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Abstract

We consider capillary and diffusion models of water transfer through semi-
permeable membranes as a problem with free boundary in the case of axi-
symmetry. The problems are solved using an adaptive mixed finite element
method based on an a posteriori error estimate.
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1 Introduction

Mass transfer through a semipermeable membrane plays a central role in bi-
ology and particularly in cytology, physiology and botany. Membranes sep-
arate and organise the cell and allow exchange with the environment. The
concentration of solutes varies inside and outside the cell. Without a mem-
brane solutes would move by diffusion down their concentration gradients,
and membranes restrict this movement.

Many biological membranes do not restrict the movement of water to
the same extent as solutes. Water moves across membranes toward the re-
gion of highest total solute concentration. We shall consider osmosis, that
is movement of water across membranes because of differences in solute con-
centrations.

Historically the first who considered osmotic pressure was Jean-Antoine
Nollet (1700-1770). In 1748 he showed that in two compartments with a
semipermeable membrane, which was not permeable to solute, water moves
from low to high concentration [7]. The movement stops when the hydrostatic
pressure pushes an equal amount of water back to the equilibrium.

The instrument to measure osmotic pressure is called an osmometer. It is
a vessel whose walls are permeable by water to a greater extent than another
liquid.

The German botanist Wilhelm Pfeffer (1845-1920) made the first quan-
titative measurements of osmotic pressure in 1877. He coated porous clay
cups with ferro-cyanide to make a membrane that allowed water to diffuse
freely while sucrose diffused very slowly. The clay cups were rigid and could
withstand a pressure. He found that the osmotic pressure was proportional
to temperature and to the solute concentration.

The apparently first paper on the dynamic theory of osmotically induced
mass transfer through a semipermeable deformable membrane was [9], where
the principal relationship between the thermodynamic variables and fric-
tional theory of diffusion was formulated.

Mass transfer through deformable membranes as a class of free boundary
problems has not been studied from the mathematical point of view. More-
over, the dynamic nature of osmosis is not fully understood: the two existing
approaches—diffusion and capillary models—are concurrently used, although
arguments in favour of one or another approach do not exist [11],[10],[2].

In order to obtain a better understanding of the water flow in the capillary
model, we shall consider sea urchin eggs, which contain a constant volume in
iso-osmotic solution of NaCl, put in CaCl, with a solution that is iso-osmotic.
The eggs swell and water enters, because membrane is selectively permeable
and does not allow Na to pass. However, Ca moves into the cell down its



concentration gradient and water moves from high to low concentration and
follows the Ca.

A recent monograph [8] formulates the problem of mass transfer in a com-
mon osmometer (a narrow tube with a flat semipermeable interface across the
tube) as a one dimensional boundary value problem for a differential equa-
tion, and numerically solves this problem using a finite difference method.

However, their method essentially uses the one-dimensional character of
the problem, and cannot be easily extended to model biological cells. The
reason is that in a one-dimensional case an incompressible liquid moves as a
whole, so its velocity depends on time only and not on the space coordinate.

In this paper we demonstrate that corresponding problems in three di-
mensions assuming cylindrical symmetry, can be solved using a finite element
method. We consider two essentially different models, a capillary model and
a diffusion model. In the capillary model, the membrane is filled with water,
whose motion is governed by Darcy’s law. In the diffusion model, the mem-
brane is a layer of solute, governed by the Navier-Stokes equations. In the
mathematical models we assume that the walls are strictly semipermeable,
that is the solute cannot penetrate them even in small quantities.

The problem of osmotically induced mass transfer in an osmometer open
through a manometric tube, is formulated as a free boundary value problem.
We solve numerically both the existing models of osmosis and compare the
results of the simulations.

An outline of the paper is as follows: in Section 2 we consider mathemati-
cal models for capillary and diffusion models in the form of systems combining
the Navier-Stokes equations, Darcy’s law and concentration equations in the
setting of free boundary problems in the case of axi-symmetry. In Section
3.1 we present a finite element method for solving Navier-Stokes equations,
Darcy’s law and concentration equations. In Section 3.2 considered the dual
problem to the Navier-Stokes equation and an a posteriori error estimate.
In Section 3.4 we present numerical results and compare the capillary and
diffusion models.



2 The mathematical model.

We consider a cylindrical osmometer, immersed in a water basin, as depicted
in Figure 1. Let (r,z,¢) denote cylindrical coordinates and ¢ time. The
problem is analysed using a capillary model and a diffusion model. The main
difference between these two cases is the way the membrane is modelled. In
the capillary model we consider the membrane as a thin semipermeable layer
filled with pure water. In the diffusion model the membrane is a perfect
diluted water solution of the same liquid component, bounded by a infinitely
thin two-sided non-deformable semipermeable layer.

Figure 1: An open osmometer bounded by a rigid porous semipermeable
membrane

We assume the solution to be axi-symmetric, that is, independent of the
azimuthal coordinate .

We assume that mechanical and thermodynamic equilibrium is attained
instantaneously at the membrane boundaries.

In the paper we will use the following notation:

e ¢(r,z,t) — volume concentration of the water,
e v(r,z,t) — the average volume velocity of the water,
e p(r,z,t) — pressure of the water.

We also assume that the pressure p at the open end of the manometric
tube is equal to zero.



2.1 Capillary model.

In the capillary model, we will consider four regions, depicted in Figure 2:

Voly = {(r,z): z>h,r<li}, (1)
Voli, = {(r,2): z<h,r<li},
Vol, = {(r,2): z<h,ly <r<ly},
Vols {(r,2) : z<h,r>1}.
Z!\
0

Figure 2: Volumes in the capillary model

We assume that Voly and Vol; are filled with a perfect mixture of water
W and an incompressible liquid component A with a constant nonzero initial
concentration of both components. We assume that A does not penetrate
into Voly, and the porous space of the membrane Vol, and the water basin
Voly are filled with pure water. Further, we assume that the process under
consideration is isothermal and that the density p of the impermeant A and
that of the water coincide and are equal to 1.

If necessary, we will use additional indices for the volume and coordinate
axis. For example, v, yo, is the r-component of velocity in the Vols.
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2.1.1 Governing equations

Equation of state, expressing the additivity of volumes:
cvol + Cyo =1, 1=0,1,2,3, 2)

where ¢ is the volume concentration of component A.
Equation of continuity:

div UVol,- = 0, 1= 0, 1, 2,3. (3)

or, in cylindrical coordinates :

N 10 10 0
dlvaOli = ;E(T,U"‘a VOLi) + ;%(’U%Voli) + &(Uz,Voli) =0 (4)

which in the case of axi-symmetry amounts to

10 0
;E('f’vr, VOli) + a('uz’voli) = 0. (5)

Equation of convection-diffusion transfer of the water:

36 Vol;

ot

where D is the diffusion coefficient.
Using the facts that

+ V- (vyacvey) — DAcyy, = 0, 1 =0,1, (6)

V:(ve) = (Ve)-v+¢(V-v)
and V - vy, = 0, we have
V - (wvaicvoy) = (Vo) - Vol (7)

and thus the equation of convection-diffusion transfer in the case of axi-
symmetry can be written:

80 Vol;

5 + (Vevey) - vvoy, — DAcyy, = 0, (8)

fort > 0and i =0,1.

In cylindrical coordinates in the case of axi-symmetry this equation takes the
form:

80Vol. aCVol. 80[/01, 8201101. 1 80[/01. 8201,01.
C ¢ M . G . P g - v d —_— 0'
ot * ar Ve i 9z 2Vek or? * r Or 072

9)



Equation of motion of the solution (Navier-Stokes equation):

87) Vol;
ot

1 )
+ (/U'Volq; : V)UVoli — K- AIUVoli = _;VpVolia 1= 01 1; 2a35

where p is the viscosity and p is density of the water. In cylindrical coordi-
nates in the case of axi-symmetry this equation takes the form:

OV v, OV v, OV v, 1 Op vy
L Vpvol—— + Vevoy,——— — b DUy + — - = 0,
En ok 5 2ol ™5 M voi; o or
0V, voy; 0V, voy; 0V, Vo, 1 Op vy,
L VYol ———t F Vvl ———t — b DU,y + — L= 0.
a ‘ T Vol; 8r z Vol; 82 M z Vol; P 82

Darcy’s law, describing the water percolation through the membrane:

Vvoly, = —kV Dy,

where £ is the percolation coefficient through the membrane, which in cylin-
drical coordinates in the case of the axi-symmetry reads:

Opvol
Urvol, = —k 67'02’
Opvor
VeVoly, = —k 8;2-

2.1.2 Initial and boundary conditions

Since the porous space of the membrane saturated by pure water, there is
no osmotically induced pressure jump. This fact and the continuity of the
water flux yield the following interior boundary conditions:

vr(l1—, 1) v (li+, 1),
v,(lh—,t) = wv,(li+,1),
p(h—,t) = p(h+1),
vr(la—,t) = v.(la+,1),
v,(la—,t) = wv,(la+,1),
p(la—,t) = p(lat,1),

foranyt > 0.

Since only water saturates the porous space of the membrane, we have the
following boundary condition for the concentration :

C(ll,t) =1. (10)

10



2.2 Diffusion model.

The membrane is modelled as a perfect diluted water solution of a liquid
impermeant B with a constant nonzero initial concentration of both com-
ponents saturating region Vol3 and bounded by the infinitely thin two-sided
non-deformable semipermeable surface Vol, and Vol,, impermeable to B.
The volumes are depicted in Figure 3. Note, that volume numbers have been
changed.

11 11, I, r

Figure 3: Scheme of an open osmometer in diffusion model

As in the previous case assume, that Voly and Vol; are filled with a
perfect mixture of water and an incompressible liquid component A with
a constant nonzero initial concentration of both components. Assume that
A does not penetrate into Vol, and that the infinitely thin two-sided non-
deformable semipermeable surface Vol,, Vol, and the water basin Vol; are
filled with pure water. Assume that the densities of the impermeant A in the
osmometer and the impermeant B in the membrane are equal to the density
of water.

To describe this model mathematically we need to replace Darcy’s law,

11



which models the water flow in the capillary model, by the Navier-Stokes
equation in the diffusion model inside the membrane or in region Vols. We
now denote by vy,, the average volume velocity of the solution inside the
membrane. To determine the concentration distribution in region Vols, we
use a convection-diffusion equation.

Assume, that there is friction between the solution representing the mem-
brane and some infinitely thin rigid solid, connecting the fixed membrane
boundaries » = l; and r = l4, and the solution saturating the membrane
moves according to Darcy’s law.

2.2.1 Governing equations

Now the equations that describe the process of water transfer through the
rigid semipermeable membrane are :
Equation of state, expressing the additivity of volumes in Vols:

c+cf =1, (11)

where ¢? is the volume concentration of component B.
Equation of convection-diffusion transfer of B and W in Vols :

dc
Y + V- (ve) c=0,

where D is the diffusion coefficient.
Equation of continuity in volumes Voly, Vols, Voly:

divv' = 0. (12)

Equation of motion of the solution inside membrane in Voly: (Navier-Stokes
equation,):

ov 1
O Ve A= L 1
i (v-V)v—p-Av pr, (13)

where p is viscosity and p is density of the water.
Darcy’s law, describing the water percolation in volumes Voly, Voly:

v=—kVp.

All the other equations for the osmometer, osmotic tube and water basin
are the same as for other model.

12



2.2.2 Initial and boundary conditions

Since the porous space of the membrane is saturated by pure water, there is
no osmotically induced pressure jump. This fact and the continuity of the
water flux yield the following interior boundary conditions:

vr(la—,t) = v(lo+,1),
v,(la—t) = v,(la+,1),
pllo—,t) = p(la+,1),
ve(ls—,t) = v.(l3+,1),
v,(l3—t) = v,(l3+,1),
p(ls—,t) = p(s+,1),
vr(la—,t) = v (l4+,1),
v,(la—t) = v, (l4+,1),
p(la—,t) = p(lat,?),
ve(lh—,t) = v.(lh+,1),
v,(li—t) = v,(li+,1),
p(hi—t) = pli+,1),
foranyt > 0.

Since only water saturates infinitely thin two-sided non-deformable semiper-
meable surfaces Vol,, Vol, of the membrane, we have the following boundary
conditions for the concentration:

C(l3, t) 1, (14)
c(lg, t) 1, (15)
C(l3, t) =1 (16)
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3 Numerical algorithm

3.1 Finite element formulation

Let us consider the capillary model of velocity distribution in the water basin
Vol3, membrane Voly, inside cylinder Vol; and in the tube Voly and concen-
tration distribution inside cylinder Vol; and in the tube Voly. In the volumes
Voly, Vol; and Vols, we have Navier-Stokes equations and continuity equa-
tions, in the volume Vol, we have Darcy’s law and continuity equations and
in the volumes Voly, Vol; and Vol we have convection-diffusion equation.
To meet the condition of incompressibility of the fluid, in the finite element
method we use the pressure correction equation

—0Apy, +V vy, = 0, (17)
Opvor
% — 0 on dVol, (18)
i = 0,1,2,3

where ¢ is a parameter which we take proportional to the time step 7. The
term —d/Ap acts as a stabilisation of the pressure p.

Finally we obtain the following system of equations connecting velocity,
concentration and pressure:

81;91;ozi + (Vo - V)Uvoy, — - Dvyy, = _%VPVOH’ (19)
—6Apvo, + V vy, = 0, (20)
i = 0,1,3
Vvor, = —kVDvyon, (21)
668‘;% + (Vevoy) - vvoy, — DAcye, = 0, (22)
i = 0,1,

with boundary conditions vy, = Vv, Pvey, = Pvo, at the boundary r = [y,
VUvols = VUVoly > PVols = PVoly at the bounda‘ry r= l27 Vvol; = VVolyy PVvoly = PVoly

at the boundary tube-sphere, % = 0 on the boundaries of Vol;, %'L =0

on the boundaries of Vo, c(ly,t) = 1.

To formulate the finite element method we introduce finite element spaces
Uy, Qn, and W), for the velocity, pressure and concentration, consisting of stan-
dard piecewise linear continuous functions on a triangulation 7} and satis-
fying Dirichlet boundary conditions. We let U,% @,° and W,° denote the

14



corresponding finite element spaces satisfying homogeneous Dirichlet bound-
ary conditions. The finite element method now reads: find (vp,pp,cp) in
Up x Qpn x W)y, such that

k+1
Unvoy — UhV
(— r = + (vf Uh vol; V)UhVoz + VPlli—ll—/il’ u) = 0, (23)
Yu € U,° ,1—0,1,3,
(q7 _5Aszlr/ili +V- Uﬁ/;zi) = 07 (24)
Vge @, i=0,1,2,3,
(Vhban + EVDE TR w) = 0,Yu € Uy’ (25)
k+1
C i
(= 4 (9t - offh, - DA ) = 0 (o)
Yw e W, i=0,1

3.2 An a posteriori error estimate

In this section we will prove a posteriori error estimate for the incompressible
Navier-Stokes equations using the general approach, described in [5],[4]. The
proof is based on an error representation in terms of the solution of a lin-
earised dual problem, together with Galerkin orthogonality. The a posteriori
error estimates takes the form

2

Iw—w)(T)l < SC; (‘ L )

n ||hR2<vh>||) < 10L, (2

where ||-|| is the Ly norm, v is the exact velocity, v, is the computed veloc-
ity, Un = (vn, pr) is the computed solution, i is the mesh size, p is viscosity,
Ry (vp,) and Ry(vy) are residuals, C; is an interpolation constant, S is a stabil-
ity factor. To obtain the residuals R;(v;,) and Ry (vy,) we insert the computed
finite element solution into the differential equation. The interpolation con-
stant depends only on the angles of the computational mesh. The stability
factor S is defined by

o 1nD*v]l + VPl ooyt
||€(T)||L2(Q) ’

where (v,,p.) is solution of a dual problem with e(7") acting as given data
(see 3.3.2).
All quantities for error estimation can be computed. The stability factor

is computed by solving the dual problem with an approximation of the data
e(T), see [6].

S =

(28)
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3.3 Proof of the a posteriori error estimate
3.3.1 The dual problem

To prove the a posteriori error estimate we have to estimate the perturbation
in the solution due to a perturbation of data. To this end, let (v, p) be the
solution of the system

v Vol;

ot + (Vvor, - V)Uvo, — - Ay, = —Vpyy, (29)
1=0,1,3
V-vyy, = 0, (30)
1=20,1,2,3
Vv, = —kVDvon, (31)

with given boundary data, and let (v, p,) be a perturbation, i.e.

(U + Vs, P +p*)

is another solution with perturbed data. Subtracting the system (29 — 31)
for (v, p) from the equations for (v + v, p + p.), gives

ov,
ot

+ - -V)ve+ (v - Vv + (v - V). — plAv. + Vp, = 0 (32)
in Vol;, 1 =0,1,3,

Vv, = 0 in Vol;, i =0,1,2,3, (33)
v.(+,0) = —kVp. in Voby, (34)

v, = 0 on dVol;, i =0,1,2,3, (35)
v(+,0) = wou(") (36)

Omitting the quadratic term in this equation we get the linearised perturba-
tion equations:

O (0 V) vt (V) v ple, +Vp, = 0 i Vohyi=0,1,3
Vv, = 0 in Vol;,i =0,1,2,3,
v.(-,0) = —kVp, in Vob,
v, = 0 on dVol;,i=10,1,2,3,

ve(50) = vo.(")

16



The dual of this problem is the dual problem underlying the a posteriori error
estimate, which takes the form

—a;t* — (V) v, + Vo v, — plv, —Vp, = 0, in Vol,i=0,1,2,3 (37)
Vv, = 0, in Vol,i =0,1,2,3,

v.(-,0) = —kVp, in Vob,
v, = 0 on dVol,i = 0,1,2,3,

v (-, T) = e(,T),

where the velocity error ¢!’ = v7 —v,T at final time T acts as data. This prob-

lem can be given the following variational formulation: find 7, = (vs,ps) € V
such that

0v, o R ~
(_6—Ut’ W)y, + L(v, vp; T, 0,) = 0, Vi = (u,q) €V, (38)

where
L(v,vp;0,0,) = —((v-V)ve — Vop - v, )y, + (LVVs, VU)yo, —
— (Voo w)vor; + (¢, V - i) vy + (Ve, )y, —
- (Vps, u)Volg + (4, V - 0)voly,
i=0,1,3. (39)
Introducing the functional
A(v;w,7) = (WVw,Vu)ve, + (v V)w,u)ve, +
+(Vr,w)vo, + (¢, V - w)vo, +
+(w, u)vor, — (VT w)voe, + (¢, V - W)y, (40)

T ~
(v, w)yo, = / / v-w dVoldt, w = (w,r) € V,i=0,1,3, (41)
0 Vol;

The system (29 — 31), containing the Navier-Stokes/Darcy equations from
the original system, can be given the following variational formulation: find
v = (v,p) € V such that

(v, W)yo, + A(w;8,0) = 0, Vi=(uq)eV,i=0,1,3, (42)
v(-,0) = . (43)

The corresponding discrete problem can formulated as finding v, = (vn, pr) €
Vi, = Vi, x Hp, such that

(Vs Un)val, + A(vp; Bp, @) = 0, Viip = (un,qn) € Viyi = 0,1,3, (44)
Uh(', 0) = Upo- (45)

We define the error € = (v — vy, p — pr) = (e,e,) € V, as the difference
between the solutions of (42)—(43) and (44)—(45).
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3.3.2 An error representation

To obtain an error representation, we shall use following relations:

(1) L(v,vp;€,70,) = A(v;0,0,) — A(vp; Op, 0s);

(2) (38) with u = ¢;

(3) ( 8(‘;)15*7 ) - —(’U*(', T)? 6(', T)) + (U*('a 0)7 6(', 0)) + (eta U*);

(4) (42) with u = v,;

(5) (44) with Uy = Vyp; .

(6) et = vy — vp,,e(0) = v(0) — v,(0), where Ty, = (Vup, Psn) € V3 is an
approximation of the dual solution ,.

We have

le(. D2, = (eT) e, T)) 2
_ 0v, e
= (0(T)se(nT) + (=57 X

= (0.(-0), (-, 0)) + (er,v.) + A(v: 5, 8.) — A(vp; 0n, 0.) 2
= (vt vs) = (Vs v&) + (02 (-, 0),0(-, 0))
+A(v;9,8.) — Alon; B, 0.) @
= (vo,v«(+0)) = (v(-,0),vs(+, 0)) = (vn,, vs) +
+(vx(+,0),v(+,0)) = (vs(+, 0), vn (-, 0)) — A(vn; Op, Vi) =
= (v(0),v«(+,0) — va(-,0)) = (Vny, Vs — Vun) —
—(vn(+,0),v4(+,0) — ven(+,0)) — A(Vp; Vp, Vs — Tip) =

= (U(O) - Uh(-,O),U*(-,O) - Uh("o)) -
8Uh

~~
—

( + (vn - V)up, — - Avp + Vpp, v — Vi) vol, —
(V Uh, Dx — Dsh)Vol; —
(Uh + kVpp, v, — U*h)Volz - (V *Uhy Px — p*h)Volz <
h2
< SG; (‘ ; Ry (Un) + ||h'R2(Uh)||L2(Q)) ;

where h is a maximal diameter of the elements in the mesh, u is viscosity,
Ry (vy) and Ry(vy) are residuals on K defined as

8vh
ot

ov
—1 _h
o

RQ(’Uh) = |V . Uh"Voli ,’i = 0, 1,2,3,

Ly(Q)

Ry(0p) = |77+ (on - V)op — - Dvw + Vpu|  +

Vol;

+ |’Uh + kVph|Volz ,i = 0, 1, 3,
Vol;

18
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Figure 4: Initial and refined meshes

where [%”7%] is the jump in the normal derivative %ﬁk across the interior

element boundaries, see [5].

3.4 Numerical examples

We performed the computations using MATLAB 5.0, making use of the
pdetoolbox for drawing and triangulation. The computation is organised as
follows. First we compute a finite element solution (7, cy) an initial coarse
mesh T}, and the corresponding residuals Ry () and Ry(vs). We then com-

< TOL
La(Q)

with equal error contribution from each element (equidistribution). We re-
peat this process until satisfaction. For the computation of the stability factor
we used fundamental approach. We approximated the solution (7, ¢) on the
finer mesh and as approximation of the error we used (U, cp) — (On,,.. s Chier )-
Both meshes and solutions where stored. Then we solved the dual problem
on the finer mesh and calculated the second derivative and gradient of the
dual solution. Used all the data, we computed the stability factor S with
tau = 0.01 for 50 time steps. The computed stability factor S was equal to
6.56 for 7' = 0.5. In the time moments 0.27" and 0.77" we obtained the values
S =294 and S = 3.63 correspondently.

In the Figure 4 we display for the capillary model the initial and final
meshes with TOL = 0.01, and in Figure 5 we show the velocities for the
initial and the final meshes.

The geometry of our domain in our problem is not fixed, since the water
level in the vertical tube is changing with time. This means that we cannot
use the same mesh in each iteration. Since the tube is narrow, we assume that

pute a new mesh size h,., by seeking to realize th Ry (1?;1))
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Figure 5: Velocity flow for the original (on the left) and refined (on the right)

meshes
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Figure 6: Mesh with moved boundary

the water surface is always horizontal (this assumption is not very realistic,
but otherwise the problem would become too complicated). We determine
the position of the free boundary by computing in each time step the integral
of the flux through the free boundary, and add a new layer to the mesh.
Figure 6 shows the initial mesh at time step 2 and 3.

In the actual computations we assume, that the water motion in the
membrane is a Poiseuille flow, and the coefficient of the percolation through

the membrane is
i om

8
where m is porosity of the membrane, o the unit area, y dynamic viscosity
of water. We used the following parameters values:

(46)

m = 0.02,D =5-10 °cm?/sec,
p=1gr/em? = 0.01gr/cm- sec.

For solving linear system of equations we used Gaussian elimination (see
Appendix).

3.4.1 Capillary model

In the computations with the capillary model, we took the initial concen-
tration of the water in the osmometer equal to 0.0002 mol/cm?® and set the
concentration at the boundary of the osmometer-membrane equal to 1. This
is because only water saturates the porous space of the membrane. The ini-
tial velocity was set equal to zero, because the motion is induced by different
concentrations in the membrane and osmometer. The calculations where
carried out with the time steps 7 = 0.01 for 50 time steps.
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Figure 7: Capillary model of water transfer in the cylinder

22



09r

0.8

0.6

041

0.3

021

0.1
-0.2

l4r

12r

0.6

041

0.2

Figure 9: Distribution of the concentration in capillary model in the centre
of the cylinder

23



09

08

0.7F

06

05

04 L L L L L L L L L 04 L L L L L L
0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30

Figure 10: Distribution of the concentration in the osmometer (diffusion
model)

Figure 7 shows, that during the first iterations water influx begins and
at the membrane boundary and osmometer a diffusion layer appears. The
concentration of the water increases faster at the membrane boundary, than
at the centre of the cylinder. An intensive water influx through the membrane
pushes the liquid out of the osmometer into the vertical tube (see Figure 8a-
c¢). The concentration increases very rapidly at this time moment. After
a short time the velocity reaches its maximum (see Figure 8d). The influx
stops when the concentration difference across the membrane is balanced by
the pressure of the water in the tube, and the velocity decreases to zero. As
velocity reaches its maximum the concentration rises to the stationary value
(see Figure 9).

3.4.2 Diffusion model

In the diffusion model we assume, that the porous space of the membrane
is filled with a perfect mixture of water and some liquid component with
nonzero initial concentration, and that the membrane has a very small thick-
ness, and is filled with pure water.

In our calculations we take the initial concentration inside the membrane
equal to 0.35mol/cm? and the initial concentration in the osmometer as in
the previous case. The calculations were carried out with the time steps
7 = 0.1 for 50 time steps.

In the beginning of the process, water flows through the membrane in the
osmometer and pushes the liquid component into the tube (see Figure 11).
Because the liquid component cannot be washed from the membrane, inside
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Figure 11: The process of water transfer in diffusion model
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Figure 12: The process of water transfer in diffusion model
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Figure 13: Redistribution of the concentration in diffusion model in mem-
brane

the membrane a redistribution of concentration occurs. In the beginning,
water rapidly flows through the membrane and the concentration of the im-
permeant inside membrane increases at the left border of the membrane. At
the other side, the concentration of the liquid component in the osmometer
decreases at the border of the membrane, because water goes out to the os-
mometer and redistributes the solution(see Figure 12). In the Figure 13 we
show the concentration inside membrane. The upper figure shows the distri-
bution of the concentration at the left boundary, and the bottom figure shows
the distribution of the concentration at the right boundary. In the beginning
of the process the concentration at the left boundary inside the membrane
begins to increase. At the same time the concentration at the right boundary
decreases (see Figure 13). After 15 time steps, when the velocity reaches its
maximum and begins to decrease, the concentration inside the membrane
redistributes: at the left boundary it decreases and at the right boundary
it increases. The concentration from both sides approaches the stationary
value after a long time (after 50 time step). The Figure 12 shows how water
pushes the liquid into the tube, when the velocity increases. After a short
time the velocity reaches its maximum (see Figure 12d). The influx stops and
the velocity decreases to zero. At the same time the concentration reaches
its stationary value. Figure 10 shows the distribution of the concentration
in the osmometer at the down boundary of the osmometer (see Figure 10a))
and at the point at the boundary tube - osmometer (see Figure 10b)).
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4 Conclusions

Capillary and diffusion models of water transfer through the semipermeable
membrane in the case of axi-symmetry and with a free boundary has been
analysed. The problem has been solved using a mixed finite element method.
A posteriori error estimate has been considered and used in an adaptive mesh

refinement algorithm.

phase | Capillary model Diffusion model

1 Water flux goes through | Velocity increases slower
the membrane into an os- | (under 0.2 sec) and pushes
mometer and pushes the | the liquid component into
liquid component into the | the tube.  The concen-
tube. Velocity and con- | tration of the water in-
centration rapidly increase | creases in the osmome-
(under 0.02 sec). Near | ter and redistributes inside
the membrane a diffusion | membrane.
boundary layer is created.

2 Velocity reaches its max- | Velocity reaches its max-
imum, begins smoothing | imum, begins smoothing
diffusion in osmometer. diffusion in osmometer and

inside membrane.

3 Velocity decreases until the | Velocity decreases until the
influx stops, concentration | influx stops, concentration
reaches stationary value. reaches stationary value

in osmometer and inside
membrane.

The calculations show that, qualitatively, the capillary and diffusion models
of water transfer through the rigid semipermeable membrane, are indistin-
guishable.

We can conclude, that both models tend to equilibrium as time tends to
infinity. There are no arguments in favour of one or another of these models.
This explains why in biophysical literature both these two approaches are
used.
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A Appendix

The discrete analogues of the system (24)—(27), taking into account cylindri-
cal coordinates, can be written in matrix form as

ALt + BLplt = F1,

ir,l

A2t + Bpkt = F2,1=0,1,3

22,1

A3t + B3t = F3,

ar,l

Adul ) + Baoplft = F4y,

ir,2

Aspftl 4+ Bsbtl = F5,,1=0,1,2,3,

ir,l 12,1
where
As = (asij), Bs = (bsij), Fs = (fs1, ..., fsm),s =1, ..., 5, (47)

asij = Y asjy,bsij= Y bsiy, fsi= > [,

KeT, KeTy, KeTy,

aﬁj = /gngojr dK; +IZ;U" /90 r dK;+
0p;
-I-Zvlz/q gojr dK;,
=1 0z
0;
bK - - L4 dKz
145 p ar QOJT )
agj = /@Zgojr dK; +Z%~ /gol ar (pjr dK;+
K;

-I-vaz/(pl%gojr dK;,
=1 z

1 oY
K i
bQZj - ; J Oz P;r dKz:

aégj = /%‘%’7’ dK;,

s
b, = k/ o dK,
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K;
0p;
azngjT dKZ,
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