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Abstract

Supercritical branching processes are considered which are Markovian in the age
structure but where reproduction parameters may depend upon population size and
even the age structure of the population. Such processes generalize Bellman-Harris pro-
cesses as well as customary demographic processes where individuals give birth during
their lives but in a purely age-determined manner. Although the total population size
of such a process is not Markovian the age chart of all individuals certainly is.

We give the generator of this process, and a stochastic equation from which the
asymptotic behaviour of the process is obtained, provided individuals are measured in
a suitable way (with weights according to Fisher’s reproductive value). The approach
so far is that of stochastic calculus. General supercritical asymptotics then follows
from a combination of L? arguments and Tauberian theorems.

It is shown that when the reproduction and life span parameters stabilize suit-
ably during growth, then the process exhibits exponential growth as in the classical
case. Application of the approach to, say, the classical Bellman-Harris process gives
an alternative way of establishing its asymptotic theory and produces a number of
martingales.

*Work supported by the Australian Research Council and the Bank of Sweden Tercentenary Foundation.



1 Introduction

In age-dependent, Bellman-Harris branching processes a particle lives for a random length of
time and on its death produces a random number of offspring, all of which live and reproduce
independently, with the same laws as the original particle. In classical demographic theory
(female) individuals give birth according to age-specific birth rates. What unifies these two
types of processes is that they are Markovian in the age structure, cf. Jagers (1975, p. 208).

Now, imagine a collection of individuals with ages (a',...,a*) = A. In a population-size-
dependent process such an individual of age a has a random life span with hazard rate h4(a).
During life she gives birth with intensity b4(a), both rates dependent on the individual’s age
as well as the whole setup of ages. Finally, when she dies, she splits into a random number
Y (a) of off-spring with distribution that may depend upon the whole collection A of ages
as well as the age a of the individual splitting. Childbearing and life length may thus
be affected by population size and age structure, but apart from this individuals live and
reproduce independently of each other.

The type of dependence we have in mind is dependence on the total population size
z =|A| = (1, A), so that ha = h,, by = b,, and similarly for off-spring at splitting. But a
more general influence pattern is also allowed. The aim is to obtain results on the asymptotic
behaviour of population-size-dependent such processes in the case of stabilizing reproduction
and lifelengths of individuals, namely when h, — h, b, — b, and m, = E,[Y] — m, as
z — 00.

We consider only the supercritical case, so that m > 1 in the case of pure splitting.

Such results were obtained by Klebaner (1984 and 1989) for Galton-Watson processes
and (1994) for Markov population-size-dependent branching process, where life spans are
exponential with parameters depending on z. In particular it was shown that the condition
> |m, —m|/z < oo is essentially necessary and sufficient for the process to grow at an expo-
nential rate. Jagers (1997), using a coupling argument, obtained results for population size
dependent branching processes more general than presently considered, however a sufficient
condition for the exponential growth obtained by this method is Y |m, —m| < co. In Jagers
(1998) the sharp necessary and sufficient condition was recovered, but only for processes that
possess a symmetric growth property. Here we pursue the line of analysis as for the Markov
case by considering the age process.

Our approach combines a stochastic calculus and Markov processes analysis with the
method of random characteristics for general branching processes. We identify the compen-
sator of the process and the martingale in section 2. In section 3 we show that this approach
leads to new results, as well as recovers known results, for classical branching processes. In
section 4 we show the convergence of the Malthusianly normed population-size-dependent
and age-dependent branching processes with stabilizing reproduction, provided individu-
als are counted in a special way, through Fisher’s reproductive value. In section 5 we use



the population tree formulation and random characteristics to obtain Malthusian asymp-
totics, exponential growth and stabilization of composition of the population by applying a
quadratic mean argument combined with classical Tauberian analysis.

2 Population size dependent processes as Markov pro-
cesses of ages.

It has been known for a long time that the process of ages in a Bellman-Harris process con-
stitutes a Markov process. It is not difficult to see that the most general classical branching
processes that are Markovian in the age structure are those outlined in the introduction,
combining a Sevastyanov type splitting (life length and off-spring number at splitting not
necessarily independent) with an age-dependent propensity to child-birth during life (or a
fertile subinterval thereof).

To be precise one needs to introduce the appropriate state space and topology, for the
standard theory of Markov processes cf. Ethier and Kurtz (1986). This has been done
in a number of ways in the past. We take the state space to be the finite positive Borel
measures on IR with the topology of weak convergence, i.e. lim, ,,, p, = p if and only if
limy, o0 (f, pin) = (f, 1) for any bounded and continuous function f on IR, see Ethier and
Kurtz (1986), Section 9.4 and Dawson (1993).

Motivated by sequences of scaled measure valued branching processes and their limits
(superprocesses) Métivier (1985) and Borde-Boussion (1990) imbedded the space of measures
into a weighted Sobolev space. Oelschliger (1990) took for state space the signed measures
with yet another topology. All of the above works defined the process as the solution to
the appropriate martingale problem. In our case we study a single process by means of
martingale techniques, so all we need is the basic representation given by Dynkin’s formula.
Most of the results below are standard, and we shall not go into details.

Let A= (a!,...,a"), where the points a’ > 0, and n is an integer. The counting measure
A defined by these points as A(B) = X", 15(a'), for any Borel set B in IR*. For a function
f on R the following notations are used interchangeably throughout the paper:

(14) = [ @At = 3 1),

Let z; be the size of the population at ¢, i.e. the number of individuals alive. If A; =
(a,...,a}") denotes the age chart of the particles, we shall study processes (f, A;).

Test functions used on the space of measures are of the form F((f, u)), where F' and f
are functions on IR. In order not to overburden the presentation we assume, throughout
this paper, that births during a mother’s life are never multiple and the populations are
non-explosive in the sense that only a finite number of births can occur in finite time.



We use P4 and E4 to indicate that the population started at time ¢ = 0 not from
one newborn ancestor but rather from z = (1, A) individuals, of ages A = (a!,...,a?),
respectively. No index means start from a given age configuration.

Theorem 2.1 For a bounded differentiable function F on R and a continuously differen-
tiable function f on IR™, the following limit exists

lim BA{F(f, 4)) ~ F((F, A)} = GF((/, 4), (1)

where
F((f,4)) = F'((f, A))f', A) + ile(aj){F(f(O) +(f,A) = F((f,A)} +

+ Z ha(a”){EA[F (Y (a7) £(0) + (f, A) — f(a”)] = F((£, A))}, (2)

=1

and Y (a) denotes the number of children at death of a mother, dying at age a.

Proof: Direct calculations. O

Remark. If we were to allow for the possibility of X (a) children if there is a bearing during
life and at age a, we would have to replace F(f(0) + (f, A)) by E4[F(X (a?)f(0) + (f, A4))]-
G in (2) defines a generator of a measure valued branching process, in which the movement
of the particles is deterministic, namely shift.

The following result is often referred to as Dynkin’s formula.

Lemma 2.1 For a bounded C' function F on R and a C' function f on IR

F((,40) = F((f, A0) + [ GE((f, A,))ds + M )
where MF is a local martingale with the sharp bracket given by
(M m) = [CGF(f A)ds — 2 [ F(( A)GE((f, A))ds (4)
Consequently,
BA(MF)? =4 ([ GF((f, A)ds —2 [ F((F ANGE((f, A))ds),

provided Eo(M]')? exists.

Proof: The first statement is obtained by Dynkin’s formula. Expression (4) is obtained
by letting U; = f(X}), and an application of the following lemma. a



Lemma 2.2 Let U; be a semi-martingale, and U, = Xy + Ay + M,, where A, is a predictable
process and My is a local martingale. Let U? = X2 + B, + N;, where By is a predictable
process and Ny is a local martingale. Then

t
(M, M), = B, — 2/ U,_dA,.
0

Proof: By It6’s formula
t t t
U =U2 + 2/ U, dU, + [U,U], = U2 + 2/ U, dA, + 2/ U, dM, + [U,U],.
0 0 0
Using the representation for U? given in the conditions of the lemma, we obtain that [U, U], —

B, +2 [{U,_dA, is a local martingale. Hence the result. O

Let ma(a) = E4Y (a) be the mean and v%(a) = E4Y?(a) be the second moment of the
offspring-at-splitting distribution in a population with composition A. Applying Dynkin’s
formula to the function F'(u) = u, we obtain the following:

Theorem 2.2 For a C' function f on R*

t
(£.4) = (£, A0) + [ (Laf, A)ds + M, 5)
where the linear operators Ly are defined by

Laf=f"—haf+ f0)(ba+ hamy), (6)

and M} is a local square integrable martingale with the sharp bracket given by

(A0, = [ (POba, + PO b, + haf? — 2fOmaha f), Adds. (1)

Proof: The first statement is Dynkin’s formula for F(u) = u. This function is unbounded
and the standard formula cannot be applied directly. However, the statement follows from
the formula for bounded functions by taking smooth bounded functions that agree with
u on bounded intervals, F,(u) = u for v < n, moreover the sequence of stopping times
T, = inf{(f, A;) > n} serves as a localizing sequence, as was done in, for example, Oelschliager
(1984). The form of the operator L4 follows from (2). Note that with F(u) = u?

GF((f,4) = 2(f, A, A) + (ba, A)(f*(0) + 2 (0)(f, 4))
+£2(0)(viha, A) + (haf?, A) + 2f(0)(maha, A)(f, A)
_2f(0) (mAhAf’ A) - 2(hz‘lfa A) (fa A)a

so that (7) follows from (4). A similar argument given to the one above but for F'(u) = u
shows that M} is locally square integrable. O
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An equation similar to (5) is given in Métivier (1985) and Borde-Boussion (1990) for
(f, Ay) with f € C%, infinitely differentiable functions with a compact support. Since a
smooth function can be approximated on a finite interval by C'® functions, equation (5) can
also be deduced from that equation.

It is important to give conditions that assure the integrability of the processes appearing
in the Dynkin’s formula (5). Typically, to achieve integrability it is assumed that functions
are bounded, and in this case the local martingales appearing in Dynkin’s formula are true
martingales. However, integrability holds also for some unbounded functions. In the case
of pure jump processes not too stringent conditions for it to hold were given in Hamza and
Klebaner (1995). However, the age process considered here includes a deterministic motion,
thus it is not a pure jump process, and the condition given in the above paper can not be
used directly. A similar condition for integrability to hold for some unbounded functions,
condition (H1) is given below. We restrict ourselves to positive functions, since these are the
ones we use.

Theorem 2.3 Let f > 0 be a C' function on IR' that satisfies
[(Laf, A)| < C(1+(f, A)), (H1)

for some constant C and any A, and assume that (f, Ay) is integrable. Then (f, A;) and M}
in (5) are also integrable with EM,' = 0.

Proof: Let T}, be a localizing sequence, then

tA\Ty,
(£ Aur) = (£ A0) + [ (Laf, A)ds + My, ®)

where M}, ;. is a martingale. Taking expectations we have
AT,

tAT,
B(f, Ant,) = B(f, A0) +E [ (La,f, A)ds. ©)
Using the condition (H1)
tATy, tA\Ty,
B[ (LafA)dsl < B[ I(Laf,A)lds
0 0
tA\Th
< Ct+0p/ (f, A,)ds.
0
Thus we have from (9)
tATy
B(f, An,) < B(f, o) +Ct+CE [ (f,4,)ds

< E(f,Ap) +Ct+C]E/0tl(s < T)(f, As)ds

IN

EmA@+w+cAEmAmg@.



It now follows by Gronwall’s inequality that
E(f, Ainr, ) < (B(f, Ag) + 1) < . (10)
Taking n — oo we obtain by Fatou’s lemma that
E(f, Ar) < (E(f, Ag) + 1) < 0. (11)
Now it follows from (11) that (f, A;) is integrable, as it is nonnegative. Now by the condition
(H1)
t t
B [ (Laf,A)ds < [CEI(La,f,A)lds
t
< / C(1 +E(f, A,))ds < oo,
0
where the last inequality is by (11). Thus [j(La, f, As)ds is integrable, which together with
(11) implies that
t
M} = (£,A) = (£, 40) = [ (La.f, A,)ds (12
is also integrable with zero mean. O
By taking f(u) = 1 = constantly, Theorem 2.2 yields the following corollary. Recall that
z = (1, Ay) is the population size at time t.

Theorem 2.4 The compensator of z; is given by [y (ba, + ha,(ma, — 1), A,)ds.

Before considering populations with stabilizing reproductions, we shall have a look at
classical, population-size independent branching processes, which have a Markovian age
structure.

3 Classical branching processes which are Markovian
in the age structure

In traditional branching processes, as well as demography or population dynamics, the re-
production rate, hazard function and offspring-at-splitting distribution are all population
independent. We write b and h for the former two, and G for the lifespan distribution. Its
density is denoted by g and the first two moments of offspring-at-splitting distribution by
m and v2. Not that the latter may still be functions of age at split, unless we are in the
Bellman-Harris case of independence between life span and reproduction.

This section is confined to the case of i.i.d. individuals. For simplicity we assume that
G(u) < 1 for all u € RT, and write S = 1 — G for the survival function. The results of the
previous section are summarized in the following theorem.



Theorem 3.1 1. For a C' function f on RT

(F, 40) = (f,Ao) + [ (Lf, Ads + . (13)
where the linear operator L is defined by
Lf=f"—hf+ f(0)b+ f(0)mh (14)

and Mtf 15 a local square integrable martingale with the sharp bracket given by
t
<Mf,Mf>t = /0 (F2(0)b + h(f2 + f2(0)v® — 2£(0)mf), Ay)ds. (15)

2. If f > 0 satisfies
[(Lf, A)| < C(1+(f,4)), (H2),

for some constant C, and (f, Ay) is integrable, then (f, A;) and M/ in (138) are also
integrable with ]EMtf =0.

Equation (13) can be analyzed through the eigen-value problem for the operator L given
in (14).

Theorem 3.2 Let L be the operator in (14). Then
1. The equation
Lg=rq (16)

has a solution q, for any r. The corresponding eigen-function (normed so that q(0) = 1) is
given by

eru

() = gy (1= [ 7 m(s)a(5) +b(5)S()}ds). (17)

2. Provided b and m are bounded, there is only one bounded positive eigenfunction V', the
reproductive value function, corresponding to the eigen-value known as the Malthusian pa-
rameter o,

eau

V) = g / e {m(s)g(s) + b(s)S(s)}ds. (18)

Proof: 1. Since eigen-functions are determined up to a multiplicative constant, we can take
¢(0) = 1. Equation (16) is a first order linear differential equation, and solving it we obtain
the solution (17).

2. The Malthusian parameter « is defined as the value of r which satisfies

/ T e m(u)g(u) + b(w)S (w) Ydu = 1.

0



It follows that for r > «, [5° e "™{m(u)g(u) + b(u)Su)}du < 1 and the eigen-function ¢, in
(17) is positive and grows exponentially fast or faster. For r < «,

JC e {m(u)g(u) + b(u)S(u) }du > 1 and the eigenfunction ¢, in (17) takes negative values.
When 7 = a, ¢* =V in (18) is the eigen-function. To see that it is bounded, write

au

V(u) = /uoo e *m(s)g(s)ds + °

St /uoo e “b(s)S(s)ds < m* +b", (19)

where m* = supm(s) and b* = supb(s). Replace e ** by its largest value e ** in the first
integral to see that it does not exceed m* and replace b(s) by b* in the second integral to see
that it does not exceed b*.

O

Theorem 3.3 Let g, be the eigenfunction of L corresponding to the eigenvalue r > «. Then
Q. (t) = e "(qr, Ar) 18 a positive martingale.

Proof: Using (13) and the fact that ¢, is an eigen-function for L, we have

t
(a0 A1) = (ary Ao) +7 [ (ar, A,)ds + M, (20)

where M, is a local martingale. Functions ¢., 7 > «, clearly satisfy the condition (H2),
therefore (g, A;) is integrable, and it follows from (20) by taking expectations that

E(gr, Ay) = "E(qr, Ao)- (21)
Using integration by parts for e~"*(g,, A;), we obtain from (20) that
dQ,(t) = d(e™"(¢r, Ar)) = e "dM]",
and .
Qr(t) = (gr, Ao) + [ e dnry (22

is a local martingale as an integral with respect to the local martingale M % . Since a positive
local martingale is a super-martingale, and @Q,.(tf) > 0, @Q,(¢) is a super-martingale. But
from (21) it follows that @, (¢) has a constant mean. Thus the super-martingale @, (t) is a
martingale. O

Taking r = «, we obtain an important corollary:

Theorem 3.4 Let V be the reproductive value function. Then Wy = e~ (V, A;) is a positive
martingale, which converges almost surely to a limit W > 0.



By the martingale convergence theorem a positive martingale converges almost surely to
a nonnegative limit, but the limit W may be degenerate, P(W > 0) = 0. However, under
additional assumptions W is nondegenerate.

Theorem 3.5 Assume that 0%(a) = Var(Y?(a)) < oo and for some r, a < r < 2a, and
some constant C

b(a) + (0*(a) + (V(a) = m(a))*)h(a) < Cy,(a). (23)

(which holds in particular when b,h and m are bounded.) Then Wy is a square integrable
martingale, and therefore converges almost surely and in L? to the nondegenerate limit W >
0.

Proof: It follows from (15) that
t
(MY, MV) = /0 (b+ (0* + (m = V)?)h, A, )ds. (24)
Since (see (22))

t
W, ::(xc,40)4-j£ e dMY (25)

we obtain that
(W, W), = /0 t e d (MY, M) = /0 t e (b+ (07 + (m = V)?)h, A,)ds.  (26)

It follows by the assumption (23) that
(b+ (0% + (m = V)*)h, A,) < C(qr, As), (27)
and by Theorem 3.3

IE/Oo e 2as (b + (6* + (m —V)?)h, As)ds < C’/ e 2*E(q,, Ay)ds < C/ er=20)s < o,
0 0 0

(28)
where for the last inequality the assumption r < 2« was used. This implies from (26) that

E(W,W)_ < oco. Therefore W, is a square integrable martingale, see for example Protter
(1992) or Liptser and Shiryayev (1989), and the proof is complete. O

Remark. For Bellman-Harris processes the martingale {W;} was given in Harris (1963) and
Athreya and Ney (1972). For the processes we consider, with a Markovian age structure, it
appeared in (Jagers, 1975, p. 213). It is the conditional expectation, given the age chart, of
Nerman’s (1981) martingale intrinsic in general (Crump-Mode-Jagers) branching processes.
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4 Processes with stabilizing reproduction

Consider now population-size-dependent and age-dependent branching processes. Recall
that by Theorem 2.2 the following stochastic equation holds for a bounded smooth function

fon IR. .
(£.4) = (£, A0) + [ (La,f A)ds + M/, (20)

where M is a local square integrable martingale, and Lf = f' — haf + f(0)(ba + hama)
as given by (6).

Assume that reproduction stabilizes as the population size gets large, that is,
ma — m, ha — h,and by — b, as z = (1, A) — oc.
Then the operator L4 in (6) can be represented as

Laf = Lf + Dy4f, (30)
where
Daf =Laf —Lf =m(ha—h)f(0) + (ma —m)haf(0) + (h—ha)f + (ha — h)f(0), (31)
so that all the terms are small when z — occ.

Suppose now that the limiting operator L has the eigenfunction V' given in (18) with the
corresponding eigenvalue «. Then it follows that

t ¢
(V,A) = (V, Ag) + o [ (V,A)ds + [ (DaV, A)ds+ N, (32)
0 0
where N} is a local martingale. In fact, it is easy to see that, under the condition (A1) given
below (coefficients of L4 and L are bounded), the condition (H1) of Theorem 2.2 is satisfied,
and N} is integrable with zero mean. Let

Wt = e_at(V, At)

Using integration by parts for e **(V, A;), we obtain
t t
We=Wo+ [ e (DaV,A)ds+ [ e @dNY. (33)
0 0

Letting w(t) = EW; we have
w'(t) = e E(D4,V, Ay). (34)

We show below, in a way similar to the case of a Markov branching process as in Klebaner
(1994), that if the convergence to the limit of L4 to L (or D4 to zero) is fast enough, see
Assumption (A3), then w(t) has a limit as ¢ — oo and this limit is positive.

11



ASSUMPTIONS.
(A1). The functions b, bs, m, m4, h, ha are bounded from above.
(A2). V is bounded from below, V > ¢ > 0.
(A3). There is a function & such that Y} {°¢(z)/z < oc and

sup |ma(u) — m(u)| + Sup |ha(u) — h(u)| + Sup lba(u) —b(u)| <e(z), z=(1,A).

Of course, if the functions b, m and h are bounded, then (A3) implies (Al).

Theorem 4.1 Assume that (A1) - (A3) hold. Then

1. w(t) = EW; has a limit as t — oo and this limit is positive, provided zo is large enough.
2. Wy converges almost surely to a limit W > 0.

3. If in addition v¥ is bounded, then W, converges almost surely and in L?, and the limit W
is nondegenerate. Moreover, P(z, — o0) > 0, and log z;/t converges almost surely to « on
the set {z; — oo}.

Proof: In what follows C stands for a constant that may be different in different formulae.
1. It is easy to see that under the stated assumptions the function D4V satisfies

|DAV| < C(lma—m|+ |ha — h| +|ba — b]) < Ce(z). (35)

Therefore
|(Da,V; Ar)| < Ce(zt) 2. (36)

We wish to take expectations and to obtain a bound by carrying it inside the function. To
do so one can replace the function ze(z) by a dominating increasing and concave function
with the same behaviour at infinity, see Lemma 2 of Klebaner (1994). Therefore without
loss of generality we can take the function §(z) = ze(x) to be increasing and concave. Hence

E[(Da,V, Ar)| < CO(EZ;) < Co(e*w(t)/c), (37)
where the lower bound V' > ¢ > 0 was used to obtain (V, A;) > ¢Z;. Thus we have from (34)
lw' ()| < e ™E|(Da,V, Ar)| < e Co(e®w(t)/c) = Cw(t)e(e®w(t)/c). (38)

Since e(z) satisfies (A3), [*e(x)/xdx < oo, the above bound on the growth of |w'(?)]
implies convergence of w(t), see Lemma 1 of Klebaner (1994). That result also shows that
lim;_, o, w(t) > 0 provided w(0) is large enough. But w(0) = (V, 4¢) = X722, V(a}) > ¢z -

2. By the estimate in (38) it follows that

E /0 T et (DA, V, A)|dt < C /0 T w(t)e(ew(t) /o)t < oo, (39)

since limw(t) > 0 and [°e(t)/tdt < co. This implies that [j e=**(D4,V, A,)ds converges in
L to [(°e @ (Da,V, As)ds.

12



Let N} = [{e~**dNY. Then
t t
(N',NY) = / e 2d(NV,NV) = / 72 (ba, + ha, (V2 + 4, — 2ma, V), A, )ds. (40)
t 0 5 0 8
Under the imposed assumptions by + ha(V? +v% — 2m4V) < C, hence

¢ ¢ i
/ g2 (bAs + ha, (V2 + 075, —2ma,V), As)ds < C/ e 25(1, Ay)ds < C/ e 25(V, A,)ds,
0 0 0

where the last inequality is by (A2), V' > ¢. Since w(s) = Ee~**(V, A;) converges, it follows
from (40) that

]E<N1, N1>OO < C’/Ooo e”“w(s)ds < oo. (41)

Thus N} is a square integrable martingale which converges almost surely and in L? to
Js2 e **dNY . The L? convergence of W; now follows from equation (33). L? convergence of
W; to W implies EW = lim;_, o, EW; > 0, hence P(W > 0) > 0. Since by assumption V > ¢,
CZ, > (V, Ay) > cZ;. The rest of the statement follows from this and convergence of W; to
the nondegenerate limit. O

Remark. Convergence of a suitably normed process follows directly from the martingale
property of W, for simple branching models, such as Markov branching processes (in this case
the function V is a constant and the (V, A;) is proportional to the population size). However,
in Bellman-Harris process and Crump-Mode-Jagers process it is not straightforward to obtain
such convergence by martingale methods. For such methods see Athreya and Ney (1972),
and Schuh (1982) for Bellman-Harris processes, and Nerman (1981) for Crump-Mode-Jagers
processes. Note here that direct analysis of the stochastic equation (29) for z; = (1, A;) does
not seem to yield the convergence of ez, and this is achieved by a different method in
the next section.

5 Asymptotics of the population size

The last section established that (V, A;) ~ e*W. From the point of view of general branching
processes (Jagers, 1975) this process is obtained from measuring the population in one of
many possible ways: at any time ¢ an individual, born into the population, is counted if
she is still alive, and her weight is V', evaluated at her age. This is a particular random
characteristic (ibid., p. 167 ff., for general multi-type processes cf. Jagers, 1989).

In order to proceed to other characteristics and more natural population sizes, like the
number of individuals alive, z; = (1, A;), we shall have to rely upon the traditional population
tree definition of branching populations. Thus we quickly review it, in the single-type case.

With any individual z € I in a Ulam-Harris family tree space

I .= U N",
n=0

13



NO := {0}, N = {1,2,3,...} there is associated a reproduction point process telling at
which ages x begets children. Those are numbered z1, 22 etc according to the Ulam-Harris
convention. The population starts from Eve = 0 at time zero (or from another conventional
set of ancestors though the family tree space has then to be trivially modified), and the
birth-times 7, are then recursively defined (as z’s mother’s birth time plus her age at z’s
birth, 7, = oo meaning that z is never born).

The basic process is the total number of births by ¢ > 0,

y(t) == #{z € I;7, < t}.

A host of other “population sizes” can now be defined through the mentioned additive
functionals called random characteristics: a random characteristic x := {x,;z € I} is a set
of D-valued, stochastic processes X, (u) vanishing for negative arguments, and measurable
with respect to the o-algebra generated by the complete lives of x and all her progeny, i.e. x’s
daughter process. We shall assume throughout that the populations are non-explosive in the
sense that only a finite number of births can occur in finite time, and also that characteristics
are bounded.

The x-counted or -weighted population size at t is defined as the sum of all x values of
those born, evaluated at their actual ages t — 7, now at time ¢,

25 = Zxx(t—ﬂc) = Z Xe(t — 7p)-

zel T <t

Clearly, .
y(t) = ztk ’

and if x € I has a life span ), and we allow ourselves to write A := {1 ,);x € I}, then

2 = Zé\ = Z 1[0,,\m)(t — 7'55)
zel

and (f, A;) = z/* in the obvious notation

A =3t = T) Lo (E — 72).

el

Thus in the symbols of the tree formulation, we have shown that e=**z/* — W. The
question is what other characteristics we can have instead of VA (and what change in W we
are then lead to).

For any = € I let B, denote the o-algebra generated by the complete lives of all individuals
not stemming from x (with the convention that x stems from herself).
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Lemma 5.1 Let x = {x.} be a characteristic such that E[x,(a)|B;] = 0 for any x € I and
a>0. Then ,
E[(2)"] = Bz |.

Proof: If x # 2/, then one of the two is not in the daughter process of the other. Say that
x' does not stem from z. Then

E[Xo (t = Tor )Xo (t = T2)] = BlXo (t = 7o )ElXs (t — 72)|B:]] = 0,
since 7, is measurable with respect to B,. Hence,
E[(2)%) = B[(3 Xa(t — 7)) = E[Y_ 52 (t — 7)) = B[z |-

O

Corollary 5.1 Assume that P(\; < u|B;) = G(u) for some distribution function G, inde-
pendently of the population. Write S = 1—G for the survival function. Then, for any cadlag
and bounded f

E[(z/ — %)) = 7.

By Theorem 4.1
w(t) = e Bl = ot [ Vit - w)S(t — w)Ey(du)

remains bounded, as ¢ — oo, firsthand in the special case of i.i.d life spans now under
consideration, but also more generally.

Theorem 5.1 Assume Conditions (A1)-(A8), and also that v¥ is bounded, so that
w,YA =W, = e_atzyA — W,
a.s. and in L?, ast — oo. If P(\, < u|B;) = G(u), then also
wy® =e /S > W

in mean square. If further the reproduction intensity ¢ := mg + bS decreases slowly in the
sense that

(A4) there are constants a,b > 0 such that ¢(t + u) > (1 — au)¢(t) for all t > 0 and all
0<u<b

then the convergence holds a.s. as well.

15



Proof: Since supV < oo by (A1) and the second statement of Theorem 3.2, Corollary 5.1
yields
El(wy * — wf*)] = Blw; ") < sup Ve B[z 7).
But s
V(A-S
Ble 7] = B3V (= Bl (E = 7) = S(t — 7)) Be] =

=ED) V(Et-1)Gt—1)S{t—1)] <ED V(i —1)S(t— 1) =

=ED_ V(t — 72)E[ljop ) (t — 72)| B:]] =

= e™E[W;] < Keat,

for som K < 00, by Theorem 4.1 (1). Hence, w}* —w}® — 0 in L?. Since by Theorem 4.1
W, = w/* - W as. and in L?, we can conclude the same in L? for w5, as t — co.

In order to proceed to a.s. convergence, note that
o o
| Rl — w2t = [ Ew) "t <
0 0

o0 o0
supV/ e’Zat]E[th(Afsﬁ]dt < K/ e *dt < oo.
0 0
Then, use Fubini’s theorem to see that
o0
/ (wf™ — w)®)2dt < 0o
0

a.s. Here w/™ can be replaced by W, and thus provided w}® does not oscillate too wildly

the convergence of the integral implies a. s. convergence of

ws = | LoDy (¢ — W) S(t — u)e=y(du).

Indeed, o
eV (£)S(t) = /t e~ (u)du

and (A4) leads to
wt+u > (1 — cu)wy®

forac >0 and 0 < u < some v > 0. Continue as in Harris (1963), p. 148, to see that if
U)XS 2 (1 + 5)W7 t'i—|—1 - tz Z Y, then

/Ooo( 2dt>2/ (w5, — W)*du = oo,

provided W > 0 and (1 — ¢y)(1 +6) > 1. Hence, under (A3) limsupw,® > W > 0 implies
divergence of the integral.
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In the same vein we can mimic Harris’s argument that liminfw}® cannot be strictly
smaller than W, and the theorem follows

O
In the convolution notation

t
/ e VYVt —u)S(t — u)e “y(du) — W
0
it is natural to associate the proved convergence with Wiener’s general Tauberian theorem
(Widder, 1946, p. 214) in order to arrive at conclusions about the growth of y(¢), or about
integrals where V' has been replaced by other functions f, and in a later step by characteristics
with conditional expectation f.

For Wiener’s theorem it suffices that the Fourier transform of e=**V (¢).S(t) never vanishes,
that e~ *"y(du) gives finite measure to any finite interval, and that

=+ 1l etV (t —u)S(t—u) .,
[ ey < [ —evmsm Y,

which is bounded by some (stochastic) constant. The integrand e~*V (¢)S(t) is clearly
directly Riemann integrable, and further

/Ooo eitue—auv(u)g(u)du - /Ooo et /°° e () ds =

u

/0 T e (s) (e — 1)ds)it,

for t # 0. Thus, the condition of a non-vanishing Fourier transform reduces to
/ e P(s)ds # 1,1 # 0,
0
always satisfied, since e”**¢(s) is a probability density, cf. e.g. Durrett (1995), p. 131.

In other words, under the conditions of the theorem

t N
etz = [ e (1~ wemy(du) - fla)w,
0

a.s and in quadratic mean, provided onlz\e‘at f(t) is directly Riemann integrable. Here hat
denotes Laplace transform and w is W/V.S(«). Indeed, the very same convergence

e 2 = fla)w,
holds true for any bounded characteristic x = {x,} such that E[x,|B,] = f. In particular,
ez — S(a)w.

However, this is all under the assumption that P(\, < u|B;) = G(u), which we shall now
free ourselves from.
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Lemma 5.2 Let x be a bounded characteristic tending to zero as z; — oo in the sense that

for any € > 0 there is a z such that |x.| < € if only z; > 2 for t > 7,.. Then, provided e=*tz}*

. . . _ A
is bounded by an L? random variable 7, then a. s. and in mean square e "‘tztvx — 0, as

t — oo on the set where z; — 00.
Proof: For € and z as above, let z; > z for t > .. Then,
|2 XY < Cylt) + e ™.
On the set where %, is finite, this yields
lim sup e~ |2} X*| < eZ.

O

Theorem 5.2 Assume Conditions (A1),(A2), (A3), and also that v¥ is bounded. Then, for
any bounded, non-negative characteristic x = {x.} such that E[x,|B;] = f, as z; — oo,

e 2 = fla)w
in quadratic mean, provided e~ f(t) is directly Riemann integrable. If further Assumption

(A4) holds, then we can also conclude a. s. convergence.

The theorem has two direct but important (f = S or 1) special cases:

Corollary 5.2 Under the asumptions given, e 'y(t) — w/a and ez, — S(a)w a.s.
and in mean square, the latter convergence requiring, say, that ha be majorized by some
L-function.

Proof: The fact that e~*'z/* — W entails that also etz “*! — W, where E[A|B]
denotes the characteristic {P(\; > -|B;)}. But

P()\m > CI/|B$) —_ E[e_ fa"o hA-rm+u(u)du|B$] —

— Ee” Jo M%) = 5(q),
the arrow describing convergence in the sense of Lemma 5.2, and we have used dominated
convergence of hy,, as z; — oo. By the lemma therefore
—at Vs
ez 7 = W.

The rest of the proof runs as in the argument preceding Lemma 5.2. a
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