SELF-SIMILAR COMMUNICATION MODELS AND VERY HEAVY TAILS

SIDNEY RESNICK AND HOLGER ROOTZEN

ABSTRACT. Several studies of file sizes either being downloaded or stored in the world wide web
have commented that tails can be so heavy that not only are variances infinite, but so are means.
Motivated by this fact, we study the infinite node Poisson model under the assumption that trans-
mission times are heavy tailed with infinite mean. The model is unstable but we are able to provide
growth rates. Self-similar but non-stationary Gaussian process approximations are provided for the
number of active sources, cumulative input, buffer content and time to buffer overflow.

1. INTRODUCTION

The identification of self-similarity in various types of teletraffic flow rates has created widespread
interest in the possible origins and effects of the self-similarity. Willinger et. al. ([32], [24], [25], [35],
[26], [36], [37]) discussed self-similarity of packet counts per unit time in LANS and WANS and a
parallel discussion of self-similarity of bytes per unit time in WWW traffic was conducted by Crov-
ella et al ([6, 7, 10, 8]). Crovella, Kim and Park ([9]) conducted a large simulation study to assess
the causes and effects of self-similarity in situations that involved slowdown nodes, buffers, varying
rates and varying tail parameters. Errammilli and Willinger ([13] used experimental queueing anal-
ysis to show why classical models without long range dependence would seriously underestimate
delays. Resnick and Samorodnitsky ([28]) constructed an example of a single exponential server
fed by a long range dependent input which had queue lengths and waiting times which were heavy
tailed. Mathematical studies of the connection between on-off inputs with heavy tailed on-periods
appeared in [32] and [18], [19] and [20].

Attempts to explain network self-similarity have largely focussed on heavy tailed transmission
times of sources sending data to one or more servers. The common assumption is that transmission
times have iid random lengths with common distribution #' where F' has a Pareto or regularly
varying tail. We assume

(1.1) 1—F(x) ~z *L(z), x— oo,
and L(z) a slowly varying function, or equivalently

F(tz) e
(1.2) Jim Fi) =z % x>0,

where ' = 1 — F(z). The usual assumption on « is that 1 < a < 2. This means the variance
is infinite but the mean is finite. The practical reason for this assumption is the extensive traffic
measurements of on periods reported in [36] where measured values of a were in the interval
(1,2). The theoretical reason for the assumption is that mathematical analysis has been based on
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FiGure 1. QQ and Hill plots of November 1994 file lengths.

renewal theory and without a finite mean, stationary versions of renewal processes do not exist and
(uncontrolled) buffer content stochastic processes would not be stable.

Despite the prevalence of this assumption that 1 < a < 2, it is clear that other assumptions have
to be considered. The Boston University study ([6], [7], [11]) suggests self-similarity of web traffic
stems from heavy tailed file sizes and reports an overall estimate for a five month measurement
period (see [11]) of @ = 1.05. However, there is considerable month-to-month variation in these
estimates and, for instance, the estimate for November 1994 in room 272 places « in the neighbor-
hood of 0.66. Figure 1 gives the QQ and Hill plots ( [17, 29, 17, 22, 3]) of the file size data for the
month of November in the Boston University study.

Furthermore, studies of sizes of files accessed on various servers by the Calgary study ([1]), report
estimates of a from 0.4 to 0.6. So accumulating evidence already exists which suggests values of o
outside the range (1,2) should be considered. Also, as user demands on the web grow and access
speeds increase, there may be a drift toward heavier file size distribution tails. However, this is a
hypothesis that is currently untested.

This paper focusses on the case 0 < o < 1. Section 2 reviews a standard infinite node, Poisson
based model with heavy tailed transmission times and assumes (1.1) with a < 1. A buffer content
process is defined and since it will be unstable due to the assumption o < 1, we make some
comments about the first order content growth and the time to hit high levels. Section 2 develops
first order approximations to the number of active nodes, the net input process, the content process
and the time to buffer overflow. Section 3 considers a. Gaussian approximation to the input process
and shows this is self-similar. This approximation is in the spirit of [32]. Sections 4 and 5 give
Gaussian process approximations to the content process and time to buffer overflow.

2. AN INFINITE NODE, POI1SSON BASED COMMUNICATION MODEL.

We first review the elements of a communication model used in [19], [20] and [16]. Let {T'y, &k > 1}
be the points of a rate A homogeneous Poisson process on Ry = [0,00) so that {T'y11 — T,k > 1}
is a sequence of iid exponentially distributed random variables with parameter A\. We imagine that
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a communication system has an infinite number of nodes, sometimes called sources, and at time
I’y some node turns on and begins a transmission at unit rate to the server. The length of this
transmission is a random variable L. We assume {L,k > 1} is iid and independent of {I';} and

(2.1) P[Ly > z]=F(z) =1 “L(z), 7—o00, 0<a<]l,
where L(z) is a slowly varying function. We note that

o
(22) M = Zﬁ(FmLk)’

k=1

the counting function on Ry x (0,00] corresponding to the points {(T'x, Lx),k > 1}, is a two
dimensional Poisson process on Ry X (0, co] with mean measure AL x F, where L stands for Lebesgue
measure. (Cf. [31].)

The first quantity of interest is N(¢), the number of active sources at time ¢. So

o0

N(t) = Z Ly <t<Thp+Li]
k=1

=M({(7,1) € Ry x (0,00] sy <t <7y +1}).
The second expression makes it clear that for each ¢, N(t) is a Poisson random variable with
parameter

t t
(2.3) ALXF({(V,Z)E&X(O,oo]:7§t<’y+l}):)\/0 F(t—’y)d’y:)\/o F(s)ds =: m(t).

Because of Karamata’s theorem ([5], [31]),

tF(t) =

l—« l—«o

(2.4) m(t) ~ tH=CL(t), t— oo.

During a transmission, the transmitting node is sending data to the server at unit rate. In
the fluid queueing terminology, the source pours water into the server at unit rate. The total
accumulated input in [0, ] is

/ N(s

Assume the server works at constant rate r (or assume in fluid queueing terminology that a bucket
leaks at rate r). The content of the buffer at time ¢, X (¢), satisfies the storage equation

(2.5) dX(t) = N(t)dt — Tl[X(t)>0]dt,
or ([15], [2], [27])

(2.6) \/ —r(t—s)]

/ 5

where we have assumed the initial condition X(0) = 0.

From these observations, we can rapidly draw some conclusions about first order behavior. Con-
sider the Laplace transform of N(T')/m(T). Since N(T) is Poisson distributed with parameter
m(T) — oo we have for § > 0 as T — oo

E(exp{—ON(T)/m(T)}) = exp{m(T) (e /™1 —1)} = 70 = E(e™").
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This means that as T' — oo,
P

N(T)/m(T) = 1.
Therefore, for each fixedt > 0, as T — oo
N(Tt) _ N(Tt) m(Tt) P i
m(T)  m(Tt) m(T) ’
by (2.4). It is easy to extend this convergence ([30]) to weak convergence in D0, 00):

N(T-)

2. —_— Sl
(27) = 0
Since integration is a continuous functional from D0, 00) — D[0,00), we have for any ¢t > 0 as
T — o0 : . )
N(T o
/ ( u)du:>/ ul %du = ,
o m(T) 0 2-«
that is,
Tt N(S) t27a
d
. TmM® 7 2—a
or
AT) ()
2.
(2.8) Tm(T) ~ 2—a’
in D[0, 00).

Since for any ¢t > 0,
A(t) —rt < X(t) < A(t),
we get, as T — o0,
X(T) p 1
_) ?
T™Tm(T) 2-a«

and hence for any ¢t > 0, as T — oo

X(Tt) p t*> @
Tm(T) T a
and in D[0, c0),
(29) X(T) (')27&

= i
Tm(T) 2-«
The map z(-) — Vs<(.y#(s) is an almost surely continuous map, and therefore XV (t) := Vy<; X (s)
has the property
xXV(T- N2—a
) _ 0
Tm(T) 2—a

(2.10) (T — o).

If we define
7(L) :=inf{t > 0: X(¢) > L}
=inf{t >0: XV(t) > L} = (XV)“ (L),
then (2.10) implies that for L > 0, as T" — oo,
7(TL)
2
vem) -

Y ARACEN
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FIGURE 2. Three disjoint regions.

where V(T) = Tm(T) ~ AXT?~*L(T)/(1 — «) so that the inverse function V¢ is regularly varying
with index 1/(2 — «). So the time necessary for the content to reach a critical high level L is of
algebraic order L'/(2~®)_ This is monotone in «, meaning the smaller the « (that is, the fatter the
tail) the quicker a high level is achieved.

3. SELF-SIMILAR GAUSSIAN APPROXIMATIONS.
We begin by considering the family of processes {Gr(:),T > 0} defined by
N(Tt) — m(Tt)
m(T)

and showing convergence to a limiting Gaussian process.
First observe that by the central limit theorem for Poisson random variables

(3.1) Gr(t) = ,t>0

= N(0,1)

in R, since m(7T") — oo, and hence for any fixed ¢ > 0

N(Tt) —m(Tt) |m(Tt)

= t2=2/2N(0,1) = N(0,£279),
D) m(T) (0,1) ( )

Gr(t) =

by (2.4). In fact, Gr(:) is readily seen to converge in the sense of finite dimensional distributions
to a limiting Gaussian process. We verify this by illustrating the technique with two time points
t1 < to.

Write (see Figure 2)

A ={(7,1) € Ry x (0,00] : 7 < Ty, Tty < y+1 < Thp},

AgT) ={(v,1) € Ry x (0,00] : y < Tt1,Tto <y +1},
A —{(,1) € Ry x (0,00] : Tty <y < Tto, Tty <y +1},
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so that {AZ(T),’i = 1,2,3} are disjoint regions. Therefore, {M (AZ(T)),’i = 1,2,3} are independent
Poisson random variables and

Tt _ _
m{" =E(M(AD)) = /0 X (F(Tty =) = F(Ttz —v)) d,
(T) (T) N
my ' =E(M(Ay ")) = /0 AF(Tty —v)dy,

(1) (1) T
m{T) —E(M(AT)) = /T AR =)

(1)

Since m; ’ — oo as T'— oo for ¢ = 1,2, 3, we have by independence and the central limit theorem
for Poisson random variables that
MAD) —
( (4; )( )mz Li=1,23] = (N, i =1,2,3)
T

m;

where the limit consists of three independent N(0,1) random variables. Now observe that
m{") +m{") =m(Tty), N(Tt) = M(A]") + m(A),

and
m$" +m§) =m(tTy), N(Tt) = M(AS”) + M(45"),

and that applying Karamata’s theorem, as T" — oo,

i R G R BT

(T)
2 b (b — 1) = m)
m(T) 7?2 z2
D)

3
m(T)

—)(tg — tl)l_a =: m:())oo)

Therefore in R3

AT _ (D) AT _ (D) (T)
( A —mi” o) = (MATD =M 5] )

m(T) (T)
= (Vm™®N;, i =1,2,3)

(GT(t1)> -2 (MAT) = BOM(AY) + M(437) — B(M(43)))
M(AS") — B(M(AD)) + M(ASD) - E(M(45"))

(Vo
\/mgoo)NQ + mgoo)Ng

The covariance of the limit random vector is

Va,r(\/ méoo)NQ) = mgoo) = t%ia — (tg — tl)l_a.

and so
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Now let
(3.2) C(s,t) = (sVt)l™@ — [t —s|'™, 0<s<t,

and let {G(t),t > 0} be a zero mean Gaussian process whose covariance function is C(s,t). We
have G(0) = 0 and the discussion of Section 3.1 using Billingsley’s theorem 15.5 ([4]) will show
there is a version with continuous paths. Note that G(-) is not stationary, does not have stationary
increments and is not a fractional Brownian motion. As we expect from Lamperti’s theorem ([23],
[12], we do have that G(-) is self-similar, since for any ¢ > 0 and s < ¢

C(cs,ct) = ' 720 (s, 1),
so that in the sense of equality of finite dimensional distributions
G(e) £ 0-a/2G (),
We now state function space convergence.
Theorem 1. Assume 0 < a < 1, and define Gr(t) by (3.1). Then in D|0, o)
Gr() = G(),

where the limit is a zero mean, continuous path, self-similar Gaussian process with covariance
function C(s,t) given by (3.2).

Proof. Convergence of the finite dimensional distributions has already been discussed and it remains
to verify tightness. This is discussed in Subsection 3.1. O

If z,,,x € D|[0,00) and z(-) is continuous and z,, — z in the Skorohod metric on D[0, c0), then
this convergence is equivalent to local uniform convergence. See [4]. Further, the functional

)
ac(-)r—>/0 z(u)du,

is continuous with respect to local uniform convergence. From Theorem 1, we thus quickly obtain
the following corollary.

Corollary 1. Assume 0 < a < 1. In C[0,00), as T — oo,

) 0 0 A
G () ::/0 GT(u)du:>/0 Gw)du = G(-),
that s,

. AT -~ fT(')m(s)ds A
(3-3) Gr() := T (;n(T) G(),

where G is a zero mean, continuous path, self-similar Gaussian process satisfying
G(c) £ B=02G(), ¢>0

and having covariance function C’(s,t) given by

s t
C(s,t) = / C(u,v)dudv, 0<s<t.
u=0 Jv=0
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3.1. Tightness for the Contents Process. We now verify that the family of processes {Gr(-),T >
0} is tight. The proof uses chaining and bracketing arguments as described in [33]. As in Chapter
2.2 of [33], we define
qp(x):ew—l, .’IIZO,
and let || X|| be the Orlicz norm defined by
| X]|| = inf{c >0: Ey(c'|X]|) <1}
We begin with a simple lemma.

Lemma 1. Suppose N is a Poisson random variable with mean m. Then for m > 1, there exists
a constant K not depending on m > 1 such that

(3.4) IN —m] < K.

Proof. Write

(3.5) N —m| < (N —m)[ + (N —m)_],
and we claim

(3.6) (N —m)+]| < Kivm,

with a similar inequality for the other piece. Now, from the definition of the Orlicz norm, keep in
mind that (3.6) requires us to show

(3.7) Eexp{(N —m);)/Kiv/m} <2.
With p4 = sup,,~; P[N < m] € (0,1), since by the central limit theorem P[N < m] — 1/2, as
m — oo, we have have for a constant ¢ > 0

Ee¢ ' (N-m)+ < pec ' (N-m) 4 P[N <'m)]

:exp{m(ec_1 —1-cH} +p,,
by the standard formula for the moment generating function for the Poisson distribution. So
Eexp{c ! (N —m);} <2if
(3.8) e —1—cl<m! log(2 — py).
From m > 1 and 0 < p; < 1 we get ¢c~! < 2, and then using the inequality e — 1 — z < e%22%/2,
z >0, we get
e —1—cl< (c™1)%e?/2,
and hence (3.8) holds if
(c)? <m 'log(2 —py)2e >
The claim (3.6) follows with
1
K, = 3
v2e2log(1 + P[N > m)])
and since parallel arguments provide a bound for the second piece in (3.5), the lemma is proven. [

To prove tightness of {Gr(-)} in D[0,00), it is enough to show that {Gr(t);0 <t < Ky} is tight
in D[0, K] for any Ky > 0. For simplicity of notation we suppose Ky = 1. By [4], Theorem 15.5,
tightness in D[0, 1] occurs if for any € > 0, > 0, there are Ty and ¢ > 0 such that

(3.9) P[ sup |Gr(t) —Gr(s)| >€¢ <n, forT >Ty.
s—t|<d
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For convenience we will use §’s which are dyadic rationals of the form 27 for ¢ a positive integer
and define

Fj:={k27:0<k<2}
Referring to the probability in (3.9), we write for an integer v > 7 to be specified to grow with
T, that with § =27,

Gr(t) -G < Gr(t) -G
sup (Gr(t) = Gr(s)| < _max | Gr(0) = Gr(s)

2v—-127%

+2 \/ V IGr(k2™ +u) — Gr(k27)|.
k=0 u—0

So by standard arguments, (3.9) holds if for given €, > 0, there are Tp,d > 0 such that

(3.10) s,telf{,fl,?s)it\§6| r(t) — Gr(s)| > €] <n, for T >T,
and if

2v—-127%
(3.11) \V V (Grk2 +u) - Grikz)] B o,

k=0 u=0

Before proceeding, we state a lemma. We will continue to denote by K generic constants whose
specific value is immaterial. The value of K need not be the same with each usage.

Lemma 2. Define

27
(3.12) mj = \/ |Gr(27k) — Gr(27 (k — 1))|.
k=1

Then, for T so large that m(T277) > 1, we have for some constant K = K(m(T277))

m(T2-7)

| < Ky

Proof. Refer to Figure 2 with ¢, = (k —1)/27 and ¢, = k/2/. Then

IGr(k277) — Gr((k — 1)279)|| < M(A"T) — B(MmAD)) N ‘ M) — ErAD)) H
- m(T) m(T)
BMA")) B
= \/ (@) +\/ ()

by Lemma 1, provided E(M (AgT))) NE(M (AgT) )) > 1. However both expectations are bounded by

m(T27) (for AgT) this requires a moments reflection from the definition) so we end with a bound
of the form (remember the K’s can change)

m(T27)

IGr(k277) = Gr((k - 1)277)|| < K m(T)
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Then from Lemma 2.2.2, page 96 of [33] we have
27
I\ 1Gr(k279) = Gr((k — 1)279)||| < Ky (27) \/ G (k277) — Gr((k — 1)277))
k=1 k=1
and the result follows from the form of . O

We now verify (3.10) and (3.11). First (3.10) which uses a chaining argument. Begin by defining
the integer v = v(T') by

omE )

3.13 277 > 27v
(3.13) >
so that as T' — oo, v — oco. For a constant K’, given ¢,€¢/ < 1 — « and 7, choose 7 fixed such that

o

- ' €

(3.14) 2K’ j)lret « — —

jz::i log(1+n~1)

and assume T is large enough to make v > i. For t € [0,1], define t; := sup{w € F; : w < t}.
Then t € F, implies T, = t, and t;_; equals ¢; or t; — 277, and |t — s| < 27" implies t; = s; or
t; = s; £ 27" Write

v

Gr(t) = > (Gr(t;) — Gr(tj 1)) + Go(t:)
j=it1
with a similar expression for s. It follows that if ¢,s € F,, |t — 5| < 27°

Gr(t) = Gr(s)] < Y |Gr(ty) — Gr(t;—)|+ Y |Gr(s;) — Gr(sj—1)]
j=i+1 Jj=i+1

+|Gr(ti) — GT(Sz‘)|

<2 Z m; +m; <22m],

j=i+1

where m; is defined in (3.12). This bound does not depend on the specific s,t € F, with [t—s| < 277,
S0

€= V Gr(t) — Gr(s) <2) m
t,s€F,,|t—s|<27¢ Jj=t
and therefore

1€l = V Gr(t) = Gr(s)l < Il
j=t

t,sEF, ,|t—s|<2-1

<2KZ T2 ’)

by Lemma, 2, provided m(T277) > 1 for j = i...,v; but this is guaranteed by the choice of v in
(3.13). The Potter bounds on a regularly varying function (see [5, 14, 31]) guarantee that for given
€ > 0, there exists Tj such that for T27% > Tj
m(T27Y)
m(T) ~
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Therefore,

14
el < 2K (277)' 7 < e/log(1+77")
j=i
from the choice of 7 in (3.14). Thus,

Pl \/ |Gr(t) — Gr(s)| > € =P[¢ > €] = P[p(£/c) > p(e/c)] <

s,tEFy,

and choosing ¢ = inf{c : Ey({/c) < 1} we get the bound

1 1
P(e/ €l exp{e/[I€]} -1
1
Sexp{elog(l +n1)/e} -1

=,
as required for the proof of (3.10).
We now cope with (3.11). Refer to Figure 2 and let A(T)(kQ Y (k+u)27"] be the A( ) region of
the figure with ¢t = k27" and t3 = (k + )2~ " with a similar definition of A:(,)T)(kZ Vo(k4+u)27v).
Then

m(T) sup [Gr(k27" +u)— Gr(k27")]
0<u<2—"

MAT (k2 ", (b +u)2 "] — EM(A{D (k2 7, (k +w)2 )

= sup
0<u<2—?

+ MAD (k27 (6 +w)2 Y] - EM(AD (k27, (k + u)zf'f])‘
<M (A k277, (k+1)27] + M((k27, (k + 1)27¥] % [0,00))
+ m(A( k27, (k + 1)27]) + T2
<‘M k27, (k+1)27"]) — B(M(AD (k277 (k + 1)27])) ‘
‘M (6277, (k +1)277] x [0,00)) — B(M((k2™, (k + 1)27*] x [0, 00)))‘
+ 2m (A (k27 (k +1)27]) + 2727,
Therefore, from Lemma 1, since m(T2") > 1, T2 > 1,

T2
| sup |Gr(k27" +u) — Gr(k27"||| <K1/
0<u<2-> V

- 2727V

\/m @

:A+B+C+D.

Thus, again by Lemma 2.2.2, page 96 of [33],

2v—127v
IV V IGr(k2™ +u) — Gr(k2™™)||| < K¢~ (2")(A+ B+ C + D)
k=0 u=0
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where ¥ (2") is bounded by a constant times logT'. Further, as T' — oo,

ASKlogT”% — 0,

2m+ (1)
Tm(T)
m(2m< ()T 1)
m(T)
m* (1)
m(T)

B <KlogT — 0,

C <2logT

— 0,

D <4logT — 0,

and (3.11) and hence tightness is proven.

4. (GAUSSIAN APPROXIMATION FOR THE WORKLOAD PROCESS.

We now investigate a Gaussian approximation to the workload process defined by (2.6). In order
to do this we must consider the work rate r as a function of 7" and so we write r = ry and set for
T>0,t>0

Tt

(4.1) Xr(t) = \/ (A(Tt) — A(s) — 7 (Tt — 5))
s=0
t
(4.2) -\/ (A(Tt) — A(Ts) — rrT(t — s)).
s=0

We will continue the practice of putting a hat on a function to indicate the integral and thus

(t) = /0 n(s)ds.

Another notational convention that we will use is that if f : Ry — Ry, we will write
t
=\ fs)
5=0

for the supmeasure generated by f evaluated on [0, t].
An appropriate way to let r depend on t is to fix y > 0 and set
(4.3) r=rp=m(Ty), r>0,y>0.

Note that from (4.2), the release rate for X (-) is Try = Tm(Ty) and since (2.8) holds, this form
of the release rule is needed to provide some balance to the input.
From (3.3) and (4.3) we can modify (4.2) to get

t
Xp(t) = Tv/m(T)Gr(t) + i(Tt) — Tm(Ty)t + \/ [Tm(Ty)s — A(Ts)]
5=0
and after dividing through by T'm(7T) and rearranging terms we get
. 5 t
W Kol _ (09 _mit)) _ Crt

Tm(T) B m(T) +s\:/o£T(S)

Tm(T) m(T)
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where
m(Ty) _ A(Ts)
4. = — .
(45) ) =) * T Ton(r)
Note that &7 (-) is continuous, £7(0) = 0, and the derivative is
d et m(Ty)  N(Ts)
ngT(S) - £T(s) - ’I’)’L(T) m(T) .
Furthermore, from the definition (4.5) and (3.3) we have

_m(Ty) Gr(s) | ™(Ts)
(4.6) r(s) = m(T) (m + Tm(T))

so that

(4.7) Vm(T) (ér(s) — br(s)) = —Gr(s) = —G(s)

in D|0,00), where we have written

_m(Ty) _ m(Ts)

m(T) ° Tm(T)’

To evaluate the supremum in (4.4), the idea is the following. Note that

d m(Ty) m(Ts)
—b =: b = -
ds 7 (s) 7(5) m(T) m(T)
is strictly positive for s < y and strictly negative for s > y and thus by (-) has a unique maximum at
y. The process &7(-) is (locally) uniformly close to br(-) and hence the place where &7 (-) achieves its

maximum should be close to y and &}(¢) should be of the order of by (y) and /m(T)(&)(t) — br(y))

A

should be near —G(y) from (4.7).
We now examine these ideas more carefully.
Set

st = sr(y) :==inf{s > 0: N(Ts) > m(Ty)}
(NY) 7 (m(Ty))
T

where (NV)* is the left continuous inverse of the monotone function NV. Observe that on (0, s7),
&7(-) has a nonnegative derivative and hence is nondecreasing. Therefore, for ¢ < sp, the maximum
in (4.4) is achieved at ¢. From (4.2) it is immediate that X (Tt) = 0 for ¢ < sy. So when analysing
the asymptotic behavior of X7(-), we will concentrate on the region where ¢ > s7.

It turns out that sy is approximately equal to y. To see this, observe that from (2.7), we get by
applying the maximum functional that

(4.8) —inf{s > 0: NV(Ts) > m(Ty)} =

NY(Ts) _P)
S
m(T)
in D0, 00) and since the limit is continuous and increasing we may invert to get
(N)T(sm(T)) P 1/(1-a)
T S

Since the limit is continuous, the convergence is in the topology of local uniform convergence and
hence we may replace s with

1-a

m(Ty)/m(T) = y'~®
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to get
(1.9) srly) = )
in D[0, 00).

The process N(-) has only finitely many jumps of size +1 in any finite interval and therefore
€/-(-) is piecewise constant with jumps of size iﬁ. Therefore &7(+) is piecewise linear. Define a

(0) (0)

local maximum to be any point s;.” such that for some neighborhood A of s,

er(sy)) > \/ er(),

vEA

and for some v € A, §T(3(T0 )) > &r(v). The smallest local maximum is at sp. At any local maximum

(0)

sp’, there must be a turning point; that is,

&4 <0, W) >0
_1

and because &7.(-) changes by jumps of e TUAE

N(Ts© m
02 ey = X)) L

or
(4.10) 0 < N(Tsy)) —m(Ty) <1,

where we have assumed N(-) is right continuous.

Fix a large t' > y and let My (t') be the set of local maxima, in [0,¢']. Since st A y from (4.9), we
have for ¢’ > y that P[My(t') # 0] — 1, as T — oco. We begin with an analysis of the asymptotics

of any s(TO) € Mp(t') for t' > y. We state the results as a proposition.

Proposition 1. Suppose F satisfies the regular variation condition (1.1) with 0 < a < 1. Fiz
t'>y. If Mp(t') # 0, let sg,g) be any local mazimum in My (t'). If Mr(t') =0, set sg,?) =t
(i) First order behavior: As T — oo,
O E,
In fact
(4.11) \s(TO) —y| < e (T,t,y) 50, T oo,

where €1(T,t',y) is a bound depending only on T,t',y.
(ii) Second order behavior: Assume in addition to (1.1) that the following second order con-
dition holds. For some function 1 : Ry — R, we have

(4.12) lim +/m(T) (m(TS) - 81_0‘> =1(s), s>0.

T—o0 m(T)

Then as T — oo,

(4.13) Giy) == Vm(D)(s7) —y) = — 1=y Cly) = C"(y).
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In fact,

o G1(y)
l1—a

as T — oo, where ex(T,t',y) is a bound depending only on T,t',y
Proof. (i) From (4.10), on [M(¢') # 0]

0 < V/m(T)Gr(s) + m(TsY) — m(Ty) < 1,

(4.14) m(T) (s —y) +y <e(T,t,y) 50

so that

Gr(sy)) | m(Tsy) m(Ty) _ 1
(4.15) O T @) m) S @y

Set

(4.16) vr(u) =

so that vr(u) — u'~?, locally uniformly in u > 0 as T — oo since the index of regular variation is
positive ([5, 14]. Also, define

G 3(0)
By = Trfz(g)) + UT(Sgg)) —vr(y),
so that
@17) 0 < Bilprw)ze < ﬁ
On [M (') # 0] o
’UT( ( )) Bl +UT( ) GT:,S(Z"))
and
(0)
EY —yl—‘ (B1 + vr(y) — C\’Y/T_T ‘
+ . |G| (#) 1 |G|V (t)
<sup{|vg (s) —y| : vr(y) — T <s< iy T vr(y) + W}
=1 BQ.
On Q

s | < Ba + (' = 9Lz
The right side is a bound which is independent of the particular local maximum and which converges
in probability to 0. This follows from the uniform convergence of vr(u) in (4.16) and Gr = G
which implies |G7|Y(t') = |G|V (¢') in R.
(ii) Rewrite (4.12) as

(4.18) vr(s) = +s'79,

where 17 — 1) locally uniformly as T' — oco. From (4 15), on [M(t') # 0],
m(T) (vr(s) — vr(y)) + Gr(y) = vVm(T)By + Gr(y) — Gr(s\)
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or using (4.18), on [M(t') # 0]
m(T) () 2=y @) + Grly)

Vm(T)Bi + Gr(y) — Gr(sY)) — (br(sY) — pr(y))
: Bs.

(4.19) =
Note, as in (i),
|Bs| sy < ea(T, ' y) 5 0.
Furthermore,
m(T)((s90)' 7 = y'~*) = Bs — Gr(y)

and by the mean value theorem the left side is

m(T) (s —y) (1 - a)(y")
(0)

where y* is between s’ and y, so

© «GT(Yy)
(D) (s - )y T2
= (B3 + Gr(y) (v* — (¥)%)) /(1 — )
= B4
on [M(t') # 0]. Therefore, on
G G
) (£ ) + 7 T = Bty + ( m(T)(E = y) +y° 1T(y)>1[M<t'>=w] =: Bs
— —
and
|B5‘ S 63(’1—'7 tlay) i)) 0.
[l

Remark 1. Remarks on the second order condition (4.12). The condition (4.12) is equivalent to
. s T bm(Ts) — T Im(T)
lim

00 To—1/m(T)

This places it in a standard framework of extended regular variation theory. See [5], [14]. Since
the denominator 7% 1,/m/(T) is regularly varying with index

1+1—a 11—«
a— =
2 2 ’

11—«
p.-—( 5 ><O,

lim 7% im(T) =1

T— 00

= 52 Lep(s).

there is a second order index

and [ € Ry such that

exists and for a constant c
1 — T 'm(T) ~ T /m(T)
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which is regularly varying with index —(1 — «)/2. This means that for some other constant & the
limit 9 is of the form
P(s) = ks'7(s” — 1).
O
Remark 2. If we consider 359) as a function of y, the results of Proposition 1 could be formulated
in the space DJ0, 00).

We are now ready to evaluate the limit law for Xp(-). Fix ¢ > t > y. The process &r(+)
is continuous on [0,?] and hence assumes its maximum somewhere in [O t]. With probability
approaching 1, the maximum cannot be at 0, since £7(0) = 0 and

PEi(t) = 0] =Pl¢r(s) 0,0 < s < 1]

A(Ty) _ m(Ty)
Tn(T) 2 m(@)

<P[r(y) <0] = P

Since regular variation implies

m(Ty) l—a 2—a
— — ,
m(T) Yy Yy y=yYy

and from (2.8)
ATy) r v
Tm(T) 2-a«
and 2 — o > 1, we have P[¢)(t) =0] — 0, as T — oo.

If ¢ > y, with probability approaching 1 as T" — oo, the maximum in [0, ] cannot be assumed at
t since then &p(t) > ér(y). However,

Pler(t) > 6r)] = P ¢t —y) > 20—
Since (2.8) implies
A(Tt) - A(Ty) p 27 —y*" Ot —y) = lim m(Ty) (t—y)

Tm(T) 2—a

we have P[ér(t) > ér(y)] — 0, as T — oo.
So apart from events whose probability approach 0 as T — oo, either the maximum is assumed
at an internal point of [0,%] and is hence a local maximum, or if ¢ = y, the maximum might be
(0)

assumed at y or be assumed at an internal point. Let s’ be the point where the maximum is

T—o0 m(T)

assumed on [0,t]. If 359) is internal to [0, ¢],then it is a local maximum and
Vm(T) (6(t) = br()) =v/m(T) (¢r(s1") — br @)
=v/m(T) (&r(s)) — br(s) )+\/ T) (br( br(y))
= — Gr(s\) + /m(T) (br(s\] —bT(y))-
(0)

while if £ = y and s}’ =y, then

Vm(T) (&) = br(y)) = Vm(@) (&) - br(y)) = —Cr(y).
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In either case,

where, by the mean value theorem, y# is between y and 359 ). Note the second absolute value term

converges in probability to 0. Summarizing, we observe that by (4.13)

(4.20) |V (€4 — br(y)) + ()| < ealT¥9) S,
From (4.4), we get
Xr(t) m(Tt)  m(Ty),\ _ v Gr(t)
Trm(T) (Tm(T) T (D) t) =er() +
_Gr(t) = Gr(sY) | op(1)
N (1) =+ mer) W)

and therefore, setting

m(Tt) m(Ty)

(4.21) ()= T~ (D) m(T) — Tm(T)

we conclude that in D[y, co)

V) (s = er®)) =Grlt) = Gr(6?) + o)
~G) - ).

As a consequence of the second order assumption (4.12), the centering by cp(¢) can be replaced
by a function independent of T' at the cost of a translation in the limit. To see this, observe that

er(t) = (m(Tt) —m(Ty)> B (m(Ty) (t— y))

Tm(T) m(T)
2—a _ ,2—a

(4.22) — % —y' Nt —y) = cxo(t)

and
_ m(Tt) —m(Ty) t**—y* > (m(Ty) .,

() (ex(t) — eslt)) = m(T>( Do)ty (), )(t—y)>
—/m tm(TU) " — tu1—a » m m(Ty) o l-a _
/(@) ( [ = [ ) @ (T - =) =)
¢ m(Tu m

= m(T)[ m((’_lr;)) — ulfa] du — m(T)( ni%;:l)/) — y1a> (t—y)
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Therefore

VinD) (o — e 0)
Jm—( - )+¢—cT — caolt)
— &) /w Jdu = (y)(t — y).

We summarize by stating the following theorem.

Theorem 2. Suppose {Xr(t),t > 0} is the contents process of (4.1) and 1 — F satisfies the first
order condition (1.1) and second order condition (4.12). Suppose the work rate r depends on T so
that (4.3) holds for a fized y > 0. Then for t < sp(y), Xr(t) =0 and for t <y we have Xr(t) = 0
in D[0,y). Furthermore in Dly,c0)

(4.23) /m(T) ( Xr() _ cT<-)) = G()— Cly)

Tm(T)

where cp(-) is given in (4.21) and

G20 V) (g () = G- 6 + [ v = v )

where coo(+) is defined by (4.22) and 1 is from the second order condition (4.12).

So given a work rate r, define y by y = m* (r)/T, and then for ¢t > y, the content Xr(t) is

approximately distributed as
G’(t) e (y)
Tm(T) | ————=— +cr(t) | -
m(T) ( m(T) er(?)

5. GAUSSIAN APPROXIMATION FOR BUFFER OVERFLOW TIMES.

We now apply the results of the previous section to obtain Gaussian approximations to the buffer
overflow probabilities. We begin with the following lemma which is a minor variant of Lemma 3.3.3,
page 45 and Lemma 3.1.4, page 39 of [34].

Lemma 3. Suppose f(-) € C[0,), z,(-) € D[0,00) and g satisfies g(0) = 0, g(oc0) = oo, g is
differentiable and ¢'(z) > 0 on [0,00). Then if {c,} is a sequence satisfying c, — o0

Cn(‘T'rL_g) _>f7

locally uniformly on [0,00), implies

for each v > 0 where

zy (v) =inf{s > 0: z,(s) >~}
We seek to apply this Lemma to Theorem 2. Define

(5.1) doo(s) = cooly +5), Dr(s) = Xr(y +s), s>0.
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From Theorem 2 we get in D[0, 00)

(D) (% _ doo(s)> = H(s),
where
. A yts
H()=Gly+s) - 6w+ [ du=p)s

Lemma 3 yields the consequence that for v > 0

(52) Vi@ ((F2) ) - o)) = i) (5 ) = 260
Observe
(JPJ((;))F(V) =inf{s > 0: Xr(y + ) > Tm(T)7}

=(inf{v > 0: X7 (v) = Tm(T)v} — ¥) L\ _ xp(u)<Tm(T)]-

However, it is unlikely that in [0, y] the process X7 (-) can exceed T'm(T')~y since

Y
P[\/ Xr(u) > Tm(T)y] <Plsr <y, \/ u = sr¥Xr(u) > Tm(T)]

u=0

(since X7 (u) =0 for u < s7)

y
<Ply—e<sr<uy, \/ X7 (u) > Tm(T)y] + op(1)

(since st LY Y)
y
<Ply—e<sr <y, \/ X1 (u) > Tm(T)y]
u=y—e
<P[A(Ty) — A(T(y —€)) = Tm(T)v]

-0,

as T — oo for sufficiently small € > 0 by (2.8).
We summarize this discussion.

Theorem 3. Suppose the assumptions of Theorem 2 hold and set
r(v) = inf{s > 0: Xp(s) > v}
for the first time buffer content exceeds v. Then as T — oo, we have for each v > 0
m(T) (rr (Tm(T)y) — (y + d5(7) = L(),
where L is defined in (5.2) and doo(7y) is given in (5.1) and (4.22).
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6. CONCLUDING REMARKS.

It remains to be seen how useful and accurate these Gaussian approximations will be. We are
currently examining telecommunication packet flow rate data, some of which do and some of which
do not look Gaussian. As remarked in [32] (see also [21]) one has a choice of whether to try
to approximate by Gaussian processes or by jump processes. We will be investigating the fit of
Gaussian processes to data and also seeking alternate approximations.
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