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Given a stationary differentiable in probability process {£(t)}:cr we express the as-
ymptotic behaviour of the tail P{sup,c[ 1]§(t)>u} for large u through a certain
functional of the conditional law (£(1)|€(1) > u). Under technical conditions this
functional becomes the upcrossing intensity p(u) of the level u by £(t). However, by
not making explicit use of u{u) we avoid the often hard-to-verify technical conditions
required in the calculus of crossings and to relate upcrossings to extremes.

We provide a useful criterion for verifying a standard condition of tightness-type
used in the literature on extremes. This criterion is of independent value.

Although we do not use crossings theory, our approach has some impact on this
subject. Thus we complement existing results due to e.g., Leadbetter (1966) and
Marcus (1977) by providing a new and useful set of technical conditions which ensure
the validity of Rice’s formula u(u) = fooo z fe(1),e' (1) (w, 2) dz.

As examples of application we study extremes of R™-valued Gaussian processes
with strongly dependent component processes, and of totally skewed moving averages
of a-stable motions. Further we prove Belayev’s multi-dimensional version of Rice’s
formula for outcrossings through smooth surfaces of R™-valued a-stable processes.

Introduction. Given a differentiable stationary stochastic process {£(t)}+cr there
is, under technical conditions, a direct relation between the asymptotic behaviour
of P{SUPte[o,1] £(t)>u} for large u and that of the expected number of upcross-
ings p(u) of the level u by {&(t)}iefo,1] [e.8., Leadbetter and Rootzén (1982),
Leadbetter et al. (1983, Chapter 13), Albin (1990, Theorem 7), and Albin (1992)].

Under additional technical conditions one further has the explicit expression
(0.1) RICE’S FORMULA: p(u) = / z fe1),er ) (u, 2) dz
0

le.g., Leadbetter (1966), Marcus (1977), and Leadbetter et al. (1983, Chapter 7)].

However, although very reasonable, the above mentioned two sets of “technical
conditions” are quite forbidding, and have only been verified for Gaussian processes
and processes closely related to them. Hence, although conceptually satisfying, the

upcrossing-approach to extremes have neither led far outside ‘Gaussian territory’,
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nor generated many results on extremes that cannot be easier proved by other
methods. See e.g., Adler and Samorodnitsky (1997) and Albin (1992) for outlines
of the technical problems associated with the formula (0.1), and with relating the
asymptotic behaviour of P{sup;c(o1£(t) >u} to that of u(u), respectively.

In Section 3 we show that, under certain conditions on the functions ¢ and w,
(0.2)
P{ sup &(t) >u} ~P{ED) >ul + iP{Q(u)E,(I) > %ES)(;)U ‘5(1) >u} w

t€[0,1] w(u) q(u

as uta=sup{zeR:P{{(1)>z} >0} and )0 (in that order). Note that,
assuming absolute-continuity, the right-hand side of (0.2) is equal to

(0.3) P{&{(1)>u}l + /000 {/Ozfg(l),gf(l)(u-l—qu,z) dy} dz.

If we send z |0 before utd, (0.1) shows that, under continuity assumptions, (0.3)
behaves like P{{(1) > u} + p(u). However, technical conditions that justify this
change of order between limits, and thus the link between extremes and upcrossings,
can seldom be verified outside Gaussian contexts. In fact, since P{SuPte[0,1] E(t)>
u} £ P{&(1) >u} + p(u) for processes that cluster [e.g., Albin (1992, Section 2)],
the “technical conditions” are not only technical! So while (0.2) is a reasonably
general result, the link to p(u) can only be proved in more special cases.

Non-upcrossing based approaches to local extremes rely on the conditions
n Weak convergence (as uTﬁ) of the finite dimensional distributions of the process
{0 —g)—u] | £1)> )},
ﬂ excursions above high levels do not last too long (local independence); and
a certain type of tightness for the convergence in .

It is rare that (w™'[¢(1—qt)— ‘ £(1)>wu) can be handled sharp enough to

verify . Somewhat less seldom one can carry out the estimates needed to prove

Assumption 1. There exist random variables n' and 7" with

0
(0.4) 7"<0 a.s. and limsupE{‘

utd

q(u)z ,,7//
)

w(u

§(l)>u}<oo for some 0>1,

and such that

impl [E0 e —u  £(1)—u gq()tn’ q(w)’ty"
(05) utd {‘ w(u)t w(u)t  w(u)t 2w(u)t

>A‘§(1)>u}=0



for A>0 and t#0.

Further there exists a random variable (' such that, for each choice of A>0,

P{ A+qwt)—u  EL)—u q(u)td

(06) w(u)t w(u)t w(u)t

>)\‘§(1)>u} < Ct)°
for u>u and t#0, for some constants C>0, u€R and p>1.

Of course, one usually takes 7' =¢'=¢’(1) in Assumption 1, where £’'(t) is a
stochastic derivative of £(t). The variable 7 is not always needed in (0.5) [so that
(0.5) holds with " =0], and 7" is not always choosen to be £”(1) when needed.

An infinitely divisible process has representation §(t) = [ . space /£ (&) AM (2)
in law, where f is a deterministic function and M an independently scattered ran-
dom measure. Taking &= [ 2 fi(x) ‘ ., @M (x) when f( is smooth, we thus get

E(l—qt)—u &(1)—u  qt& Q/<f1—qt(39)—f1($)
—_ + -

wit wt wt  w qt

+ S ful@) \t=1> dM ().

Hence we expect Assumption 1 to hold, and the verification can be suprisingly easy.
In Section 2 we prove that (0.6) implies the tightness-requirement |3/, and in
Section 3 that (0.5) can replace the requirement about weak convergence .
Usually condition cannot be derived from Assumption 1. However, by re-
quiring that (0.5) holds for ¢t-values t=t(u)—o00 as utd, it is possible to weaken
the meaning of “too long” in , and thus allow “quite long” local dependence.
This option is crucial for our application to Gaussian processes in Section 5.
In Section 4 we show that a version of (0.6) can be used to evaluate the upcrossing

intensity p(u) through the relation [e.g., Leadbetter et al. (1983, Section 7.2)]
(0.7) p(u) = liJI’Bls_lP{f(l—s)<u<§(1)}.
S

Let {X(t)}ter be a separable m|l-matrix-valued centered stationary and two
times mean-square differentiable Gaussian process with covariance function R(t) =
E{X (s)X (s+t)T}. In Section 5 we find the asymptotic behaviour of P{sup;e( 1
X)TX(t)>u} as u— oo under the additional assumption that

lim inf;_,q ¢4 iﬂf{weRn zl|l=1} xT[I—R(t)R(t)T]x > 0:

This is an important generalization of results in the literature which are valid only

when (X'(1)|X (1)) has a non-degenerate normal-distribution in R™, i.e.,
lim inf;_,q t=2 iﬂf{weRn zl|l=1} xT[I—R(t)R(t)T]x > 0.
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Let {M(t)}+er denote an a-stable Lévy motion with a>1 that is totally skewed
to the left. Consider the moving average £(t) = [°._ f(t—z)dM (z), tER, where
f is a non-negative sufficiently smooth function in L*(R). In Section 6 we deter-
mine the asymptotic behaviour of P{sup;c(o1£(t) >u} as u— oo. This result
cannot be proven by traditional approaches to extremes since the asymptotic be-
haviour of conditional totally skewed a-stable distributions is not known (cf. )

In Section 7 we prove a version of Rice’s formula named after Belyaev (1968) for
the outcrossing intensity through a smooth surface of an R™-valued stationary and

P-differentiable a-stable process { X (¢)}:cr with independent component processes.

1. Preliminaries. All stochastic variables and processes that appear in this paper
are assumed to be defined on a common complete probability space (£2,F,P).

In the sequel {{(t)}icr denotes an R-valued strictly stationary stochastic pro-
cess, and we assume that a separable and measurable version of £(¢) have been
choosen. Such a version exists e.g., assuming P-continuity almost everywhere [Doob
(1953, Theorem I1.2.6)], and it is to that version our results apply.

Let G(z) = P{¢(1) <z} and @ = sup{z €R : G(z) <1}. We shall assume
that G belongs to a domain of attraction of extremes. Consequently there exist
functions w:(—oo,%)—(0,00) and F':(—%,00)—(—00,1) such that

. 1-G(utzw(u))
(1-1) 21{2 1-G(u)

=1-F(z) for z€(—%,00), for some e (0,00].

If G is Type Il-attracted we can assume that 2=—-1, F(z)=1—(142z)~" for
some >0, and w(u)=wu. Otherwise G is Type I- or Type IlI-attracted, and then

we can take =00 and F(x)=1—e"", and assume that w(u)=o(u) with
(1.2) w(u+zw(u))/w(u) — 1 locally uniformly for z€R as uftd.

See e.g., Resnick (1987, Chapter 1) to learn more about the domains of attraction.
In general, the tail of G is the by far most important factor affecting the tail-
behaviour of the distribution of sup;cpo1;€(t). Virtually all marginal distributions
G that occur in the study of stationary processes belong to a domain of attraction.
In most assumptions and theorems we assume that a function ¢ :(—o0, %) —
(0,00) with Q= limsup,;,q(u) < co have been specified. The first step when

applying these results is to choose a suitable g. Inferences then depend on which
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assumptions hold for this choice of ¢. In particular, we will use the requirement
(1.3)  R(A) = limsup,q q(u)/q(u—Aw(u)) satisfies  limsupy o R(A) < oo.
Sometimes we also need a second function D:(—o0,%)—(0,00) such that

(1.4)  D(u)<1/q(u) and limsup,q D(u) =Q7" (=400 when Q=0).

In order to link the asymptotic behaviour of P{SUPte[o,1] £(t)>u} to that of

(€'(1)|€(1) >u), we make intermediate use of the tail-behaviour of the sojourn time
t
L(u) = L(1;u) where L(t;u) = / I(y,a)(€(s)) ds for t>0,
0

and its first moment E{L(u)} = P{{(1) >u} = 1—-G(u). Our study of sojourns,

in turn, crucially relies on the sequence of identities

P{L(u)/q>y}
15)/ E{L(w)/q} dy = E{L }/ P{L(s;u)/q<w, &(s)>u}ds

1 s/q
:/ P{/ Twa)(E(1—qt)) di<z
0 0
1 s/q
=qr —i—/q P{/0 I(u,ﬁ)(ﬁ(l—qt)) A<z

T

§(1)>u} ds

§(1)>u} ds.

In (1.5) the first equality is rather deep, and has long been used by S.M. Berman
[e.g., Berman (1982, 1992)]: See e.g., Albin (1998, Eq. 3.1) for a proof. The second

equality follows easily from stationarity, while the third is trivial.

Convention. Given functions h; and hy we write hy(u) <hz(u) when limsup,,,

(hi(u)—ha(u)) <0 and hi(u)>=hg(uw) when liminf,4q(h1(u)—ha(u))>0.

2. First bounds on extremes. Tightness. In Propositions 1 and 2 below we
use (a strong version of) and . respectively, to derive upper and lower bo-
unds for the tail P{sup,c[ 1;&(t)>u}. When combined these bounds show that

P{supte[o &t )>u} asymptotically behaves like E{L(u)}/q(u) as utd,

except for a multiplicative factor bounded away from 0 and oo. In Theorem 1 we
further prove that (0.6) implies condition in the shape of Assumption 3 below.

Our lower bound rely on the following requirement:
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Assumption 2. We have
1/q(u)
lim limsup/ P{&(1—q(u)t)>u|¢(1)>u} dt = 0.
d=oowti Jdn(1/q(w))
Assumption 2 requires that if £(1) >wu, then £(¢) have not spent too much time
above the level u prior to t=1. Obviously, Assumption 2 is void when £ > 0.
As will be shown in Section 3, Assumption 2 can be relaxed if (0.5) is assumed
to hold also for t-values t=t(u)— oo as ufw. This gives an opportunity to allow

stronger local dependence than is usual in local theories of extremes.

Proposition 1. If Assumption 2 holds, then we have

e q(u)

Proof. Clearly we have

. qu) o1 [PP{L(u)/q>y}
(2.1) hr;#znf WP{;I&)[;J{(??) >u} > llng:lnf 5/0 E{L(u)/q}
_ 1 : “P{L(u)/q>y}
T (1 ) hT&”p/w E{L(u)/g} dy)
for each £>0. Given an £€(0,1), (1.5) and Assumption 2 further show that
: “P{L(v)/q>y}
. |
@) e [ S
1 dA(s/q)
< limsup/ P{/ Iwa)(E(1—qt)) dt>(1—¢€)z f(l)>u} ds
uta Jo 0

1 s/q
-I-limsup/ P{/ Iiy,q) (5(1—qt)) dt>ex 5(1)>u} ds
0 d

uld A(s/q)

1 s=1 pt=s/q
<0+ — limsup/ / P{¢(1—gt)>u|&(1)>u} dtds
€T wta  Js=0 Jt=dn(s/q)

1 t=1/q
<0+ — limsup/ P{f(l—qt)>u|§(1)>u}dt
€L wta  Jt=dA(1/q)

1
<0+ 8—82 for x >d/(1—¢) and d>dy, for some dy>1.
T

Choosing z = dp/(1—¢) and inserting in (2.1) we therefore obtain

(D) 1_( _6(1—6))
1UTafE{L(u)}P{tzl[JbI,)l]g(t)>u}2 o (1-=7) >0 O

Of course, an upper bound on extremes require an assumption of tightness-type:
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Assumption 3. We have

— q(u) {
limlim sup ——————= P4 su t) >u, max
a0 i B{L(u)} tE[OI,)l]g( )2 en omisny

5<akq<u)>3u} 0.

Assumption 3 were first used by Leadbetter and Rootzén (1982), and it plays a
central role in the theory for both local and global extremes [e.g., Leadbetter and

Rootzén (1982), Leadbetter et al. (1983, Chapter 13), and Albin (1990)].

Proposition 2. If Assumption 3 holds, then we have

: q(u)
limsup =—————= P sup &(t)>up < oo.
wta  B{L(u)} {tE[O,l] (®) }
Proof. Clearly we have
. q(u)
limsup —————= P4 sup &(¢)>u
wta  E{L(u)} {te[O,l] (®) }
. q(u) {
<limsup =—————= P93 sup &(¢t)>u, max E(akq Su}
S ELL@} T Lt oL ek

: q(v)
+ hrBTsﬁup B{L()] P{Osrgglzcglﬁ(akq) > u}

Here the first term on the right-hand side is finite (for a >0 sufficiently small) by

Assumption 3, while the second term is bounded by

. q(u) ( -1
limsup — L2 (14+[1/(ag))) (1-G(w)) < Q+a~! < 0. O
naup £ b0 (041 (a)]) (1-6(0)

Assumption 3 is usually very difficult to verify. In fact, no useful direct criteria
for its verification, which do not require knowledge of asymptotic behaviour of
P{supte[()’lﬁ (t) >u}, have been suggested previously.

To prove that (0.6) implies Assumption 3 we recall that if {{(f)}sc[q,p) is sepa-

rable and P-continuous, then every dense subset of [a,b] is a separant for £(t).

Theorem 1. Suppose that (1.1) and (1.3) hold. If in addition (0.6) holds and &(t)

is P-continuous, then Assumption 3 holds.

Proof. Letting A,=Y7_,27% and E,= U,flo{g(aqk2_") >utA,daw} we have

(2.3) P{ﬁ(O)Su, sup () >u+Aaw, §(aq)§u}
t€[0,aq]



oo 2"
P ES, LZJlkL_JO{f(aqk2_”)>u+)\aw}}

IN

{
P{ 5, U2, En |
{

P U;;(En\En_l)}

IN

oo 277 1_

Z Z P{ (aq(2k)2_”)§u+/1n_1/\aw,§(aq(2k+1)2_")>u+/1n)\aw,

/\

¢(aq(2k+2)27") §u+/1n_1)\a'w}

Sni g { £(1— aqj ") — _5(11)1)—u+aq21;"5/<_2_n)\a’ §(1)>u}
+n§:312 k{j { <1+“qj u 5(11)0_" - “qingl < 27", 5(1)>u}
+n§; 223 {aq2wnc’>0,—“q2;ngl>0}

<2 ni; znkglc (27 "a)e P{¢(1) >u)

= o(a) P{£{(1) >u} as alO0.

Consequently it follows that

q(u) { }
2.4 hmsupiP sup &(t) >u+Aaw, [ Jax E(akqg)<u
(24) Bl P, O nax_ €(akq)
< hm sup _aw) P{ sup £(t) >u+Aaw, max _ &(akq) gu}
E{L(w)}  lo<t<(1/(aq)]+1)aq 0<k<[1/(aq)]+1

. q(u)
< llrle%up B{LW)] (1/(aq)]+1) P{&(O) <u, t:[légq]ﬁ(t) >u+Aaw, £(aq) SU}

< limsup (a™ " +q) o(a)

uTd

—0 as al0.
Hence it is sufficient to prove that
AN = limsuplimsupﬂ P{u < sup £(t) < u—l—)\aw} —0 as AJO.
alo uta E{L(u)} t€[0,1]

Put a=u—Alaw, w=w(d) and §=q(@&) for a,A>0. Then we have [cf. (1.2)]

u = u+Aaw > ﬁ—i-%)\au? and w=u+daw < u+2\aw



for w sufficiently large. Combining (2.4) with (1.1) and (1.3) we therefore obtain

A(N)

1-F(— q
< lim sup lim sup R(Aa) ( (=Aa)) P{ sup £(t) >+ 3 Aaw, 0<max &(akg)<u }

al0 utd E{L(u)} te[0,1] <agk<1
+ lirilfoup 11I21Tsﬁup R(Aa )]é{L( ()} Aa)) q P{u < O<1rralgx<1£(akq) < €L+2)\a12)}
-F
<0 + lim sup lim sup R(Aa) (1 (“Aa)) P{u<£(0 <u+2)\aw}
al0 utd a(1-G(u))
2
< (lim sup m(a)) (lim sup F(2)a) )
al0 al0 a

— 0 as A|0. O

3. Extremes of P-differentiable processes. We are now prepared to prove
(0.2). As mentioned in the introduction, we want the option to employ a stronger

version of (0.5) [(3.1) below] in order to be able to relax Assumption 2 [to (3.2)]:

Theorem 2. Assume that there exist random variables 1’ and 71" such that

(3.1)

lim

D) { £( 1+q wt)—u  EL)—u gty q(u)’*n”
uti Jq (u t

)t w(u w(u)t  2w(u)t

>/\‘§(1)>u}20
for each A>0 [where the function D(u) satisfies (1.4)]. Further assume that

1/q(u)
(3.2) limsup/ P{e(1—g(u)t) >u|£(1) > u} dt = 0.
uti D(u)

If in addition (0.4), (1.1), and Assumption 3 hold, then we have

limsuplimsup( (u) + — P{ awn’, %5(1)_)“ ‘5(1)>u}> < 0.

20 utd w(u) w(u

As 10 we further have

/

Q(u))}P{ sup E(t)>u}—q(U)—lP{q(u);7 2%5(1)—)1; ‘5(1)>“}

— 0.
E{L( te[0,1] x w(u w(u

hm sup

Proof. Choosing constants &, A>0, (1.5) and Markov’s inequality show that

1/’” P{L(u)/q>y}

B3 %) TBLw/g




£(1) >u} ds

1 [ s/a 1—qt)—
:_/ P / Im,w(M) it <z
Z J qa 0 w

1 1 D/\(S/q) 1 _ t / 2t2 n
< —/ P{/ I(,\E,OO)<§( )mu _gtn gt )dtS(1+6)x 5(1)>u}ds
Z J qa 0 w w 2w
1 1 D 1) — t / 2t2 i 1—gt)—
+—/ P{/ I(Aeoo)<£() v_@¢m, geh _&l=q) u)dtZsa: §(1)>u}ds
z Jo 0 ’ w w 2w w
1 1)— 1 / 2 1 2.2 .11
j_P{S( u_ g(te)zn’  ¢*(+e) sy < e 5(1)>u}
z w w 2w
1
+—/ ds
L J{s€lqz,1]: (14+e)z > DA(s/a)}
1 1)—
+—P{§()7u§)\a‘§(1)>u}
z w
11 [P 1)— tn'  ¢*t2n" 1—qt)—
L1t P{&() u_gtn'  ¢*n" €0 -qt) %S 5(1)>u}dt
T ex )y w w 2w w

for 0<z<Q~!'. By (0.4) and (1.1), the first term on the right-hand side is

1 fan  1-6 £(1)-
< — —_—>
< a:P{ v (1+€)2x ” (I)>u
1 —u  xBe=1)/(20) 1-6 £(1)—
— — <
* a:P{ 1+e) 2$ (1+e)x (14+€)2x w §(1)>u}
+lp{ 2(1+€ " e1/e) >u}
xr
1 E(l)—u Ae 1 5(1
l <
+$P{ 19z w (1t = (1+e)z §1)> }
Lofan' o 1-6 £(1)—
<-p{il >
- xP{ w — (1+e)?z w 1) >u
N F((1+5)$(39—1)/(2g)/5)
T
1 (1+€)2Qx2g q2 nll Q
z 2B P\ Zw | S0
+ EAU+e) o seo,1).

xz

Further the second term in (3.3) is <Qe for D> (1+¢)x, the third ~F(Xe)/z
by (1.1), and the fourth <0 by (3.1). Taking Z = (1+¢)?z/(1-6), (3.3) thus give

€1)>u

w T w

T

1 (*P{L(u)/q>y} Lofan  1E()—u
/o B{L(w)/g ¢ "P{ ;
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1-6 (1 (*P{L(u)/q>y} , 1 _faqn 1-6 €(1)—u "
<z (e, TEitty P e €02 u)
1-6 1 ["P{L(v)/q>y}
=i et
1-0 F((1+e)zGe-D/ o))
= 4oy .
1-¢ 20..(0-1)/2 12 *n"|*
+(1+6)2 (1+4¢)2egleV)/ hISTS'&upE{ 0 §(1)>u}

1-6 F(A(1+4¢))
* (14¢€)? x
1-6

+ RERSE Qe
1-5 F(Xe)
(14+€)?2 =z
1-6 (14e)z—-(1-6)z .. g “w .
(1+¢)2 (1-0)z M Sup B 7 () P{te[(fl]g(t) >u)

=0 as €10, A0, z/0 and 6|0 (in that order),

where we used Proposition 2 in the last step. It follows that

(3.4)
: : 1 (*P{L(u)/q>y} 1 fan' _1&6(1)—u "
imawtimeny(; [ gt a0 P ewsa]) <o

To proceed we note that (3.2) combines with a version of the argument (2.2) to

show that, given an >0, there exists an ug=ug(¢) <@ such that

/01[/3/" p{g(1—qt)>u|5(1)>u}dt]dss<c:2 for u€luo, ).

Dn(s/q)

Through a by now familiar way of reasoning we therefore obtain

2, B
> %/113{/0“(8/(1)1(0,00) (W) dt <(1—€)z 5(1)>u} ds
_ %/Olp{/;:l/q)l(u,ﬁ) (E(1—qt)) dt >ex £(1)>u} ds
> 1;” P{/()DI((,’()O)(%) dt <(1—e)z 5(1)>u}
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11 1 [/S/q P{t(1—gt)>u | £(1)>u} dt} ds

T &L Jo L/DA(s/q)
1— D £(1)— tn' 242 1t
- qup{/o I(_,\E,OO)< (Q)U “—qw” +q2w" )dt§(1—2e)x g(1)>u}
1 b E(1—qt)— £(1)— tn 242 !
_EP{/O Iuw)(( 5)) u (1)0 u+qwn _qun )dtm £(1)>u}
11,
Czex
> 1—qu{§(1)—u_ qg(1—2e)zn’ < 5(1)>U}
x w w
D ! "
11 P{{(l—qt)—u_ﬁ(l)—u+qt77 _ @t > e f(l)>u}dt
T ex )y w w w 2w
€
22
l—qz _[qn L 1)
= x P{? (1-2¢)2xz w ‘5(1)>u}
1 1 E(l)—u Ae 1 E(1)—u
Tz {(1—25)3: w (1-20)z = (1-26)%z  w 5(1)>“}
l—qz fqn' 1L {1)-wu F(3M1-2)) e
= x P{? (1-2¢)2z w §(1)>u}— x a2

for 0<z<0~! and 0<e<j. Consequently we have

: g g’ 1 €&1)—u .
E{L(“)}P{tgl[%)]?1]£(t)>u} 1 (1—28)233P{w 2(1_2&-)23C w £(1)> }
imi 1 1 [“P{L(uw)/q>y}
th?i#hnf(1—qa:)(1—2&:)2(E/O E{Lw)/g Y1
1—qz [ qn 1 £(1)—u
oz P{;Z(l—%)% w §(1)>u}>

(g e ) B T 0

F(3A(1-2¢)) £

Z (0 (1-20%0  (1-0) (1267

_Q$(1—26)2+4é‘(1—€) N q “ "
e 2r By LR 0>

—0 as €10, A\J0 and x2]0 (in that order),
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where we used Proposition 2 in the last step. Hence we conclude that

(3.5)
hmlnfhmmf(L)}P{ sup E(t)>u}—q alcP{qn 1e)—u £(1)>u}) >0,

z]0 uld E{L( te[0,1] w T w

which in particular (again using Proposition 2) implies that

£(l)>u})

e >“} RO >“}>

1 1
(3.6) hmsuphmsup(q+ P{qn f( )—

z]0 uti w x w

1 1 1)—
<hmsuphmsup<q+ P{qﬂ f() U

z]0 uti w z w
q

—{—hmsupiP sup &(t)>u

By L, 0>

< Q.
Using (1.5), (3.4) and (3.6) we readily deduce that

(3.7)  limsuplim sup

L u T max a u
nsuplimsup )}P{L< Va<z, € kq>>}

0<agk<1
< lim sup lim sup 7 Uga:q)]P{L(akQ' u)/q<z, &(akq) >u}
T oo wte E{L(w)} o T
[1/(aq)]
§1ir2¢soupliIBT§1upaE{L 7 Z /(k 1)qP{Ltu g<z, &(t) >u}dt

< lim sup lim su /P L(t;u)/q<=, >urdt
< lim sup umpaE{L T {L(t;u)/q<z, £(t)>u}

< lim sup lim sup
z]0 uta @

x<x/ P{EL{%()Jf/:}y}dy‘ "P{wl 2

*lew>u})

Further a calculation similar to (3.3)-(3.4) combines with (3.6) to reveal that

£1)>u})

1 7 1
—}-hmsuphmsupx (q-i— P{ 6( )=
=0 utd x w o w

<0.

(3.8) limS}lpP{L(u)/qu | £(1)>u}

uti
1/q 1—at)—
— limsupP{/ I(O’w)<m) dt <z §(1)>u}
utd 0 w
dA(1/a) 1) '
< limsupP{/ I(Awo)(g( )—u _gtn )dt <(1+€)x 5(1)>u}
utd 0 w w

13



d !
+limsupP{/ I(xe,00) <§(1)—u _an f(l—qt)—u) dt >ex 5(1)>u}
utd 0 w w w
< 1imsupP{£(1)_“ _al+e)n ‘ £(1) >u} + F()e)
uli w w
d /
—i—limsupi P{{(l)—u _ gty &d=—at)—u > e 5(1)>u} dt
ute €T Jo w w w

< limsupP

utd

—0 as €10, A\]0 and z]0 (in that order).

{q_77'> 1 &) —u

T e Ot 6> + FAG+e) + FO)

In view of the obvious fact that

P {sup,¢po,y) &(t) >u}

< 2 [ e{trrm>npof mu ean>u}o{ s 60>}
< i/OmP{L(U)/Py} dy

+P{L<u)/qs:c, 0 égggSlﬁ(akqbu}

+P S t)> s a. ak Su ,
{050 e =]

Assumption 3 combines with (3.4) and (3.7)-(3.8) to show that
(3.9)

- - q 1o fan' 1€6M)—u
hmsuphmsup<7P sup {(t)>up—q— —P{—z—i
e (g PR E0> e P 2

éw>u})
éw>u})

P{L(U)/qéfv, 033%15(&@) >U}

w xz w

B{L(w)/qg} Tz

+ lim sup lim sup lim sup _ 7
al0 zl0 utd E{L (U) }

+ limsuplimsup ¢ P{L(u)/q<z | {(1) >u}
zl0 utd

< lim sup lim sup
z]0 utd

(1/wP{L(U)/Q>y}d ~ lp{q_”’zlﬁ(l)—u

. . q
+11msuphmsup7P{ sup &£(t)>wu, max &(akq §u}
PP B it i R
<0.
The theorem now follows from the inequalities (3.5)-(3.6) and (3.9). O
In Theorem 2 the absence of Assumption 2 disallowes use of Proposition 1.

However, if we do make Assumption 2, then a stronger limit theorem can be proved:

14



Corollary 1. Suppose that (1.1) and (1.3) hold. If in addition Assumptions 1 and
2 hold, and &(t) is P-continuous, then the conclusion of Theorem 2 holds with

lim inf hmmf( () + ~ p{ a(wn' 1 €01)=

z]0 utd xz ( ) x QU(U)

£(1) >u}> > 0.

Proof. By Theorem 1, (0.6) implies Assumption 3. Moreover (0.5) implies that
(3.1) holds for some function D(u) — Q=1 (sufficiently slowly) as u 1 4. Since
Assumption 2 implies that (3.2) holds for any function D(u)—Q~!, it follows that
the hypothesis of Theorem 2 holds. Further (3.9) and Proposition 1 show that

1)>u})
‘_:‘5“””} W) tﬁ&“”>@>

+ hrﬁhnf m P{tzl[l()y?l]f(t) > u}

1 1 €(1)—
11m1nf11m1nf<q+ P{_nZ_S() U
w

z]0 uld

1 77'
> liminfliminf{ ¢+ — P >
w

z]0 utl

>0. O

4. Rice’s formula for P-differentiable stationary processes. In Theorem 3
below we derive two expressions for the upcrossing intensity of the process {£(¢) }ter
in terms of the joint distribution of £(1) and its stochastic derivative ¢’(1). Our

result is a useful complement and alternative to existing results in the literature.

Theorem 3. Let {£(t)}ier be a stationary process with a.s. continuous sample

paths. Choose an open set UCR and assume that
&(1) has a density function that is essentially bounded on U.

(i) Assume that there exist a random variable ' (1) and a constant 9>1 such that

(4.1) lim esssupE{‘g(l)_g( 8)=s€(1) ‘f 1)= y} feqy(y) =0,

SJ,O yeU S

and such that

w2 hmE“an—aLﬂrﬂsaw}za

sl0 S

Then the upcrossing intensity p(u) of a level u by £(t) is given by
(4.3) p(u) = liﬁ)ls_lP{E(l)—sg'( )<u<€(1)}  for uel.
S

15



(ii) Assume that there exist a random variable &'(1) and a constant 9>1 such that

§1)—¢(1—s)—s

S

(4.4) lim esssup E{ ‘

¢'(1) ‘0‘ 5(1):y} fey(y) =0 for uel.

Then the upcrossing intensity p(u) is given by (4.3).
(iii) Assume that (4.3) holds and that E{[¢'(1)T]} <oco. Then we have

> lim i ue<S§<iBf+eP{§l(1)>x | €)=y} fey (y) dx

w(u) ~ for uel.

<lim [ esssup P{&'(1)>z | &(1)=y} fer)(y) da
el0 0 u<y<ute

(iv) Assume that (4.3) holds, that there exists a constant p>1 such that
(4.5) ess sup B{[E'(1)"]¢ | £(1) =v} feqn) () < oo,
ye

and that E{[¢'(1)T]} <oo. Then u(u) is finite and satisfies

el0 u<y<u-te
(4.6)  p(u) for uel.

g/ lim esssup P{¢'(1)>x | £(1)=y} feq)(y) do
0 &0 u<y<ute

z/oonm ess inf P{&'(1)>z | )=y} fey(y) da
0

(v) Assume that (4.3) holds, that there exists a constant p>1 such that

(4.7) essfng{[ﬁ’(1)+]9| E(D)=y} feay(y) <oo  for uel.

Then u(u) is finite and satisfies (4.6).
(vi) Assume that (4.6) holds and that (£(1),£'(1)) has a density such that

f;ofg(l)’gl(l)(u,y) dy  is a continuous function of weU for almost all x> 0.

Then p(u) is given by Rice’s formula (0.1) for each ueU.
(vii) Assume that (4.6) holds, that

&(1) has a density that is continuous and bounded away from zero on U,
and that

(€(1),€'(1)) has a density fe1),er1)(w,y) that is a continuous function of uwelU

16



for each y>0. Then p(u) is given by Rice’s formula (0.1) for each ueU.

Proof of (i). Using (0.7) together with (4.2) and (4.3) we obtain

(4.8)  p(u)

= liri%)nf sTTP{¢(1-s)<u<€(1)}

PR 1 / 6(1)_/“
< hrﬁ%)nf; P{§ (1) > (1_)\)T’ §(1)>u}

+ limsup s~ ' P{u<&(1) <u+ds}
sl0

+ lim sup E P{g'(l) < (1—)\)6(1)%

, E(1—5) <u, u+ds<(1) §u+g}
s{0 S

+ lim sup E P{f'(l) < (1—)\)6“(1)7_“
s{l0 S S

,5(1—8)<’U,, £(1)>U+€}
I | ’ 5(1)—11
< T hrﬁbnfg P{§ (1) > >—, 5(1)>u}

S

+ 0 limsup esssup fe(1)(y)
510 u<y<u+ds

e/s _ —s)—g¢!
Fimap [ pf S0 600

> \x
sl0 S

£(1) =u+:vs} feqy(u+xs) dx

sl0 S s s

+ lim sup 1 P{ﬁ(l)—g(l—s)—sg’(l) S )\6}

< 1:\ 11%31% P{§’(1) S E=u >u}

S

+ 6 limsup esssup fe1)(y)
s{0  u<y<u+ds

sl0  u<y<u-+te S

+ limsup esssup E{ ‘ £(1)—&(1—s)—s&'(1) ‘9

e/s T
5(1)=y} fg(l)(y)/(S (;lx)g

sl0 g S

1 1)—&(1—s)—s&'(1
timaup L S-S0 1))
1 1)—
— limi%nng{f’(l) > E()TU’ 5(1)>u} as A0, €J0 and 6]0.
The formula (4.3) follows using this estimate together with its converse

(4.9)  p(u)

slo S S

> Jim sup — P{f’(l) > aenE=e 5(1)>u}
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— limsup s~ ' P{u<{(1) <u+ds}

sl0

— lim sup % P{g'(l) > (1+)\)€(1)T_u, E(1—s)>u, u+ds<€(1) Su—l—s}
sl0

— limsup % P{g’(u > (1+A)5(1)T_“, £(1—8)>u, £(1) >u—|—s}
sl0

> 15 1insl¢soup%P{§'(1) > 5(11_u, 5(1)>U}

— 6 limsup esssup fe(1) ()
sl0  u<y<u+ds

e/s AT /
- limsup/ P{§(1 8)=E(M)+s&(1) > Az ‘ 5(1):u+:cs} feqy(u+xs) do
s

sl0 S

1
— lim sup — P{
sl0 S

S0 E ), de)

S S

§1)—u

1
—>limsup—P{§'(1) >

5 ,£(l)>u} as Al0, €/0 and 6]0. O
sl0

Proof of (ii). When (4.4) holds we do not need (4.3) in (4.8), because the estimates
that used (4.2) and (4.3) can be replaced with the estimate

lim sup E P{§’(1) < (1—/\)5(1)—_u,
sl0 S s

E(1—s)<u, £(1)>u+53}

< lim sup /oo P{g(l)—g(l—s)—sﬁ’(l) > Az §(1):u+a:s} feqy(utxs) do
s10 5 S
. £(1)—€(1—s)—sg'(1) e _ > _do
Shril&up es;fblpE{‘ . ‘ ‘&(1)—!/} fg(l)(y)/6 )2
=0

In (4.9) we make similar use of the fact that [under (4.4)]

lim sup E P{&'(l) > (1+)\)§(1)T_u, E(1—s)>u, §(1)>u+5s}

sl0 S

< lim sup /wP{g(l_s)_g(l)_{_Sg(l) > A\ ‘ §(1):u+ws} feqy(utzs) d
5

sl0 s
=0. O

Proof of (iv). Since E{[¢/(1)T]} < oo there exists a sequence {s,}52; such that

P{¢'(1)>[snv/|In(sn)[]7'} < sn/v/|In(s,)| for n>1 and s,l0 as n—oo.
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Using (4.3) and (4.5) we therefore obtain

(4.10)  pu(u) = nminflp{g'u) Ol g(1)>u}

sl0 S S

[sny/11n(sn)]]
< lim sup/ P{{(1)>x | (1) =u+zsn} feq)(utwsy,) dz
0

n—oo
+ limsup s;; ! P{ﬁ'(l) > [sny/ | In(sy,)| ]_1}
n—oo
< / esssup P{¢'(1) >z [£(1) =y} feqy(y) da
0 u<y<u-+te
+ limsup 1/+/|1In(sy,)| for each ¢>0.
n— 00

On the other hand (4.3) alone yields

A
p(uw) > lim limsup/0 P{¢'(1)>z | £(1)=u+azs} feq)(utazs) do

A—o0 s0

A

ZAli_{noo i ue<ss<iE£EP{§'(1)>a:|§(1):y}f§(1)(y) dz for each £>0. O

Proof of (iv). When (4.5) holds the estimate (4.10) can be sharpened to

A
(4.11) p(u) < limsup/0 P{'(1) >z | (1) =u+zsn} feqr)(utwsy,) do

n—o0

/ /TG B (g (1) ]2 £(1) =u-+a5,)

A x?

+ lirrlrlsolip snt P{E'(1) > [spy/|In(sn)| ]}

+ lim sup

n—0o0

fg(l) (u-i—wsn) dx

A
< / lim esssup P{¢'(1)>= ‘ EW) =y} feqy(y) da
0 €l0 u<y<u+e

,1d_x

xre

[sn/|In(sn)|]
+ lim sup ess sup E{[S'(1)+]9 | £(1) :y} fey(y) /A

n—00 yeU

+ limsup 1/4/]In(s,)|

n—0o0

—>/ lim esssup P{¢'(1) >z ‘ 5(1)=y}f€(1)(y) dr as A—0
0 &0 u<y<ute . g

< o0 foreach A >0
Proof of (v). When (4.7) holds, one can replace the estimates of s,*P{¢'(1) >
[sn+/|In(s,)[]7'} in (4.11) [that uses E{[¢/(1)]} < oc] with the estimates

limsup/ P{(1) >z | (1) =u+tas} feq)(utazs) do
510 Jsy/Im(e)] ]
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. > dzx
< limsupesssup B¢/ (1)) €)=y} fen) [ do
0 y>u [sy/Tn()[1-

=0. O

Proof of (vi) and (vii). The statement (vi) follows from (4.6). The theorem of
Scheffé (1947) shows that the hypothesis of (vi) holds when that of (vii) does. O

Example. Let {£(t)}ter be a mean-square differentiable standardized and sta-
tionary Gaussian process with covariance function r. Then we have

E{‘ﬁ(l)—é(l—s)—s{’(l) H 6(1)=y}f5(1)(y)

S

< 20 [E{ ‘ r(s)€(1)—&(1—s)—s&'(1)

1—
p g} + ‘#‘QM"} fe(y)
[since 7(s5)£(1)—&(1—s)—s&'(1) is independent of £(1)], so that (4.4) holds [since
r'(0)=0]. Further (4.7) holds [since ¢'(1) is independent of £(1)]. Hence Theorem

3 (ii), (v) and (vii) show that Rices’s formula holds when £’(1) is non-degenerate.

5. Extremes of Gaussian processes in R” with strongly dependent com-
ponents. Let {X(¢)}icr be a separable n|l-matrix-valued centered stationary and
two times mean-square differentiable Gaussian process with covariance function
(5.1)

R>t ~ R(t) = E{X(s)X (s+t)T} = I+r't+3r" 2+ Lr" 3+ Lr@)tt 1 o(t*) € R,

as t—0 (where I is the identity in R, ,): It is no loss to assume that R(0) is diag-
onal, since this can be achieved by a rotation that does not affect the statement of
Theorem 4 below. Further, writing P for the projection on the subspace of Ry,
spanned by eigenvectors of R(0) with maximal eigenvalue, the probability that a
local extrema of X (t) is not generated by PX(t) is asymptotically neglible [e.g.,
Albin (1992, Section 5)]. Hence it is sufficient to study PX(t), and assuming (with-
out loss by a scaling argument) unit maximal eigenvalue, we arrive at R(0)=1.

To ensure that {X(Z)}4cjo,1] does not have periodic components we require that
E{X®X®)T|X(0)} =I-R(t)R(t)T is non-singular.
Writing S, = {ZGR.”H : sz:l}, this requirement becomes
(5.2) infyes, T [I-R(t)R(t)T]z >0  for each choice of te€(0,1].
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The behaviour of local extremes of the y2-process £(t) = X ()T X (¢) will then
depend on the behaviour of I—R(t)R(t)T as t—0.

Sharpe (1978) and Lindgren (1980) studied extremes of x?-processes with inde-
pendent component processes. Lindgren (1989) and Albin (1992, Section 5) gave

extensions to the general ‘non-degenerate’ case when (5.1) and (5.2) hold and
(5.3) liminf, ot~ 2infyes, 7 [I—R(t)R(t)T]z > 0.

Using (5.1) in an easy calculation, (5.3) is seen to be equivalent with the requirement
that the covariance matrix r'r'—r"” of (X'(1)|X (1)) is non-singular.

We shall treat y2-processes which do not have to be ‘non-degenerate’ in the
sense (5.3). More specifically, we study local extremes of the process {£(t)}¢cio,1,

satisfying (5.1) and (5.2), under the very weak additional assumption that
(5.4) liminf, ot *infyes, 7 [I-R(t)R(t)T]z > 0.

Now let x™(-) denote the (n—1)-dimensional Hausdorff measure over R,);.

Theorem 4. Consider a centered and stationary Gaussian process {X (t)}ier in

Rnj1, n>2, satisfying (5.1)-(5.2) and (5.4). Then we have

. 1
6:5)  Jim — XRS5 P{tzl[t[,)l]X(t)TX(t) >u}

— 1 T [l ol __ pall d’in(z)
_/zesn 27T\/z [r'r! =71z i (8,)

Proof. The density g and distribution function G of £(t) = X (t)T X (t) satisfy
g(z) = 2_”/211(%)_1az:("_2)/2e_”ﬁ/2 for x>0

(5.6) )

1-G(u) ~ 2_("_2)/2F(%)_111("_2)/2e_“”/2 as u—00

Consequently (1.1) holds with =00, F(z)=1—e"" and w(u)=2.

To verify Assumption 1 we take 7'=¢'=2X(1)TX'(1) and 7" =4X1)T(r"-
r'r') X (1). Since r’ is skew-symmetric, so that X (1)T+/X (1) = 0, we then obtain
(6.7)  &(1+t) - &) —tn
= | X(14+t)-R()"X1)|I>+ 2X ()" R(t) [X (1+t)— R(t)"X (1) —t X'(1)—tr' X (1)]

—2X()TI-RM][tX'(1) +tr' X (1)]
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—2X()T[I-RR®)T]X(1).
Here the fact that E{X (1+#)X'(1)T} = R'(—t) = —R'(t)T implies that
(5.8) X(14+t)—R#)TX(1) and X'(1)+7'X(1) are independent of X (1).
In the notation Var{X} = E{X XT}, (5.1) implies that

{ Var{X (1+t)—R(t)"X (1)} = (r'r'—r") >+ o(t?)
(5.9)

Var{[I-R(t)|[tX'(1) +tr' X ()]} = ()T (' =)' t* + o(t*) .

Using (5.1) together with the elementary fact that r(#) is skew-symmetric we get

(5.11)  Var{R®)[X(1+t)-R®)TX(1)—tX'(1) —tr'X(1)]}
< 2Var{R(t)[X (1+t) — X (1) -t X'(1)]} + 2Var{R(#) [[-R®)") X (1) — tr' X (1)]}

— %(T(iy)-i-T'” ”)t4 (t4).
Noting the easily established fact that r”7'=7r'r"" we similarly obtain
(5.10) XW)TI-RHRHTIXQ) = XO)T[(r'r' ="+ O] X (1).

Putting g¢(u)=(1Vu)~'/? and using (5.7)-(5.11) we conclude that

(5.12) {‘5 1+qt) v_ (Bt_“ - q;il >)\‘§(1)>u}

At
2n

+e{ixwi> 4 }P{x@iP>u)

< ip{ ‘ (X(1+qt)—R(qt)TX(1))

+ ZP{‘ (R qt)[X (14qt) — R(gt)TX (1) — gt X'(1) —qtr'X(l)]). >

ey
+ [ X)7 11— Rt REa)x 0] > 5} [{IxX )P u)

< K; exp{—Ks(u/t)}

A3
dnu

+ZP{‘([I R(qt) [th’(1)+qt7“'X(1)]).

(2
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< K3 |t]? for u>wup and |t|<tp,

for some constants K, Ka, K3, ug,to > 0. Hence (0.6) holds with C = K3Aty?
By application of Theorem 1 it thus follows that Assumption 3 holds.
Choosing D(u)=(1Vu)i and using (5.7)-(5.11) as in (5.12) we obtain

{‘f 1+gt)—u £(Bt—u ~ q;z _ q;tizﬂ > A ‘ §(l)>u}
B
-|-P{||X >vV2u} /P{IX D)7 >u}
+iP{‘<[I R(qt)][qt X'(1) +qtr’ X(l)]) ‘ 4\/)\2tn—u}

+ P{‘X(l)T <I—R(qt)R(qt)T—l— [r"—r'r’]qth)X(l)‘ > )\Z}/P{”X N?>u}

< K4 exp{—K5u®/8} for |t|<D(u) and u sufficiently large,

for some constants Ky, K5>0. It follows immediately that (3.1) holds.

Now assume that r'r'—r" =0, so that the right-hand side of (5.5) is zero. Then
(5.9) and (5.10) together with (5.12) show that (0.6) holds for some g¢(u)=o(u~'/?)
that is non-increasing [and thus satisfies (1.3)]. Hence Theorem 1 and Proposition
2 imply that also the left hand side of (5.5) is zero. We shall therefore in the sequel
without loss assume that /v’ —r" #0.

In order to see how (5.5) follows from Theorem 2, we note that

1 2 dK™
Fe,er)(y:2) = o eXP{— : _T,,]x} K:(éﬁ 9(y).

c€S, /8T T [r'r —r 8y T [r'r!

[See the proof of Theorem 6 in Section 7 for an explanation of this formula.] Sending

u— 00, and using (5.6), we therefore readily obtain

o 2 2 k"
/0 [/O fe.e(utzqy, 2) dy} dz ~ /ZES or \/UZT[T’T’—T”]Z H:(S(i)) 9(u)

A dm”(z) 1-G(u)
/zesm\/z [rir!—r (S )
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for >0. In view of (0.3), (5.5) thus follows from the conclusion of Theorem 2.
In order to verify the hypothesis of Theorem 2 it remains to prove (3.2). To that
end we note that [cf. (5.7)]

(5.13) E(1+t) — (1) = | XA+ —R®TX (D)
+2X()TR(#) [X(1+t)—R(t)TX (1)]
—2X()T[I-R@)R()T] X (1).
Conditional on the value of X (1), we here have [recall (5.8)]
(5.14) Var{X(l)TR(t) [X(l—i—t)—R(t)TX(l)]}
= X()'R(t) [I-R(®)TR®)] R(t)" X (1)
= X()T ([I-ROR®T) - [I-RORGT] [I-RERMHT]T) X(1)
< X' I-RHRM)T] X (1),

Since [by (5.4)] zT[I-R(t)R(t)T)x > Ket* for €S, and |t| <1, for some
constant Kg>0, we have X (1)T[I-R(qt)R(qt)T)X (1) > Keu/* when || X (1)||2>
u and te€[D(u),q(u)]. Using this estimate together with (5.13) and (5.14) we get

P{(1—q(u)t) > u E(1) > u)
2P{§(1—q(u)t) >¢(1)>ulg(1) >u}

IN

< 2P{HX(1+t)—R(t)TX(1)H2 > X(WTI-RORM®T]X(1) ‘ ||X(1)||2>U}

—|—2P{N(O,1) > /XTI~ RORHT] X (1) ‘ ||X(1)||2>u}

<23 p{|(ravo-norrw) | 557

[ 2n

+2P{N(0,1) > v/ Kgu'/*}.
It follows that (3.2) holds. O

6. Extremes of totally skewed moving averages of a-stable motion. Given

an a€(1,2] we write Z€S,(0,0) when Z is a strictly a-stable random variable

with characteristic function

(6.1) E{exp[i0Z]} = exp{—|0|*c*[1—iBtan(ZP)sign(d)]}  for 0 €R.
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Here the scale 0 =0z >0 and the skewness =z € [-1,1] are parameters.
Further we let {M(¢)}+er denote an a-stable motion that is totally skewed to the
left, that is, M(t) denotes a Lévy-process that satisfies M (t) € S,(|t|*/®, —1).

For a function g:R—R we write ¢¢® = sign(g)|g|®. Further we define
(9)= [T g(z)de for gel'(R)  and  |lglla = (lg|*)"/* for geL*(R).
It is well known that [e.g., Samorodnitsky and Taqqu (1994, Proposition 3.4.1)]

(6.2) Je9dM € Sa(llgllas —(9')/llglls) ~ for ge€L*(R).

Given a non-negative function f € L*(R) that satisfies (6.4)-(6.8) below, we

shall study the behaviour of local extremes for the moving average process
(6.3) ¢(t) = separable version of [*_f(t—z)dM(z) for teR.

Note that by (6.2) we have &(t) € So (|| f]las—1), so that {£(t)}ier is a stationary
a-stable process that is totally skewed to the left [i.e., B¢4)=—1 for each t€R].

Example. When a=2 the process £(t) is centered Gaussian with covariance func-
tion r¢(7) = E{¢(t)¢(t+7)} = [Zo f(t+z) f(z) dz. Conversly a centered Gaussian
process £(t) such that r¢ €L'(R) has the representation (6.3) in law where f(x)
=12®) [0, e\ /R(0)df and R(0)= o[22 e ®Tre(7) dr is the spectral density.

In Albin (1993) we determined the behaviour of local extremes P{SUPte[0,1] X(t)
>u} as u—oo for the totally skewed a-stable motion itself X (¢)=M(t), and
for the Ornstein-Uhlenbeck process X (t) = e~t/*M(et) =4 fiooe_(t_m)/a dM (z).
These processes are easy to deal with since multivariate probability estimates can
be reduced to univariate ones using independence of increments for M (t).

In Albin (199871) we derived upper and lower bounds (that are not asymptotically
sharp) for extremes of a quite general totally skewed a-stable process.

Here we will determine the exact tail-behaviour of local extremes for the process
£(t) in (6.3) by means of verifying that it satisfies the hypothesis of Corollary 1.

Note that traditional approaches to local extremes [e.g., Albin (1990, Section 2)]
rely on weak convergence as outlined in . They cannot be applied to the process
£(t) because the behaviour of conditional totally skewed a-stable distributions is
not known. [There is also an approach by Cramér (1965, 1966) based on the first
and second moment of the number of upcrossings: This approach cannot be used

because nothing is known about such a second moment for an a-stable process.]
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Remark 1. Extremes for a-stable processes { X (t)}:cx that are not totally skewed
[so that Bx ;) >—1 for some t€ K| are well understood: By the works of de Acosta
(1977, 1980), Samorodnitsky (1988), and Rosinski and Samorodnitsky (1993)

the limit limy 0o uP{sup,c g X (t)>u} = L exists.

Further L>0 iff. K is non-empty, while L<oo iff. {X(¢)}+cx is a.s. bounded.

In order to verify the hypothesis of Corollary 1 we have to assume that

(6.4) f  is absolutely continuous with derivative f’€L*(R)
6.4 .
f' is absolutely continuous with derivative f” € L*(R)

Further we require that f ‘obeys its Taylor expansion’ in the sence(s) that

65 Jm (2 [f+) - FO -t FOPFOT) =0
:0'

87

(6.6)  lim [t [f(t+) = () = /()= 32 FC)]

To ensure that Taylor expansions of £(t) are totally skewed we impose the condition

(6.7) sup  |f(t+a) — f(x) —tf'(x)|/ [ f(z)] <oo  for some &> 0.
(t,z) € (0,6]xR

Finally non-degeneracy is guaranteed by requiring (recall Minkowski’s inequality)

(6.8) infy e 0,07 (211 flla— IF E+)+F(s+)la) > 0.

The conditions (6.4)-(6.8) may seem restrictive, and can be tedious to actually
verify. Nevertheless, they do in fact hold for virtually every non-pathological two

times differentiable function f in L*(R) that is locally bounded away from zero.
Example. The functions f(z) =e™® and f(z)= (1+22)"" satisfy (6.4)-(6.8).

Theorem 5. Consider the process £(t) given by (6.3) where feL*(R) is non-
negative with || f|le > 0. If (6.4)-(6.8) hold, then there exists a constant Cy > 0
(that depends on o only) such that the hypothesis of Corollary 1 holds with

n = fR fft=)dM, w(u)= Ca(l\/u)_l/(a_l) and q(u)= (1\/u)—a/[2(a—1)].

Proof. According to e.g., Samorodnitsky and Taqqu (1994, p. 17) we have

(6.9) P{Su(o,—1)>u} ~ Aa(g>_a/2(a_1) exp{—Ba(g>a/(a_1)} as u— 00
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for some constants Ay, B, >0. Thus (1.1) holds with 4=00, F(z)=1—e"* and
w as defined above. Further (6.6) combines with Holder’s inequality to show that

6.10) L (£ [F+) = FO -t ) =3O £ =0,

Consider an a-stable process {X(t)}scr with constant scale ox)=00>0 and
skewness [(x)=—1 for t€T. By Albin (1998*, the equation following Eq. 5.8)
there exist constants Ki, K2,u; >0 (that depend on a and o( only) such that

P{X(s)>u|X(t)>u}§K1exp{—Kzua/(a_l)pX(s,t)} for s,t€T and u>uy,

where px(s,t) =200 — 0x)+x(s)- Further, by Albin (1998F, Eq. 10.8) (6.5) and
(6.10) imply that there are constants Ks(a, f)>1 and A;(a, f)>0 such that

K3 (t—s)* < pe(s,t) < K3 (t—s)? for s,t€[0,1] with [t—s|<A;.

However, by (6.8) and the continuity of p¢(s,t) [which is an easy consequence of

(6.6)], there must then also exist a constant K4> K3 such that
K;'(t—s)? < pe(s,t) < Kq(t—s)? for s,t€]0,1].
Adding things up we therefore conclude that
P{¢(1—qt)>u | E(1)>u} < Ky exp{—Kszlua/(a_l)(qtf} = K exp{—K K, 't*}

for w>1Vuy, which of course ensures that Assumption 2 holds.
To check Assumption 1 we take Ay >0 and note that |1+z|® < 1+az+Ks|z|®
for z€R, for some constant K5>0. For the scale Y(+,q,t) of the variables

£(1) £ q[(1—qt) —&E(1) +qt&’] /(at)* € Sa(B(£,4,1), 1), [t| <Ay,
[where the skewness really is —1 for u large by (6.7)], we therefore have

S+, q,0)* < ||F(1=)2 + aq<[f(1—qt—') —f(1-) +qtf'(1—-)] f(l—-)a_1>

(qt)?
o[ fA—gt—) = fA—)+qt f/Q—)|"
+ Ksq )2 )
<I£1* £ aq < [f(_qt+') - f() ‘:qqtl;f (-) = 5(at)*f ():| f(.)a—1>

+ag(zf"f*h)
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«

fl=at+) — fC)+at f'(-) — (at)2f" (")
(qt)?

«
+ K52%¢% [|5£"11a
=[[flla + O(q) uniformly for [t| < Ay

[where we used (6.6) and (6.10)]. Noting that u O(q) = O(w/q) we thus conclude

pla(Soty v o€y )

w[t| wlt]  wlt]

1 §(—qt) — €(1) +qt & Aw}

= Pl >u) (a0)? YT

< gz P 1) > (w57 ) (=00

1 Aw
< ———PISa(|fllas—1 >u+ } for [t|<A3; and wu large,
P TS W) 2wk | <o :

for some Ajz€ (0, As]. Now Assumption 1 follows readily from (6.9). O

p{ew =g

7. Crossing intensities for a-stable processes in R". Let {M;(%)}ier,---,
{My(t)}+er be independent a-stable Lévy motions with « € (0,2)\ {1} and
skewness f=—1 (cf. Section 6). Consider the R"-valued strictly a-stable process

{X(t)}ter with independent component processes given by
(7.1) X;(t) = separable version of ffooo fi(t;z) dM;(x) where f;(t;-) € L*(R):

Each non-pathological (separable in probability) strictly a-stable process in R has
this representation in law [e.g., Samorodnitsky and Taqqu (1994, Theorem 13.2.1)].
We assume that X (¢) is stationary, which [cf. (6.2)] means that the integrals

o m a ®  m ()
/ ‘Zejfi(tj—l-h; x)| dx and / <Zejfz’(tj+h; :E)) dx
—o0 'g=1 —oo =1

do not depend on heR for t1,...,tm,01,...,0,,€R, meN and i=1,...,n.
Rice’s formula for R-valued a-stable processes have been proved in subsequently
greater generality by Marcus (1989), Adler et al. (1993), Michna and Rychlik (1995),
Adler and Samorodnitsky (1997), and Albin and Leadbetter (19987T).
We will consider the multi-dimensional case with outcrossing of X (¢) through
the boundary of an open and bounded set A CR"™ that is starshaped with center
at a€ A. This means that for each z€ A we have a+A(x—a)€ A for Ae]0,1].
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Example. An open nonempty and bounded convex set A is starshaped, and each

a€ A works as center for A.

We shall require that the starshaped set A is smooth in the sense that
(7.2) themap ra(z)=sup{A>0:A"'ex¢A} is continuously differentiable,

where ~yex = a+y(x—a): The treatment is restricted to smooth starshaped sets in
order to avoid uninteresting measure geometric technicalities: See Remark 4 for a

discussion of how outcrossings through more general surfaces can be dealt with.

Remark 2. Lindgren (1980, Section 4) proved asymptotic Poisson character for

the visits of Gaussian processes in R" outside large starshaped sets.

Following Albin and Leadbetter (1998, Section 6) we assume that there exists
a power v€[a,2)N(1l,a+1) such that

(7.3) 11m<|3 [f(1;) = fi(1—s;-)— |7 1£:(15) o > =0 for i=1,...,n,

for some maps fi(1;-),..., fl(1;-) € L*(R) that satisfy

(7.4) (IFQ )P,y < oo for i=1,...,n.

In the case when <1 we need an additional assumption:

(7.5) leiﬁ)lHSUP|s|,|t|§e‘fi(1_3 —fi(1—t;- \” for i=1,...,n, if a<l.
When a>1 we may take v=q: This makes (7.4) void while (7.3) reduces to

limg o Hs_l (L) = fi(l=s;)—sfi(1, )] ||a =0 for i=1,...,n.
To ensure that (X (1), X’(1)) is absolutely continuous we use the requirement

(7.6) de =0 = ~y=X=0 for i=1,...,n:

f{aceR 2y fi (Lim)+A f (L;3) # 0}

By Samorodnitsky and Taqqu (1994, Lemma 5.1.1), (7.6) implies that the charac-
teristic function of (X;(1),X/(1)) is integrable, so that there exists a continuous

and bounded density. [In fact, (7.6) is equivalent with absolute continuity.]

Example. For a moving average we have f;(t;-)= f;(t—), so that (7.3)-(7.6) hold

when each f; is continuously differentiable with non-empty compact support.
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Let ™(-) denote the (n—1)-dimensional Hausdorff measure over R” and n(A4;x)

=Vra(z)/|Vra(z)| anormal to the boundary dA={xeR":rs(z)=1} of A.

Theorem 6. Consider a stationary process { X (t) }+er in R", n>2, given by (7.1).
Assume that the maps fi(t;-),..., fo(t;:) € L*(R) satisfy (7.3)-(7.6), and let
X'(1) = (Jp fi(1;-)dMy, ..., [, fi(1;-)dM,). Then the outcrossing intensity of
X (t) through the boundary OA of a starshaped set A satisfying (7.2) is given by

BELYAEV’S FORMULA:

n(0A) = /a AE{(n(A; z)-X'(1))" ‘ X(1):x} fxy(z) ds™(z)

= / (n(A; x) -y)+fx(1),X'(1)(377 y) d&" (z)dy.
(z,y) € 0AXR"

Remark 3. The statment of Theorem 6 follows from Belyaev (1968, Theorem
2) in the particular case when the component processes X;(t) are continuously

differentiable a.s. with a derivative X(¢) such that
(7.7) limgyo ¢~ P{sup <, | X;(14+5)—X;(1)|>e} =0 for each &>0.

However, (in a way due to “heavy tails”) (7.7) is a very restrictive requirement for
an a-stable process. In fact, existing sufficient criteria in the literature for X;(t)

just to possess continuously differentiable paths a.s. require that
(7.8) lim, o 7" || fi(1+5;-) = fi(1;-)[|a = 0

[e.g., Samorodnitsky and Taqqu (1984, Section 12.2)]. Further it is an elementary
exercise to see that (7.8) is necessary for (7.7). Obviously, our requirement (7.3)
is much weaker than (7.8), which thus in turn is only a necessary requirement for
Belyaev’s theorem to apply. [Is is known that sample paths of X;(t), t€R, cannot
be more regular than the function f;(¢;z), t€R; cf. Rosinski (1986).]

Proof of Theorem 6. Clearly pu(0A) equals the upcrossing intensity of the level 1
by the process £(t)=r4(X(t)). It follows from well-known criteria for continuity of
a-stable processes that (7.3) and (7.5) imply a.s. continuity of the processes X;(t)
in the cases when a>1 and a <1, respectively. [See Albin and Leadbetter (19987,
Section 6) for a detailed argument.] Hence £(t) is continuous a.s.

Now define ¢'(1) = X'(1)-Vra(X(t)). By the coarea formula [see e.g., Federer
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(1969, Theorem 3.2.12), or (the less immense) Federer (1978, Section 3)] we have
P{e(1)<u, £(1) <2}

= / / fxq),x ) (z,y) dzdy
{z:ra(@)<u} {y 1y Vra@)<e)

i=u 2=z de™(z)de™(y) . ..
= fxa),x (T, y dudz.
/1120 L:O Am ira(z)=i} »/{y 1y-Vra(z)=2} X (1)( ) |VTA (il?) |2

Since 74(Aex) = Ara(z) and Vra(lex) = Vra(z) for A>0, it follows that

de™(z) ds™(y)
f ey, z :/ / f x( (T, y
SO (1)( ) {z:ra(z)=u} J{y:y-Vra(z)=z} X)X (1)( ) ‘VTA(‘T)P
_ de™(x) d&™(y)
= (uz)" 1/ / f ry(uez, zy .
( ) N X(1),X (1)( ) |V7'A(37)‘2

Hence continuity of fx(1),x/(1) [cf. (7.6)] implies that of fe(1)¢/(1)- Since fx(1) is

continuous and locally bounded away from zero, we similarly conclude that

_ dk" ()
feny(u) = u™t / fxy(uer) ————
O N
is continuous and locally bounded away from zero.

Choose a power g€ (1,v). According to Albin and Leadbetter [1998*, Corollary

2 (i)] there exists a constant K, , >0 (that depends on « and v only) such that

Koo {lgil"| i (13 )/
v—0) |1f:(1; )& fx, ) (@s)]e/”

Also note that R4 = sup,cpn |Vra(z)| < oo [since Vra(Aex)=Vra(z)], so that

(7.10) ra(z+y) =ra(z)+y-Vra(z)+ |ylo(x,y) where |li|1rﬁ)sup o(z,y) =0.
y zER

In order to deduce Belyaev’s formula from Theorem 3 (ii), (v) and (vii), it
remains to prove (4.4) and (4.7): Given a d§; >0 we can by (7.10) find a d; >0
such that o(z,y)<d; when |y|<d;. Consequently (7.9) and (7.10) show that

- { E=€=s) =€y
s

e

s(1>:y} Few ()

L[ AKX T | )
ra(z)=y §
dk™(z
P gy
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:/ E{‘ [(X(1)-X(1-s)—sX'(1)]- Vra(X(1))
ra(z)=y

S

X -X(-9)o(X(1), X(1-5)-X(1 ‘X(l }fX(l)() dk"(z)

8 v (Vra(z)]
< (2nRA)QZn:/TA(w)=yE{

=1

Xi(1) - Xi(1—5)—s Xj(1)|e

S

i(l)zfﬁi}

dk™(z)

X fX(l)(m) |V’I"A(.’E)‘

dk™(z)

S

+(2n61)°) / E{
i=1Yra(z)=y

2y/n e n ) — X (1—s )= . dk" (z)
" ( 02 ) Z/"A(w)—yEﬂXl(l) Xi(1-9) ‘ Xi()=w:} fxy () (Vra(z)|
)= fill=s: ) —s (L) 113 )2y

- au |3_1[f2(
(2nR4)°
g ;/ (=) 115 )& Fx, 0y (yo)) ] "

+ (2n8)) Z / Kw<|s—1f, )= fill=s5 )| 1))y
oa (=) 1) IET T Fx o (yen))] 7"

dk™(x
X fX(l)(y.x) ‘VTA((.’B))‘

( ) /aA a (fi(05 ) = Fi1 =5 ) | fi(L; )|y

(v—0) IIfz NS Fr, ) (yow)i)]
dr™(x)
REE R El)

Using (7.3) and (7.4), (4.4) now follows sending d; | 0 and noting that by basic
properties of a-stable densities [e.g., Albin and Leadbetter (19981, Equation 4.15)]

y"_lei(l)((yom)i)l_Q/” [Ifx;)((yex);) is bounded for y>0 and z€IA.
j#i

The fact that (4.7) holds follows in a similar way using (7.4) and observing that

E{|¢'(D)?]| €)=y} feq)(y)

(n C LR T ot oy A7)
(nR4)® Z/BA[ (v—o) |I£:(1; )Ha—i-l Vin(l)((y"U) )jerv fX(l)(y ) .
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Remark 4. Consider a level surface S = {z:g(z)=1} of a function g(z) which

is C! in an open neighborhood of S. For the process &(t)=g(X(t)) we have

de™(z) ds™(y)
feqr),er)(u, 2) =/ / fx@),x (@, y)
{o:g(2)=u} J{y:y-Vg(z)=2} Vg(z)|?

and

dr™(x)

fem(@ = [ Fxa(@) =42)
6(1)( ) {z:g9(z)=u} M |Vg(.’L‘)|
for v in an open neighborhood U of 1 and z€R, provided that

(7.11) / A" () <oo for uel.
{z:g(z)=u} |Vg($)|
If g is extended to a suitable Lipschitz C!-function on R" [satisfying a global
version of (7.11)], then the proof of Theorem 6 works as before (replacing r4 with
g), except for the proofs of continuity for fe(1) ¢r1)(u,2) and fe1)(u):

Assume that the functions

fX(1),X'(1)($a y) Vg(z) and fX(1)(33) Vg(z)

(7.12) Ok O

are Lipschitz in z

for x in a neighborhood of S. Then the Gauss-Green formula [e.g., Federer (1969,
Theorem 4.5.6), or Federer (1978, Section 4)] shows that
fx@),x ) (z,y) Vg(z)

f & U,Z_f & Vv, 2 :/ lex dzr
e),e ) (4 2) = ey, ) (v; 2) (2:u<g(z)<v) \Vg(z)|?

for w<wv in a neighborhood of 1. It follows that fe(1) ¢/(1)(u,2) is continuous in
u. Similarly continuity of fe(1)(u) follows using the fact that
. fX(l)(fU) Vg(z)
- = d dz.
fﬁ(l)(u) fg(l)(U) / v |Vg(a:)|2 €L

{z:u<g(z)<v}

By application of Theorem 3 (v), (7.11) and (7.12) thus imply that

T +
w(S) = / (R2E )™ Fx.xo (@, y) di™(z) dy.
(z,y) € SXR™
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