect to the Gaussian measure. If m is of Laplace transform
type, then m(L) is a continuous operator from the space of test functions to the space of
distributions on R?, and so it has a distributional kernel. In this section, we shall prove
that, off the diagonal, this kernel has a density K, with respect to the measure dy(z)® dy,
which satisfies the standard Calderén-Zygmund estimates in a suitable neighbourhood of the
diagonal. See Lemma 2.1 and Theorem 2.2 below.
Our starting point is the family of operators r¥, 0 < r < 1, whose integral kernels

2
M) =420 = 12y 92 exp (-T2

1—1r2

may be obtained from the Mehler kernel by the change of variables t = —logr. Thus

rf(@) = [ Mo(@,y) Fy)dy



for all test functions f. Since the Mehler kernel satisfies the heat equation 0,M; = — L, M;,
the kernel M, satisfies the transformed equation rd, M, = Ly M,. If ¢ € L>®°(R"), define

Ky(r,y) = [ 9(r) 0. M, () dr

For ¢t > 0 the local region NN, is the neighbourhood of the diagonal in R? x R? defined by

Ny=3(z,y): |z —y| < ———— 1.

Lemma 2.1 If z # y the integral defining K, is absolutely convergent. Moreover, for t > 0
and each pair of multiindices o and 3 in N* of lengths a and b, respectively, there exists a
constant C such that

1910

o 50
1070, Ky (z,y)| < CW

for all (z,y) € Ny, z #y.

Proof The formula

— _ _ 2
(22) 0200 M, (z,y) = 7 U2(1 = ) @t (e aw(mf y)p (Lx y|>
—T

is a consequence of the definition of the Hermite polynomials. Thus an elementary compu-
tation shows that the function r — 8,020 M, (x,y) is the product of the positive function

=42(1 —r?)=(4/2)=a=b=2 oxp (j%ﬁ) and of a polynomial in r of degree at most 2a+b+3,

whose coefficients depend on z and y. Hence, as a function of r, it changes sign a finite
number of times and there exists a constant C' such that

1

23) [ 100 100200 M, (a,)|dr < C (16 pax 9208 M, 2. 1)]
0 0<r<l

for all z and y in R?. By (2.2) we have that

(2.4)

2 M, (2,y)] < C(1— )~ 2 oxp (- Ira =y
x -y T ,y — r ) eXp CO 1 o 7'2

for some positive constant cy. Since, in the local region Ny, one has
re =y >z —y|* = 201 = r)|zllz —y[ > |z — y* = 2(1 = 1)t

the right-hand side in (2.4) can be estimated by

2
Ct)(1 = r2) (@e10/2 exp (—co Byl ) < Cla—y| @

for all (z,y) in N;. This proves the lemma.



Theorem 2.2 If the function m is of Laplace transform type, given by formula (2.1), then

(2.5) m(L) = /01 Y(r) Lrtdr/r,

where the integral converges in the weak operator topology of L?(vy). Moreover if f is a test
function,

m(D)f(@) = [ Ko(w,9)f @) dy

for all x© outside the support of f.

Proof For every pair of functions f, g in L?(v), we shall denote by (f, g), their inner
product in L?(v). Thus

MS

<m(L)f7 g>’7 = Pkf7

- i:j / )it dr/r (P g},

Since 220 [{Pxf, 9)4| < || fll1lgl|, we may interchange the order of summation and integra-
tion to get

(m(L)f.ghy = [ 6(r) Y kP, g), drfr

(2.6) _ /0 (L, g, drr.

This proves (2.5). To compute the kernel of the operator m(L), assume that f and g are
test functions on R?. Then

<L7‘Lf,g>7 = <Lf:Lg>
= [[ Me(@. ) () dy Tg() dr(a)
= (M. (e >®dy, L3 ® f))

Here (-,-) denotes the pairing between distributions and test functions on R? x R? and
M, dv(z) ® dy is the distribution whose density with respect to the measure dv(z)® dy is
M,.. Since the operator L is symmetric with respect to the Gaussian measure,

(Lr"f, 9}y = {((LaM,)dy(z) ® dy,g® f)
- //TaM (z,y) g(2) f(y) dy dy(z).

Thus, by (2.6),
(2.7 (01,002 = [ 00) [ M (2, 9)3() ) dr(a) dyar.
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If f and g have disjoint supports, the triple integral in (2.7) is absolutely convergent in view
of Lemma 2.1. Thus, by Fubini’s theorem

(m(L)f,9), = [[ Kola,9) £(4) dy g(z) dr ).

This proves that Ky is the restriction to the complement of the diagonal of the kernel of
m(L).
O

3 The weak type estimate

Let 4 denote either Lebesgue or Gauss measure on R%. In this section we shall consider a
linear operator 1" mapping the space of test functions into the space of measurable functions
on R¢, satisfying the following assumptions:

(a) T either extends to a bounded operator on L9(u) for some ¢, 1 < ¢ < oo, or is of
weak type (1,1) with respect to u;

(b) there exists a measurable function K, defined in the complement of the diagonal in
R x R?, such that for every test function f

Tf(z) = [ K(z,y) f(y) dy,
for all z outside the support of f;

(c) the function K satisfies the estimates

C
K (z,y)| < Eprs 0K (z,y)| + |0, K (2, y)| < z — gl

for all (z,y) in the local region Ny, x # y.

Let ¢ be a smooth function on R? x R? such that ¢(z,y) =1 if (x,9) € Ny, o(z,y) =0 if
(‘Ta y) ¢ NZ and
(3.1) Buple, )| + 10y0le,w)| < Clz — ™ if 241,

We define the global and local parts of the operator T by

Tyof(z) = [ K(@y)(1 - e(z,9)fy)dy,

Tlocf(x) = Tf(x) - Tglobf(m)'
We shall prove that if the operator T satisfies assumptions (a), (b) and (c), then its local
part is bounded on LP(y) and on LP(dzx), for 1 < p < oo. Moreover Tj,. is of weak

type (1,1), both with respect to Lebesgue and Gauss measure (see Theorem 3.7 below). The
boundedness of the local part of the multiplier operator m(L) defined in the previous section

8



will follow at once. We shall need the following covering lemma whose proof can be found in
[GMST]; item 3. below is modified in a simple way. If B is a ball in R?, we shall denote by
0B the ball that has the same centre as B and radius § times that of B. We shall denote
by |E| the Lebesgue measure of a set E in R%.

Lemma 3.1 There exists a collection of balls

K

J

)7

where k =1/20, such that
1. the collection {B; : j € N} covers R?;
2. the balls {iBj : j € N} are pairwise disjoint;

3. for any A >0, the collection {AB; : j € N} has bounded overlap, i.e.,
SUp Y, XaB, < 00;

4. By x4B; C Ny for all j €Ny

5. x€ Bj= Bz

, 11a1) € 4B;.

Lemma 3.1 will be basic in passing from estimates with respect to Lebesgue measure to
estimates with respect to the Gaussian measure and viceversa. Notice that the two measures
are equivalent on each ball of the collection {4B; : j € N}. More precisely, there exist two
positive constants ¢ and C' such that for all j € N

(3.2) ce %P |B| < y(E) < Ce 4P| B

for each measurable subset E of 4B5;.
We shall also need the remark that

(33) N1/7 C U(BJ X 4BJ) C Nl.
J
This follows from 4. of Lemma 3.1 and the simple observation that, for z in B;;,

1+ |z;] < 21(1 |z()
+ |z 20 + |z|).
Similarly, one verifies that

(3.4) (z,y) € Ny and z € B; = y € AB;

for some constant A > 0.



Lemma 3.2 Let u be a nonnegative Borel measure on RE. Given a sequence of nonnegative
measurable functions (f;), let f =3, xs, f;, where {B;:j € N} is the collection of balls in
Lemma 3.1. Then

(3.5) plz: f(z) > A} < Zu{x € Bj: fi(z) > \/M}
for all A >0, and

1/q
(3.6 1fllo < M (Z/B. Ifjlqdu) ,
7 J
for 1 < g < oo.

Proof Since each point belongs to at most M balls B;, the level set {z : f(z) > A} is
contained in U{x € B; : fj(x) > A/M}. This proves (3.5). To prove (3.6), we simply observe
j

that
q
Jllran < [ (Mmax i, ) du < 017 [ 5215, dn

O

Lemma 3.3 Let p denote either Lebesque or Gauss measure on RE. Let T be a linear oper-
ator mapping the space of L™ functions with compact support into the space of measurable
functions on RY. Given the covering {B;} in Lemma 3.1, we define the operator

T f(z) = Z xs; (2)T (X15; f)(2),

for measurable and locally bounded functions f. Then

(i) if T is of weak type (1,1) with respect to the measure u, it follows that T" is of weak
type (1,1) with respect to Lebesgue and Gauss measure; and

(ii) if T extends to a bounded operator on Li(u) for some q,1 < q < oo, it follows that T*
is bounded on Li(dzx) and on Li(7).

Proof To prove (i), we observe that

ulf € By [T, £)@)| > Ay < S [l
J
uniformly in j. Because of (3.2), this holds for both Lebesgue and Gauss measure. It is now
enough to apply (3.5) and use the bounded overlap of the collection {4B,}.
The proof of (ii) is analogous.

O
Remark Lemma 3.3 is also true in the vector-valued setting, in the following sense. Given
two Banach spaces F and F and a linear operator 7' bounded from Lp(du) to weak-
Li(dy), then defining the operator 7' as in Lemma 3.3, we have that 7" is bounded
from L}, (dx) into weak-LL(dz) and from L} (dy) into weak-LL(dy). Analogously, if T
is bounded from L%(dy) into L%(du), for some ¢, 1 < g < oo, then T is bounded from
L% (dz) into LY(dz) and from L% (dvy) into L (dv).

10



Proposition 3.4 Under the assumptions (a), (b) and (c) made on T at the beginning of
this section, the operator Ti.. inherits from T either the Li1— boundedness or the weak type
(1,1) as the case might be. Besides, the corresponding boundedness holds for both Lebesgue
and Gauss measure.

Proof Assume that z is in the ball B; from the covering in Lemma 3.1. Then
Tlocf(x) = Tf(.’l?) - Tglobf(x)
= T(fxan)(@) +T(F(1 = xan,))@) = [ (1 = @)K (2,y) () dy
= T(fxan)(@) + [ (9(2,y) = xan, 1)K (,9) £ (3) dy.

By multiplying by xp; and adding over j, we get

|Tiocf(x)| S fX4B

= \Tl( H@)+T(|f1) (),

with T as before and T? defined here. By assumption (a) on the operator and Lemma 3.3,
we know that T is either bounded on L9 for both measures or of weak type (1,1) for both
measures.

Let us now consider 7. This operator is defined by the kernel

ZXB Nz, y) = xan; (W) K (2, y)],

+ [ 3 X, () () = xam, () 1K (2. 9) 1 £ ()] dy

which is supported in the region Ny \ N 1 because of (3.3). Thus, by assumption (c),

|H(z,y)| < C(1+ |y|)%xn,(z,y). Let u be either Lebesgue or Gauss measure. The strong
type (1,1) property of T? with respect to u follows by Fubini’s theorem and the fact that

2 _qgdu
(B 20) < @+ S

The boundedness of T2 on L*(u) follows from the fact that 7%(| f|)(x) is dominated by the
mean value of |f| on the ball B (:r, %Iml) . By interpolation, it is bounded on I”, 1 < p < o0,
for both measures.
O
Let us record as a separate lemma the fact that, for an operator whose kernel lives near
the diagonal, boundedness with respect to Lebesgue and Gauss measure are equivalent.

Definition 3.5 We shall say that an operator S : C§° — (C§°)" is local if its kernel is
supported in Ns.

Lemma 3.6 If S is a local operator, then strong type (p,p) f Lebesgue and Gauss mea-
sures are equivalent. The same holds for weak type (p,p), 1 <

11



Proof From (3.4) we get S(f) = X, x8;5(xas,;f). The conclusion follows by Lemma 3.2
and the bounded overlap property, i.e. item 3. of Lemma 3.1. O

Theorem 3.7 Under the assumptions (a), (b) and (c) made on T at the beginning of this
section, the operator Tio. is bounded on LP(y) and on LP(dz) for 1 < p < co. Moreover,
Tioc 1s of weak type (1,1) both with respect to Lebesque and Gauss measure.

Proof By Proposition 3.4, Tj,. is bounded in L? for both measures or of weak type (1,1)
for both measures. Next we remark that 7}, is a Calderéon-Zygmund operator. Indeed let
Kioc = K¢. Then for each test function f on R

Tioe! () = [ Kioel, ) £ () dy

for all = outside the support of f. Moreover, by assumption (c) and (3.1), the kernel K,
satisfies the estimates

C

|Kloc(xa y)l S ma |azKloc(xa y)| + |ayKloc(x> y)| S

|CC _ y|d+1’

for all (z,y) in RY, z # y.

Notice that in the case when Tj,. is bounded in L? for some ¢ > 1, the weak type (1,1)
follows by standard Calderén-Zygmund theory. Thus, we have the weak type (1, 1) property
in all cases. From there, the boundedness of T}, on L? for all p, 1 < p < oo can be deduced
via a good-lambda inequality as in [C-F, proof of Theorem III|. Since Tj,. is a local operator,
the conclusion follows from Lemma 3.6.

O

We can now state our main result.

Theorem 3.8 If the function m is of Laplace transform type, then the multiplier operator
m(L) is of weak type (1,1) with respect to the Gaussian measure.

Proof By Lemma 2.1, the operator m(L) satisfies assumptions (a), (b) and (c¢) from the
beginning of the section with ¢ = 2 and p = 7. Therefore, by Theorem 3.7, its local part
is of weak type (1,1) with respect to both Lebesgue and Gauss measure. We only have to
prove that the global part of the operator is of weak type (1,1) with respect to the Gaussian
measure. But, by using (2.3), we have

m(Lgonf @) < ol [ max Me(e,5)(1~ ol ) () dy

< Ollllae [ max M (@,5)(1 = xw (2,9) ) | dy

and the latter operator is of weak type (1,1) (see [S2]). O
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4 Pointwise expression for the operator in terms of its
kernel

The operator m(L) is in general not a principal value singular integral. In this section,
we investigate how it can be expressed as a limit of the sum of a truncated integral and a
variable multiple of the identity.

Theorem 4.1 Let m be of Laplace transform type. There exists a bounded function «
defined on (0,+00) such that

e—0+

n(0)s) = i (@@ + [ Kl an)

for almost all x, whenever f is a test function. If (¢;) is a sequence tending to 0, such that
lim; o a(e;) = g exists, then

m(L)f(z) = apf(z) + lim Ky(z,y)f(y) dy.

3200 Jjz—y|>e;

If the function v is continuous at 1, then lim._,o a(e) = (1) and m(L) is the sum of (1)1
and a principal value integral.

We begin by proving a technical lemma.

Lemma 4.2 For any compact subset K of R¢ and any multiindex 8 of length b, there exists
a constant C = C(K,b) such that for x and y in K

(a.) L7105 M )~ Mo ) | < ©

and . q

2) 193 (M) = Mol )| < €1+ bl = o)
where

hy(p) =

P2t fd4b>2;
log(p) ifd+b=2;
1 ifd+b=1.

Proof Since the function (r,z,y) — 85 M, (z,y) is smooth in [0,1/2] x R x R? , there exists
a constant C'(K,b) such that for 0 <r <1/2 and z, y in K

0]

Y

(M (z,y) = Mo(z,9)) | < C(K,b) 7.

This proves (4.1). Next we observe that by (2.4)

1 d 1
[ 1Mz ) <
1 r

a2
/ (1 . T2)—(d+b)/2 exp <_CO \7“37 ?/| > dr
2

1/2 1—17r2
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for some positive constant cy. Since |rz —y|*> > |z —y|> = C(K)(1 —r) for z and y in K,
the right-hand side is bounded by

lz—y|?
1—17r2

1
C [ (1—r?)@+0/2exp (—CO
1/2

) dr < Chy(|lz — y|)-
Moreover, for any x and y in K

1 dr
3 <
A/Q\ayMo(x,yﬂ o< C.

This proves (4.2). O

Proof of Theorem 4.1 By Theorem 2.2 , if f and g are test functions on R?,

1 d
V)LL)t
dr

o) [[ Mol ) L1 () dy 3() do ()

r

<m(L)f7 g)’Y =

S— S—

0

= [0 [] M(o.9) ~ Mol 9) L1 ) dy 3() dr (@)

since [ Mo(z,y)Lf(y)dy = (Lf,1), = 0. By Lemma 4.2, the last triple integral is absolutely
convergent. Thus, by Fubini’s theorem

(m(1)f. 00, = [3) [ 90) [ (Mela9) ~ Molar. ) L () dy L o (z).

This proves that for a.a. = in R?

(4.3 (D)) = [ 00) [, (M(e,9) = Mol 0) LFw) dy "
For z fixed, let N,(y) = (M,(z,y) — Mqo(z,y)) v *(y). Thus
(D)@ =l [160) [ M) L) 47 (0)

From Green’s formula for L. one can deduce that

Joy o M LI ) = [ EN) f0) o)

= 3 [ SN ) o) + 5 [ ) 0Nl (0) do )

€

=Ii(e,r) + L(e, )+ I3(g,7),

14



where S, is the surface of the ball of radius € centred at x, 0,, the interior normal derivative
and do the surface measure on S,. Since LN, (y) = ro, M, (z,y)y '(y), we get

1¢( ) 11(8 r) dr 1¢(7‘) ~ ra,«,/\/lr(x,y) f( )dy—dr
0 r 0 ‘.Z‘ y‘>1€
/|$—y|>e uc) /o »(r)or M, (z,y) dr dy

(4.4) = [ Ky i)y
|z—y|>e
To prove the first part of the theorem, we only need to show that, as ¢ tends to O,
1 d
(45) | 40 Ben) <t = Olple))
1/2 d
(4:6) |00 Ben) < = Ople))
! dr
(4.7) [ w0 Ben <" = a(e)f(z) + 0pale),
1/2 r

where pg(e) = ¢ if d > 3, pa(e) = pi(e) = (1 + |loge|) and « is a bounded function. In
this proof, O symbols and constants C' may depend on z. Aiming at (4.5), we conclude
from Lemma 4.2 that

‘/ _[287'

which is O(pq4(¢)) provided that d > 2. If d =1, we get

@8) [ 60) bier)
= @ —d [ WMo =)+ e+ [ v N+ )T

0

< Cll9]|oo max [9f| (1 + ho(e))e™,

Arguing as in the proof of Lemma 4.2, we see that for y in a compact set
1 dr
[ 10N @IS < e+ oglo =l

Thus

[ 90 e =2~ Moo +2) <

r

< Wl [ [ 1000001y

< Clldloe [ (1 [Tog]t) e
= O(e(1+|logel)).

Since the function f and the density « are smooth, this implies that both sides of (4.8) are
O(e(1+ |logel)), and (4.5) is proved.
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A similar argument proves (4.6). To prove (4.7) we observe that

Y(Y)Op N> (y) = On M. (2,y) + 2(y, n) M, (7, y).

Arguing as in the proof of (4.5), one can easily see that the second summand here will give
a contribution to the integral in (4.7) which is O(p4(€)). To analyse the contribution of the
first summand, we shall compare it with a convolution kernel . Let

é(s) = 20~ 42(1 — 12)~42 (55 — y. ) exp (_M) |

1—1r2
Then
1
0 Mi(,y) = 6(1) = [ ¢(s)ds
= 2 Y1 —r?) Pz — ylexp (— ‘f — if) — E,(z,y).
Thus
1 d
[, 80) Ioer)
2 d
(4.9) = 7% /1;2¢(r) (1= 7%~ Lexp (—1 :2) TT / f(y)do(y)
d
43 [,00) [ @) f0) doty) S+ 0(pute)), & 0.

Observe that [g f(y)do(y) = wee® " (f(z) + O(e)), where wy is the measure of the unit
sphere in R¢. If we perform the change of variables €2 = (1 —r?)¢, we conclude that the first
summand in the right-hand side of (4.9) equals «a(e) (f(z) + O(¢)), where

(4.10) ale) = %wd/%d / :/3 w1 = 2/8)(1 = e2/t) 2 1ot g

ST—Y

To estimate the integral of the error term E,(x,y) we put A = =5 and we observe that

#'(s)] = 20" ?(1 = r?) " (z,n) — 2(A, n)(A, z)| exp (—|A\2)
< Clz|(1 - r2)_d/2_1 exp(—co| A[?),

where ¢y is some small positive constant. Thus

_ ]2
B (z,y)] < Cla|(1=7*)""* sup exp (_COM>

r<s<1 1—72

2
< C 2colz|e 1— 2\—d/2 _ €
< Ol e (1= ) exp (—eor =5 )
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because [sz —y|> > |z —y|? —2(1 —7)|z|e, for y € S, and r < s < 1.
Therefore, if d > 2,
! dr
[, 80 [, F@) B ) dof) T = Olpa(e))

If d =1, the integral over S. is the sum of the values of the integrand at the points y = x+e¢.
Let A(t) = 2240 Then
E.(z,x+¢)+ E.(z,z —¢)

= on 21— )% [ (247() ~ e O - (24%(e) — e ) s

An argument similar to the one used in the estimate of E,(z,y) shows that

1—1r2

8, ((24%(t) - 1)e V) | < C(a,e)(1 r>-1/2exp(—cO ’f )

for |t| < e, where the constant C(z,¢) stays bounded for  and & bounded. Thus

€ t2
Ev(w,+2) + Br(z,0 =) < Ca,e) (1 =12 [ exp (‘001 ) o
A _
and

/11 0 (Bu(m, 3+ 6) + Bu(az — ) 3

/2 T

1 _ £ —co dT
< Ol9]le /1/2(1—7«2) 1/0 e oqr

r

The right hand side here can easily be estimated by C||¢|lee(1 + |loge|). Since the
function f is smooth, this suffices to prove (4.7) also for d = 1. The first claim of the
theorem follows, and the other two claims are easy consequences of the first and of the
expression for « in (4.10). O

5 Maximal Operators

Let T be a linear operator satisfying the assumptions (a), (b) and (c) at the beginning of
Section 3. Let T be the operator defined by

T*f(x) = sup

e>0

[, K,
lz—y|>e
Notice that the function 7™ f is measurable since the supremum over all ¢ > 0 coincides

with the supremum over all rational £ > 0, because the operator T satisfies assumption (c).
We consider the vector-valued (in fact [*—valued ) operator S given by

Sf(x {/K T, Y) X {la—y|>e1f (Y) dy}EEQ+ {/K z,y)f }gem'

17



It is clear that T* f(x) = ||Sf(x)||;. In order to prove that T maps L!(7y) into weak —L! (),
it is enough to prove that S maps L'(v) into weak— L}« (7).
To handle S, we define, in analogy with Section 3, the operators Sgiop, and Siec, given by

Suonf(2) = { [ Kelo,0)(1 = ola, )/ () dy}
Slocf(x) = Sf(x) - Sglobf(x)'
Theorem 5.1 Sj,c maps L'(7y) into weak—Ljw (7).

Proof Observe that
Suc! (@) = { [ K(@,9)6(@9)x 050/ 0) dy ] -

In other words, Si,. is the [*°—valued version of the maximal operator associated to the
Calder6on-Zygmund operator Tj,.

It now follows that Sj, maps L'(dz) into weak—L'(dz);~; see Theorem 5.20(iv) of
Chapter II of [GR], whose proof can be found in Section 4 of Chapter V. (This is written
only for convolution operators, but it can be extended to our case.) In a more general
context, this is also proved in [St2, Corollary 2 of Section 7, Chapter I, page 36].

In order to prove boundedness with respect to the Gaussian measure, we continue as in
the proof of Proposition 3.4. In particular we have

[Soef @)l <37 x5, (@) || Stoc (e, ) (@) .

+ [T MK )l x5, (), 9) = xam, ()] £ () dy
= ISt @)l + S2(f1)(@).

Now by the remark after Lemma 3.3, Si,. maps L'(y) into weak- L}~ (7). On the other
hand as || {K.(z,y)}, |lie = |K(z,y)|, we have that S? coincides with the operator T
introduced in the proof of Proposition 3.4. In particular S? is bounded from L'(v) into
L'(v). Hence Sioc maps L'(7y) into weak—Ljw (7). O

We assume that m is of Laplace transform type. Let a be the bounded function of
Theorem 4.1. The maximal operator associated with m(L) is defined by

m(L)" f(x) = sup

e>0

a(e)f (@) + [

|lz—y|>e

Ky(2,9)F(0) dy‘ .

Theorem 5.2 If the function m is of Laplace transform type, then the mazimal operator
m(L)* associated with the multiplier operator m(L) is of weak type (1,1) with respect to the
Gaussian measure. Moreover, whenever f is a function in L(v),

m(L)f(z) = lim (a(e)f(:v) 5

e—0+

Ky(z,9)f(y) dy) , a.a. T.

|lz—y|>e
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Proof Because of Theorem 4.1 and a standard approximation argument, we only have to
prove that m(L)* is of weak type (1,1) with respect to the Gaussian measure. Since « is a
bounded function, it is enough to show that the operator

T"f(z) = sup

e>0

[, Kooty
lz—y|>e
is of weak type (1,1) with respect to . But this is equivalent to proving that the operator

S(f)(x) = { / Ky (%, ) X{lo-yi>e1f (4) dy}g

maps L'(7) into weak- L} (7). As the kernel of m(L) satisfies assumptions (a), (b) and (c),
we can apply Theorem 5.1 to conclude that Sy, maps L!(7y) into weak- L}« (7). On the other
hand, it is clear from (2.3) that

ISgonf @lles < [ [Ko@ p)xq-ysay(1 = 0l@,9)] . @)l dy
< [ 1Kol )l = ole,y)1f ()] dy
< Cllwlls [ max Mo (z,9)(1 = xon (@) £ (3)  dy.

N

The latter operator is of weak type (1,1) (see [S2]). 0

6 Negative and imaginary powers of L

Writing as in the introduction Iy = I — Py, we shall prove negative results for the imaginary
powers LTI, a € R, and the negative powers L~°II;, b > 0.

If in Theorem 2.2 we let ¢(r) = I'(1 —ia) ' (=logr)~ for some a € R\ {0} and
interpret m(0) as 0, the resulting operator m(L) will be L*Il,. It is thus in particular
of weak type (1,1). Considering the proof of Theorem 3.8, one can see that the constant
involved increases at most exponentially as || — co. This cannot be improved to polynomial
growth, as our next result shows.

Theorem 6.1 For some ¢ > 0, the weak type (1, 1) quasinorm of LIy is bounded from
below by e when o € R with |a| large.

Proof We denote by ¢ > 0 and C' < oo various constants depending only on the dimension.
In order to be able to integrate by parts in the expression for the kernel, we consider the
operator LI, + P,, whose kernel is

Keiole.) = =iy i (187) 0 (Mo(@) = (1= )M (o.)

r
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After an integration by parts, we get

7T_d/2 1 1 —ia—1 g lrz—y? .\ dr
K_io(z,y) = / (1 —) 1—7%)"2 =2 — (1 —r)e Yl '

r

We apply this operator to L' functions approximating a point mass at a point y with
n = |y| large. Since the above kernel is to be integrated against L'(vy) functions and
Lebesgue measure, we need only integrate it against the measure f = 6”2(5y and verify
that the weak—L'(y) quasinorm of the resulting function (L*Ily+ Fy)f(z) has exponential
growth as |a| — oco.

Consider the value (L®Ily + Py) f(z) = K_io(z,y)e" at points = y/n+v with £ € R
and v L y, where /3 < £ <2n/3 and |v| < 1. As in [GMST], one has

; T4 1\ et 4 _le=rn® _r?e)? dr
L*T1 P, = - / (1 _> 3 1 — 2\—5 1_,2 -2 _ (1 — )
(1T + Po) () = s [ (108 ( (1-r7) % (1-n)<

We shall split the integral here into several parts. The main part will be

—d/2 —ta—1 o2 22
I = u - 652/ (log 1) (1-— ﬂ)-%e*%*—llTE dr,
['(—ia) [€-rn|<A T ;

where A = A(d) is a large constant to be determined. In I; the variable of integration r
runs over an interval of length 2A4/n, and so arg(log1/r)™™ = —aloglog1/r varies by at
most C|a]A/n << 1 if |a|/n is small enough. By the change of variables s = £ — rn, we
then easily get
€ 1 € 1

€ / —cs? €

—_— e ds > ¢,
P(=ia)[n Jisi<a IF(=ia)|n

for some constant ¢y depending only on d. Let

—ia—1 —rnl2 #1202
(log l) (1 —r2)_%6_%_ﬁg.
T T

|]1| >cC

—d/2

-
['(—ia) le—rn|>A, L<r<d

IQ ==
Changing variables as above, we obtain

£2 1
e 2
I <c_—f_—/ e~ s,
| < IT(=ic)|n Jisi>a

With A large enough, we thus have
|| < |I1]/6.

We further set




For these 7, one has |£ —rn| > n/6, and so
<o (Ao e ar <o [eatar < |nl/6
<C—_ )2t e < O———— —e <
51 < Oy fy = e ar < Oy o ar <l

for large 1. The next part of (L**Ily + P)f(z) we consider is

=42 s 1\ et 4 _le=rnl® o2l dr
I, = £ / (] _> 1 —r2)"2 1-r2 112 .
! P(—ia)e 1/n2 8 (1=r)2e r
Here again |£ — rn| > n/6, and for large 7
I c et’ s g2 dr I
SC=—— e — < 6.
‘ 4|— |F(—ZC¥)‘ 1/7726 r = | 1|/
Defining
7T_d/2 1 1y —fe—1 dr
I, = / (1 —) 1-n
* 7 D(—ia) Jip 8 (1= T
we see that log]
oglogn
I;)| < C=—="—">=<|I,|/6

when 7 is large, since £ > 1/3. What remains to be estimated is
T

—d/2 1/ 1\ el g =r2e2—r2p2_r2jv|2 4oy dr
1 - 1 _ 2 ) 1—r2 — ]_ — —_—.
I'(—ic) /0 ( o8 7“) <( r)re ( 7’)) r

In the numerator of the exponent of e here, the term 2r&n will dominate for large 7, and
so this exponent is positive and bounded by Crn?. Therefore

I6:

C 1/7)2 2 dr
I.| < 7/ 1 C 2\ ,Crn -1 ~
|Is| < T(—ia)] ) (( +Cr)e +r) .
C 1/n? dr C
< — 2 <~ < |Ll/6.
= |r(—m)|/o S Ty S B
Summing up, we conclude that
I €€ 1 em/3)? 1

[(L*Tly + Po) f(z)| > = > e = > e~
6 — |D(—ia)|n — [L(—ia)|n
in the set {z : /3 < &< 2n/3, |v| <1}. The v measure of this set is at least ¢~ te @/3)°
Thus we get for the weak —L! quasinorm
S c 1
' D (~ia) 7
In the above argument, we must have 7 large and |«|/n smaller than some constant depend-
ing only on d. This allows us to have 72 > c|a|™2, so that

| (L*TIg + Po) f ||zroe(y

4 c 1
LMo+ Po) f |lpree(y) > mo——7—5 > €
I ( 0+ Do) f [lprec(y) = D (—ia)| a2 €
for some ¢ and large |a|. The result follows, since P, is of strong type (1,1). O
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Proposition 6.2 For any b > 0, the operator L™°I1y is not of weak type (1,1) with respect
to .
Proof Because of Theorem 2.2, the operator L(L + &I)™°~!, & > 0, has kernel

b

ﬁ /01 re (log %) Or (My(z,y) — Mo(z, y)) dr.

Integrating by parts and letting ¢ — 0, we see that the kernel of L=TI, is

742 1 1\*! g o=yl 2\ dr
Kt = o [ (1og 1) (1t o) 4
o) =gy (o (( ) te ) <

We remark that this expression can also be obtained from Lemma 2.2 of [GMST].
Choosing y with 7 = |y| large as in the preceding proof, we see that it is enough to verify
that the weak—L* () quasinorm of K,(.,y)e” tends to oo as 7 — oco. Notice that

d 7T2|ac|27r2n2+2rw-y

(6.1)  7/’T(b)K,(z,y)e" = /01 <log %)b_l ((1 —r?)T2eT 1r - 1) ﬁ

r

We shall consider z with [z| <1 and z-y < 0. If 1/np <r < ¢ for some € = ¢(d) > 0, we

have
d —7'2\m\2—7"2172+2rm-y

(1- 7'2)*56 1—2 < eCrie ! < 1/2.

€ 1 b—1 —r2)2—r2n2 £ 2ra- d
/ (log —) ((1 — 7'2)_%6 - 1) =
1/n r r

< Lr (log %) A ((logn)b — (log 1/6)b) < —4%(10%77)()

Thus

1
T 2b

for large n. Further,

1/n 1 b—1 2121222 2ra- d
‘/ <log —> ((1 — %) %e e A 1) il
0 r r

1/ 1 b—1 d
< C/ ! (log ;) (r? +n’r* + nr)TT < C(logn)" .
0

The remaining part of the integral in (6.1) is for large 1 bounded by

1 1
C/E (1 _ T)bfl ((1 _ TQ)*%G_W + 1) g < C.

r

Altogether, this means that |K,(z, y)e” | > c(logn)® in the set {|z| < 1, z-y < 0}, for large
n and some ¢ = ¢(b,d). This implies that the weak—L'(y) quasinorm of L *TIy(e"’d,) is
large, and the result follows. O
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