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ABSTRACT

The asymptotic theory for the sample autocorrelations and extremes of a GARCH(1,1) process
is provided. Special attention is given to the case when the sum of the ARCH and GARCH
parameters is close to one, i.e. when one is close to an infinite variance marginal distribution.
This situation has been observed for various financial log-return series and led to the introduction
of the IGARCH model. In such a situation the sample autocorrelations are unreliable estimators
of their deterministic counterparts for the time series and its absolute values, and the sample
autocorrelations of the squared time series have non—degenerate limit distributions. We discuss the
consequences for a foreign exchange rate series.
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1 Introduction

Log-returns Xy = InP; — In P,_; of foreign exchange rates, stock indices and share prices P;,

t=1,2,..., typically share the following features:

e The frequency of large and small values (relative to the range of the data) is rather high,

suggesting that the data do not come from a normal, but from a heavy—tailed distribution.

e Exceedances of high thresholds occur in clusters, which indicates that there is dependence in

the tails.

e Sample autocorrelations of the data are tiny whereas the sample autocorrelations of the
absolute and squared values are significantly different from zero even for large lags. This

behaviour suggests that there is some kind of long—range dependence in the data.

Various models have been proposed in order to describe these features. Among them, models of
the type
Xe=o0v 2y, tEL,

have become particularly popular. Here (Z;) is a sequence of iid symmetric random variables with
EZ? = 1. One often assumes the Z;s to be standard normal. Moreover, the sequence (o;) consists
of non—negative random variables such that Z; and o; are independent for every fixed ¢. In what
follows, we frequently refer to o; as the stochastic volatility of X;. Models of this type include the
ARCH and GARCH family; see for example Engle [16] for their definitions and properties. In what
follows, we often write o for a generic random variable with the distribution of oy, X for a generic
random variable with the distribution of X1, etc.

We restrict ourselves to one particular model which has very often been used in applications:

the GARCH(1, 1) process. It is defined by specifying o as follows:
2 _ 2 2 _ 2 2
o =+ piog  +aXi  =atoi((fitaZ ), tE€Z.

The parameters g, a; and (3 are non—negative.

The stationary GARCH(1, 1) process is believed to capture, despite its simplicity, various of
the empirically observed properties of log—returns. (Stationarity is always understood as strict sta-
tionarity.) For example, the stationary GARCH(1, 1) processes can exhibit heavy—tailed marginal
distributions of power law type and hence they could be appropriate tools to model the heavier-
than-normal tails of the financial data. This follows from a classical result by Kesten [30]; see
Theorem 2.2 below. Although this result does not seem to be well known in the econometrics
literature, the fact that certain power moments of X need not exist has been known for a long
time; see for example Nelson [38]. The question about the extent to which the tails of the es-

timated GARCH(1,1) model do describe the tails of the empirical distribution was addressed in



Starica and Pictet [45]. It is shown there that, when using normal innovations, the tails of the
fitted GARCH(1,1) models seem to be much thinner than the tails apparent in the data. Hence,
even though the GARCH(1, 1) processes could display heavy tails, when estimated on the data
they do mot produce tails that match the empirical ones. The relationship between the tail index
of a GARCH(1, 1) process, its coefficients and the distribution of the innovations is made clear in
Section 2.2.

The tail behaviour of the fitted GARCH(1,1) processes is also important from another per-
spective. The empirical fact that the GARCH(1, 1) models fitted to log—return data often satisfy
the condition a; + B ~ 1 implies that one often deals with a class of models with E|X|**? = oc
for ¢ close to zero. (In particular, X may have infinite variance.) For such models, the asymp-
totic behaviour of various classical time series tools such as the sample autocorrelations and the
periodogram are not always well-understood and give rise to many theoretical questions. (The
GARCH(1,1) model with a1 + #; = 1 is called integrated GARCH(1,1) or IGARCH(1,1); see
Engle and Bollerslev [17].)

Another empirical finding concerns the behaviour of the sample autocorrelation function (sample
ACF) of powers of absolute log-return data at large lags. It has been noticed that the mentioned
sample autocorrelations decay to zero at a hyperbolic rate (“ long-range dependence”). This seems
to be in contradiction with the sample ACF behaviour of a GARCH(1,1) model. The GARCH(1,1)
process has good mixing properties; it is strongly mixing with geometric rate, provided Z has a
density and E|Z|° < oo for some € > 0; see for example Davis et al. [12]. Hence the autocorrelations
of the underlying process, its absolute values and squares, given these quantities are well defined,
decrease to zero at an exponential rate.

However, as mentioned above, most often the fitted GARCH(1, 1) models for log-return data
belong to the class of GARCH(1, 1) processes with very heavy tails, i.e. models which do not have
a finite 4th moment, although their second moment may still exist. Hence, autocovariances and
autocorrelations are either not defined (for the squares, third powers, etc.), or when they exist (for
the time series itself and its absolute values) the standard theory for the sample autocorrelation
function, i.e. Gaussian limit distributions and y/n-rates of convergence, is not valid any more. We
show that in these cases the sample autocorrelations have infinite variance distributional limits and
the rates of convergence are extremely slow. As a result, the asymptotic confidence bands are much
wider than in the classical asymptotically normal theory.

Under these circumstances one could hope that the confidence bands are perhaps wide enough
to bound the apparently hyperbolically decaying sample autocorrelation function of the absolute
values of log-returns. In other words, it is possible that the discrepancy we mentioned between the
empirically observed hyperbolic decay rate in the sample autocorrelation function and the exponen-

tial decay of the autocorrelation function of the GARCH(1,1) model could be explained through



statistical uncertainty related to the estimation procedure and hence claimed to be insignificant. If
this were true then, up to statistical uncertainty, the GARCH(1, 1) model could be said to explain
at least the empirical sample autocorrelation function behaviour. One of the conclusions of the
paper is that, even when the mentioned larger—than—usual statistical uncertainty is accounted for,
the GARCH(1,1) cannot explain the effect of almost constancy of the sample ACF of the absolute
values of log-returns.

As another desirable property that would recommend the GARCH(1, 1)model as a viable candi-
date that captures the already—mentioned common features of the financial log—returns, exceedances
of very low/high thresholds by the GARCH(1,1) process tend to occur in clusters. Formally, this
behaviour can be described by the weak convergence of the point processes of exceedances, associ-
ated with the time series, to a compound Poisson process. The cluster sizes of this limiting process
determine the extremal index 6 € (0,1), 1/6 being the expected size of the clusters. Section 4 is
devoted to the extremal behaviour of the GARCH(1,1). A comparison of the estimated extremal
indices of simulated GARCH(1, 1) and foreign exchange rate (FX) data is given in Section 6. This
analysis reveals that the GARCH(1,1) model fit to the log—returns does not, once again, prop-
erly describe the observed features of the data. The expected cluster sizes of the exceedances of
high/low thresholds of the FX log-returns are smaller than the expected cluster sizes of simulated
GARCH(1,1) processes whose parameters were estimated from the FX observations. This means
that there is less dependence in the tails of real-life data than in the GARCH(1,1) model.

Our results serve in our view a double finality. On one hand, they can be thought of as a
tool for deciding to which extent the potentially useful features of the GARCH(1, 1) model (heavy
tails, slowly decaying sample ACF in the case a1 + 1 = 1, clustering of the extremes) do actually
describe accurately the corresponding empirical behaviour. In this sense, we conclude that, although
displaying useful features, the GARCH(1, 1) model does not seem to accurately describe neither
the extremal behaviour nor the correlation structure captured by the sample ACF of the data set
that we analysed in detail.

On the other hand, we think of our findings as contributions to the growing number of results
that emphasise the serious differences between the behaviour of various statistical tools under light
and heavy tails, when dependency is present; see Resnick [42] for a recent survey paper. In this
direction, we showed that the sample ACFs of GARCH(1, 1) models, their absolute values, squares,
third powers, etc., fitted to real-life FX log-returns, are either poor estimators of the ACFs (slow
convergence rates) or meaningless (non—degenerate limit distributions). Hence, in the case of the
GARCH(1,1) modelling, the sample ACF can be an extremely problematic statistical instrument
that has to be used with caution when making statistical statements.

The paper is organised as follows. In Section 2 we consider some basic theoretical properties

of the GARCH(1,1) model. The weak convergence of the point processes associated with the



sequences ((Xy,0¢)), ((|X¢|,04)) and ((X?,07)) is considered in Section 3. In Section 4 we use
these results to study the extremal behaviour of a GARCH(1, 1) process, including the calculation
of its extremal index, the weak convergence of the point processes of exceedances and the weak
limits of the distributions of the extremes. In Section 5 we study the asymptotic behaviour of the
sample autocovariances and autocorrelations of the o;s and X;s, their squares and absolute values.
Section 6 contains an empirical study of foreign exchange rates and simulated GARCH(1,1). In
particular, we check the appropriateness of the GARCH(1, 1) as a model for the observed data as
regards their dependence structure described by the autocorrelation and autocovariance functions,
tails and extremal behaviour. Section 7 concludes with a short discussion on possible implications

of the theoretical results provided.

2 Basic properties of GARCH(1, 1)

In what follows, we collect some facts about the probabilistic properties of the GARCH(1,1).
First we notice that the GARCH(1,1) can be considered in the much wider context of stochastic

recurrence (or difference) equations of type
(2.1) X;=AX; 1+B;, tez,

where ((A4,B;)) is an iid sequence, for every ¢ the vector X;_; is independent of (A, B;), the Ays
are iid random d x d matrices and the B;s are iid d-dimensional random vectors.

Indeed, write

X7 arZi phZg a2}
(2.2) X;={ . |, A= . B, = .
o} a1 B @0

Then X; satisfies equation (2.1) with d = 2. Also observe that o7 satisfies the recurrence equation
(2.3) ol =ap+op (uZi, +B), tEL,

which is of the same type as (2.1) for d = 1, with X; = 02, A; = ath{l + B and By = ap.
Equations of type (2.1) have been extensively studied.

2.1 Existence of a stationary solution

The first question regards the existence of a stationary solution to equations (2.1) and (2.3). Ap-
plying the theory of Furstenberg and Kesten [19] or Kesten [30] (see also Vervaat [46] or Brandt
[7]) it follows that (2.1) has a stationary solution if EIn™ ||A|| < oo, EIn" |B| < cc and if the top

Lyapunov exponent 7 defined as

¥ =inf{n 'Eln||A;---A,||, néeN},



is negative. Here | - | is any norm in R”, and
|A] = sup |Ax|
x|=1

is the corresponding operator norm. Moreover, these conditions are close to necessity; see Bougerol
and Picard [5]. Bougerol and Picard [6] also studied the stationarity of the squared stochastic
volatility process o7 for a general GARCH(p, q) process; the case p = ¢ = 1 was treated in Nel-
son [38].

It is in general difficult to calculate the top Lyapunov exponent 4. However, in the particular

case (2.2) calculation yields
n—1

(2.4) A A=Ay [[(a2? +5),
t=1

and so ¥ = EIn(a; Z?+f), provided E|In|Z|| < co. Alternatively, one can use the one-dimensional

equation (2.3) and conclude from the conditions and literature above that
(2.5) a >0 and Eln(eZ%+ 1) <0

are necessary and sufficient for stationarity of (X?,0?); see Babillot et al. [1]. Notice that station-

arity of o implies stationarity of the sequence
(X},07) =0} (Z7,1), tel.

By construction of the sequence (X;), stationarity of the sequence ((X¢,o0¢)) follows.

The case ap = 0 has also been considered in the literature (for example Nelson [38] and Ding
and Granger [13]). The process o; is then non-stationary. If Eln(a;Z? + 8;) < 0 it converges to
zero at an exponential rate with probability 1, a property which is undesirable for the purposes of
time series analysis and extreme value theory. For example, the sample autocorrelations of such a
sequence would be meaningless since they do not estimate the theoretical autocorrelations.

In what follows, we always assume that condition (2.5) is satisfied. Then a stationary version

of ((Xt,04)) exists.

Remark 2.1 In practice, one observes a sample X1,...,X,. Also in this situation we assume
that this vector comes from a stationary model. In particular, we assume that (Xo,00) has the
stationary initial distribution. (Notice that we never observe the values oy and Xj.) A theoretical
argument shows that the distribution of X; in (2.1) is close to the stationary distribution whatever
the distribution of X, given the latter is independent of (Z;);—12,... and (2.5) holds. Consider two
sequences (X¢(Xo))=o0,1,... and (X¢(Y));=0,1,... given by the same recursion (2.1) but with initial
conditions X and Y, where both vectors are independent of the future values ((A¢, By))i=1,2,...-

Also assume that X has the stationary distribution. For any initial value Y we have the recursion
¢
X(Y)=Ay - AY+ > Ay AjBy, t=1,2,....
j=1



Hence (see (2.4)) for every e > 0,
(2.6) B|Xy(Xo) = X(Y)|© < EJA;--A1(Xo - Y)

-1
— E|AL(Xo - Y)[* (ElerZ? + 1)

IN

t—1
E|A{[E|Xo = Y| (E|lai Z* + 51])" .

The right-hand side is finite if E|Z|?* < oo and E|Y|¢ < co. Under (2.5), E|a;Z% + (1€ < 1 for

some sufficiently small €, and so the left—hand side of (2.6) decays to zero exponentially as t — oc.

2.2 The tails of X; and o;

Kesten [30] developed a renewal theory for products of random matrices. In particular, his results

yield a characterisation of the asymptotic behaviour of the tails of the random variable X.
Theorem 2.2 Assume Z has a density with unbounded support, (2.5) holds,
ElonZ?+ B1|P/? > 1 and E|Z|PInt|Z| < oo for some p > 0.

A) There ezists a number k € (0,p] which is the unique solution of the equation
(2.7) B Z?+ B)"? =1,
and there ezists a positive constant ¢y = co(ag, a1, 1) such that

Plo>z)~cz™" asz— .
B) If E|Z|"t¢ < oo for some € > 0, then
(2.8) P(|X|>z)~ E|Z|® P(o > 1),

and the vector (X, o) is jointly regularly varying in the sense that

P(X,0) >at, (X,0)/|(X,0)|€")

(2.9) 5 2 "P(O@€y), z>0,

P(|(X,0)] > 1)
as t — oo, where - denotes vague convergence on the Borel o—field of the unit sphere S* of R?,
relative to the norm |- |, and © is a random vector with values in S' and distribution
E|(Z, )" I{z,1)/1(z1)|e}
POE-)= . : .
©c) EN(Z.1)"

Remark 2.3 The exact value of the constant ¢y is given in Goldie [20] who also gave an alternative

proof of Kesten’s [30] results for d = 1.

Remark 2.4 Under the assumptions of Theorem 2.2, a1 = 0 is not a possible parameter choice.



Remark 2.5 Assume in addition to the the conditions of Theorem 2.2 that EZ2 = 1, E|Z|?>¢ < oo
for some € > 0 and @; + /1 = 1. Then (2.7) has the unique solution x = 2. This implies that
P(|X| > z) ~ c £~ 2 for some ¢ > 0 and, in turn, that EX? = co. GARCH(1,1) models fitted to
real log-returns frequently have parameters a; and f; such that a; + 3 is close to 1. This indicates

that one deals with time series models with extremely heavy tails.

Proof. Part A follows from an application of Theorems 3 and 4 in Kesten [30] to the recurrence
equation (2.3). Equation (2.8) is a consequence of a result by Breiman [8]: assume & and 7 are
independent non—-negative random variables such that P(¢ > 0) = L(z)z ™" for some slowly varying

function L and Enft¢ < oo for some € > 0. Then
(2.10) Pné>z)~En"PE¢>zx), z— .
Another application of Breiman’s result yields for any Borel set B C S! that
P((X,0)| > zt, (X,0)/|(X,0)| € B) = P(o|(2,1)] > 2t, (%,1)/[(Z,1)| € B)
= P (ol(ZDIIyz1))21)emy > o)
~ E|(Z,1)["I{z1)z1)eBy Plo > xt)
~ E|(Z, V)" Iy z1))z1)eBy T "Plo > 1).

Moreover,
P (|(X,0)| >t) = P(c|(Z,1)| >t) ~ E|(Z,1)|"P(c > t).

This concludes the proof. O

The idea of the proof of Theorem 2.2 can be used to consider the joint tail behaviour of the random
variables oy, 07, X;, |X;| and X?. This behaviour can be described by a multivariate regular
variation condition similar to (2.9); see Resnick [40], [41] or Bingham et al. [4] for properties and
applications of multivariate regular variation in various fields. A d-dimensional vector Y is said
to be regularly varying with index k > 0 and spectral measure Pg on the Borel o—field of the unit
sphere S41 of R? if

(2.11) P(Y|>at,Y/|[Y|€) o

P(|Y| > t) — .’EinP@(-) .

Here = denotes vague convergence on the Borel o—field of S4~! and Pg is the distribution of a
certain random vector © with values in S¢1.
Write
Ar=a1Z} |+, tET.



For every h > 0, define

Yh = (X(),O'(),...,Xh,O'h),
Yi(LZ) = (‘Xo‘i,o'é,...,|Xh|i,o'z), 1=1,2,
2 h
2
(2'12) ZSL) = ((Zgal)aAl(Z%al)aHAi (ZZQ,I),'--aHAi (Z}%,l)>'
=1 =1

Theorem 2.6 Let h > 0 and assume that the conditions of Theorem 2.2,B are satisfied. Let | - |
denote the maz-norm.

A) Y,(f) is regularly varying with indez /2 and spectral measure

(2) K/2
BT p0

P@(.) =
E|Z§l2)|“/2
B) Y,(ll) is reqularly varying with index K and spectral measure Pgi/2, where © = (6y,...,0,) and

1/2 1/2
o2 = (6y%,...,6,/%).
C) Y}, is regularly varying with indez k and spectral measure given by the distribution of the vector
(2.13) (roeé/Q,eé/Q,...,rhe}lﬂ,e}/?) ,

where (r¢) is a sequence of iid Bernoulli random wvariables such that P(r = £1) = 0.5, independent

of ©.
Proof. We start with
YD = (03(23,,0%21,0), .., 0h(Z}, )
= (08(Z5,1), (a0 + 05 A1) (22,1),..., (a0 + 0}_1An) (2], 1))
= (03(Z8,1),00A1(23,1),...,00_1An(Z},1)) + Ry,
= CpL+Ry.

Under the assumptions of Theorem 2.2 on Z, each of the random variables o7 is regularly varying
with index /2 and therefore the tail of Ry, is small compared to the tail of Y,(LQ). Hence the tail of
Yf) is determined only by the tail of C,. By the same argument and induction we may conclude

that the tail of Y*) is determined by the tail of the vector

2 h
2z? = of ((202,1),,41 (23,1), T[4 (23,1),.... ][ A (z,%,1)>.
=1 i=1



Hence for any Borel set B C S*~! and in view of Breiman’s result (2.10), as t — oo,

P (\Y,‘f)| > zt, Y5/ |Yh| € B) P (0—3|z§f)| > at, 29 12| e B)
P (|Y§f)| > t) P (ag\zﬁ > t)

(2)k/2 .
LEIZE " g 20y

E'zgf) |;<;/2

~ xz

= 7z "?P(©€B).

Since Y;Lz) is positive with probability 1, it follows from the results in the Appendix of Davis et al.
12] that YV is re ularly varying with index x and spectral measure Pg1/2. It remains to consider
h g g e

Y. We can write
Yh = (sign(Z0)|X0|, gQy--- ,sign(Zh)|Xh|, O'h) s

and, by symmetry of Z, we know that the sequence (sign(Z;)) is independent of the sequence
((|X¢],04)). Therefore we can use the results in the Appendix of Davis et al. [12] to conclude
that Y}y, is regularly varying with index x and spectral measure given by the distribution of the

vector (2.13). O

3 Convergence of point processes
3.1 Preliminaries

We follow the point process theory in Kallenberg [29]. The state space of the point processes
considered is @d\{ﬂ}. Write M for the collection of Radon counting measures on @d\{ﬂ} with
null measure o. We consider a strictly stationary sequence (X¢)icz of random row vectors with
values in R?. For simplicity, we write X = Xg = (X1,...,X4). In what follows, we formulate

results on the weak convergence of the point processes

n
Ny=) exXfan, n=12...,
t=1

where X is regularly varying in the sense of the defining property (2.11), and (a,,) is a sequence of
positive numbers such that

(3.1) nP(X|>a,) - 1, n— .

The proofs follow from the results in Davis and Mikosch [11]; they are variations on results for
d =1 in Davis and Hsing [10]; see also Davis et al. [12].
Define

(3.2) M = {u eEM: p({x:|x|>1}) =0 and p({x:xeS%1}) > 0} ,

9



and let B(M) be the Borel o—field of M.
Theorem 3.1 Assume that the following conditions are satisfied:
e The stationary sequence (Xy) is strongly mizing with mizing rate ¢,.

e The following condition holds:

(3.3) lim limsup P \/ IX:| > any| | Xo| > any | =0, y>0,

k—00
e k<[t <rn
where Ty, my, — 00 are two integer sequences such that ney,, [rn, — 0, rpmy/n — 0.

o All finite—dimensional distributions of (X;) are jointly regularly varying with index k > 0.
To be specific, let (0(_k),...,0(k)) be the (2k + 1)d—dimensional random row wvector with
values in the unit sphere SZk+A=1 4hat appears in the definition of joint reqular variation of

(X gy, Xg), k> 0.
Then the limit
T (k) 1k k (k) (k) |k
(3.4) v=Jim B (|00~ Vi, 160) /] Blef
ezxists and is the extremal index of the sequence (|X¢|).
o Ify=0 in (3.4), then N, 4o.

o Ify>0, then Ny, 4N # o, where

N < ZZePiQij ’

o0
i=1 j=1
oo . ) L .
Zi:l ep; 18 a Poisson process on Ry with intensity measure

v(dy) = yey " ldy.

This process is independent of the sequence of iid point processes Z;’;l £Qi;» @ 2 1, with joint
distribution Q on (H,B(H)), where Q is the weak limit of

E [(\05’% ~ Vi 16F) 1S 599))] /(167 = Vi 161)

as k — oo which exists.

10



3.2 Main result

The following theorem is our main result on weak convergence for point processes associated with
a GARCH(1,1) process.

Theorem 3.2 Let (X;) be the GARCH(1,1) process defined in Section 1 and assume that the
conditions of Theorem 2.2,B hold. For fized h > 0, set Xy = (Xy,0¢,..., X¢ih,00en). Let (an) be
a sequence of constants such that (3.1) holds. Then the conditions of Theorem 3.1 are met, and

hence

Nn—ZEXt/an —) N = ZZ€PQ”,

i=1 j=1
where (P;) and (Q;j;) are defined in the statement of the theorem. We write

Qij = ((QZ]X’QZ]J) :0,...,h) .

Proof. The joint regular variation of all finite-dimensional distributions follows from Theorem 2.6.
In addition, the process is strongly mixing with geometric rate; so that the mixing condition of

Theorem 3.1 is met; see Davis et al. [12].

It remains to show (3.3). By the definition of the sequence (X;), it suffices to switch in condition
(3.3) to the sequence ((X?,0?)). Recall that the latter sequence satisfies the recurrence equation
(2.1). In this situation one can apply the techniques of the proof of Theorem 2.3 in Davis et al.
[12] to conclude that (3.3) holds. O

Remark 3.3 Analogous results can be obtained for the vectors
x¥ = (x Xinl!, 0! [=1,2
t - (l tl Ut’ T | t+h‘ ’Ut+h) ) — L4,

either by applying the same arguments of proof as above or by deriving the weak limit of the point
processes from Theorem 3.2 in combination with a continuous mapping argument. Indeed, under

the assumptions of Theorem 3.2,
B YNELLES 9 STV S )
=1 j=1

where (P;) is the same as above and

Q¥ = 0@%|qu|) :ownm),l:1g.

Remark 3.4 It is possible to extend the above results to two—dimensional point processes. For

illustrational purposes we restrict ourselves to the processes

n

No= ett/nxijan)-
t=1

11



The analogous results for the point processes N for (|X;|") are also valid. The weak convergence
of (N,,) implies the convergence of (N,) under the assumption of strong mixing; see Mori [37]. For
fixed > 0, the point process of exceedances of the threshold za,, by the sequence (X;) is defined
as .
Na() =Y eyn()(x, 5000} = Nal- x (2,00)).
t=1

According to a result by Hsing et al. [27] (cf. Falk et al. [18]), the weak limit of (V,,) is compound

Poisson with compounding probabilities (7;) and probability generating function
o
I(u) = Z muk.
k=1

Specifically, in the limiting compound Poisson process events occur as an ordinary Poisson process,
independent of the multiplicities (cluster sizes) of the events with compounding probabilities my,
i.e. m is the probability that an event has multiplicity k. The intuitive content of this result in
the case of the GARCH(1,1) process is that excursions above (below) a high (low) threshold are
independent and occur exponentially spaced in time. The lengths of these excursions are iid with

probabilities 7.

4 The extremal behaviour

The point process results of Section 3 enable one to study the extremal behaviour of the sequences
(X¢) and (ot). In what follows, we restrict ourselves to the partial maxima and the extremal index.
For any sequence of random variables (Y;,) define the partial maxima

M,y= max Y;, n=12....
i=1,...,n

We assume that the conditions of Theorem 2.2,B hold. If (Y,,) is iid with the same marginal
distribution as X we may conclude that P(Y > z) ~ cz™* for some x > 0. Then, with (b,) such
that nP(X > b,) ~ 1,

(4.1) Py Myy <z) - P(Y® <z), z>0,

where Y (%) has a standard Fréchet distribution ®, (see for example Embrechts et al. [14], Chap-
ter 3):
B.(z) = P(Y® < z) =exp{—z7"}, 2>0.

For dependent sequences such as (X;) and (o;) exceedances of high thresholds occur in clusters,

and so we cannot expect that (4.1) remains valid for them. For stationary sequences (Y;) with tail

12



behaviour P(Y > z) ~ cz™" the notion of eztremal indez 6y describes the clustering behaviour of

the extremes (see Leadbetter [32]; cf. Embrechts et al. [14], Section 8.1):
P(b;* M,y <z) = PY(Y®W <z), z>0.

The extremal index 0y assumes values in [0,1] and can be interpreted as the reciprocal of the
expected cluster size of high level exceedances of the normalised sequence (Y;). For an iid sequence
(Y;) one has 0y = 1.

Remark 4.1 In what follows, we define the sequence (b, y) for an iid sequence (Y;) as n P(Y >
byy) ~ 1. In particular, b, ., bn, x| and by, x, up to a multiplicative constant, are asymptotically
of the same order as n!/~.

Theorem 4.2 Assume the conditions of Theorem 2.2,B are satisfied.

A) The partial mazima of (0y) satisfy the limit relation
P(b;lalO'Mn;G' S .’L‘) — Peg (Y(n) S ‘T) ’ x> 07

with extremal index

t
o
0, :/ P supHAj <y ') ky " tdy,
1

t21 52

where Ay = a1 Z2 |+ B1, t=1,2,....
B) The partial mazima of (| X¢|) satisfy the limit relation

(4.2) P(b, 1 My x| < 7) = Plxi(y® < z) >0,

with extremal index

Z114

0 x) = lim E | |Z1]" — max
k—s00 §=2,eesk 41

C) The partial mazima of (X;) satisfy the limit relation
P(b, My x <z) = PPX(Y® <2), z>0,
with extremal index 0x
Ox = 26,x(1 - T1(0.5)),

where 11 is the probability generating function of the compounding probabilities of a compound
Poisson process. The latter is the weak limit of the point processes of exceedances of the thresholds

bn, x| by (|X¢|) ezplained in Remark 3.4.

13



Remark 4.3 The formulae for the extremal indices given above can be evaluated numerically or
by Monte—Carlo techniques. An example how to proceed for an ARCH(1) process has been given in
de Haan et al. [24]. We refrain here from numerically calculating the extremal indices and restrict
ourselves to their statistical estimation for some simulated GARCH(1,1) and foreign exchange

log-returns; see Section 6.

Proof. A) The proof follows by an application of Theorem 2.1 in de Haan et al. [24] to the

recurrence equation (2.3) for the sequence (07).

B) The existence of the Frechét limit in (4.2) follows from Theorem 3.3.3 in Leadbetter et al. [33],
the fact that (X;) is strongly mixing and the Pareto-like tails of X. The existence of the extremal
index 0| x| is a consequence of Theorem 3.1. For the calculation of 6 x| = 0x2 we follow the lines
of the calculation of the extremal index of an ARCH(1) in Remark 4.3 of Davis and Mikosch [11].
From (3.4) and (2.12), one obtains fx2 as the limit for k¥ — oo of the quantities

k+1 K/2 j K/2 k41 K/2

E(|Z2. 4| - wmax |Z2]]4 /E 72 [ 4
k+1 ] E j=k+2,.2k1 | 2 LLTT k+1 ] ’
1,:1 Z:l Z:1
+
j li/2
= El1Zeil"— max |22 A, /EZ 5
| Z 41 g x| l}ﬂ i | Z1|
1=

+
C) Notice that, by symmetry of Z, (X;) = (r¢|X¢|), where the sequence of the r; = sign(X}) is
independent of (|X;|). As in de Haan et al. [24] for the ARCH(1), one can use this property to
obtain the limit distribution of (b;’IXMn, x) and the extremal index fx by independent thinning
from the point processes of exceedances for (|X;|). The weak convergence of the latter processes to
a compound Poisson process has been described in Remark 3.4. Then proceed as in de Haan et al.
[24], pp. 222-223. O

5 Convergence of the sample autocorrelations

In what follows, we study the weak limit behaviour of the sample autocovariances and sample
autocorrelations of the sequences (X;) and (o), their squares and absolute values. We assume that
the conditions of Theorem 2.2,B hold. Then the vector (Xy,o:) is regularly varying with index
k > 0 and, by Theorem 3.2 and Remark 3.3, the point processes IV, Nél) and N7$2) generated by
)

the vectors X4, Xgl) and XgQ), respectively, converge in distribution to the processes IV, Nél and
N,(f); see Section 3.2 for the notation. This is the basis for the weak convergence of the sample
autocovariance function (ACVF)

1 n—h
Ynx (h) = EZXtXH—ha h=0,1,...,
t=1

14



and the corresponding versions for (| X;|) and (X?):

—h n—h
15 1
Vo, x|(h) = - S O IXlXgnl,  Ynx2(h) = - O XiXPh, h=0,1,....
t=1 t=1

The sample autocorrelation function (ACF) of (X}) is defined as

Pn.x = n,x(h)/m x(0), h=0,1,....

The sample ACVF and ACF for the sequences (| X;|), (X?), (0¢) and (o) are defined analogously.
The deterministic counterparts (ACVF, ACF) are denoted by

vx(h) = EXoXp, 7x|(h) = E|XoXn|, 7x2(h) = EX3X;, px(h)=7x(h)/7x(0), etc.

Remark 5.1 Alternatively, one can consider the sample ACVF and ACF for the mean—corrected
random variables X; — X,, (X, is the sample mean) and the corresponding versions for | X;|, XZ,
etc. The same arguments as below show that the limits do not change. In the heavy-tailed situation
centring with the sample mean is not not necessarily a natural choice; for example, the mean does

not necessarily exist.

The following result from Davis and Mikosch [11] is the basis for the understanding of the asymptotic
behaviour of sample ACVF and ACF:

Theorem 5.2 Assume that (Xy) is a strictly stationary sequence of random wvariables such that
X = (Xt,...,Xtyn) satisfied the conditions of Theorem 3.1 with v > 0 and d = h+ 1. Then the

following statements hold.

(1) If k € (0,2), then

_ d
(n an 2’771,X (m))m_() h - (Vm)mZO,...,h )

d
(Pn,X(m))m:L,,_,h - (Vm/VO)m:L,_,,ha

where
o0

ij

o0
Vin=>_
=137

The vector (Vo, - .., Vy) is jointly k/2-stable in RAH1.

P2QYQT, m=0,....h.
1

(2) If k € (2,4) and for m =0,...,h,

n—m
(5.1) lim lim sup var (an2 Z XtXt+mI{|XtXt+m|<a%€}> =0,

e—0 n—o00 =1

15



then

(5-2) (naz”(mx(m) —vx(m)) o p = (Vin)m=o,.n

geuny

where (Vo, ..., V) is the distributional limit of

o0 o0
3 P2QOQI 1 (PHQYQE)) — / Lo (d%) ,

=17=1 Bem m=0,....h
where
_ h+1
Ben =1x € Rt € <|zoTm|{ ,

and T is the limiting measure which appears in the relation nP(X/a, € -) = 7(-), and >

. —h+1
denotes vague convergence in R™ " \{0}. Moreover,

(5.3)  (nay2(pax(m) —px(m)), _, % 75 (0) (Vi — px(m) Vo) ey, p -

=1,..,

Remark 5.3 The limits in (5.2) and (5.3) are x/2-stable. The case k = 2 can also be treated but
one has to take care of the particular centring constants in this case. Therefore it is omitted. See

Samorodnitsky and Taqqu [43] for definitions and properties of stable random vectors.

5.1 Convergence in distribution of the sample ACF

We first consider the cases when the sample ACFs of (X;), (|X;|), (¢2), (o) have non—degenerate
limits in distribution. Recall the definition of the vectors Xj, Xgl) and X§2) from Section 3.2.
Assume that the conditions of Theorem 3.2 hold. Then X, is regularly varying with index k > 0
and

o o

No SN=3"%epq, and NI HNO =12,

i=1 j=1

where
QZ] = ((QZ(;?))O QE:;?U)') y T = 07 .- ah)

The case k € (0,2). An application of Theorem 5.2(1) yields

_ d
(nan2('Yn,X (m)a Tn,o (m)))m:O,...,h — ((Vm,Xa Vm,a))mzo,___’h s

((Pn,x (M), pn,o(M)))m=1,...1 % ((“/;:)):) ’ (%:))mzlh ,

where the vector (Vi x,Vin,o))m=1,..n is £/2-stable with point process representation

0o 00
i=1 j—1
0o 0 0
Ve = > D PQDQI, m=0,...,h.
i=1 j=1
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The analogous relations hold for the sample ACVF and ACF of the sequences (|X;|) and (o).
In this case, one has to replace ((Vin,x,Vm,)) with ((V,, x|, Vim,0)), where V,, x| is obtained by

replacing the vectors Q;; in the infinite series (5.4) with

1
QY = ((1QU%. Q) .m =0,....h) .
The case « € (0,4). We consider the sample ACVF and ACF of the squares (XtQ) and (th)_ The

same argument as above yields that

_ d
(na'n4(7n,X2(m)7IYn,UQ(m)))mZO,...,h — ((Vm,X%Vm,a?))m:O’___’ha

d V., x2 Vin,o?
(P2 ()s P (1)t (( X )( )) ,
‘/E):X2 %702 m:l,...,h

where the vector ((V;, x2, Vi 02))m=1,..,n is £/4-stable with point process representation

Vixz = 390 PHOQENQUR)?, m=0,....h,

i=1 j=1

o0

Vo = 3.3 PHQD QU2 m=0,...,h.

i=1 j=1
5.2 Rates of convergence for the sample ACF toward the ACF

In this section we assume that the covariances of X; (respectively X?) are finite. Then, by the

ergodic theorem,
7n,X(h) = x(h) 7n,|X\l(h) = 7\X|’(h) , =12,
and the analogous relations hold for the o~ and o?-sequences. It arises the question as to the rate

of convergence in these results.

5.2.1 Convergence to the normal distribution

The Markov chain ((X?,0?)) is strongly mixing with geometric rate; see for example Davis et al.
[12]. Hence the standard CLT for strongly mixing sequences applies provided suitable moment

conditions hold; see for example Ibragimov and Linnik [28], Meyn and Tweedie [35].

The case » € (8,00). Then EX® < 0o and Eo® < co. The standard CLT applies to the sample
ACVF and ACF of the X?— and o?-sequences:
n!2 ((Yn,x2 (M) = 7x2 (M), Y 02 (M) = Y02 (M) g
i’ ((Gm,XZ’Gm,ffz))m:o,...,h ’
n 2 ((pn,x2(m) — px2(m), o2 (m) — p2(m))),

e

5 (13 0)(Gmx> = px2 (M) Go,x2),7,2 (0)(Grnyo> = P02 (M)Go,02))) 1y s
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where the limits are multivariate Gaussian with mean zero.

The case k € (4,00). The analogous results hold for the X—, |X|- and o-sequences. We omit
details.

5.2.2 Convergence to infinite variance stable distributions

These results follow from part 2 of Theorem 5.2; their derivation can be quite delicate. We char-
acterise the weak limits of the sample ACVF in terms of limiting point processes; the limit of
the sample ACF can be derived by applying a simple continuous mapping argument. The weak
limits are infinite variance stable random vectors. However, they are functionals of point processes
and therefore it is difficult to determine the spectral measure of these stable vectors; the spectral
measure determines the dependence structure of the random vector; see Samorodnitsky and Taqqu
[43]. Therefore the results below are qualitative ones. At the moment we do not know how to use
them for the construction of asymptotic confidence bands for the sample ACFs and ACVFs. The

interpretation of these stable limit distributions needs further investigation.

The case x € (4,8). We commence with the sequences (X?) and (¢7). Due to the difficulty of
verifying condition (5.2) directly we establish joint convergence of the sample ACVF directly from

the point process convergence
0o 00 00
(5.5) N = ; €an?(X2,02,,X2, .02, ) 4 N® = ; ; FEONCE
where
QY = (1P Q50 ;m =0,...,h) .
We follow the ideas of proof in Section 4 of Davis and Mikosch [11].
We start with the o?—sequence. We only establish joint convergence of (7, ,2(0), ¥, ,2(1)), since

the extension to arbitrary lags is a straightforward generalisation. Recall that Ayy1 = oy Z2 + (1.

Now, using the representation (2.3) and the CLT for (62A4;,1) we obtain
n n 9
a;42(0§+1 — Eo') = a;4z ((Oéo +0t2At+1) —EU4>
t=1 t=1

n

= a,* Z (0} A}, — Ec"EA?) + op(1)
t=1

n

= a;* Z 0} (A}, — EA?) +a,*EA? Z (o} — Eo*) + op(1).
t=1 t=1

We conclude that for every € > 0,
(5.6)  (1—EA?) na,* (1p,02(0) — Eo?)

18



= 74207: (Af;1 — EA®) + op(1)

n n
= a774 Z O'?(A%—i—l - EAZ)I{Ut>ane} + a7;4 Z O':tl(A%—l—l - EAQ)I{UtSane} + OP(l)
t=1 t=1

= II+I+4+o0p(1).

Now, by Karamata’s theorem (see for example Bingham et al. [4]) as n — oo,

(5.7) var(I) = const n(ean)_SEUSI{Utgane} ~ const €7 50 ase— 0.
As for I1, let x; = (a:g)))@, xi,ogm . ,J:EZ)(Q, xg:ﬂ) € EHI\{O} and define the mappings

by
o
TO,E,X2 z; T;Ex; = Z nz {|w(0) ,|>ane}’
i=
o o0
Ty e, x> Z Ni€x; | = Zl nz(mz(l))(z )21{|$§?))(2 Sane)
T e, x2 Zniexi = an szz X2 I{‘ (0)2\>a Y m2>2,

and the mappings 7, . ,» are defined analogously. Since the set {x € EQ(hH)\{O} :z®] > €} for
any [ > 0 is bounded, the CLT and the convergence in (5.5) imply that

n
_ 2
I = a E ((UtQAt—H +ag)” —of EAZ) Iio,>aney +0pP(1)
t=1

n
= 0’7;4 Z (0:51-1—1 - 0'21 EAQ) I{at>ane} + OP(l)
t=1

— Ty N —EA’ T, »N? 3T »N® - EA2T,, »N® = S, 00),

where ES(e,00) = 0. Using again (5.7) and the argument in Davis and Hsing [10] on pp. 897-898,
S (e, 00) S Vi, say, as € = 0. Turning to (5.6), we finally obtain
1
na;4 (’yn,(,z (0) — E04) b4 - Vi =W.

As for 7, x2(1), we proceed as above and write
n
—4 2 2
anp Z (Ut Ot41 — ’)’02(1))
t=1
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n
= q,* Z (07 (a0 + 07 Ars1) —72(1))
=1

n
= a,"> (0} A1 — Eo}EA) + op(1)
t=1

n

n
= a’;z4 Z U;tl(At-l-l - EA)I{at>an6} + a"r:4 Z Uf(At—H - EA)I{atSane}
t=1 t=1

+EA na;4 (')ln,tr2 (0) — Vo2 (0)) + OP(l)

= II+1IV+V+op(l).

As for I, lim,_,o limsup,,_, , var(IV) = 0. Moreover,

Inmr+v

n
a‘7;4 Z(UtQO'?—H - U:tl EA)I{Ut>ane} + EA na'7;4 (7n,02 (0) — Yo2 (O)) + OP(l)
t=1

= Ty NP = BAT, 2N + EAnag* (1,52(0) —7,2(0)) +op(1)
5 T2,e,02N(2) —EA T1,6,02N(2) +EAVy asn— oo
= VF+EAVy=V; ase—0.

It also follows from Davis and Hsing [10], pp. 897-898, that (Vp, V1) is jointly x/4-stable. The
general result for a finite number of sample autocovariances can be obtained in an analogous way.

The weak convergence of na, (v, x2(m) — vx2(m),m = 0,...,h) follows the same patterns
and can indeed be reduced to the convergence of linear combinations of the sample ACVF of the
o?-sequence. Notice that the condition «; > 0 is necessary for the existence of a regularly varying

tail for X with index x provided E|Z|® < oo; see Remark 2.4. We can write
(5.8) Z} =o' ((Z} + B) — Bi) = a7 (A1 — Br)
and so, using the CLT, for m > 1,

nay* (Yo,x2(m) —vx2(m))

n
—4 2,2 2 2
= a, Z [Ut Zy 0t mLitm — VX2 (m)]
t=1

= a,%01?) " (0707 (A1 — B1)(Arimer — Br) — &fyxe(m)]

t=1
n

4 -2 ) 2 2 2 2 2 2 2

= o, E :[(at+10t+m+1 —510t0t+m+1 —510t+10t+m +/810t0t+m)
t=1
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— (1 + BHEd3o?, — prEcia?, 1 — PiEaoto?, 1)] +op(1)
= nay ar? [(1+ B7) (Y02 (M) = 752 (m))
—B1 (Y o2 (M + 1) — Y2 (m + 1)) = Bi (Y o2 (m — 1) — 7p2(m — 1))] + 0p(1)
L a2 (L4 B)Vin — BiVinrr — BiVinor) -

For m = 0 one can get a similar expression for the limit variable. We omit details.

The case k € (2,4). Here we consider the weak limit behaviour of the sample ACVF of the X—,
| X |- and o-sequences. The case (X;) is particularly simple. Indeed, the symmetry of the random

variables X; and Karamata's theorem imply that as n — oo,

n—m
var (%2 Z XtXt+mI{XtXt+m|§a%e}> = (n— m)GE4EXngzI{|X0Xm|§a%e}
=1

~ 7" 50 ase—0.

Hence (5.1) is satisfied and part 2 of Theorem 5.2 applies.

For the sake of illustration we only consider the weak limit behaviour of (v, x|(0), Vs, x|(1))-
The other cases can be handled in a similar way. We follow the ideas of proof of Section 4 in Davis
and Mikosch [11].

We have with (5.8) that

n

(5.9) na,? (Yn, x/(0) — x| (0 Z (7} = 1) +a,”> (0] — Bo?).

=1 t=1

Moreover,

nar_LQ('Yn,a (0) —75(0))

n
= o ar_z2z(7t2—1(z1:2—1 —1) + (a1 + B1) ¢, Z(Jg—l — Eo®).
t=1

t=1

Hence
(1 = (1 + B1)) 10, (Y0 (0) — 75(0))
= oa, Zzat I{O’t>an€} +oa, 2zat 1)I{Ut§ane} +0P(1)

t=1

= VI+ VII+op(l).

Using Karamata’s theorem, one can show that lim._,o limsup,,_,,, var(VII) = 0. Moreover,

= q,° Z(Ut2+1 — (a1 + ﬁl)UtQ)I{UtNJ.ne} +op(1)
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= Tl,é,UNr(),l) - (al + IBI)TO,G,U'Nél) + 0P(1)

d
— Tl,e,aN(l) + TO,E,O'N(I) )

and the limit of the right hand expression as € — 0 is x/2-stable. Similar arguments applied to
(5.9) show that ”aﬁ2(’)’n,|X\(0) — 7,x/(0)) converges in distribution to a x/2-stable limit. Next we

consider

n
a,? Y (1Xi Xi41] — B|Xo X4 )
t=1

n n
= a,” Y _(1Xtlor11(1Zi1| — E|Z)) + a,°E|Z] Y (| Xi|o141 — E| Xolon)
t=1 t=1

= VIII+IX.

Notice that there exists a constant a € (0,1) such that

(5.10) var <a;2 > (IXil(or1 = o Alf) — Bl Xol (o1 - O—OA}/Q)]))

t=1

n n
= 0,y S cov (|Xt|(at+1 — 0 AP, | X (0041 — USA;/fl))
t=1 s=1

n
< const na;42ah —0 asn— oo.
h=1

since the chain ((X;, o)) is strongly mixing with geometric rate (see Davis et al. [12]), and there
exists 6 > 0 such that

E“Xo‘(al —O'()A}/Q) < 0.

‘24-6
Indeed, in this case there exists a constant K > 0 such that

cov (‘X5|(0-5+1 - USA;_/FQl), |Xt|(0't_|_1 — O'tAi_{_Ql)) S Ka't_s‘ .

See for example Theorem 17.2.2 in Ibragimov and Linnik [28].
The expression VIII can be treated in the same way as VI+VII, using the point process con-

vergence Nél) 4N (1), and so, by (5.10), it remains to consider the limit of

n
_ 1/2 1/2
072 3 (1XeloeAL: — B(XolooA?))
t=1

n n
= a2 Y (1Ko} - BAY?)) + BAY? 0223 (| Xiloy — E(| Xoloo))
t=1 t=1

n n
— 1/2 —
= a2 (IXilou s - BAY?)) + BA2 072y 02(1%] - E|Z))
t=1 t=1
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n

+EAY?E|Z) 0,*) " (0} — Eo?) .

n
t=1

From the above discussion it is clear how to deal with the limits of the expressions on the right—hand

side and that they are x/2-stable. O

Remark 5.4 The same arguments of proof as for (|X;|) also apply to the sample ACFs of the
sequences (|X;|%) for any & € [1,2), i.e. these sample ACFs have weak limits in terms of stable

distributions as well.

6 An empirical study of simulated data and foreign exchange rates

In this section we study the sample ACFs of foreign exchange (FX) log-returns and a fitted
GARCH(1,1) model. The tick—by—tick data of the exchange rate Japanese Yen-US Dollar between
1992 and 1996 were kindly provided to us by Olsen and Associates (Zirich). Since tick-by—tick
data contain a strong daily seasonal effect, the seasonal component was estimated from the data
which were then time transformed by using Olsen’s §—time algorithm; see Dacorogna et al. [9] for a
description of this procedure. The time series we consider consists of 30—minute FX log—returns,
where 30 minutes are measured in f-time. Plots of these data and their estimated density are given

in Figure 6.1. We fitted a GARCH(1, 1) to the FX log-returns, using quasi-maximum likelihood
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Figure 6.1 Left: Plot of all 70000 JPY-USD FX log-returns. Right: Their density.

estimation as for example explained in Gourieroux et al. [22], cf. Gourieroux [21]. The following

parameters were obtained:
(6.1) ay=10"", a; =0.11, B =0.88.
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Figure 6.2 Left: Plot of the residuals of the JPY-USD FX log—returns. Right: Their density.
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Figure 6.3 QQ-plot of the residuals against the quantiles of a Student(4) distribution.
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Figure 6.4 Left: Plot of the logarithms of the 1000 largest residuals against the i/1000—-quantiles
of a standard exponential distribution; i1 = 1,...,1000. The fitted straight line has slope 3.56
indicating that the tail is Pareto-like with this tail parameter. Right: Plot of the absolute values of
the logarithms of the 1000 smallest residuals against the i/1000—quantiles of a standard ezponential.
(Slope 3.72).
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Notice that a1 + 81 = 0.99, a value which is very close to one. This is a typical situation for
various financial time series; see for example Engle and Bollerslev [17], Baillie and Bollerslev [2] or

Guillaume et al. [23].

The residuals

Given estimates @1 and B1, one can calculate the residuals
> ~ ~2 ~ ~ ~2 ) 2
Zy = X/oy, where o7 =ap+ aio;_ 1+ i X7 -

Clearly, one has to choose an initial value ;. However, empirical evidence from simulations, paired
with the theoretical Remark 2.1, show convincingly that the values &, for large t are quite insensitive
to the initial value.

For notational ease, we will not distinguish between the estimates a;, ,/6\1, oy and Zt and the true
values a1, B1, 0 and Z;. Figure 6.2 presents the residuals of the FX log-returns with parameters
(6.1) and their density. The latter shows that the distribution is roughly symmetric and very much
peaked around zero (“leptokurtic”).

Figure 6.3 displays the QQ—plot of the residuals against the quantiles of the standard Stu-
dent(4) distribution. The plot indicates an overall good fit of the Student distribution to the esti-
mated residuals. The tails of a Student(4) random variable S are Pareto-like, i.e. P(S > 1) ~ cz*.
The hypothesis of a non—Gaussian heavy—tailed distribution of the residuals is also strongly sup-
ported by the plot in Figure 6.4. The log-log plot estimation yields for the right tail a point estimate
of 3.56 with a 95% asymptotic confidence interval [3.24,3.88] and for the left tail a point estimate
of 3.72 with a confidence interval [3.39,4.05]. The theory for the asymptotic confidence intervals is
given by Kratz and Resnick [31]. (However, the latter paper deals with the iid case and the results
must therefore be treated with caution.) Based on this estimation procedure we cannot reject the
hypothesis that the right and left tails are equally heavy. In the literature Student and generalised
Pareto distributions, as heavy—tailed distributions, were fitted to the residuals; see for example
Baillie and Bollerslev [2] and McNeil and Frey [34]. As regards the tails of the distribution of Z,
the choice of a Student distribution is certainly closer to reality than the assumption of normality.

However, the tails of X and o are determined by the center and the tails of the distribution
of Z; see the discussion below. For this reason, in this paper we do not give a precise parametric
description of the distribution of the residuals of the FX log-returns. For our purposes, it is more
realistic to work with the empirical distribution derived from the 70000 historical data under the
hypothesis of a GARCH(1, 1) with parameters (6.1).
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The tails

In agreement with the theories of Sections 2 and 5, we calculated the tail parameter k = 2.25 as
the solution of the equation
(62) E‘a1Z2—|—ﬁ1|”/2 = ]_’

where we replaced a1 and (7 with their estimated values and the expectation with its empirical

version based on the residuals, i.e.
1 n
(6.3) - Y lenZ} + Bl =1.
i=1

The theoretical basis for this approach has been provided by Pitts et al. [39]. There it is shown

that the solution ¥ to (6.3) is asymptotically normal with mean x and variance

2 E|A]F—1

6.4 2_Z
64 ¥ = R B(AF I A])

where A = a1Z2 + 61,

provided that E|A|*T9 < oo for some § > 0. If the latter condition is not satisfied one can still show
consistency of & under the assumption E|A|*/?T9 < co; see Embrechts and Mikosch [15], Lemma
3.3. Replacing in (6.4) the expectations by their sample analogues, we obtain the asymptotic
confidence band [2.25—0.02, 2.25+ 0.02] for x. The latter confidence bands have to be treated with
caution since the existence of the 4.5th moment of X (which is necessary for the above asymptotic
theory for E) does not seem to be guaranteed for the FX log-returns; cf. Figures 6.3 and 6.4.

Choosing in (6.3) a Student distribution for Z with d degrees of freedom, implied by the tail
estimates of the residuals, we get tail indices close to 2.25: for d = 3.25,3.5,3.75,4 one has k =
2.26,2.34,2.4,2.46, respectively. This provides another argument for the overall good fit of the
Student distribution as a model of the noise.

For the GARCH(1,1) process with parameters (6.1) estimated from the FX log-returns, we

thus may conclude (see Section 2) that
P(o > z) ~cozr 2%, P(X >z)~E|Z*®P(c >1z), z— 0.
This implies that EX? < oo, but EX* = co.

The sample ACFs

Figure 6.5 shows the sample ACF's of the FX log-returns, their absolute values, squares and third
powers at the first 300 lags. Confidence bands were derived from 1000 independent simulations
of the sample ACFs at these lags. The underlying time series is a GARCH(1, 1) process with

parameters (6.1). To be as close to the real-life FX log—returns as possible, the corresponding iid
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Figure 6.5 The sample ACF of the FX log-returns (top, left), their absolute values (top, right),
squares (bottom, left) and third powers. The upper and lower solid curves indicate the 2.5%— and
97.5%—quantiles of the distributions of the sample ACFs at a fized lag. The dotted line corresponds
to the median of those distributions. In the top left and bottom right figures the median curve and
the sample ACF curve are almost indistinguishable.
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Figure 6.6 The sample ACFs of the residuals of the FX log—returns (top, left), their absolute
values (top, right), squares (bottom, left) and third powers. The straight lines in the two upper
graphs indicate the +1.96/\/n asymptotic confidence bands for an #id sequence with finite second
moment. In the lower two graphs we refrain from giving \/n—confidence bands because Z possibly
has an infinite 4th moment. Compare with the sample ACFs of the FX log—returns; see Figure 6.5.
Mind the difference in scale!
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Figure 6.7 The densities of the sample autocorrelation of a GARCH(1,1) with parameters (6.1)
at lag 1: for the GARCH(1,1) (top, left), its absolute values (top, right), its squares (bottom, left)

and third powers.
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Figure 6.8 The logarithms of the medians for the distributions of the sample ACFs of the
GARCH(1,1) with parameters (6.1) at the first 200 lags. The upper curve corresponds to the

absolute values (fitted regression line with slope In0.98) and the lower one to the squares (slope
In0.99).



noise was generated from the empirical distribution of the residuals of the FX log-returns. The
densities of the corresponding sample autocorrelations at lag 1 are presented in Figure 6.7. They
are also obtained from the 1000 independent simulations.

The interpretation of the densities in Figure 6.7 and the sample ACFs in Figure 6.5 very much
depends on how heavy the tails of the X;s are. Using the above findings of a Pareto-like tail for
X and the theory of Section 5, we conclude that the limit distribution of the sample ACFs of
the X;s and |X;|s have infinite variance x/2-stable limits with rate of convergence (na,?)~! ~
const n~1/2 = const n%125. Notice that n®!2® = 700000125 = 4.03. Thus, despite the large
sample size, the asymptotic confidence bands for p, x (k) and p,, |x|(h) are huge. This observation
is supported by the bands in Figure 6.5, but even more by the densities in Figure 6.7. Notice
that pp x(h) ®3 px(h) and pn,x|(h) = pix|(h), a fact which explains the peaks of the densities in
Figure 6.7 (top). The slow rate of convergence of these estimators in combination with the extremely
heavy tails of the limit distribution raises serious questions about the meaning and quality of these
estimators. This remark applies even more to the sample ACFs of the squares and third powers.
In those cases, both p, x2(h) and p, x3(h) converge in distribution, i.e. these statistics do not
estimate anything.

The sample ACFs at the first 50 lags, say, of the absolute values of the FX log-returns do
not fall within the 95% confidence bands for the corresponding sample ACF's of the GARCH(1,1)
process; see Figure 6.5. This means that, even when accounting for the statistical uncertainty due to
the estimation procedure, the GARCH(1, 1) model does not describe the second order dependence
structure of the FX log-returns sufficiently accurately.

On the other hand, a look at the sample ACF's for the residuals, their absolute values, squares
and third powers (Figure 6.6) convinces one that they behave very much like the sample ACF of a
finite variance iid sequence or of a moving average process with very small parameters. This com-
pliance with the theoretical requirements of the model is a remarkable feature of the GARCH(1,1)
process and contributed greatly to its success.

As a conclusion, the GARCH(1,1) process cannot explain the long-range dependence effect
observed in the sample ACF's of the FX log-returns; see Figure 6.5. Even if we take into account
that the sample ACFs of the squares and third powers are not meaningful, the sample ACF of the
absolute values, despite its big statistical uncertainty, should decay to zero roughly at an exponential
rate. (For reasons of comparison it would be desirable to explicitly calculate the autocorrelations
of the absolute values but this seems extremely difficult even if Z is normal.) This fact follows
from the strong mixing property of the GARCH(1, 1) with geometric rate. This theoretical fact is
in agreement with our simulation study which shows that the medians of the distributions of the
sample ACF's of the absolute values and squares of a GARCH(1,1) decay at an exponential rate;
see Figure 6.8.
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The extremal index

In Section 4 we pointed out that the normalised partial maxima of the sequences (X;), (o) and
(|X¢|) have a Frechét limit distribution with parameter x. Moreover, the reciprocal of the expected
cluster size of high threshold exceedances is the extremal index. In what follows we estimate this
index for both, simulated GARCH(1, 1) processes with parameters (6.1) and the FX log-returns.
Various methods for estimating the extremal index have been proposed in the literature; see for
example Hsing [25, 26] and Smith and Weissman [44]; cf. Embrechts et al. [14], Section 8.1. Below
we use the so—called blocks method: divide the data into k = k, blocks of length r = r,, where
n = rpk, and k, — 00, ky/n — 0. Each block can be considered as a cluster of exceedances. Two
quantities are of interest: the number K of blocks in which at least one exceedance of the threshold
U, occurs, and the total number N of exceedances of u,,.
We choose the following natural estimator of 6:
~ _kln(1-K/k) 1In(1 - K/k)
" nln(l—N/n) rln(l—N/n)

Under general conditions, §n is consistent and asymptotically normal; cf. the aforementioned
literature.

Figure 6.9 displays the results for estimating the extremal indices fx of the JPY-USD FX log-
returns, 6, of their residuals and 6, of the volatility sequence, based on the GARCH(1, 1) fit with
parameters (6.1). The 95% confidence bands and the median were obtained from 400 independent
simulated GARCH(1, 1) with parameters (6.1) and the empirical distribution of the FX residuals as
the distribution of the Zs. We choose the block size r = 100 and vary the threshold u,, (expressed in
terms of the number of order statistics exceeding u,) such that the first 1400 upper order statistics
are taken into account for the calculation of @\n

The estimates for Ox and 6, of the FX log-returns lie above the 97.5% curve. This indicates
that these extremal indices are larger than for the corresponding GARCH(1, 1) process. This means
that the expected cluster size is smaller than for a GARCH(1, 1), i.e. there is less dependence in
the tails for the returns than for the fitted GARCH(1, 1) model. The corresponding estimates for
0z lie within the 95% bands for an iid sequence. This again seems to imply that the residuals very

much behave like an iid sequence (with extremal index 1).

7 Concluding remarks

One of the aims of this paper was to show that, in the case of a GARCH(1,1) model estimated
from FX log-returns, the sample autocovariances and autocorrelations are extremely unreliable
tools for model selection and validation. This is in contrast to the results of classical time series

analysis. In many practical situations one has to deal with models that do not have a finite 4th
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Figure 6.9 Estimates of the extremal indices Ox (top left), 0x| (top right) and 65, based on the
blocks methods, as a function of the number k of upper order statistics. The latter corresponds to
a threshold u, such that exactly k order statistics of the sample are above uy. In the two upper
graphs, the 3 lower curves correspond to the 97.5%—, 50%— and 2.5%—quantiles of the estimators
for a GARCH(1,1). These confidence bands were obtained from 400 independent repetitions. The
upper curve corresponds to the estimates for the FX log-returns. In the lower graph the estimates
for 8z fall into the 95% confidence bands.

moment, although their second moment may still exist. In this case, the standard theory for the
sample autocorrelation function (Gaussian limit distributions and y/n-rates of convergence) is not
valid any more for the time series and its absolute values. The asymptotic confidence bands are
much wider because of infinite variance stable limits and slow rates of convergence. In addition,
the autocorrelations of the squares, third powers, etc., are not defined; the corresponding sample
autocorrelations converge to non—degenerate limits with infinite variance.

Another conclusion of the paper is that, even when accounting for the mentioned larger—than—
usual statistical uncertainty, the GARCH(1,1) (and more generally any GARCH model) cannot
explain the effect of almost constant sample ACFs over various lags for the absolute values of log—
returns (“long-range dependence” (LRD)). Despite the fact that there is no unique definition of the
phenomenon LRD, one way to characterise it is given by ), |, x|(h)| = oc; see for example Beran
[3]. The medians of the distributions of the sample autocorrelations p, x|(h) of a GARCH(1,1)
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with parameters (6.1) decay to zero at an exponential rate a” for some a € (0, 1), say. However,
Figure 6.8 indicates that a ~ 0.99, which fact implies, for example, that 0.4a'%® = .146. This, to
some extent, explains the observation that the function p,, x| (h) for GARCH(1,1) models, when
fitted to log-return data, decays to zero “slowly”. However it does not fully explain the behaviour
of the sample ACF of the absolute values of the FX log—returns; see Figure 6.5.

An alternative explanation of this phenomenon could be the non—stationarity of the underlying
time series. Mikosch and Staricd [36] show that log-return data cannot be modelled by one partic-
ular GARCH model over a long period of time. There we give a change—point analysis of financial
time series modelled by GARCH processes with parameters varying with time. Contrary to the
common-hold belief that the LRD characteristic carries meaningful information about the price
generating process, we show that the LRD behaviour could be just an artifact due to structural
changes in the data. The effect of non—stationarity in real-life financial log—return time series can
also be seen by considering the sample ACF of moving blocks of the same length. When taking
statistical uncertainty into account, estimates of the ACF usually differ from block to block.

To summarise, the main conclusions of our study are the following:

e Although displaying potentially useful features, the GARCH(1,1) model does not seem to
accurately capture neither the extremal behaviour nor the correlation structure as described
by the sample ACF of the data.

e The sample ACFs of GARCH(1, 1) models, their absolute values, squares, third powers, etc.,
fitted to real-life FX log-returns, are either poor estimators of the ACFs (slow convergence
rates) or meaningless (non—degenerate limit distributions). Avoid using the sample ACF
to draw conclusions about the second order dependence structure of log—return
data!

e The behaviour of the sample ACF of the absolute values of real-life data (LRD effect) cannot
be sufficiently explained by a GARCH process. The ACF of its absolute values decays to zero

at an exponential rate. The sample ACF of FX log—returns at the first lags falls outside the
95% confidence bands for a fitted GARCH(1, 1) model.

In this study we restricted ourselves to the GARCH(1, 1) case. It is this model that appears
most frequently in practical applications and that is believed to capture, despite its simplicity (3
parameters!) some of the main features of real-life log—returns. Our study sheds some light on the
extent to which this belief is true. Parts of our study (convergence of point processes and sample
autocorrelations) can be extended to GARCH(p, ¢) models, including multivariate ones, and, more
generally, to solutions of certain stochastic recurrence equations; see Davis et al. [12]. However,

the GARCH(1,1) theory is particularly elegant because it allows one to calculate quantities such
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as k explicitly. This turns out to be difficult in the general GARCH case.
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