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Abstract

We are interested in the functional convergence in distribution of the
process of quadratic variations taken along a regular partition for a large
class of Gaussian processes indexed by [0, 1], including the standard Wiener
process as a particular case. This result is applied to the estimation of a
time deformation that makes a non-stationary Gaussian process stationary.
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1 Introduction.

We are interested in the functional convergence in distribution of the quadratic
variation process for a large class of Gaussian processes indexed by [0,1]. This
convergence result is obtained assuming smoothness of the covariance function
outside the diagonal.

The quadratic variations are first introduced by Lévy (1940) who shows that
if Z is the standard Wiener process on [0, 1], then almost surely (a.s.) as n — o0

o
Y 1Z(k/2") — Z((k - 1) /2" — 1. 1)
k=1

Baxter (1956) and further Gladyshev (1961) generalise this result to a large
class of Gaussian processes.

Guyon and Leén (1989) introduce an important generalisation of these vari-
ations for a Gaussian stationary non-differentiable process with covariance func-
tion r(u) = 1 — uPL(u), where 8 €]0,2[ and L is a slowly varying function at
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zero. Let H be a real function. The H-variation of process Z indexed by [0, 1]
is defined by

" Z(k/n) — Z((k— 1)/n)
2.1 ( (20r(0) — r(1/n)))1/2 ) |

Guyon and Leon (1989) study the convergence in distribution of the H-variations,
suitably normalised, for non-differentiable Gaussian processes.

The generalisation of these variations for Gaussian fields is studied in Guyon
(1987) and Leén and Ortega (1989). Another generalisation for non-stationary
Gaussian processes and quadratic variations along curves is done in Adler and
Pyke (1993).

For Gaussian process Z with stationary increments, Istas and Lang (1997)
define general quadratic variations, substituting a general discrete difference
operator to the simple difference Z(k/n) — Z((k — 1)/n). They give conditions
on the discrete difference and on the covariance function of Z that ensure the
a.s. convergence and the asymptotic normality of these quadratic variations,
suitably normalised. Then, they use these quadratic variations to estimate the
Holder index of the process.

For non-stationary Gaussian processes, with increments stationary or not,
we give a general result concerning the functional asymptotic normality of the
process of the quadratic variations which corresponds to the linear interpolation

of the points (p/n, V,(p/n)) with Vi (p/n) = Z[Z(k/n) ~Z((k—=1)/n))?, p =
k=1

1,2,... ,n.
We apply this result to the estimation of a time deformation for non-stationary
models of the form

k=1

Z(z) = 6(®(x)), = €]0,1], 2)

where ¢ is a stationary random process with known covariance and the defor-
mation ® is deterministic, bijective and continuously differentiable in [0, 1], as is
its inverse. Model (2) appears first in Sampson and Guttorp (1992) and gives a
class of non-stationary random fields. In the one-dimensional case, Perrin (1997)
gives different methods for estimating ®. Perrin and Senoussi (1998) exhibit a
characterisation for processes satisfying (2). When the process Z under study
is Gaussian, we show it is possible to construct a non-parametric estimator of
® from one realisation of Z observed at discrete times k/n, k =0,1,... ,n, and
give the asymptotic normality of this estimator as the number of observations
n grows to 0o. Testing the stationarity of Z, i.e. testing if @ is the identity or
not, is also considered.

The paper is structured as follows. Section 2 sets up notations, assumptions
and definitions and describes the quadratic variation process. Section 3 contains
the related problem: the estimation of a time deformation. In section 4 we
give our main result, theorem 4.1, dealing with the functional convergence in
distribution of the process of the quadratic variations. This result is applied in
section 5 to the related problem described in section 3.



2 The process of quadratic variations

Let Z = {Z(z),z € [0,1]} be a real-valued centred Gaussian random process
with covariance function r(z,y). Assume that

(A1) 7 is continuous in [0,1]% and its second derivatives
are uniformly bounded for x # y.

Assumption (A1) is satisfied for a large class of processes including: (i) pro-
cesses with independent increments such that z — r(z,z) is of class C?; (i)
stationary processes with rational spectral densities. For other examples see
Baxter (1956).

(A1) gives the following property dealing with the regularity of the sample
paths of Z (e.g. Neveu (1980), p. 93).

Property 2.1 For any constant v €]0,1/2], a.s.

limh™ sup |Z(y)—Z(z)|=0
h=0 y—z|<h

It follows that Z is continuous (in the sense that a.s. Z has continuous sample
paths).

We denote using r(mm) the m, m'-partial derivative of r with respect to z
and y and set

D () = (ze ) = limr®(z,y), z €01,
y/ 'z

DY (z) =r®Y(z,z") = limrOV(z,y), ze]0,1].
AN

These limits exist because the second order derivatives of r are uniformly bounded.
Then we have the following result.

Lemma 2.1 Assume (A1). Then D~ and D™ are continuous in [0,1].
Proof. We set A = {(x,y) €[0,1)%,z # y} First, we show that D~ is contin-
uous in ]0, 1]. We have the inequality for all z €]0,1] and all A > 0

|[D=(z+h) — D (z)|] < |r(0’1)(z +h,(z+h)7)— r(o’l)(m + h,z7)|

+ |rOY(z + h,z7) — rOD(z,27)|
< B sup [fO(z,y)+ sup |[FD(z,y)
from which we deduce the continuity of D~ in |0, 1].

Then, it remains to prove that li{% D™ (x) is finite. For that, we write
T

. () — T T (0,1) oy (00) (0,1)
il{lT%)D (z) il\r%zll% (r (z,z —h) — 7" (2,0) +7 (:v,O)).



We have @D (z, z—h)—r©OV(2,0)| < |z—h| sup [r®?(z,y)| and rOV(z,0)
(zy)eA

is piecewise continuous in [0, 1]. Therefore, li{% D~ (z) = r®Y(0%,0).
T
A similar treatment gives DT continuous in [0,1[ and li/ni D™ (z)
T

= 7‘(071) (]__, ]_)
O

Let us now introduce the singularity function a of Z
a(z) = D™ (z) — D™ (z), z €]0,1].

It follows directly from lemma 2.1 that « is uniformly continuous in [0, 1]. Note

that the existence of the first derivative of r(z,y) at £ = y is not assumed.

Indeed, the existence of this derivative would make a(z) = 0 for all z € [0, 1].
Let n be a positive integer. We set for k =1,2,... ,n

AZy, = Z(k/n) — Z((k —1)/n).

n—1

1 2
Let I, (1) = {0 <—< —<---< < 1} be the regular partition of [0, 1]
n o n

at constant scale 1/n. We denote by |nz| the greatest integer smaller than or
equal to nz. For z € [0,1], we define the quadratic variations V,(z) of Z along

1 2
Hn(x):{0<—<—<---§|‘2—ﬂ} as follows
non

[na
Va(z) =Y (AZ)?.

k=1

0
When |nz| =0, we set Z (AZ)? = 0. The process V,, = {Vp(z),z € [0,1]} is
k=1
a random element of the space of functions that are right-continuous and have

left-hand limits. The following definition allows us to consider a continuous
version of Vj,.

Definition 2.1 The process of the quadratic variations of Z, v, = {vn(z),z €
[0,1]}, is defined by

{ i) - Va(@) + (2 = [n2)) (AZjpay 11)”, @ € 0,1
ve(l) = Vp(1).

Thus, v, corresponds to the linear spline with mesh II,,(1) that interpolates
points (p/n, Vi,(p/n)), p = 1,2,... ,n. From now on, we no longer distinguish
the case z € [0, 1] from the case z = 1 in the definition of v,,.



3 The estimation of a time deformation.

Let Z be a centred Gaussian process with correlation function r satisfying (A1).
Consider the problem of estimating the function ® : [0,1] — R from one
realisation of Z observed at discrete times k/n, k = 0,1,... ,n, in the model

Z(z) = 6(®(x)), = €]0,1], 3)

where 0 is a stationary random process with known correlation and the defor-
mation ® satisfies the following assumption

(B) & is bijective and continuously differentiable in [0,1], as is its inverse.

Model (3) is equivalent to the following

r(z,y) = R(®(y) — &(x)) (4)

where R is the correlation function of 4. Note that if (®, R) is a solution to (4),
then for any b > 0 and ¢ € R, (®, R) with ®(z) = b®(z) + c and R(u) = R(u/b)
is a solution as well. Thus, without loss of generality we may impose that

®(0) =0 and @(1) =1. (5)
Consequently, the stationary correlation function R is uniquely determined as
R(u) = (0,2 (u)) and R(—u) = R(u).

It follows from (A1) and (B) that the stationary correlation function R(u) is
continuous and differentiable for u different from 0, and that its derivative to
the left and its derivative to the right at 0 exist and satisfy

RO07) = D (2)/3W(a),

RW(©0Y) = D*(x)/aW (),

where ®() denotes the derivative of ® and R()) the derivative of R. Thus, the
singularity function « satisfies the following relation

a(z) = 2RM (07)d) ().

Finally, under conditions (5), we get for all z € [0, 1]

(6)

Therefore, the estimation of ® requires an estimation of the primitive
T

of : z +—> / a(u)du. Once an estimator of ® will be built, we will give

0
the functional asymptotic normality of this estimator suitably normalised as
the number of observations n grows to oco.



4 Functional convergence in distribution

Consider the Gaussian vector

= (o (2) 1 (2) a2

Its covariance matrix is

r(0/n,0/n) r(0/n,1/n) ---  r(0/n,|nz|/n)
r(1/n,1/n) --- r(1/n, |nz]/n)
ZanJ = .
r(lnz]/n, [nz|/n)

Let L|,,| be a matrix with [nz] rows and [nz] + 1 columns defined as follows

-1 41 0 --- 0
o -1 +1 -+ 0
Lina) = .
o o0 . -1 +1
The covariance matrix of the centred Gaussian vector (AZl, AZy, ... ,AZ|yy )t

18 Lipg| Xina) Lth I We denote the eigenvalues of this matrix by Ay |ng|, A2,|nz |
s Alne),lnz) and Pl = ((PanJ)k,j) is the orthogonal matrix such that
Diag(Mg,|ns)) = mecJLLMJELMJ Lf[mJPLmJ- Then the Gaussian variables de-
fined by
|nz|
Xk, nz] = ()\Ic,|_mcj)_1/2 Z(PLTLLEJ )j,kAZj, k=1,2,..., Ln$Ja
7j=1

are independent reduced Gaussian variables so that

K d

k=1 k=1

where the ch nz| are independent chi-square variables with one degree of free-
dom. The followmg theorem gives a uniform upper bound for A|,;|, the maxi-
mum of the eigenvalues ()‘k’LmJ)kzl,z,...,anJ
Lemma 4.1 Assume (A1). Then

Sup Ajpe| = O(1/n).
z€[0,1]

Proof. For (j,k) € [1,2,... ,n]?, let aj), = E(AZ;AZy), then

|k —1 k—1  k—1 —1 k
n'n n 7 noon n on




To give an upper bound for A|,,, first see that (AkvL”wJ)kzl 9y ] 2T€ the
eigenvalues of the matrix (a;x), <jk<|nz] and then use the following inequality

(e.g. Horn and Johnson, p. 33).

[nz|

Alng| < max Z| ajr| < max Z|a3k| O(1/n).

1<k<|n 1<k<n

Let A be a bound for the three quantities |r(%0) (z, y)|, [r("D (z,y)| and [r(*2) (z, )]
in the range 0 < z # y < 1. Using for r(z,y) a Taylor series expansion with
remainder, it can easily be shown that j # k implies

34
lajel < 5 (9)

Also for k=1,2,... ,n

ar = % (D— (g) _pt (%)) +O(1/n2) = %a (%) Lo(/m?)  (10)

where O(1/n?) is independent of k. The function « being uniformly bounded
in [0,1], we have

|ak,k| = O(l/n), k=1,2,...,n, (11)

where O(1/n) is independent of k.
O

Define the assumption for the singularity function «
(A2) « has a bounded first derivative in [0, 1].

For instance, assumption (A2) is satisfied for: (i) processes with independent
increments such that z — r(x, ) is of class C?; (ii) stationary processes with

rational spectral densities.
T

We know from Baxter (1956) that V,,(z) is a consistent estimator of [ a(u)du.
0
The following lemma gives an upper bound for the bias of V,,(z).

Lemma 4.2 Assume (A1)-(A2). Then, the following holds

E(Va(2)) - /0 " (u)du

sup
z€[0,1]

= O(1/n).

Proof. We have by definition of V,(z)

Ln)

=) ap (12)
k=1



L

|nz]
1 k
It follows from (10) that Z ke = - Z « (E) + O(1/n). We have
k=1 k=1
- A < ) - .
- ; e’ (n) /0 a(u)du| < kz_:l ﬂk—l) ! (n) a(u)|du + /meJ |e(w) |du

Since « is continuous (lemma 2.1) and has a bounded first derivative in [0, 1]

X
(from (A2)) we have the estimates sup / J|oe(u)|du = O(1/n) and
] ne
k
e’ (E) — a(u)

z€l0,1] /25
Set for all z € [0, 1]

T, = ViV - BV,(@)
T(z) = /0 o(w)dW (u)

i

k
sup 3 /( "
lg=1 /5

du = O(1/n).

z€[0,1

and consider the centred Gaussian process T' = {T'(z), z € [0, 1]} with covariance
TNy

function E (T'(z)T(y)) =2 / o?(u)du. Before giving our main theorem, we
0

first establish two lemmas.

Lemma 4.3 Assume (A1). Then, for any p € N* and whenever z1,zo, ... ,
xp all lie in [0,1], (T (z1), Th(z2),-.. ,Tn(zp)) converges in distribution to the
finite-dimensional Gaussian variable (T'(z1),T(x2),... ,T(zp)).

Proof. (i) First, we show that, for all z € [0,1], T, (x) converges in distribution
to T(x). (i) Then, we show that, for all (z,y) € [0,1]?, the 2-dimensional vari-
able (T, (x), Ty, (y)) converges in distribution to (T'(x), T (y)) by using a generali-
sation of Cramér-Wold theorem. (i) Finally, we conclude that the convergence
in distribution still holds for any finite-dimensional variable.

(i) Due to (7) we have for all z € [0,1]

|na]
To(z) = Vi (Va(z) — E(Va(2))) = VR > Ay na) Xk, ne) — 1)
k=1

T
First we show that the variance of T,,(z) converges to 2 / o?(x)dz as n — oo.

0
We have Var(T,(z)) = nVar(Vy(z)) = n(E(V2(z)) — (EVy(z))?). Recalling
the definition (8) of ajk, (4, k) € [1,2,... ,n]?, we have
|nz]
E(Va) = Y kg
k=1

[nz] [nz]
E (Vi) = 3) app+2) Y (ankajj+2a5,).
k=1

k=1 j>k



the second equality coming from, for (£1,&2,&3,£4)" a centred Gaussian vector

E(&1&26384) = E(&1&2)E(€38s) + E(E183) E(E264) + E(E164) E(&263).  (13)

Therefore,

Var(T, —2nZZaJk—2nZakk+4nZZajk (14)
k=1 j=1 k=1 j>k

Using the estimates of ajy in (10) and a;j in (9), the second term on the
right-hand side of (14) converges to 0 as n — oo and

Ln) Ln)

2 k
2 2 == N e 1).
ngak,k nga (n>+0()

|nz| z
Since a is Riemann integrable in [0,1], 2n Z a%’k converges to 2 / o?(z)dz
0

k=1
as n — o0.

Then we show that the variables Xy, |0 = \/ﬁ)\k,anJ (X%,anj — 1) satisfy

the conditions of the Lyapounov central limit theorem (theorem 27.3 in Billings-
ley (1995)). Indeed, for each n the variables X}, || are independent, have finite
variance and are centred. Moreover

B(| Xy na) ) < 1503208 s B =1,2,..., [na).

T
We know that s,(z) = /Var(T,(z)) converges to 2/ o?(x)dz as n — oo
V" Jo

and, from lemma 4.1, that the maximum A|,; of the eigenvalues Ay |,z is a

O(1/n). Theref LWJE Xp,nz) ) = O(1/4/n) and i < B(X} g
(). Therefore, 37 B(Xepun ') = OV and liy 37 — 5ol

0. Thus, T,,(z)/v/Var(T,(z)) converges in distribution to a reduced Gaussian
variable.

(ii) Consider now the 2-dimensional variable (T}, (z), T (y)). We now show that
(T (z), Ty, (y)) converges in distribution to (T'(z), T (y)).

According to the Cramér-Wold theorem (e.g. Billingsley (1968)), it is equiv-
alent to show that, for any real coefficients #; and 6-, the linear combination
0:T,(z) + 62T, (y) converges in distribution to 6;T(z) + 62T (y). The lemma 6
in Lang and Azais says that the Cramér-Wold theorem remains true when we
restrict to 81 > 0 and 6 > 0. Suppose that z < y and let 6; and 6, are positive.

Then
[ny]

01 () + 05T, (y) = Vv Y (Y2 — E (V7))
k=1

where Yk = 4/ (91 + GQ)AZk if k S |_nxJ and Yk == \/Q_QAZk if I_TLIEJ +1 S k S
|ny]. The covariance matrix (c; ) of the centred Gaussian vector (Y3,Ys,...,

9



YLnyJ )t 18

Cik = (91 + Gg)a]-,k if j, k < |_na;J
ciwg = (01+02)V0ajy if j<|nz]and k>1+ [nz] (15)
Cik = Hgaj,k if j, k> I_’I’L.TJ +1

As for (7), we have

[ny]

01T, (z) + 02T (y) = v/ Zm o) (X — 1)

where Ty |py|, T2, |ny]s - -+ 3 T|ny],|ny| ar€ the eigenvalues of the covariance matrix

(¢jk)- The maximum 7|, of these eigenvalues satisfies

[nz]

Tiny] < 1<Ikn<affmj Z ¢kl

It follows from (9), (11) and (15) that 7, = O(1/n). By a similar treatment
0,7 (z) + 02T (y)

VVar (01T, (z) + 0T, (y))

converges in distribution to a reduced Gaussian variable.
It remains to identify the limit of Var(01T),(z) + 62T, (y)) as n — oo. First
T

y
62Var(T,(z)) + 02Var(T,(y)) converges to 20%/ o (u)du + 29%/ o?(u)du
0 0
as n — 00; then we have the decomposition

Cov(Tn(z), Tn(y)) = Var(Tu(z)) + E (Tn(2)(Tn(y) — Tn(z))) -

Using (13), we have

as the one used in the previous point (i), we show that

lnz|  |[ny]

E(Tu(@)(Tuly) —Tu(2))) = n|d_ > (BUAZ)*(AZ)) - ajjank)
k=1 j=|nz|+1
lnz|  |ny]

103>

k=1 j=|nz|+1

Making use of the estimate in (9), we obtain that |E (T, (z)(Tn(y) — Tn(z)))| =
O(1/n) and Var(0:T,(z)+ 02T, (y)) converges to Var(61T(x)+ 021 (y)) as n —
0.

(#11) Finally, to conclude that (T, (z1),Tn(z2),... ,Tn(zp)) converges in distri-
bution to (T'(z1),T(z2),...,T(zp)) we apply the following treatment

e first note that any linear combination 61T}, (z1) + 02Ty (z2) +- - - + 60,1 (zp)
can be expressed as the difference of two positive linear combinations of
quadratic variations;

e note also that any positive linear combination of quadratic variations is
still a quadratic variation;

10



e therefore, any linear combination of quadratic variations reduces to the
difference of two quadratic variations;

e consequently, we apply the lemma 6 of Lang and Azais to prove the con-
vergence in distribution of this difference as we did in the point (7).

O
Set for m = 2 and 4, M,, = E(Xi,anJ —-1)m
Lemma 4.4 Assume (A1). Then for 0 <z <z <z <1
E (|Ta(z) = Tn(1)[?|Tn(w2) — Tn(2)?) < Blaz — x1)*.

where B is a positive constant.
Proof. Using the Cauchy-Schwarz inequality we have
E (|To(2) — Tu(21) | T (22) — Tu(2)?)

<V (1Ta(@) — Tule)) )\ B (T (z2) — Tu(2)[*).

Then it is sufficient to prove that E (|T5,(y) — Tn(z)|*) < B(y — z)?, for 0 <
z <y <1. We have

[ny] [ny]
To(y) — To(z) = \/ﬁ Z (AZIC)2 = \/ﬁ Z /\k,LnyJ (X%,Lnyj —-1)
k=|nz|+1 k=|nz|+1
where ’\LMJ-i-LLnyJ , AanJ+2,|—nyJ - ”\LnyJ,LnyJ are the eigenvalues of the covari-

ance matrix of the Gaussian vector (AZ|pg |41, AZ|ng|+2; - s AZ|py|)". Thus

[ny) [nz]+1
E(|Taly) = Ta(@)') = 0> | Ma D7 X jng) +6M5 YD A% 10y A0y
k=|nz|+1 k=1>k
[ny] 2
< M| D X
k=|nz|+1

We can show as we showed lemma 4.1 that the maximum of the eigenvalues

Ak, |ny| 18 @ O(1/n). Thus

E (|Tu(y) — Ta(z)|*) < B(y — 2)*.

Here is our main theorem.

T
Theorem 4.1 Assume (A1)-(A2). Then {\/T_z(vn(ac) —/ a(u)du),z € [0, 1]}
0
converges in  distribution in  C([0,1]) to the Gaussian process

{/Ox V2a(u)dW (u),z € [0, 1]} as n — o0.

11



Proof. For any z € [0,1] we have the decomposition

Jn ('Un(x) - /0 wa(u)du)
= Vi (oa(o) = Blon@) + Vi (Blan(e) ~ [ atws) . (16

The second term on the right-hand side of (16) can be decomposed as follows

Vit (Blune)) - [(atan) = Vi (BE@) - [ atwds)

+ Vn(nz—|nz])E (AZLmHl)Z. (17)

According to lemma 4.2, the first term on the right-hand side of (17) converges
uniformly in [0, 1] to 0. We have sup (nz—|nz]) <1;forz =1, (nz—|nz]) =
z€[0,1]

0, and for any = € [0, 1] there is one k € [1,2,... ,n] such that |nz]+1 =k
and E (AZLmHl)Z = ay as defined by (8). We showed that |ay x| = O(1/n)
uniformly in &k (¢f. (11)). So the second term on the right-hand side of (17)
converges to 0 uniformly in [0, 1].

It remains to study the convergence in distribution of /n (v, (z) — E(vp(z))).
We have

\/ﬁ(vn(x) — E(v,(z))) = \/E(Vn(x) — E(Vu(x)))
+ V/n(nz — |[nz)) (AZLMJH)Z
— Vn(no—nz)) B (AZjng)”. (18)

As previously, the third term on the right hand side of (18) converges to 0
uniformly in [0,1]. From property 2.1 it follows that a.s. the second term on
the right hand side of (18) converges to 0 uniformly in [0,1]. Finally, it fol-
lows from lemma 4.3, lemma 4.4 and theorem 15.6 in Billingsley (1968) that
{Vn (Vo(z) — E(Va())) ,z € [0,1]} converges in distribution to the Gaussian

process { /0 ’ V2a(u)dW (u), z € [0, 1]}.
O

5 Application to the estimation of a deformation model

We come back to the statistical problem related to the quadratic variations and
described in section 3. We want to estimate the deformation @ in the model (3)-
(4) and defined by (6). An estimator of ® is

2 vn ()
P = .
(o) vn (1)
Theorem 5.1 Assume (A1), (A2) and (B). Then a.s.

lim sup |®,(z) — ®(z)| = 0.

=00 relo,1]

12



Proof. Since (<i>n> o is a sequence of increasing functions in C([0,1]), it suf-
n

fices to show the pointwise a.s. convergence instead of the uniform a.s. conver-
gence. Thus, we must show that a.s. for all z € [0, 1]

n—oo

T

lim vy, (z) :/ a(u)du.
0

For all z € [0,1] we have

Va(2) = V() + (nz — [nz]) (AZ|ng 1)’ (19)

It follows from property 2.1 that a.s. the second term on the right-hand side
of (19) converges a.s. to 0. It remains to study

Vi(z) = E(Vy(2)) + Vou(z) — E(Vi(2))- (20)

By a similar treatment as the one used in the proof of lemma 4.4, we can show

that )
[nz]

E (Va(z) = E(Va(2)))* <3My | YA} e
k=1

Thus, it follows from lemma 4.1 that E(V,(z) — E(V,(2)))* = O(1/n?). Us-
ing Markov inequality and Borel-Cantelli lemma, we obtain that a.s. V,,(z) —

T
E(V,(x)) converges to 0. As E(V,,(z)) converges to / a(u)du (from lemma 4.2),
0

T

a.s. the left-hand side of (20) converges to / a(u)du.

0
g

Hereafter, we prove the functional convergence in distribution.

Corollary 5.1 Assume (A1)-(A2) and (B). Then

{Vil@a(a) — #(@)), = € 0,1]}

converges in distribution in C([0,1]) to the Gaussian process
T 1

NG / (w)dW (u) NG / (w)dW (u)
0 _ @(m) 0

/01 a(u)du /01 a(u)du

,x € [0,1]

as n — Q.

Proof. For all z € [0,1] we have the following decomposition
1
v (1) — / a(u)du
0

/01 a(u)du

&, (z) — B(z) = — &, (x)




The result follows directly from theorems 4.1 and 5.1.
O

We can now propose a test of stationarity for Gaussian processes satisfying
model (3)-(4), that is ®(z) = z against ®(z) # z. In this case, {\/ﬁ(én(x) — ),
z € [0,1]} converges in distribution in C([0,1]) to the Brownian bridge
{V2W (2) - 2w (1)) ,

z €[0,1]} as n — oo. Thus, v/n 31[1p] |<i>n(:1:) — z| converges in distribution
z€[0,1

to the Kolmogorov distribution v/2D where D = sup |W(z)—zW(1)|. Recall
z€[0,1]

[e.e]

that P(D <vy) =1+ Zexp(—2k2y2) for all y > 0 (e.g. Dacunha-Castelle
k=1

and Duflo (1986)). Therefore, we reject stationary hypothesis at the level of

significance a if \/n sup |<i>n(:v) —z| > V2Q1_, where Q1_, is the quantile of
z€[0,1]
order 1 —a of D.
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