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Abstract

Recently, a model for non-stationary random field Z = {Z(z) : z €
R™,n > 2} has been developed. This consists of reducing Z to stationarity
and isotropy via a bijective bi-differentiable deformation ® of the index
space. We give the form of this deformation under smoothness assumptions
on the correlation of Z.
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1 Introduction

In spatial statistics we are often concerned with non-stationary phenomena. For
most applications dealing with a non-stationary random field, the first step in
classical approaches consists of removing expectation, dividing the residual by
the standard deviation and modelling the residual as a stationary process. The
random field Z = {Z(z) : ¢ € R"} under study is of the form

Z(z) = p(x) + o(z)e(z)

where u(z) = EZ(z), o*(x) = E(Z(x) — u(z))? and e(z) is a centred and
standardised weakly (or strongly) stationary random field. The non-stationarity
of the random field Z is then understood as non-stationarity of both the first
order moment u(z) and the variance o2(z).

This question is studied by Sampson and Guttorp (1992) who propose to
transform the index space R? with a bijective space deformation. Sampson
and Guttorp’s approach finds its origin in multidimensional scaling techniques.
Formally, it consists of modelling e(z) as

e(z) = 0(2(x))
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where § is weakly stationary and isotropic, and @ is a bijective deformation, or
equivalently of modelling the correlation function r(x,y) of the random field Z
as

r(z,y) = p([|@(y) — @(2)]) (1)

where p is a stationary and isotropic correlation function and ||.|| denotes the
Fuclidean norm in R”.

When a correlation function satisfies the model (1) we call it a stationary
isotropic reducible (sir) correlation function. Unlike the classical approaches,
non-stationarity through second order moments is thus taken into account and
model (1) gives an opportunity to enlarge the class of models for studying non-
stationary random fields.

Meiring (1995) gives numerous developments in the modelling and estima-
tion of non-stationary correlation structure using space deformation. Perrin and
Meiring (1998) study the uniqueness of (@, p) in (1) under different conditions.
With this method, many sets of environmental data have been analysed: so-
lar radiation (Sampson and Guttorp, 1992), acid precipitation (Guttorp et al.,
1992, 1993; Guttorp and Sampson, 1994; Mardia and Goodall, 1993), rainfall
(Monestiez et al., 1993), air pollution (Brown et al., 1994) and tropospheric
ozone (Sampson et al., 1994; Guttorp et al., 1994; Meiring, 1995) etc. In the
one-dimensional case, n = 1, Perrin and Senoussi (1998) give a characterisation
of the non-stationary correlation functions that can be reduced to stationarity
via a differentiable deformation.

Sampson and Guttorp (1992) refer only to stationarity and isotropic re-
ducibility. In this paper we study stationarity reducibility (sr) as well, that is,
we consider correlation functions r(z,y) such that

r(z,y) = R(®(y) — @(z)) 2)

where R is a stationary correlation function. Indeed, there are random fields
which are sr but not sir. For instance, this is the case for Brownian sheets.
Their correlation function is of the form for all z # 0 and y # 0

]l + llyll = lly — I
r(z,y) = . (3)
2||z([llyll

A direct calculation using the polar coordinates shows that they satisfy (2) with
& = (P, Py) defined by

&1 (z) = In(||z]|) and Po(z) = arctan(ze/z1), z = (z1,z2),

and R defined by
R(ul, 'U/2)

= % (exp(m/?) + exp(—u1/2) — vexp(uy/2) + exp(—u1/2) — 2(308(’11,2)) i

In this paper, we characterise sr and sir correlation functions under smoothness
assumptions. The paper is organised as follows. In Section 2 we give some prop-
erties of the model (2) and propose a characterisation for smooth sr correlation



functions in the form of a system of partial differential equations. Further, we
prove uniqueness of the deformation ® up to a bijective affine transformation.
For some particular cases, we give the form of the deformation that makes a
non-stationary random field stationary. Section 3 characterises smooth sir cor-
relation functions for which we give a characterisation. We prove uniqueness of
the deformation up to a homothetic Euclidean motion. Our main result, theo-
rem 3.3, gives the general form of the deformation that reduces a non-stationary
random field to stationarity and isotropy, under smoothness assumptions. Sec-
tion 4 briefly discusses the possibility of applying our work to second order
moment functions other than correlation functions.

2 Stationary reducibility

2.1 Properties.

So far, we have considered correlation functions. However the model (2) can
be applied to covariance functions provided that the variance of the process
is constant. Moreover, when the mean of the process is also constant, the
model (2) generalises the notion of weak stationarity (or strong stationarity
for Gaussian random fields); indeed, when the deformation ® is the identity
function, stationarity and sr agree.

2.2 Characterisation.

We suppose that @ is a bijective deformation from R" onto R" satisfying the
following assumption

(A1) @ is differentiable in R" as is its inverse.

Let Jp denote the Jacobian matrix of ® and set for any differentiable function
f:(zy) ER" xR +— f(z,y) €R

{Dxf(iv,y) = (Oifs---,0nf)(z,y)
Dyf('xay) = (8n+1fa"' ,an—l—nf)(xay)a

where 9; f(z,y),i = 1,2,... ,2n, denotes the i*” first partial derivative of f(z,y).
We consider correlation functions r(z,y) such that

(A2) 7(z,y) is continuously differentiable for z # y.
First let us characterise the stationary correlation functions.

Lemma 2.1 Let C(z,y) be a correlation function which is differentiable for
x #y. C(z,y) is stationary, i.e. there is a stationary correlation function R
such that

C(‘Tay) = R(y - IL'), (4)
if and only if the following holds
D,C(z,y) + DyC(z,y) =0, z=#y. (5)



Proof. The necessity is obvious. Conversely assume (5) holds, consider the
bijective coordinate change v = y — z and v = y + = and set I'(u,v) =
C (z(u,v),y(u,v)). Equation (5) then leads to D,I'(u,v) = 0. Thus I' does
not depend on the coordinates v so that we may define R(u) = I'(u,v) and (4)

follows.
O

This leads to a necessary and sufficient condition for stationary reducibility
vig a bijective deformation.

Theorem 2.1 Assume (A1) and (A2) hold. Then r satisfies (2) if and only
if

D,r(z, y)ng(z) + Dyr(:c,y)ng(y) =0, z#y. (6)

Proof. We set v(u,v) = r (&' (u),® " (v)). Thus, r satisfies (2) if and only if
~y satisfies (4). It follows from lemma 2.1 that r satisfies (2) if and only if

Dyy(u,v) + Dyy(u,v) =0, u# v,
with
{ Dyy(u,v) = Dyr (37 (u),® ' (v)) Jp (@ (u))
D) = Dyr (@ (), @ (v) Iy (@7 (v)).

To conclude we set z = @ (u) and y = ®~1(v).

2.3 Uniqueness.

If (9, R) is a solution to (2), then for any regular square matrix A and any
vector b, (@, R) with ®(z) = A®(z) + b and R(u) = R(A 'u) is a solution as
well. Thus, without loss of generality we may impose the restriction that

B(0) =0 and Jp(0) = Id (7)

where Id denotes the identity matrix in R®. Then, when the non-stationary
correlation function r(z,y) satisfying (2) and the deformation ® are given, the
stationary correlation function R is uniquely determined as

R(u) = (0,27 (u)). (8)

It follows from (A1) and (A2) that the stationary correlation function R(u)
is continuously differentiable for u different from 0. Uniqueness of ® will be
proved under the following regularity assumption

(A3) the set of functions {y # 0 — 9;r(0,y),j = 1,2,... ,n} is linearly
independent.



Theorem 2.2 Assume (A1), (A2) and (A3) hold. If (®,R) is a solution
to (2), with ® satisfying conditions (7), then it is unique.

Proof. Let (®1, R1) and (®2, R2) be two solutions to (2), &1 satisfying ®1(0) =
0, Jp,(0) = Id, and @, satisfying ®5(0) = 0, Jp,(0) = Id. Set @ = Pg0 &, "
and T'(u,v) = r(®]" (u), @] (v)), then

P(u,0) = By (v — 1) = Ry(O(0) — O(w).
It follows from theorem 2.1 that the following relations hold for all u # v

{Dur(u,v) = —D,I'(u,v)
D, T (u,v) —DyT(u,v)Jg " (v) Jo (u),

from which we deduce
D,T(u,v) = DT (u,v)Jg" (v)Jo(u), u#w.
Set z = ®7'(u) and y = &' (v). Then for all z # y
Dyr(a,9)J51(z) = Dar(z,1) 5 (@) To ' (#1(4) Jo (#1(2))
When z =0, qull (0) = Jo(®1(0)) = Id and the previous equality becomes

Dyr(0,y) = Dor(0,9)Jg (21(y)), y #0. (9)

Under assumption (A3) equation (9) implies that Jgo(®1(y)) = Id for all y # 0,
i.e. @1 = ®,. Finally, we deduce from (8) that R; = Rs.
(|

Corollary 2.1 Assume (A1), (A2) and (A3) hold and suppose (¢, R) is a
solution to (2). Then any other solution (¢, R) is of the form

d(x) = A®(z) + b and R(u) = R(A 'u).

2.4 Solution for some particular types of deformations.

In general, equation (6) has no solution, that is, we can not give the form of
the deformation in (2) without any additional assumption. However, when we
impose the deformation ® to belong to a particular family of bijections, it is
possible to solve (6). Hereafter, we consider three different families of bijections.

In the following examples we suppose that assumptions (A1), (A2) and
(A3) hold.



2.4.1 A special deformation of the plane.

When n = 2, we consider the bijective deformations ® = (&1, ®3) of the plane
that satisfy the Cauchy’s conditions, i.e. 01®1 = 02P2 and 019y = —029;.
Impose the restrictions ®(0) = 0 and Jg(0) = Id. By setting y = 0 in (6), we
then get
617‘(.77,0) = —83’/‘(:12,0)81q>1 + 84’)"(.’1},0)82q>1
{ (927“(32,0) = —837“(15,0)(92@1 - 847‘(117,0)81(1’1,

from which we deduce

_ 017031 + 091041

817"847” — 82’1"837”
P, = .
% (O57)2 + (047)2 (2,0)

After integrating along the path s € [0, 1] — sz, with x = (z1,z2), we get

1
—.T1(81’1"83’/' + 62’)"347‘) + .T2(81T841" — 827‘83’)")
0 = d
1($15$2) A (637")2 + (847“)2 (31'30) S
1
—x9(OW 03T + O91041) + 11 (D23 — O1704T)
0 = ds.
2(z1, 72) /0 (057)2 + (Our)? (sz,0)ds

2.4.2 Independent deformations in each direction.

Set x = (r1,22,... ,2Z) and ¥y = (Y1,Y2,.-. ,Yn). When & = (&1, D,,... ,D,)
with ®;(z) = ®4(x;), 1 = 1,2,... ,n, we infer from (6) fori =1,2,... ,n

Oy (m,y) (@) (3i) + Onyar(x,y) (i)' (z:) = 0, i # ui,

where (®;)" denotes the first derivative of ®;. Let (eq,... ,e,) be the canonical
basis of R". Thus, the deformation ® satisfying (7) is defined by

O;r(se; )
= / i, 0 ds, i=1,2,...,n
an—HT se;, 0

2.4.3 Space deformations which leave linear manifolds invariant.

When @ is of type ®(z) = zp(x) with ¢ a real-valued function, then Jg(z) =
o(z) I, + zJy(x). If we impose (0) = 1, then & satisfies (7) and from (6) we
obtain for 1 =1,2,... ,nand x #0

0;r(z,0) + ©(x)Op+ir(x,0) + O;p(z Z:L‘] nts7(2,0) | =0.

Multiply each previous equation by x;, sum over ¢ and set

n n
Z zjo;r | / Z ZjOp447 | (,0). Then, we get the non-homogeneous



linear partial differential equation for z # 0
n
o(z) + Y 3:0;0(x) = p(x). (10)
i=1

For any direction dy € R" and for all s € R we set z = sdy, f(s) = ¢(sdp) and
q(s) = p(sdp). Then (10) reduces to the non-homogeneous linear differential
equation for s # 0

f(s)+sf'(s) = q(s).

Therefore, sf(s) = [, g(u)du. Thus, with ¢(0) = 1 the unique solution satisfy
for all s

B(sdy) = do /OS p(udy)du.

Note that stationarity already exists in the direction dy when p(sdy) = 1.

3 Stationary and isotropic reducibility

3.1 Properties.

As for the sr case, the model (1) can be applied to covariance functions provided
that the variance is constant. Moreover, when the mean is also constant, the
model (1) generalises the notion of weak stationarity and isotropy (or strong
stationarity and isotropy for Gaussian random fields); indeed, when the defor-
mation ® is the identity function stationarity and isotropy, and sir agree.

3.2 Characterisation and uniqueness.

First let us characterise the stationary and isotropic correlation functions.

Lemma 3.1 Let C(z,y) be a correlation function which is differentiable for
x #vy. C(z,y) is stationary and isotropic, i.e. there is a stationary and isotropic
correlation function p such that

Clz,y) = p(ly — =) (11)
if and only if (5) holds and
¥:0;C(0,y) = y;0;C(0,y), y#0 and 1<i<j<n. (12)
Proof. First we prove that a function R(z) on R depends only on the norm
]
R(z) = p(||=]]) (13)
if and only if

zi0jR(z) = z;0;R(z), £ #0 and 1<i<j<n. (14)



If (13) holds, 9;R(z) = p'(||z||)z:/||z||, so that (14) is satisfied. Conversely
assume (14) holds, express z = (x1,2,...,Ty,) in the spherical coordinates
0 =(01,0s,...,6,)

ry = 01 COS 92
o = 01 sin 92 COS 93
T, = 01sinf,...sinb,,

and set L(61,0s,...,60,) = R(x(01,02,...,0,)). Then we have

2109, L(0) = 31 0;R(z)0p,x;(6), i=2,3,...,n.
j=t

It follows from (14) that z10;R(z) = ;01 R(x) so that for i =2,3,... ,n

n

2105, L(0) = 1 R(z) Y _ x;09,7;(0) = (1/2)01R(x)0p, Y _(x;)* = 0.
j=1

j=1

n
The last equality is due to the fact that Z(acj)2 = 6? is independent of 6;,
j=1
1=2,3,... ,n. Thus L does not depend of the 6;’s, ¢ = 2,3,... ,n. Therefore
we may define p(6;1) = L(01,6-,... ,0,).
Finally, C(z,y) satisfies (11) if and only if C(z,y) = R(y — z) with R(y — z)
satisfying

(vi — 2, R(y —2) = (3 — 0))AR(y — ), o#y and 1<i<j<n. (15)

To conclude observe that C(z,y) = C(0,y—z) and g;R(y—z) = —0;C(0,y—x),
i=1,2,...,n, and set x = 0 in (15).
(|

Note that if (®,p) is a solution to (1), then for any vector b, (®,p) with
® = &+ b is a solution as well. Thus, without loss of generality, we may impose
in the sequel the restriction that ®(0) = 0.

We set @ = (@1, ®s,... ,®,)" and we denote by ¢;(0) the i—th column vector
of Jg 1(O), 1 = 1,2,... ,n. Here is the necessary and sufficient condition for
stationary and isotropic reducibility via a bijective bi-differentiable deformation.

Theorem 3.1 Assume (A1) and (A2) hold. Then r satisfies (1) if and only
if (6) holds and

®i(y) D27 (0,)c; (0) = 5(y) Dzr(0,y)ci(0), y#0 and1 <i<j<n. (16)
Proof. We set v(u,v) = r (®~'(u),® *(v)). Thus, r satisfies (1) if and only if

-y satisfies (11). It follows from lemma 3.1 that -y satisfies (11) if and only if it
satisfies (5) and

v;0;7(0,v) = v;0;v(0,v), v#0 and 1<i<j<n,

8



with 9;7(0,v) = Dyr(®71(0), ! (v))c;(®~1(0)) and ®~1(0) = 0. To conclude
we set y = @71 (v).
O

Remark 3.1 Clearly, equations (16) are still true when i = j.

As already mentioned in the introduction, the correlation function (3) of the
Brownian sheets is sr with a stationary correlation function R defined by

R(U]_, UZ)

= % (exp(ul/Z) + exp(—u1/2) — \/exp(u1/2) + exp(—u1/2) — 2cos(u2)) .

Calculation of the partial derivatives of R(u1,us) shows that equations (12) are
not satisfied. Thus, the correlation function of the Brownian sheets is not sir.

3.3 Uniqueness.

Let G(n) be the group of the regular square matrices of dimension n and S(n)
the subgroup of the orthogonal matrices. For a symmetric and positive definite
matrix A which has the decomposition A = PDP?, where P is orthogonal and
D is diagonal, we note AY/2 = PD'/2pt,

Theorem 3.2 Assume (A1), (A2) and (A3) hold, and suppose (¢, p) is a
solution to (1). Then any other solution (¢, p) is of the form

$(z) = aP®(z) and p(u) = p(u/a)

where a is a scalar and P € SO(n).

Proof. Obviously, if (P,
P and any scalar a, (®,
as well.

Conversely, if ® and ® are solutions to (1), they are solutions to (2). It
follows from corollary (2.1) that ®(z) = A®(z), where A is a regular square
matrix. The matrix A'A is symmetric and positive definite, and thus admits
the decomposition A*A = PDP*, where P is orthogonal and D is diagonal. We
have p([|2(y) — @(z)|]) = A(|2(y) — ®()]]). We set = =0, then

p) is a solution to (1) then for any orthogonal matrix
) with ®(z) = aP®(z) and p(u) = p(u/a) is a solution

o (V@W)OW) = 5 (V@) PDP()). (17)

Let v;, 1 = 1,2,...n, denote the i-th column vector of P and d; the i-th eigen-
value of A'A. We set y = uv;, with u > 0, in (17). Thus, p(u) = p(uv/d;) =

d
--- = p(uy/dy,). Suppose for instance that d; > dy and set 7 = d—2 Then we
1
have p(u) = p(yu) = ... = p(y™u) for all u > 0 and any m = 1,2, .... It follows
that p(u) = p(0"). Therefore p is a constant function, as are p and r. This



contradicts (A3). Thus, we have d; = dy. In the same way we could show that
di =dy =--- = d, = a®. Consequently p(u) = p(u/a) and ®(z) = aP®(x).
O

As already pointed out, it is always possible to choose the initial value ®(0)
arbitrarily but Jg(0) cannot be chosen freely unlike in the sr case. Indeed, if
J3(0) = J and ®(z) = aP®(z)+b with P € S(n), then J3(0) = aPJ € aS(n)J,
where S(n)J is the equivalence class of J under right (in other words it is a
right coset of S(n) in G(n)). To choose one representative in S(n)J we use the
following lemma.

Lemma 3.2 For any J € G(n), the right coset S(n)J has a unique symmet-
ric positive definite representative (J*J)'/2.

Proof. For any B € S(n)J there are some P € S(n) such that B = PJ. Thus
BB = JtPtPJ = J'J and it remains to show that (J*J)Y/2 € S(n)J. We have

(JtJ)l/Z(JtJ)—l(JtJ)l/Q — Id = ((JtJ)l/QJ—l) ((JtJ)l/QJ—l)t,

then (JtJ)Y/2J-1 € S(n).

O
Thus, without loss of generality we may impose the restriction
®(0) =0 and Jg(0) is a symmetric positive definite matrix (18)
with det(Js)(0) =1

Conditions (18) mean nothing but we fix the homothetic Euclidean motions in
R™.

Corollary 3.1 Assume (A1), (A2) and (A3) hold. If (®,p) is a solution
to (1), with ® satisfying conditions (18), it is unique.
3.4 Form of the deformation.

We will solve equations (6) and (16) with respect to ®. Set Jz'(0) = (vi;),
n

aj(z) = Zair((],x)’yi,j and a(z) = (a1,a2,...,a,) (z). Here is our main
=1

theorem.

Theorem 3.3 Assume (A1), (A2) and (A3) are satisfied and suppose that (1)
holds with a deformation ® satisfying (18). Then

(@) = O o) with |B()]| = - sz/ 8”"”"0

()l la(s2)]

10



Proof. Setting & = 0 in (6) leads to
(a(2)) Jo(z) = —Dyr(0,2), = #0, (19)
and (16) is equivalent to
O (z)(a(2))" = a(z)(®(2))". (20)

We set 0;®(z) = (0;®1,0jP2,...,0;9,) (2),j =1,2,... ,n. It follows from (19)
and (20) that

@i(2)((2(2))'9;®(2)) = —@i(2)On1;7(0,2), 1<i,j <n.
For z # 0 we have the relation (®(z))'9;®(z) = || ®(z)||9;(]|®(z)||), then
ai(@)[|2(2)19; (12(2)]]) = —2i(2)0p4;r(0,2), 1<4,5 <n.

It follows from (20) that (®;/a;)(z) is independent of 4; then

(@:/a:) (@) = [$(@)]/ o). Do) = 1310 and
Oi([@(@)]) = —Ontr(0,2)/[la(z)]l, 1=1,2,...,n
We set ¢ = (z1,%9,... ,Z,). By integration of the previous quantity we get

O;r(sx, O
O(x :c,/
1®( Z TaGal

4 Discussion

So far, our work has been applied to correlation functions. In fact, provided
that assumptions (A2) (A3) are satisfied, it can be directly applied to every
second order moment function like, for instance

e the dispersion functions D(z,y) = Var(Z(z) — Z(y)) that actually were
the functions for which the model (1) had been introduced the first time
(Sampson, 1986);

e the pair potential functions for Gibbs random fields (Jensen and Nielsen,
1998).

For relevance of the characterisation of the models (1) and (2), it is necessary
that the functions under consideration have some parametric forms. The exam-
ples given above have such a parametric representation. But it is not the case in
general for the second-order intensity functions and K-functions that are used
in spatial point processes.

11
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