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ABSTRACT

Functionals of a two—parameter integrated periodogram have been used for a long time for detecting
changes in the spectral distribution of a stationary sequence. The bases for these results are
functional central limit theorems for the integrated periodogram having as limit a Gaussian field.
In the case of GARCH(p, q) processes a statistic closely related to the integrated periodogram can
be used for the purpose of change detection in the model. We derive a central limit theorem for this
statistic under the hypothesis of a GARCH(p, ) sequence with a finite 4th moment. Simulations
show that our statistic is quite sensitive to changes of the parameters in the model and that it
accurately detects the moment when a change of the model occurs.

When applied to real-life time series our method gives clear evidence of the fast pace of change
in the data. One of the straightforward conclusions of our study is the infeasibility of modelling
long return series with one GARCH model. The parameters of the model must be updated and we
propose a method to detect when the update is needed.

Our study supports the hypothesis of global non—stationarity of the return time series. We bring
forth both theoretical and empirical evidence that the long range dependence (LRD) type behaviour
of the sample ACF and the periodogram of absolute return series documented in the econometrics
literature could be due to the impact of non—stationarity on these statistical instruments.

Contrary to the common-hold belief that the LRD characteristic carries meaningful information
about the price generating process, we show that the LRD behaviour could be just an artifact due
to structural changes in the data. The effect that the switch to a different regime has on the sample
ACF and the periodogram is theoretically explained and empirically documented using time series
that were the object of LRD modelling efforts (S&P500, DEM/USD FX) in various publications.
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62P20
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1 Introduction

In fields as diverse as time series analysis and extreme value theory it is generally assumed that
the observations or a suitable transformation of them constitute a stationary sequence of random
variables. In the context of this paper, stationarity is always understood as strict stationarity. It
is the aim of this paper to provide a test for the change from one particular stationary model to
another. To be precise, we assume that the data come from a generalised autoregressive conditionally

heteroscedastic process of order (p,q), for short GARCH(p, q):
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where (Z;) is an iid sequence with Z = Z;, EZ = 0, EZ? = 1 and the stochastic volatility o, is
independent of Z; for every fixed . One often assumes Z to be standard normal. In what follows,
we write ¢ for a generic random variable with the distribution of o1, X for a generic random
variable with the distribution of X, etc.,

This kind of model is most popular in the econometrics literature for modelling the log-returns
of stock indices, share prices, exchange rates, etc., and has found its way into financial practice for
forecasting financial time series. See for example Engle [19] for a collection of papers on ARCH.
We assume that, for a particular choice of parameters «; and f;, the sequence ((X}, o)) constitutes
a stationary sequence. Assumptions for stationarity of a GARCH(p, q) can be found for example
in Bougerol and Picard [9] or Nelson [33].

Our analysis is based on the spectral porperties of the underlying time series. Recall that the
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is the natural (method of moment) estimator of the spectral density fx of a stationary sequence
(X:); see Brockwell and Davis [10] or Priestley [37]. Under general conditions, the integrated

periodogram or empirical spectral distribution function
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is a consistent estimator of the spectral distribution function given by

A
FX(/\):/O fx(z)dz, A€o,

provided the density fx is well defined. Motivated by empirical process theory for iid sequences,
various authors have built up a theory for the integrated periodogram and its modifications and

ramifications. The main aim is to parallel the theory for the empirical process as much as possible.



For an introduction to the theory of empirical processes, see Pollard [36] or Shorack and Wellner [40].
The idea of treating the integrated periodogram as the empirical spectral distribution function has
been used for a long time; see for example Grenander and Rosenblatt [23], Whittle [41] or Bartlett
[3]. However, the theory for the integrated periodogram is not identical to the empirical process
theory. For example, given a finite 4th moment for X, \/n(J, x — Fx) has a Gaussian process as
weak limit in C[0, 7], the space of continuous functions on [0, 7] endowed with the uniform topology,
which can be a very unfamiliar process. Its ovariance structure depends on the spectral density
fx; see for example Anderson [2] or Mikosch [31]. Since one wants to use the distributional limit of
Vn(Jn,x — Fx) for the construction of goodness—of-fit tests of the spectral distribution function,
as proposed by Grenander and Rosenblatt [23], one needs to modify the integrated periodogram to
get a more familiar Gaussian process, if possible a bridge-type process. Bartlett [3] (cf. Priestley

[37]) had the idea to use a weighted form of the integrated periodogram:

= AL’X(HC) T ™
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This process, when suitably normalised and centered, has a weak limit which, in the case of a linear
process, is independent of the spectral density, but it is still dependent on the 4th moment of the
underlying noise process; see for example Mikosch [31] for a discussion. There it is also mentioned
that one can overcome the problem with the 4th moment by replacing the periodogram in (1.3)
with a self-normalised (studentised) version, i.e.
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Then, under the assumption of a finite 2nd moment of X and mild conditions on the coefficients
of the linear process (which include the long range dependence (LRD) case; see Kokoszka and

Mikosch [30]) the self normalised version J,, x, fx of Jn x py satisfies
T (ux s =24 BO)
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where B denotes a Brownian bridge on [0, 7] and 4 stands for convergence in distribution in C[0, 7].

The method of the integrated periodogram, as the empirical version of the spectral distribution
function, can also be exploited for detecting changes in the spectral distribution function of a time
series. This is analogous to the sequential empirical process known from empirical process theory;
see for example Shorack and Wellner [40]. To the best of our knowledge, this idea was used first
by Picard [35]. It was further developed for various linear processes under mild assumptions on
the moments of X and the coefficients of the process; see Giraitis and Leipus [20] or Kliippelberg
and Mikosch [29]. In the latter paper the method was applied to financial log-returns in order to

test when a change from an iid sample to an ARMA process or vice versa occurred. We describe



the approach of that paper in more detail for one particular case. It will be further developed for
constructing a change point test for GARCH processes. The test statistic is constructed from the

two—parameter process

A
(1.4) Jn,X(x,A):/O LL’[;%(’;)@)@, ze0,1], Melo,q],

where
2

In,k‘,X()\): ) k:()a"'ana AE[Oaﬂ-]-

1 o
7 ; e X,
Again, Bartlett’s idea (divide the periodogram by the spectral density) was used to make the limit
process independent of the form of the spectral density. Then, using a proper centring sequence
for the process J, x(z, ), the normalised process converges in distribution in the Skorokhod space
D([0,1] x [0,7]) to a two—parameter Gaussian process which, for fixed A, is a Brownian motion
and, for fixed =, a Brownian bridge. Such a process is known as Kiefer—Muller process; see Shorack
and Wellner [40]. Functionals of J,, x(z,A) can then be used to detect a change in the spectral
distribution function. The basic idea is to calculate the empirical spectral distribution function for
every subsample (X1,...,X [m]), 0 <z <1, and to compare it with the value of the true spectral
distribution function. Under the null hypothesis that the whole sample X;,..., X, is taken from
the same stationary sequence, the constructed change point statistic reacts quite sensitively to
deviations from this hypothesis.

It is the aim of this paper to develop a similar change point analysis for GARCH processes. The
situation is different from the linear process case insofar that any GARCH(p, ¢) process represents
a white noise sequence and therefore its spectral density is a constant: fx = var(X)/(2w). If
we use a statistic of type Jp x(x,A) we thus test for a change of variance of the underlying time
series which is determined by all parameters of the process. In contrast to the linear process case,
where I, x()\)/fx()) roughly behaves like I, z()) ((Z;) is the underlying iid noise sequence), such
a behaviour cannot be expected for the GARCH(p, ¢). In particular, the covariance structure of
(X?) determines the structure of the limit process. We explain this result in detail in Section 2,
where we give the necessary limit theory for a modified two—parameter integrated periodogram.

In Section 5 we apply the theoretical results of Section 2 in a goodness—of-fir test for foreign
exchange log-return data, the S&P500 series and simulated data consisting of subsamples from
different GARCH(1,1) models. We fit a GARCH(1,1) to a subsample and compare it to to the
overalll fit in the sample. It turns out that there is a very high probability for a change of the
the GARCH(1, 1) models, in particular in periods of high volatility. Therefore it is reasonable to
adjust the parameters to the new situation, and the goodness—of-fit analysis of Section 5 tells us
when we have to re—estimate the new parameters.

In real-life financial data one often observes that the sample autocorrelation function of the

absolute values and squares of log—returns decay to zero at a hyperbolical rate. Alternatively, the
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estimated spectral density blows up at zero. We show in a simulation study in Section 5 that the
same LRD effect can be achieved if the underlying sample consists of subsamples from different
GARCH(1, 1) models, and in Section 3 we give theoretical reasons for this behaviour. We explain
the LRD effect in non-stationary sequences by a change of expextation in the different subsamples.
This in combination with the empirically observed changeability of real-life log—return models (see
Section 5) provides a plausible explanation of the LRD effect in real-life data.

In real-life log—returns one often observes that the estimated parameters «; and (; of a fitted
GARCH(p, ¢) model sum up to 1. In Section 4 we provide a theoretical explanation for this fact
in the case of a non—stationary time series. In this case the differences between the variances in
different subsamples cause this effect on the sum of the parameters. In Section 5 we give some
empirical evidence on this observation. Larger values «; and 8; imply that the tails of the marginal
distributions become heavier. Our result on parameter estimation under non—stationarity implies
that the tails of the marginal distributions of log-return series might be more light—tailed than one

usually assumes.

2 Limit theory for the two—parameter integrated periodogram

In what follows, (X;) is a GARCH(p, q) as defined in (1.1). Under general conditions, the tail of a
GARCH(p, q) is Pareto-like:

(2.1) P(X >z)~cz™™ asz — oo for some k > 0

depending on the parameters «;, 5; and the distribution of Z. The determination of « is in general
difficult and goes back to a classical paper by Kesten [27]; see Goldie [21] (cf. Embrechts et al.
[17], Section 8.4) for the ARCH(1) case, Mikosch and Stéarica [32] for the GARCH(1, 1) and Davis
et al. [12] for the case of general stochastic recurrence equations including GARCH(p, ¢). In what
follows, we assume that the parameters oy, 5; and the noise (Z;) are chosen such that (2.1) holds
for some k > 4. Moreover, we suppose that Z is symmetric.

As a motivation for the following, we start by considering the two-parameter process J,, x(z, A)
from (1.4):
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Clearly,
Yo, x (h) = Yo, x (h)
denotes a version of the sample autocovariance at lag h; the standard version of the sample auto-

covariance is defined for the centered random variables X; — X,,, where X,, is the sample mean.

We also write
vx(h) = cov(Xo, Xp) and wvx(h) = var(XoXy) = E(XoX,)%, heZ.

The processes Yp,[ng],x(h) satisfy a fairly general functional central limit theorem (FCLT).
Recall that D ([0, 1], R™) is the Skorokhod space of R™—valued cadlag functions on [0, 1] (continuous
from the right in [0,1), limits exist from the left in (0, 1]) endowed with the J;—topology and the

corresponding Borel o—field; see for example Jacod and Shiryaev [26] or Bickel and Wichura [6].

Lemma 2.1 If (2.1) holds for some k > 4 then for every m > 1,

_ d ( 1/2 _
\/ﬁ('yn,[m],x(h),h =1... ,m)we[o,l] — (’UX (h) Wy(z),h = 1,...,m>xe[0,1] , T — 00,
(2.3)
in D ([0, 1], R™), where Wy(-), h =0,1,...,m, are iid standard Brownian motions on [0, 1].

Proof. We have to show the convergence of the finite-dimensional distributions and the tightness

in D([0, 1], R™). Notice first that for every fixed h,
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in D[0, 1]; see Oodaira and Yoshihara [34]; cf. Doukhan [16], Theorem 1 on p. 46. In the latter
theorem one has to ensure that E|XyX},|?>T¢ < oo for some € > 0 (this follows from (2.1) for x > 4)
and that the sequence (X;X;p) is a—mixing with a sufficiently fast rate for the mixing coefficients;
see (2.5). However, the GARCH(p, q) is strongly mixing with geometric rate (see for example Davis
et al. [12]), and so the mixing coefficients converge to zero at an exponential rate, which implies

the conditions in the aforementioned theorem.

Thus each of the processes \/ﬁfyn,[n_]’ x(h) is tight in D[0, 1]. Using a generalisation of the argument
for Lemma 4.4 in Resnick [38], one obtains that the map from (ID[0, 1])™ into D ([0, 1], R™) defined
by

(@15 xm) = (21(8), ..., Zm(t)) >0
is continuous at (z1,...,Zm) in (C[0, 1])™. This and the sample path continuity of the limit process
ensure that the processes on the left-hand side of (2.3) are tight in D ([0, 1], R™).
Notice that the multivariate CLT

[n]
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holds for every fixed z. This is again a consequence of the aforementioned CLT for a—mixing
sequences in combination with the Cramér-Wold device. A similar argument for a finite number of

z—values yields the convergence of the finite-dimensional distributions. This proves the lemma. O

Remark 2.2 It follows from the argument above that (2.3) remains valid for stationary strongly
mixing sequences (X;) with EX = 0, E|X|** < oo for some § > 0 and such that EX X, = 0 for
h > 1, cov(XoXp, XoX;) =0 for all h # 1 > 1, and with a-mixing coefficients @; satisfying

o
(2.5) Y& < .

i=1
The latter conditions are needed for the validity of the FCLT (2.4); see Oodaira and Yoshihara
[34].

A naive argument, based on Lemma 2.1 and the decomposition (2.2), suggests that

sin(Ah
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in D([0,1] x [0,7]). This result can be shown to be true; one can follow the lines of the proof
of Theorem 2.3 below. However, the two—parameter Gaussian limit field has a distribution that
explicitly depends on the covariance structure of (X7?), which is not a very desirable property.
Indeed, since we are interested in using functionals of the limit process, we would like to know
the distribution of those functionals for the purposes of statistical inference. Therefore we want a
“standard” Gaussian process in the limit; otherwise we would have to calculate the distributions
of its functionals by Monte—Carlo simulations for every choice of parameters of the GARCH(p, q).
A glance at the right-hand side of (2.2) suggests another approach. The dependence of the lim-
iting Gaussian field on the covariance structure of (X?) comes in through the FCLT of Lemma, 2.1.

However, if we replaced in (2.2) the processes 7, . x (h) with

’Yn,[n-],X(h)

A’)’Jn, nxl, (h’) =
)

a naive argument would suggest that the limit process becomes independent of the covariance
structure of (X7?).
Therefore we introduce the following two—parameter process which is a straightforward modifi-

cation of Jy, x(z,A):

sin)\h
Cnx(z,\) = Z’ynm gz)’ z€[0,1], Xel0,n].

Our main result is a FCLT for C, x.



Theorem 2.3 If (2.1) holds for some k > 4,

o0

J sin(Ah
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in D([0,1] x [0,7]) where (Wp(-)) is a sequence of iid standard Brownian motions on [0,1]. The
infinite series on the right—hand side converges with probability 1 and represents a Kiefer—Muller

process, i.e. a two—parameter Gaussian field with covariance structure

E (K (z1,\) K (z2,X2)) = min(z1,z9) Z Sin()\lt)t;in (Agt)

t=1
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Proof. We proceed analogously to Kliippelberg and Mikosch [29]. It follows from Lemma 2.1 and
the continuous mapping theorem that, for every fixed m > 1, in D ([0, 1] x [0, 7])

Z \/ﬁ?y/n,[ncc],X(h) Sin&j\h) i) ZWh(x) Singj\h) :
h=1

According to Theorem 4.2 in Billingsley [7], it remains to show that for every ¢ > 0,

[na]
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Since Z is symmetric the sequences (r;) = (sign(X;)) and (| X¢|) are independent. Conditionally on

(1X¢]),
sin(-h)
h 7

k
Z \/ﬁ :?n,k,X(h)

h=m+1

k=m+1,...,n—1,

is a sequence of quadratic forms in the iid Rademacher random variables 7, and with values in
the Banach space C[0,7] endowed with the sup—norm. Now condition on (|X;|). Use first a
decoupling inequality for Rademacher quadratic forms (e.g. de la Pena and Montgomery—Smith
[13], Theorem 1) then the Lévy maximal inequality for sums of iid symmetric random variables,
then again the decoupling inequality in reverse order, and finally take expectations with respect to

(|X¢])- Then we obtain the inequality

[nz]

_ sin(Ah
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for certain positive constants c1, co. The right-hand probability can be treated in the same way as
the derivation of (6.3) in [28], pp. 1873-1876. Instead of Theorem 3.1 in Rosinski and Woyczynski
[39] one can simply use the Cauchy—Schwarz inequality in the first display on p. 1876 in [28] with
g = 2. Then all the calculations for (6.3) remain valid, implying that (2.7) holds. This concludes
the proof of the theorem. O

Remark 2.4 The series representation of the Kiefer-Miiller process can be found in Kliippelberg
and Mikosch [29]. This process is known in empirical process theory as the limiting Gaussian field

for the sequential empirical process; see Shorack and Wellner [40].

Remark 2.5 The statement of Theorem 2.3 remains valid for wider classes of stationary sequences.
Assume the conditions in Remark 2.2 are satisfied. In addition, we need that (X;) is symmetric and
that (| X%|) and (sign(X;)) are independent. This condition is satisfied for any stochastic volatility
model of form X; = oy Z;, where (Z;) is a sequence of iid symmetric random variables and the

random variables o; are adapted to the filtration o(Z;_1, Z;_o,...).

Remark 2.6 The condition of symmetry of Z is needed only for the application of the Lévy
maximal inequality for sums of independent random variables. Alternatively, one can proceed as
in the proof of Theorem 3.1 in Kliippelberg and Mikosch [29], p. 980, last display, where instead
of the Lévy maximal inequality Doob’s 2nd moment maximal inequality for submartingales was
used. Then one can follow the lines of the proof of Theorem 1 in Grenander and Rosenblatt [23],
Chapter 6.4.

Remark 2.7 Theorem 2.3 can be used for testing the null hypothesis that the whole sample
X1,...,X, comes from a particular GARCH(p, q) model with given parameters a; and ;. Now
assume that X1,..., X, actually comes from a model with parameters @; and Bi. Write Dy (h) =
E(XyX})? for the corresponding variance of XoXp,. Then the same arguments as for the proof of
Theorem 2.3 yield that, if (2.1) holds for some k > 4, then

0o ~1/2 .
d vy (h sin(\h
vV (Cn,x (%)) pepo, ) 00,0 ( i(/Q( ) n(z) ; )) ’
h=1vx (h) z€[0,1],A€[0,7]

in D([0,1] x [0,7]) where (W}y(-)) is a sequence of iid standard Brownian motions on [0, 1].

Similar results can be derived under the alternative hypothesis that the sample X1, ..., X,, consists
of subsamples from different GARCH(p, q) processes. However, the resulting Gaussian limit field
is then dependent on the covariance structures of the X;s in the different pieces of the sample.
This fact makes an application of such a result extremely difficult; one would depend on Monte—
Carlo based calculations for the quantiles of the functionals of those processes. In particular, these

quantiles would depend on the parameters of the different GARCH(p, q) processes.



Immediate consequences of Theorem 2.3 are limit theorems for continuous functionals of the pro-

cess Cp, x-

Corollary 2.8 Under the assumptions of Theorem 2.3,

Vi sup [Cpx(a, ) 4 sup |K(z, M)
€[0,1],A€[0,7] z€[0,1],A€[0,7]

JA€
// 2 x(z,A) dzdX LN //sz)\)da;d)\

Setting z = 1, we also notice that

n—1

%1/)2( (h) Sin}(L h) Z Wi(1 sin(- )
h=1 vx " (h)

where convergence happens in C[0,7]. The series on the rlghtfhand side represents a Brownian

(28)  vaCux()=va

bridge on [0,7]; see (2.6) with z = 1. It is the so—called Paley-Wiener representation; see for
example Hida [25]. The one-parameter process én, x is an alternative to J,, x in (1.2) and can be
applied for testing the goodness of fit of the sample Xi,..., X,,. The convergence of the follow-
ing functionals can be used for constructing Kolmogorov—Smirnov— and Cramér—von Mises—type
goodness—of-fit tests for a GARCH(p, q) process.

Corollary 2.9 Under the assumptions of Theorem 2.3,

(2.9) V/n sup

A€[0,7]

/ng ) dX /32

For comparison we also cite here a consequence of the results and proofs in Kliippelberg and Mikosch

Cox ()| % As%p]m( Ik
€[0,m

[29] for the case of iid Z;. The following statement is a modification of their Proposition 2.2.

Proposition 2.10 Let (Z;) be an iid sequence with EZ =0 and var(Z) < oco. Then

sin(Ah d
(Z a2 () 22 )) 4 vax(2) (K (e, \)acpiachs
= [0,1], A€ [0,7]

n—1 :
Yn,fnz],z(h) sin(Ah d
(Z fy[ ](0) gz )) = (K (2, A))ze[0,1,7e[0,7] »
h=1 7 [0 1] )\E[O 7r]

in D([0,1] x [0,7]) and

(Zm Sin ”l)) 4 var(Z) (BO))acfou
A€[0,7]

n—1 .
n.z(h) sin(A\h) d
>t ) 5 (BO)acoa
(h_l Tnz(0)  h A€o, "

in C[0, 7].
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These results allow one to compare goodness—of-fit tests and change point analyses for different

kinds of white noise processes: iid sequences (Z;) or GARCH(p, q) (X3)-

3 Long range dependence effects for non—stationary sequences

Financial log-return series such as the log-returns of foreign exchange (FX) rates often exhibit
an interesting dependence structure which is described as follows: the sample autocorrelations of
long log-return series are very small, whereas the sample autocorrelation functions (ACFs) of the
absolute values and squares of the data usually decay to zero at a hyperbolic rate or even stay
constant for a large number of lags. The slow decay of the sample ACF also manifests itself in large
values of the estimated (via the periodogram) spectral density of the data for small frequencies.

This phenomenon is often interpreted as long range dependence (LRD). There does not exist
a unique definition of LRD. One possible way to define it for a stationary sequence (Y;) is via
the condition ), |yy (k)| = co. Alternatively, one can require that the spectral density fy()) of
the sequence (Y;) is asymptotically of the order L(A)A™¢ for some d > 0 and a slowly varying
function L, as A — 0. See Beran [4] for various definitions of LRD. Since the detection of LRD
effects is based on statistics of the underlying time series similar phenomena can also be observed
for the sample ACF and the periodogram of data from non—stationary time series. For example,
Bhattacharya et al. [5] detected such effects when the data contain a trend.

Similar effects can be observed for time series which consist of subsamples originating from
different stationary models. In what follows we want to give some simple theoretical reasons for
the appearance of LRD effects in the sample ACF and the estimated spectrum.

Let pj, j = 0,...,r, be positive numbers such that p; +---+p, =1 and py = 0. Define

gg=po+-+pj, 7=0,...,7.

Assume the sample Y7,...,Y,, consists of r subsamples
(1) (1) (r)
(3.1) Y, ,Y[nql] Y[ AT Yn(r) .

The 4th subsample comes from a stationary ergodic model with finite 2nd moment and spectral

density fY(i)' Define the sample autocovariances of the sequence (Y};) as follows:

~ 1 =
ny(h) == YiYin— (Vn)*, hEZ,

where Y, denotes the sample mean. By the ergodic theorem it follows for fixed h > 0 as n — oo
that

B T 1 '"4‘17 n(I]
r®) = 3 opin 30 YO Zpan. > Y7 4o
j=1 J =[ng;—1]+1 P; t=[ng; 1]+1
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A ij By Zp EY V)
j=1
(3.2) = Yoo+ Y pi; (EYU)—EY(“)2 a.s.
= 1<i<j<n

;From (3.2) we can explain the LRD effect in the sample ACF: if the expectations differ in
the subsequences (Y;(j )) and if the autocovariances 7y-;) (k) decay to zero exponentially as h — oo,
the sample ACF (7, y(h)) for sufficiently large & is close to a strictly positive constant given by
the second term in (3.2). The overall picture should show a sample ACF (%,,y(h)) that decays
exponentially for small lags and approaches a positive constant for larger lags. The presence of
the positive constant in (3.2) forbids negative correlations for larger lags. For example, if (X;) is a
sequence which consists of pieces from different GARCH processes, the above argument applies to
the sequences (Y;) = (|X:|"), I = 1,2. See Section 5 for some evidence from simulated data.

Alternatively, one may consider estimates of the spectral density. The classical estimator in

this case is the (smoothed) periodogram which is considered only at the Fourier frequencies

2
(3.3) A = ZJ € (—m,7].

For convenience we exclude the Fourier frequencies at 0 and 7. Since Y .; ; e "t = 0, the
periodogram at the Fourier frequencies does not change its value if one replaces the Y;s with the
centered random variables Y; —c¢, t = 1,...,n, for any constant ¢, therefore centring is not necessary

for the sample. We observe the following:

[nqi]
In,Y(Aj) = \/_ Z Z Y() —iA;t
I=1 t=[ngq_1]+1
[nad . 1 < [nai] . 2
= Z Yo V—EyWye Nty Ny 3 e
\/_ =1 t=[ng;_1]+1 \/ﬁ =1 =41

Notice that

[nqi]—[ng—1]-1

ZEY 72)\] ng—1]+1) Z efi)\jt

t=0
— — _Z)\ ZEY 1) ( —iXj[nqi—1] _ efi)\j [nql])
—i)j r—1 )
= — [EY® — By N (By () — py (1)) ¢ ~iAilnad]
1—e ™ T
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does not sum up to zero if the expectations EY ()s vary with j. Assuming uncorrelatedness between

different subsamples, straightforward calculation yields for A; — 0 that

Ely (X))
T [ng]—[ng—1]-1 0 ' 2 1T [ng] . 2
_ Zpl Z (Y;5 _ EY(l)) e —Z)\J't 4= Z Ey(l) Z e —Z)\jt
=1 v t=1 \/ﬁ =1 t:[nql,1]+1
[npi]—1
_ I) .
= sz var(Y ")) g ( ] ) Yy (h) cos(Ajh)
1 1 r—1 2
- =  \gy® _ gy _ EY W _ gy +1)ye —iXj[ng]
o [1—e- lz:;( Jo o +oll)
= Z pu[27 fy-ay (A
1 1 r—1 2
- - n _ (r) _ 0 _ (1+1)) o 127y
+- TR EYW —EY™ — (1 +o(1));(EY EYH)ye + o(1)
r—1 o 2
~ Z 127 fyr oy (A4)] + T EY®W — gy N (EY") — By (H1))e ~i2mia
=1 J =1

(3.4)

where fy-q) denotes the spectral density of the sequence (Y;(l)).

(l))

Now assume that each of the subsequences (Y;"’) has a continuous spectral density fy-q) on
[0,7]. Then the first term in formula (3.4) is bounded for all frequencies \;, in particular for small
ones. If n)\g — 0 as n — oo, the order of magnitude of the second term in (3.4) is determined by

(nA?)_l. For the sake of illustration, assume r = 2. Then (3.4) turns into

(3.5) 127 fyy (N)] + 227 fy e (A;)] + % EY® _ gy @[’ 2(1 — cos(2mjp1) -

J

Under the assumption EY (1)  EY(?), the right—hand probability for small nA? is of the order

(3-6) (nA9) 71 (1 — cos(2n{jp1}),

where {z} denotes the fractional part of z. Now assume that p; is a rational number with
representation p; = ry/re for relatively prime integers r; and 7. Then {jp;} assumes values
0,75 %, ..., (ra — 1)ry'. Thus, for j such that n)\? is small, the quantity (3.6) is either zero or
bounded away from zero, uniformly for all j. The effect on (3.5) is that this quantity becomes

arbitrarily large for various small values of j as n — oo and is bounded from below by the weighted

13



sum of the spectral densities

P1127 fy) ()] + p2[27 fy (Ag)] -

This fact, to some extent, explains the behaviour of the periodogram and smoothed versions
of it for Fourier frequencies close to zero. In particular, if (Y;) = (|X¢|!) for I = 1 or [ = 2 and
(X:) consists of pieces of different GARCH processes, the above argument applies. Notice that the
spectral densities corresponding to these subsequences are then continuous functions on [0, 7], and
the blow up of the estimated spectrum at zero can be explained by the appearance of different
expectations of the absolute values or squares in different subsamples. For some empirical evidence

on this phenomenon, see Section 5.

4 The effect of non—stationarity on parameter estimation

The model estimation procedures for a GARCH(p, q) are also affected by non-stationarity of the
data. In what follows, we are interested in assesing the impact of the presence of subsamples orig-
inating from different stationary GARCH(1, 1) models on the Whittle estimates of the parameters
of a global GARCH(1, 1) model fit to the entire time series.

If one assumes that the whole sample comes from a GARCH(1, 1) model with parameters a;
and S, it follows from the calculations in the Appendix that (U;) = (X? — EX?) can be rewritten

as an ARMA(1,1) process with white noise innovations sequence (v;) = (X2 — 02):
(4.1) Ui—p1 Uiy =1 — ,Blljt_j , tEZ,
where

pr=a1+ 0 and O = (p1,0).

One of the backbones of classical estimation theory in the analysis of causal invertible ARMA
processes is the Whittle estimator. It is asymptotic equivalent to the least squares and Gaussian
maximum likelihood estimates for causal and invertible ARMA processes with iid innovations in
the sense that they yield consistent and asymptotic normal (with /n-rate) approximations to the
true parameters of the model. We refer to Brockwell and Davis [10], Section 10.8, for the theoretical
properties of this pseodo-maximum likelihood estimation procedure. The Whittle estimate ©,, =
(@, 0;) of the ARMA(1,1) model (4.1) is obtained by minimizing the function

(4.2) Z 7 Aj’ @

with respect to © from the parameter domain

C={(p1,81): 0< 1,01 <1, 1,01 >0}.
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The sum ), in (4.2) is taken over all Fourier frequencies A; € (—m,n] and f(A,©) denotes the
spectral density of the ARMA(1, 1) process (Uy) (see for example Brockwell and Davis [10], Chapter
4):
0% |1 —pre ™2 0% 1—2B1cos A+ 32
(4.3) f0)= 5 =~ 3
21 |1 — pre 74 21 1 — 2¢p1 cos A + 5

Given EX* < oo, the Whittle estimates of the parameters of a causal invertible stationary ergodic
ARMA(p, q) process (U;) with white noise innovation sequence (1) are strongly consistent. This
follows along the lines of the proof of Theorem 10.8.1 in Brockwell and Davis [10]. Therein, strong
consistency has been proved for an ARMA(p, q) process with an iid white noise innovation sequence.
However, a close inspection of pp. 378-385 in [10] shows that for the consistency of the Whittle
estimates only the strict stationarity and ergodicity of the ARMA(p, g) process are required.

In practice, the GARCH(1, 1) model is one of the most frequently used models for fitting real—
life financial time series. As a matter of fact, one often estimates a value 1 = 1 for long time series;
see the empirical study in Section 5. This led to the introduction of the integrated GARCH models
(IGARCH) corresponding to 1 = 1; see Engle and Bollerslev [18]. Under general conditions on Z,
the stationary IGARCH process has infinite variance marginal distributions. This fact is in contrast
to statistical evidence from tail estimation for log-return series. The case of an infinite variance
is quite a rare event for financial time series; see for example the discussion on tail estimation in
Chapter 6 of Embrechts et al. [17].

In what follows, we give reasons for the empirical fact ¢; =~ 1. We will explain that this is an
artifact which is due to non—stationarity in the data.

(From now on, assume that the sample X1, ..., X,, consists of  subsamples as described in (3.1)
from different GARCH(1, 1) models with corresponding parameters ©(%) = (cpgi), ,Bli)), i=1,...,7.

When (X?) constitutes a stationary sequence centering in the sample X?,..., X2 is not neces-
sary in the definition of 72 (©) since Y.y ;e At =0 for \; # 0 and # 7. (The two summands for
Aj =0 and )\; = 7 in the definition of the Whittle likelihood 72 (©) can be neglected; they are of
no importance for the asymptotic results considered. In what follows, we simply ignore these two

special case.) Thus we have for the Fourier frequencies \; that

Iy x2(Aj) = Inu(Xj),  Aj € (0,7),

and therefore it is without loss of generality assumed in [10] that the sample is mean—corrected. In
practice one does not know the value of EX?. Therefore one has to mean-correct X2, for example

with the sample mean

1 n
z : 4
t=1
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It is natural to modify 72(©) as follows:

nX2 )
Z ng,@ '

By the above remark, 52(0) = 52(O).
We start with an analogue of Proposition 10.8.2 in [10].

Proposition 4.1 Let Xi,..., X, be a sample consisting of r subsamples as described in (3.1). As-
sume that the ith subsample comes from a GARCH(1, 1) model with parameters ©() = (gogz), 1 )) €
C and that E'(X(i))4 < 00.. Then, for every © € C the following relation holds:

72(0) %5

. 2
1 /" >t Pz’U(QX@)zf()\,@(’)) D D i<i<j<r PiPj (Ugm - Gim)
2m f(A,0) f(0,0) ’

where 0% = var(A). Moreover, for every § > 0, defining

(4.4) A(©) ==

‘1—516 Z’\| + 4

0
f% 0= 1= 1 e P’

the following relation holds
Z nX2 )
fs( )\g,@

(4.5) —

. 2
1 /W Yia pio-(QX(i))2f(>‘a®(z)) D Y i<i<j<r PiPj (Ui(i) - U%;(j))
2m fé(A, 9) f&(oa 9)

uniformly in © € C, the closure of C, almost surely.

Remark 4.2 The dependence structure between the different subsamples is inessential for the

validity of the proposition.

Proof. For simplicity of presentation we restrict ourselves to the case of two subsamples. The
general case is analogous. We follow the lines of proof of Proposition 10.8.2 in [10] specified to
the ARMA(1,1) process (X?). Since each of the subsamples comes from a strictly stationary and

4<oo,

ergodic model, both ((Xt(i))Q) constitute stationary and ergodic sequences with E(X ()
i = 1,2. As in [10], we restrict ourselves to show that (4.5) is satisfied. The same arguments as
on pp. 378-379 in [10] apply. The only fact one then has to check is the a.s. convergence of the

sample autocovariances

~ 1 —
Yn,x2(h) = - S OXPX7 - (X2
=1
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The same arguments as for (3.2) show that

~ .S. 2
’Yn,XQ (h) a_S) Px2 (h) = pl'Y(X(l))Z(h) +p27(X(2))2(h) +p1p2 (0'3((1) — Ui@)) .

Similarly to [10], p. 378, introduce the Césaro mean of the first m Fourier approximations to

f(\, ©), given for every m > 1 by

k —i
gm(X,0) = ) (1—|m—|) bre ~HkA

|k|<m

b—i/7r L
T e

Then the same arguments as for (10.8.11) in [10] and the display following it show that for every
m>1,

where

Z Man(A,0) %5 S T (h <_@>bk

|k|<m

uniformly for © € C and

5 e - )

|k|<m
2 2 2 2 \?
1 [T pla(X(l))2f()‘a ©1) +p20(X(2))2f()‘a ©2) i P1p2 (UX(l) - UX(?))
21z f5(A,©) f5(0,©)
< conste
for every € > 0, uniformly in © € C’. The same arguments as in [10] conclude the proof. O

Next we formulate a result in the spirit of Theorem 10.8.1 of Brockwell and Davis [10].

Theorem 4.3 Assume the conditions of Proposition 4.1 are satisfied. Let O, be the minimizer of
52(©) for © € C. Then ©, *% O, where Oy is the minimizer of the function A(®) for © € C
defined in (4.4).

Remark 4.4 Tt also follows from Proposition 4.1 that 52(0,) %3 A(Qy).

Proof. One can follow the arguments on p. 385 of [10]. We again assume for ease of presentation

that 7 = 2. Assume that ©,, % O, does not hold. Then by compactness there exists a subsequence
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(depending on w € ) such that ©,, — ©, where © € C and © # ©y. By Proposition 4.1, for any
rational 6 > 0,

(A)
lim inf ) > lim inf Iy 232
im {77, (On,) > imin nkZ a(-6m)

2
1T pla(ZX(l))zf(/\a o) +P2‘7(2X<2))2f(/\a o) D4 p1p2 (Ui(l) - Ji(z))

27 -7 f&()" 9) f&(Oa @)

So by letting § — 0 we have

(4.6) lim inf 52 . (On,) > A(O) > A(Oy) .

k—o0
On the other hand, by definition of ©,, as a minimizer, (4.4) implies that
limsup52(0,) < limsups2(Qp) = A(Qg).
n—0o0 n—oo

This is a contradiction to (4.6). This concludes the proof. O

In what follows, we apply the above estimation theory to ARCH(1) processes, i.e. ¢1 = a1, in
which case we can calculate the limit of the Whittle estimate explicitly. For illustrative purposes

assume r = 2. Then
C:{al :0§0£1<1}.

The Whittle estimate is then the minimizer over a; € C of the function

2 2
1 & P10 /(1) P20/ 5 (2) 12

Alw) = =— ) O 1= ane ™[ A
21 J & ‘1 e i ‘1_ag2)e—i)\

+ (1= 1) pip2 (0% — (7?((2))2
= (1+a?) (pla(QX(l))2 —I—p20(2X(2))2) — 2 (agl)plafxm)z + ag2)p2a(2x(2))2>
+ (1= 1) pip2 (0% — 0?((2))2 :
Minimization of A(ay) yields

(1 - agl))plo(QX(l))z + (1 - agZ) )pQU(QX(z))z

a1 = 1-— 2 .
2 2 2 2
pb1p2 (GX(I) UX(Z)) +p10(X(1))2 +p20(X(2))2
The right-hand side becomes arbitrarily close to 1 if the differences in the variances of the subsam-
ples increase to infinity.
In the general GARCH(1,1) case a similar non—stationarity effect causes that ¢ can be close

to one. In that case, the minimizer Oy cannot be expressed explicitly as in the ARCH(1) case.
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However, one can exploit the following argument. The spectral density fx2 of the ARMA(1,1)

process (X?) is of the form

Ox2 |1 —ﬁle_i)“Q .

21 |1 — pre —i)\|2 o

Fre (V) = o D bl M, A€ [om].

h=—00
iFrom the Appendix we know the explicit form of the ACF of an ARMA(1,1) process. Denote
by (X;) an ARMA(1,1) process with iid standard Gaussian innovations, AR-parameter §; and

MA-parameter ¢;. Direct calculation shows that

1— 2
A(©) —p1ps (0% — 0% <2))2 ﬁ

1) 4 2 2) 2 .
L[ 1—ﬂ£)e ’ 1 oo 1_ﬂ$ e i ‘1—<P1e_“’\‘2
= — pio P20 %2 ;
or | . 19(x1))2 L (pgl)eﬂ’\ 2 29(x(2))2 L (p?)e*i)‘ 2 11— Bre ,M|2
L[ - —i .- —i
= 5 <p1 Z ’)’(X(1))2(h)e A4 pg Z ’)’(X(2))2(h)e Ah) X
- h=—00 h=—00
X Y yg(h)e ™M dA
h=—0c0
2 T oo )
= > |pi (7(X(i))2(0)7)2(0) + 2y x@ 2 (D)rg(1) Z(‘sz)ﬂl)hﬂ
i=1 L h=0
2 1
= Z Di (7(X(i))2(0)7)?(0)+7(X(i))2(1)7)?(1)ﬁ)] .
i=1 L 1 -1’ B

One obtains the minimizer of A(©) by differentiating with respect to ¢; and (i, by setting the
derivatives equal to zero and by solving the resulting system of two equations. By using the
particular form of v (i), i = 1,2, we obtain for the derivative with respect to ¢; the following
identity:

(o1 —B1)B
1

01 — P
11_ %

P1 .
7 =0,

2c 7(1 — 8

+ 2¢o [—1+2 :|+263

where

2

1 = Z[Pi’)’(x(i)p(o)]a

=1

’Y(X(l))2(1) V(X(z))2(1)

1- wg )6, - sog )8,
2
€3 = DPip2 (U§c<z>—‘7§c<z>) .
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Hence the minimizing @1, as a function of Gy, can be written as follows:

By B3 1
1 2 —_—
- 1_ 2+CQ + _,8% +63(1—,51)2
o 1 foe !
c
R N
1 —c1 + (1 — )
= 1+
1 1
1+ﬁ1c + 2c¢o b + c3

11—ﬁ% 1_ﬁ1 (1_ﬂ1)2

The second term on the right—hand side is negative for © € C. Moreover, if the difference |0X(2)
O'X(2)| increases, the value of ¢; increases to 1. This explains, to some extent, the behaviour of
the estimates for oy and (; in real-life log—return data; see Section 5. We restricted ourselves to
Whittle estimation because this kind of pseudo—maximum likelihood procedure is theoretically best
understood. Its relation to quuasi-maximum likelihood methods as used for fitting GARCH(1,1)
models in Section 5 is not clear. However, the Whittle case indicates that a similar behaviour may

be expected for the other estimation procedures as well.

5 An empirical study of the goodness of fit of GARCH models
5.1 A study of non—stationary simulated data

The first example deals with a set of simulated data. Two realisations of GARCH(1,1) processes

with parameters

(5.1) ap=013x10% =011, B =052,
(5.2) ap=0.17x10"% a7 =020, B =065,
are considered. The innovations are standard normal. We consider a simulation X7, ..., X3000-

Both subsamples (X¢)¢=1.... 500 and (X¢)=1501,... 2500 stem from the GARCH(1,1) with parameters

(5.1), and the remaining values come from model (5.2).

5.1.1 Goodness—of-fit tests

In Figure 5.1 the resulting time series is displayed, together with the values of the goodness—of-fit
test statistic

(5.3) Sn = 8sup ‘an,X(A”a
A€[0,7]

defined in (2.8). Notice that S, is some kind of Kolmogorov—Smirnov goodness—of-fit test statistic
as used in empirical process theory. In Figure 5.1, S, is calculated from n = 250 past values at
every Hth instant of time. The statistic S, is calculated under the hypothesis that the data come

from a model with parameters (5.1). Notice that the values of vx (k) in S,, can be calculated from
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Figure 5.1 Left: 4 pieces from 2 different GARCH(1,1) models as explained after (5.2). Right:
The goodness—of—fit test statistic Sasg evaluated at every 5th instant of time from the past 250
values. The horizontal line is set at the 99% quantile of the limit distribution supyepo x |B()]-

the GARCH(1, 1) parameters; see (A.2) in the Apppendix. The horizontal line is set at y = 3.6,
the 99% quantile of the limit distribution corresponding to supjcjo -1 [B(A)| in (2.9). When all or
most of the observations in the block over which the statistic So5g is computed come from the first
process, the statistic should lie below the threshold most of the time. After the switch to the second
process occurs, more and more values in the 250 long block (and finally all of them) will come from
the second model and the statistic should pierce the threshold, staying above it most of the time
until the switch back to the first model happens and the behaviour is reversed. In the right-hand
graph in Figure 5.1 we see the statistic reacting to the first change of the model, by going above
the 99% quantile of the limit distribution about day 580. It then stays above the threshold roughly
until day 1600 when the change of model is again detected. It reacts once again to the last change
of model by piercing the threshold about day 2600. Notice that the statistics Sosg react to larger

variance in the data by larger than expected values.

5.1.2 The sample ACF

Figure 5.2 displays the sample ACF of the absolute values |X;| for ¢ = 501,...,1500 and for
1501, ...,2501. Under the choice of parameters (5.1) and (5.2), the 4th moment of X is finite. This
follows for example from the theory developed in Mikosch and Starica [32]. Indeed, P(X > z) ~
¢ 7%, where r is determined as the unique solution to the non-linear equation E|a; 22+ 6;[*/? = 1.
For Z standard normal, a numerical solution to this equation is given by x = 17.6 for (5.1) and
k = 17.9 for (5.2). Moreover, GARCH(1,1) processes are strongly mixing with geometric rate.
Hence the theoretical ACF of the absolute values is well defined and decays to zero exponentially

fast, while the sample ACF converges to the theoretical one at y/n-—rate and the asymptotic limits

21



] ]

o o

3] 3]

o o

- -

o o

o H‘H ‘ \ ‘H L] \ ‘\u ‘ ‘ o H‘ ‘MHM I M\ ‘\‘ L m mnm
° HH‘H‘ HM \“‘M il W ‘\‘HH \H ° \\‘H ‘\ HH\ \‘\ |

0 20 40 60 80 100 0 20 40 60 80 100

Figure 5.2 Left: Sample ACF for |X;|, t = 501,...,1500. Right: Sample ACF for |Xy|, t =
1501, ...,2500. Here and in what follows, the horizontal lines are set as the 95% confidence bands
(£1.96/+/n) corresponding to the ACF of iid noise with a finite 2nd moment.
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Figure 5.3 Left: Sample ACF for |X|, t = 501,...,2500. Right: Sample ACF for |Xy|, t =
., 3000 with a fitted hyperbolic decay line.
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are normal; see Mikosch and Starica [32].

Figure 5.3 displays the sample ACF for the juxtaposition of the two pieces, i.e. the absolute
values |X;| for ¢ = 501,...,2500 and shows how a resemblance of LRD behaviour of the sample
ACF develops due to the non—stationarity of the data. Each of the pieces that compose the time
series has exponentially decaying ACF structure and sample ACF that converges at rate y/n to the
theoretical one, but the sample ACF of the series built from the two blocks seems to display LRD.
The right-hand graph in Figure 5.3 shows an hyperbolic fit to the decay rate of the sample ACF
of the absolute values for the whole time series. (We fitted the function 0.2957%% h =1,2,....)

Figure 5.4 shows in more detail the misleading effect the non—stationarity paradigm can have
on statistical estimation. It displays the results of two statistical estimation procedures for the so—
called Hurst exponent. The underlying time series consists of the absolute values of the simulated
data displayed in Figure 5.1. The quantity H has been proposed in the literature as a measure of
LRD; see Beran [4] for details on the definition, properties and statistical estimation of H.

If one assumes that the theoretical ACF p(h) of the time series has a hyperbolic decay rate, i.e.
p(h) = ch™8 for some positive 8 and ¢, the Hurst coefficient is usually determined as H = 1 — /2.
In particular, the presence of LRD in the time series is signalled if H € (0.5,1). In this case,
the sequence (p(h)) is not absolutely summable. The closer H to 1, the further the dependency

reaches. An estimation procedure for H is then suggested by the following argument. Since

log acf
-16 -14 -12

log(periodogram)
18

-20

-
-22

H=0.88

H=0.90

-3.0

24

0 1 2 3 4 5 -4 -2 0
log lag log(frequency)

Figure 5.4 Left: Log-log fit of the sample ACF for the absolute values of the simulated data
displayed in Figure 5.1. Estimated Hurst coefficient H = 0.88. Right: Log-log fit of the periodogram
for the same sample. Estimated H = 0.84.

Inp(h) = Inc — B1lnh and the sample ACF estimates the theoretical one, a log-log plot of the lags
versus the sample ACF should be roughly linear, the slope of the regression line yielding an estimate
of the quantity §, hence of H. The left-hand graph in Figure 5.4 displays the fit of a regression
line through the plot of the log lags versus the log sample ACF. The slope is —0.23, the intercept
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—1.23. Hence p(h) = 0.29h7%23. The actual fit of this hyperbolically decaying function to the
sample ACF is illustrated in Figure 5.3. The resulting Hurst coefficent is H = 1 — 0.23/2 = 0.88.

This would imply a strong LRD effect if the data came from a stationary sequence.

5.1.3 The periodogram

It is a well-known fact from trigonometric function theory that power law decay of the ACF
translates into power law behaviour of its Fourier transform (i.e. the spectral density) for small
frequencies; see for example Zygmund [42]. (For a precise formulation of this statement the ACF
has to satisfy some subtle conditions; we refrain from discussing them.) This fact suggests a second
method for estimating the Hurst coefficient. Assume the spectral density f satisfies f(\) ~ cA2# !
for small A > 0. Equivalently, In f(\) is linear in A, In f(A\) = Inc+(2H —1) In A\. Hence, on a log-log
plot, the periodogram should roughly exhibit a linear behaviour, the slope of the line yielding an
estimate of H. The right—hand graph in Figure 5.4 shows the plot of the log frequencies versus the
log periodogram with a regression line fit to the first 10% of the frequencies yielding an estimate
H = 0.84. Interestingly enough, both methods give similar values for the Hurst coefficients and
suggest that there is a strong LRD effect in the data. The estimates for H are clearly subject to
statistical uncertainty. It is not our primary purpose to give confidence bands for the estimation
of H; all we intend to show here is that standard estimation procedures for stationary time series,
when applied to a non-stationary sequence, may give misleading answers as to whether there is
LRD in the data.

5.1.4 Parameter estimation

Finally, we check the impact which the change of regimes in the simulated data set has on the
estimation of a1 and ;. We used quasi-maximum likelihood as for example proposed in Gourieroux
[22]. GARCH(1,1) models have been fitted for the increasing samples X501, ..., X6504t+50, ¢ =
1,...,48. We decided to start from ¢ = 500 in order to have a longer run of the same model before
the switch to the second process occurs. For sample sizes less then 1000, the sum of the theoretical
parameters is 0.85. The estimated sum varies for these sample sizes between 0.75 and 0.90. The
graph in Figure 5.5 clearly shows how the switch of regimes (which happens at ¢ = 1000) makes
the sum increase to 1. This is in agreement with the theory in Section 4. There we explained
that the Whittte estimate of a; + 81 increases the more the larger the difference in the variances in
different subsamples. We expect that a similar effect occurs for the used quasi—-maximum likelihood

estimators.
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Figure 5.5 The estimated values a1 + (31 for a GARCH(1, 1) model fitted to an increasing sample
from the simulated data in Figure 5.1. The labels on the z-axis indicate the size of the sample used
in the quasi—mazimum likelihood estimation.

6 A study of the Standard & Poors series

Now we proceed by analysing a time series that has been previously used to exemplify the presence
of LRD in financial log-return series: the Standard 90 and Standard and Poor’s 500 composite stock
index. This series, covering the period between January 3, 1928, to August 30, 1991, was used in
Ding et al. [15], Granger et al. [24], Ding and Granger [14] for an analysis of the autocorrelation
structure. It led the authors to the conclusion that the powers of the absolute values of the log—
returns a re positively correlated over more than 2500 lags, i.e. 10 years. Hardly any proof is needed
to convince one that this time series is likely to be non-stationary. It covers the Great Depression,
a world war together with the most recent period, marked by major structural changes in the
world’s economy. Nevertheless, the authors performed their analysis under the strong assumption
of strict stationarity. In addition, there was a compositional change in the S&P composite index
that happened in January 1953 when the Standard 90 was replaced by the broader Standard and
Poor’s 500 index. Despite all these, Ding et al. [15] conclude the section which describes the data
as follows (page 85): “During the Great Depression of 1929 and early 1930s, volatilities are much
higher than any other period. There is a sudden drop in prices on Black Monday’s stock market
crash of 1987, but unlike the Great Depression, the high market volatility did not last very long.
Otherwise, the market is relatively stable.”

Bollerslev and Mikkelsen [8] used the daily returns on the Standard and Poor’s 500 composite
stock index from January 2, 1953, to December 31, 1990 (a total of 9559 observations) to fit a
FIGARCH model under the assumptions of stationarity and LRD.

In the sequel we perform a detailed analysis of the same data set covering the time span from
January 2, 1953, to December 31, 1990. Contrary to the belief that the LRD characteristic carries

meaningful information about the price generating process, we show that the LRD behaviour could
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be just an artifact due to structural changes in the data. We use the sup-statistic (??) to detect the
moment in time when a GARCH(1, 1) model estimated on past data stops describing the behaviour
of the time series. Then we document the effect the switch to a different regime of variance has on
the sample ACF. We find that the aspect of the sample ACF changes drastically after episodes of
increased variance that cannot be properly described by the estimated model.

The S&P data are plotted in the left-hand graph of Figure 6.1. When fitting a GARCH(1, 1)
model to the first 3 years of the data (750 observations), one obtains the following parameters by

using quasi-maximum likelihood estimation (see for example Gourieroux [22]):
(6.4) ap =858 x107% a3 =0.072, B =0.759,

and an estimated 4th moment for the residuals of 3.72. These quantities are used for calculating
vx (h) = var(XpX}) in (A.2).

6.1 Goodness—of-fit tests

The left-hand graph in Figure 6.2 shows the results of calculating the statistic S, (see (5.3)) on a
weekly basis (i.e. every 5th instant of time) with blocks of n = 125 past observations, corresponding
to approximately 6 months. The horizontal line is again set at 3.6, the 99% quantile of the limit
distribution of S,,.

A closer look at the graph of Figure 6.1 together with the left-hand graph in Figure 6.2 reveals
an almost one-to—one correspondence between the periods of larger absolute log-returns (larger
volatility) and the periods when the goodness—of-fit test statistic Syo5 falls outside the confidence
region. This observation has a theoretical grounding in (A.2) which indicates that the statistics S125
will be sensitive to changes in the model mainly through changes in the variance 0% of the data.
Therefore, we can identify the excursions of the statistics S125 above the 99% quantile threshold with
bursts of volatility in the data that are beyond the explanatory capacity of the fitted GARCH(1,1)
model. So it seems that the model (6.4) fails to explain the more extreme bursts of volatility that
occur every once in a while.

It is then interesting to verify if a periodically updated GARCH(1,1) could account for the
more pronounced volatility periods that are troublesome for the estimated GARCH(1,1) model
(6.4). One way is to calculate the implied unconditional GARCH(1, 1) variance for a periodically

re—estimated GARCH(1, 1) model, i.e. one calculates the variance

ok = /(1= (a1 + 1))

based on the estimated parameters a; and f;; see (A.1).
More concretely, we fitted a GARCH(1, 1) model every 6 months, i.e. every 125 days, based on

a moving window of 508 past observations, equivalent to roughly two years of daily returns. We
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Figure 6.1 Left: Plot of all 9558 S&P500 log-returns. The year marks indicate the beginning of
the calendar year. Right: The estimated values ay + (1 for increasing samples of the S&P500. An
initial GARCH(1,1) model was estimated on 1500 observations, starting January 2, 1953. Then
the parameters oy and (31 were re—estimated by successively adding 100 new observations to the
sample. The labels on the r—axis indicate the date of the latest observation in the sample.
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Figure 6.2 Left: The goodness—offit test statistic S1a5 for the S&P500 data. Right: The implied
GARCH(1,1) wunconditional variance of the S&P500 data. A GARCH(1,1) model is estimated
every 6 months using the previous 2 years of data (i.e. 508 observations). The graph displays the

variances 0% = ag/(1 — a1 — B1); see (A.1).
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Figure 6.3 A GARCH(1,1) model is fitted to every block of 6 months data. The fit is based on
the previous 2 years of data, i.e. 508 observations. Estimated o (left) and (B (right).

27



then plotted the implied variance ag( corresponding to every 6 months period. The results of this
procedure are displayed in the right-hand graph of Figure 6.2. One notices that the pattern of
increased implied variance is quite similar to the pattern of the excursions of the statistic S125 above
the 99% quantile threshold. For us, this similarity has a double significance. First, it seems to imply
that one can capture the changing patterns of volatility present in the data by periodically updating
the GARCH(1, 1) model. Second, it confirms our observation that excursions of the goodness—of-fit
test statistic above the threshold level are mainly caused by changes in the variance of the time
series, more precisely by its increase. Figure 6.3 displays the changes in the estimated coefficients oy
and B;. The parameters vary widely, beyond the limits of the statistical uncertainty the assumption
of a stationary time series would prescribe. For the sample sizes we use the statistical error is of an
order lower than 10~! for a; and of order 10~" for b;. The variation present in the parameters is
much larger than these statistical error bounds. One also notices that the patterns of change in the
coefficients a1 and 31 are quite different and do not resemble the ones in the graphs of Figure 6.2.
This seems to support our observation that, for this data set, the statistic S1o5 detects structural
changes in the model reacting mainly to variations in the variance. The right-hand graph of Figure
6.2 together with the ones in Figure 6.3 strengthen the impression, given by the statistical analysis
displayed in the left—-hand graph of Figure 6.2, of a relatively fast pace of change in the market.

In the end of this section, it is interesting to take a closer look at the behaviour of our statistic
around the Black Monday crash in October 1987. Following on the observation that a frequently
reestimated GARCH(1,1) model seems to follow better the changing pattterns of volatility in
the time series (see Figure 6.1), a GARCH(1, 1) model is estimated in the begining of June 1987
using the observations between January 1986 and June 1987 (375 observations). The estimated
coefficients

(6.5) @ =16x10"% o =0.013, B =0.812

together with the fourth moment of the estimated residuals, EZ* = 3.4 are used to build the S195
statistic. Figure 6.4 shows the behaviour of the statistic during the 100 days preceeding and the
25 following the crash. To allow for a better analysis, the log of the statistic is displayed. One sees
that the statistic reaches above the 75% quantile (2.26) of the limiting distribution 6 weeks before
the crash and never falls below. The days just before the crash mark an increase in the statistic.
The day -6 up to -2 are above the 90% percentile of the limit distribution (gg.go = 2.71), while day
-1 is well above the 99% quantile (gp.99 = 3.6).

6.2 Parameter estimation

The right graph in Figure 6.1 displays the effect of the more extreme bursts of volatility on the
quasi-maximum likelihood estimation procedure for the sum of the parameters a; and B;. The

graph clearly shows how episodes of higher volatility (that were detected through the behaviour of
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Figure 6.4 The log(Si25) statistic before and after the Black Monday 1987 crash. The horizontal
line is the log of the 75% quantile (qo.75 = 2.26) of the limiting distribution of Sios.

the Sio5 statistic and cannot be explained by the model (6.4)) increase the sum «a; + 1, closer to
1. We see that the first burst of volatility recorded by the Sio5 statistic around 1963 pushes the
sum from 0.90 up to almost 0.94, while the second burst about 1967 makes it climb from 0.92 to
0.98. The more prolonged period, where the model (6.4) does not fit the data (and which has such
a strong impact on the behaviour of the sample ACF), causes an increase from 0.97 to 0.99, while
the Black Monday 1987 stock market crash forces the sum to its highest value, 0.995. This is again
in agreement with the explanation given for the Whittle estimate of a; + (31: The increased values
of a1 + 1 are due to an increase of differences between the variances in different subsamples; see

Section 4.

6.3 The sample ACF

Let us now analyse the impact which these periods of different structural behaviour detected by the
goodness—of—fit test statistic Sio5 have on the sample ACF of the time series. In the left bottom
graph of Figure 6.1 one sees that, roughly for the first nine years, 1953 to 1962, the values of the
statistic lie within the 99% confidence interval, with short exceptional periods that are not too
extreme. Hence we do not have strong reasons to doubt the fit of the model for this part of the
data. This calm period is followed by roughly a year during which S;95 is well outside the confidence
interval, indicating that the model ceased to describe the data. In Figure 6.5 the sample ACFs
for the absolute values of the log-returns for the first 9—year and 11-year periods are compared.

While the first period’s autocorrelations seem to be insignificant after 50 lags, the autocorrelations
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Figure 6.5 The sample ACF for the absolute values of the log—returns for the first 9 years (left)
and the first 11 years of the S&P data.
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Figure 6.6 The sample ACF for the absolute values of the log-returns of the first 20 years (left)
and 24 years (right) of the SE&P data.
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for the 11-year period are still significant at lag 100. We also note that the size of the significant
autocorrelations increases together with the proportion of positively correlated lags. This is indeed
consistent with the explanation of this phenomenon provided in Section 3.

After this extreme episode (which can also be identified in the plot of the data in Figure 6.1)
a period of low volatility follows. It is interesting to notice that the statistic Si95 now falls below
the 1% quantile of the limit distribution. This could be interpreted either as an indication for
the failure of the model or as a proof of extremely good fit. As the period the statistic spends
below the 1% quantile is rather long (about 1.5 years), the first explanation is more plausible. Two
more relatively short periods of increased volatility follow during which the model is again caught
offguard.

However, from the view point of the behaviour of the sample ACF, the most interesting part
of the top graph in Figure 6.1 is the period beginning in 1973 and lasting for almost 4 years. The
values of Si95 are quite extreme, strongly indicating that the period between 1973 and 1977 is a
long interval when the model (6.4) does not describe the data. Let us analyse the changes in the
sample ACF caused by this long period of different behaviour. Figure 6.6 displays the sample ACF
of the absolute values | X;| up to the moment when the change is detected, next to the sample ACF
including the 4—year period that followed. We see that the sample ACF up to 1973 does not differ
significantly from the one based only on the data up to 1964; see Figure 6.5. However the impact
of the change in regime between 1973 and 1977 on the form of the sample ACF is extremely strong
as one sees in the second graph of Figure 6.6. The graph clearly displays the LRD features given
by the theoretical explanation of Section 3: exponential decay at small lags followed by almost

constant plateau for larger lags together with strictly positive correlations.

7 A study of exchange rates

As another example we consider 2032 daily log-returns from the DEM/USD foreign exchange (FX)
rate between January 1975 and December 1982. The left-hand graph of Figure 7.1 displays the
data. A GARCH(1,1) fit to the first 2 years yields the following parameters:

(7.6) ay=0.83x10°%, o =018, B =0.77,
and an estimated 4th moment for the residuals of 4.6.

7.1 Goodness—of-fit tests

The right—hand graph of Figure 7.1 displays the values of the statistic S,, calculated on a weekly
basis from the previous n = 125 observations which amount to roughly six months. The horizontal
line is set at the a.s. 99% quantile. The graph shows the presence of two intervals where the

estimated model clearly does not fit the data: a shorter period of less than a year, covering a part
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Figure 7.1 Left: Plot of the 2032 DEM/USD log-returns. The year marks indicate the beginning
of the calendar year. Right: The corresponding goodness—of—fit test statistics Sios.

of 1978 and the beginning of 1979, and a longer period of about one year and a half, stretching from
the end of 1980 to the beginning of 1982. Since the statistic Sig5 is calculated using observations
from the previous 6 months and since the length of the first period, where the model does not seem
to fit, is roughly of the order of 6 months, it is likely that the behaviour of the statistic during this
period is caused by a short perturbance that keeps showing in the statistic for an entire half year
after it occured. A first glance at Figure 7.1 allows one to identify as possible culprit the period
around the large positive return at the end of 1978. A second glance at the sample ACF of the
absolute values | X;| before and after the period in discussion reveals not too deep a change in the
behaviour of this statistical instrument; see Figure 7.2. Here the first 100 lags of the sample ACF
before and after the first episode are displayed.

In contrast to the first short episode, the second period, when the goodness—of—fit test statistic
exceeds the threshold, lasts longer than half a year. A visual inspection of the graphs in Figure 7.1
gives the impression that the structure of the time series in the period between the middle of 1980
to the end of 1981 is quite different from the structure of the remaining observations. The statistic

S195 confirms this fact by frequently switching sides of the threshold line during this period.

7.2 The sample ACF

The dramatic changes in the behaviour of the sample ACF are illustrated in Figure 7.3 where
we can see the first 100 lags of the sample ACF before and after the second episode. Again, in
accordance with our explanation, the sample ACF displays exponential decay at small lags followed

by almost constant plateau for larger lags together with strictly positive correlations.
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Figure 7.2 The sample ACF for the absolute values of the log—returns of the DEM/USD FX data
up to the beginning of 1978 (left) and up to June 1979 (right).
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Figure 7.3 The sample ACF for the absolute values of the log—returns of the DEM/USD FX data
up to the beginning of 1981 (left) and up to June 1982 (right).
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Appendix

Consider a GARCH(1,1) process (X;) with parameters ag, a1, 8. We write p; = a1 + 1 and

assume FX* < co. jFrom the calculations below it follows that the condition
1—(a2EZ* 4+ B2 + 2018)) > 0

must be satisfied. The squared GARCH(1, 1) process can be rewritten as an ARMA(1,1) process
by using the defining equation (1.1):

2 2
X —p1 Xi =09+ vy — Pivy—1,

where (1) = (X7 — 0?) is a white noise sequence. Thus, the covariance structure of

(67

Ut:Xf—EXQZXQQ—l_(pl,

tez,

is that of a mean-zero ARMA(1, 1) process. The values of vy (h) are given on p. 87 in Brockwell
and Davis [11]:

a2
wio) = o1+ @B,

PRY:
w(l) = o [Wl-ﬁﬁr%],
1—¢f

yw(h) = ¢ (1), h>2.

Straightforward calculation yields

1+ ¢ a2(EZ* -1)

2 4 4 0

= (EZ*-1) Eot =

% = Vo = o T (@ (B2 1))
o7y}

Al o = .

(A1) X T

Thus we can calculate the quantities
vx(h) = E(XSX%) =yy(h) +0%, h>1,

which occur in the definition of the change point statistics and goodness—of-fit test statistics of

Section 2. We obtain:

(BEZ' — Doy (1 — ¢ +a11) 44
A2 h) = ot 1 h>1.
( ) UX( ) Ox ( 1—((,0%+O[%(EZ4—1)) 1 + ) =
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