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Abstract

We comnsider a class of haploid population models with non-overlapping
generations and fixed population size N assuming that the family sizes
within a generation are exchangeable random variables. A weak conver-
gence criterion is established for a properly scaled ancestral process as
N — oo. It results in a full classification of the coalescent generators in
the case of exchangeable reproduction. In general the coalescent process
allows for simultaneous multiple mergers of ancestral lines.

1 Introduction

Consider the class of haploid population models with non-overlapping genera-
tions and fixed population size N € IN := {1,2,...} introduced by Cannings
(1974, 1975). Each model in this class is characterized by an

exchangeable joint distribution of family sizes vy, ..., vnN, (1)

where v; denotes the number of offspring of the i-th individual. Recall that
according to (1) the distribution of the random vector (v;, , . .., v;, ) with pairwise
distinct indices depends only upon & and not upon the particular set of indices.
As the population size is fixed the condition

V1+"'—|—I/N=N (2)

has to be satisfied.

We are interested in the asymptotics of the genealogical structure in such
a population in the spirit of Kingman (1982a,b,c). Fix n < N and sample n
individuals at random from the 0-th generation. Let R, denote the equivalence
relation which contains the pair (4,j) iff the i-th and the j-th individual of
this sample have a common ancestor in the r-th generation backwards in time,
r € INg := {0,1,2,...}. The process (R,),c, is a time homogeneous Markov
chain with the state space

En = the set of all equivalence relations on {1,...,n}
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and the initial value Ry = &,
& = {all equivalence classes are singletons {i},i=1,...,n}. (3)

Since the transition probability pe, := P(R, = 1| R,—1 = £) is equal to zero
for ¢ € n, the focus will be on such pairs &, € &, that £ C 5. The relation
¢ C n implies that every equivalence class of 7 is either a union of several
equivalence classes of £ or coincides with an equivalence class of £. Reflecting
this observation write a for the number of 7n-classes and b = by + --- + b, for
the number of {-classes, where by > ... > b, > 2 are ordered group sizes for
merging {-classes and by4q = ... =b, = 1. Notice that g =0if £ =nand g > 1
if £ C 1. In this notation the transition probability of the ancestral process is
given by

1

N
Pen = m Z E((Vil)ln'”(yia)ba) =

(N)a
(N)s

E((1)p, -+ (Va)b,), (4)

i1,..iq=1
all distinct

where (N)y :=N(N —1)---(N —b+1).

Let ¢y denote the probability that two individuals, chosen randomly without
replacement from some generation, have a common ancestor one generation
backwards in time, i.e.

N
x = D) = R = T < 1B @

This probability, called the coalescence probability is of fundamental interest
in the coalescent theory as c},l is the proper time scale to get convergence
to the coalescent (it is only natural to assume that cy > 0 for sufficiently
large N because the case cxy = 0 corresponds to the trivial reproduction law:
P(vy = 1,...,uy = 1) = 1). The coalescence probability is also important as
it is directly connected via ¢y = 1 — A2 to the eigenvalue Ay := E(v;115) of the
transition matrix of the descendant process, i.e. the genealogical process looking
forwards in time (see Cannings (1974)).

Kingman (1982b) has shown that given supy E(vF) < 0o, k > 2 (this holds
for example for the Moran model and the Wright-Fisher model) the convergence
of finite-dimensional distributions

(R[t/cN])tZO — (Rt)tZO; N — > (6)

takes place. The limit process (Ry);>0, the so-called (standard) n-coalescent
process, is a continuous time Markov process with state space &,, initial state
(3) and infinitesimal generator Q = (gey)e,nee, given by

=&l = 1)/2 i E=n,
1 if £ <n, (7)
0 otherwise,

den =



where £ < 1 means that £ C n, g = 1 and b; = 2, i.e. during the transition
exactly two ancestral lines merge together.
The convergence (6) is based on the asymptotic formula:

Pen = Oen+enNgen +o(en), N >0 &neéy,
which is often written in matrix notation
Py = I—}—CNQ+O(CN), ]\]'—)OO7 (8)

where Py := (pen)e,nee, denotes the transition matrix of the ancestral process.
In Mohle (1998, 1999) Kingman’s result was extended beyond the framework
of exchangeable population models and it was shown that (6) holds even in the
sense of the weak convergence of stochastic processes.

Recently a richer class of the coalescent generators @) allowing for multiple
mergers with g = 1 and b; > 2 was found in Sagitov (1999). A member @) of
this class is characterized by a probability measure F'(dz) on the unit interval
[0,1] via the formula

—(1=2x)"1(1 =
_/ 1-(1-2) 2(1 x + bx) Fdz), if€=n,
[0,1] z

Gen = 121 — 2) " F(dr), itecng=1, O
[0,1]
otherwise.

The generator (7) of the standard n-coalescent is recovered from (9) when the
probability measure F' = g is concentrated in zero.

The present paper is based upon an instrumental development of Mohle
and Sagitov (1998) of the method of Sagitov (1999). We establish a general
coalescent structure allowing for simultaneous mergers of ancestral lines (g > 1).
Due to the main result of this paper, Theorem 2.1, in general, a coalescent
generator Q@ = (gen)e,nee, is characterized by a sequence of symmetric measures
F,., r € IN, where each F, is concentrated on the simplex

A= {5 90) €10, [y + - +yr <1}

with
1=Fi(A1) > F(As) > ... (10)

If £ C n, then the corresponding entry has the form

[(a+g)/2] A
= Y /mgl—z...g;gg*:r;fg,g(ml,...,mT)Fr(dxl,...,dxr). (11)
A
r=g T

Here the set of polynomials

Tj(;)(xlr":'rr)a 1 S] <r,rT2 17 $ ZO (12)



is defined explicitly by the formulae

T (@1, yzp) = (1—21 — - — 2,)°, (13)
and
Tf"’)] s(xla"'axT’) (]‘4)
tj41—2 ig—2 J

ity E:Ilul—§:$““’k2j:anr

i;=2j—1 i1=1 k=0

where 49 = —1, ;41 = s + 1. Note that this implies TT(T)] s =0 for s < 2j.
The diagonal entries of () are calculated as:

[6/2] b—g [(a+9)/2]

=X S [ SO s B ), (0

g=la=g r=g
where

b b1 —2 bg—2m(r
Sés)(.'lfh...,xr): Z (bl‘_‘bg >$11 b T;,S)(iﬂl;---,iﬂr)-

b12--2bg 22
by+--tbg=b—s

Observe that in the case when F»(Ay) = 0 the formulae (11), (15) and
Tl(’ls) () = (1 — x)® bring us back to (9) with F = F;.

2 A weak convergence criterion

This section presents the main result of the paper, Theorem 2.1, which shows
that the formulae (11) and (15) fully describe the class of coalescent gener-
ators for the population models with exchangeable reproduction. The central
condition of Theorem 2.1 requires the existence of the limits

Bk )
m
Nooco Nkittki—icy

for all j € IN.
To justify the denominator in the LHS of (16) turn to the chain of inequalities

=ik, k), by > >k >2  (16)

N
Z (Vil)kl"'(lfij)k,- (17)
i15ens ij=1
all distinet
N N
k k k k;
< Z Vi) mvy) ™ Wi )y Z vty
Lk i1ty =1
N
<Y @idma N () VR (0 e
Sk



N1+ +k; N
il — > Widme o i)y

i15enip=1
all distinct

where [ < j, k1 >mq > 1,...,k; > my > 1. With [ = 1 and m; = 2 it entails
that in general

B ())
N—)oop Nkit-+k; JCN

<1 ky > >k >2

Relation (17) implies also that the set of the limits (16) is monotone:
¢j(k1, e ,k‘j) < ¢i(ma,...,my) whenever I < j, ky > mq,....k >my. (18)

Theorem 2.1 If the limits (16) exist for all j € IN, then for each sample
size n € IN the asymptotic formula (8) holds with Q = (gen)e,nee, defined by
(11) and (15). The corresponding symmetric measures F,., v € IN are uniquely
determined via their moments

/ a2 b 2B (e, day) = Gp(kyy - K), K > - > ke > 20 (19)
Ar

If furthermore, the limit imn_,o cNy = ¢ exists, then convergence (6) holds in
the Skorohod sense. The limit coalescent process (Ry)i>o is either (when ¢ > 0)
a discrete time Markov chain with the initial state (3) and the transition matrix
I+ cQ, or (when ¢ = 0) a continuous time Markov chain with the initial state
(3) and the transition matriz e*.

Conversely, if (8) holds, then all the limits (16), j € IN exist.

Condition (16) has another two equivalent versions (cf. Section 4 for the
proof): one in terms of the central moments

(S BN
N-ooo Nkit-+ki=jen

=ik, ki), ki > >k >2 0 (20)

and the other in terms of the tail distributions

N/ dyl, : dyj)
]\}gnoo EP(Vl > Nzq,...,v; > Nzj) / / ,  (21)
holding for all points (z1,...,z;) of continuity for the limit measure.

Version (21) brings the following picture of the asymptotic coalescent struc-
ture. Call large every family whose size is of order N. Obviously, every large
family with a positive probability embraces two or more sampled ancestral lines
(in other words begets a multiple merger). Due to the condition

1
lim Ncy'P(vy > Nzy) = / y*Fi(dy)
N—oo T1



a finite number of large families is encountered with a positive probability while
scanning N generations in the population.

A large family caused a multiple merger might, in a sense, trigger a chain
reaction of mergers within the same generation. To see this observe that the
total number of families in a generation is equal to N and the relation

y 2Fy(dyy, d
lim NP(I/2>N;U2|V1 > Nzy) = f:m fzzy Ya 2(dy1, dy2)
A JL v Fi(dy)

indicates to the possibility that we might encounter another large family outside
the initial one provided F>(Az) > 0. Furthermore, if F3(A3) > 0 the second large
family leaves room for the third one:

lim NP(vs > Nzs|lvy > Nxzy,vs > Nxo)

N—s00
1 1 1 _9 _9 _
fz‘l fzg fzs Y1 2y2 2y3 2F3(dy17 dy27 dy3)
1 1 _2 _
Lo [, vi w5 Fa(dyy, dys)

an so on. This imaginary chain reaction of mergers (there is no real order for
the mergers happening within one generation) is bound to stop after a random
number of rounds because the population of size N might host only a finite
number of large families (given Fj1(A;y1) = 0 this number of rounds never
exceeds 1).

Remark. According to Theorem 2.1 we have F.(A;) = ¢.(2,...,2) so that
(10) follows from (18). Note that Fj41(Aj+1) = 0 in partlcular when the ran-
dom variables (v1)2 - - - (v1)2 and (v;41)2 are not positively correlated, provided
limy_00 v = 0. Indeed in this case

N2ICN
(N)

E((r1)2--- (vi41)2) < E((v1)2--- (n)2) - E((n1)2) < -Nen

and hence

. E V- - (v .
Fiy1 (A1) = d141(2,-..,2) = lim ( 13\271“(;\:“)2) < Jim ey =0.

3 The proof of the criterion

Lemma 3.2 If the limits (16) exist for some j € IN, then there exists a measure
F; uniquely determined on the simplex A; by its moments (19).

Proof. If ¢;(2,...,2) = 0 then (19) implies F;(A;) = 0. In the case
$;(2,...,2) > 0 we have E((v1)2---(vj)2) > 0 for sufficiently large N. Let
Y1,4,-..,Y;; be random variables with the joint distribution

P(Yij =i1,...,Y}; =1ij) := E(((ilil)iz-.-_-.(z'ii)P(ul:il,...,yjzij), (22)



where i1,...,9; € {2,..., N}. The representation

i1 )k i)Y (31)o « -« (44
E(Y}...vM) = )7 ()" )z ()2 gy, yes VU =i
(Y5 Y55) hZij E((v1)2 - (vj)2) =t 3= 4)
E((f 42 — ot o — o™

E((v1)2--- (vj)2)

in view of the equation t* = Zle (t)iSki, t € R, k > 1 (Sk; are the Stirling
numbers of the second kind) leads to

. ik ik (16) @k +2,...k; +2
Jim B () 0 LR WD ke, 29

This convergence of moments implies (see Feller (1971), Chapter 8, Section 1)
the weak convergence of the probability distributions on Aj:

P(%d edy,..., 3 € dy;) - Pi(dys,...,dy;), N = oo. (24)
Comparison between (23) with (24) shows that (19) holds with
Fj(dml, fen ,d.’L'j) = ¢j(2, .. ,2) : .Pj(di]}l, e .,d.'Ej).

The uniqueness of Fj is due to the fact that the limit moments (23) fully char-
acterize the probability measure P;. O

Definition 3.3 For j € IN, ky,...,k; > 2 and s € INy define

Bk (W)k Vi1 Vigs)
",bj,s(kl;---;kj) = ngnoo Nk1+.“+kj7ch

as long as this limit exists.
Lemma 3.4 The following recursion over s holds:
Vjsy1(k1, ..., k)
J
= Qialkr,-. k) =Y Piakr, o ki, ki Lk, k)
i=1
—s¥jy1,5—1(k1,.-.,k;,2)
forallj € IN, ky,...,k; > 2 and all s € INy.
Proof. Take the LHS and the RHS in the following chain of equalities
(N = = $)E((W1)ky -+ (U3)k; Vit - Vigst1)

1)
= E((w)k - (V)k;Vig1 - Vigs(Vigst1 + -+ VN))



—~
N
—

= B((w)k o U)k Vi1 Vigs(N — w1 — oo = v4))
= E((Vl)kl Wik vin Vs (N — (ka4 + k) — s
J J+s
> wi—k)= > (wi—1)
=1 i=jt1

= (N—(k1+--+kj) = 8)E((v1)ky - (Vj)k;Vjs1 -~ Vits)
- ZE((Vl)kl o Wi ki1 o (V) ks Vi1 - Viges)
—SE((1)ky - (V) k; (Vjr1)2Vi42 - Vigs),

and divide them by N¥i1++kit1-icy After letting N — oo we get the asserted
recursion equation. O

Lemma 3.5 Polynomials (12) defined by relations (13) and (14) satisfy
T (@, z) = (1= ) T (2, .. 20) (25)
i=1
and forj=1,...,r—1

J
T (@1, 2y) = (1= 2) T (@, @) = STypy 1 (@1, -, 20). (26)

i=1

Proof. Formula (25) is obvious in view of (13). To verify (26) rewrite it as

r—j
TTSC)J.,S_H(xl, cenm)=(1-— Z z;) Tr(i)j’s(ml, ceeyTp) — sTT(C)j+17S_1($1, ey Ty)
i=1

and apply (14). |

Lemma 3.6 If the limits (16) exist for all j € IN, then

1— kj— T
Yjs(k1,..., k) = Z/A .7:’1“ 2---:1:]- 2Tj(’s)(:zrl,...,:zrr)Fr(d;zcl,...,;ch),

r>j oo
forall j € IN, kq,...,k; > 2 and all s € INy.

Proof. We use induction over s. The case s = 0 follows from the equality
- (1_9) k1—2 kj—2
Q/ijo(k‘l,...,kj) = ¢j(k1,...,k’j) = A Ty '-'Z'j F}'(dﬂ?l,...,dl’j).

Lemma 3.4 and Lemma 3.5 ensure that the induction assumption implies the
asserted formula

¢j,s+1(k17 .- 7k_1)



L2 o,k ijskl, ki ki Lk, k)

—S¢j+1,571(k1, - kj: 2)
ind kj— (r)
Z/ --a:j 1—23:1 VT (1, .oy xp) Fr(dzy, . . . dzy)

r>j
kl 2, k:*2 (r)
—s Z .. T s—1 (@1, 2r) Fr(da, .. ., day)
r>j+1

L35Z/ T](Ts)_i_l(arl,...,a:T)FT(dxl,...,da:,«).

>3

To finish the proof of Theorem 2.1 turn to the equality

I
=
"3
N
=
~—~
N
~J
SN—

Qen
(V)a
N—o0 (N)bCN

E((11)s, - - - (g)b, Vg41 - - Va)
Nb_gacNg =Pg,a—g(b1,...,by)

—~
N
=

Il
?

E((1)p, -+ (Vg)b,vg+1 - - va)

= lim

N—oo

saying that for any pair & C 7 the LHS and the RHS exist or do not exist
simultaneously and coincide when exist.

Assume that the limits (16) exist for all j € IN. Then according to Lemma
3.6 and (27) the asymptotic formula (8) with (11) is valid for all £ C 5. In view
of the equality

[6/2] b—g
Gee=— Y Gn=—>_>, .
mECH g=1a=g b1>--2bg>2

b1+---+bg=b—a+g

formula (11) entails (15). After the asymptotic formula (8) is proved the weak
convergence (6) is obtained as in Mohle (1999). Finally, the “only-if”-part of
Theorem 2.1 is a simple corrolary of the equality

(27)
¢j(b1,...,ba) = @bg’g(bl,...,bg) = Q§n

which holds provided a = g. |

4 The equivalence of (16), (20), (21)

Fix some j € IN. Here we show the equivalence of conditions (16), (20), (21)
with the measures F; and the limits ¢; being linked by (19).



(16)<(20). The proof of this equivalence is based on the decomposition

k1
@1)ky - - (V) Z Z Qg iy (1 = 1) - (v = 1)5, (28)

where Qjy,..i; are some finite coefficients and Qpy, ok = 1Tt suffices to verify
that ' . '
E((ry —1)" - (v; — 1)) = o(Nort-Fhi=icn) N — oo (29)

for all
(i1,---501) € [Lka] x --- x [Lk)\{(k1,...,k)}, 1<1<j, k1 > ... > k; > 2.
To prove (29) notice first that
E(r —1) =0, E((n = 1)*) = E((11)2) = (N = L)en

Turning to a counterpart of (17) for E|(v; —1)% --- (v; —1)#| we see that (29) is
true when at least one i, is greater or equal 2. In the remaining case t; = ... =
1y = 1 the equality chain

(N=I+1DE(wn-1)...(nu—-1)

YEw 1) .. = D[ = 1)+ + (vy = 1)]

QB -1 e = D[ =)+ + (g — 1)]

—(I=1)E(@w; —1)*(ra —1)...(y_1 — 1).

ends with a term of order o(Nc¢y) in accordance with the previous argument.
Thus (29) holds and we can conclude from (28) that for any fixed set of

indices k1 > ... > k; > 2 two limits (16) and (20) are equal when exist with the

existence of one entailing the existence of the other. This conclusion is slightly

stronger than the asserted equivalence. m|
(16)=(21). To arrive at the weak convergence (21) multiply

1 1

Py > Nzy,...,v; > Nz;) = P(%Edyl...%edyj)
x1 z_,-
(22) ! 1 P(X} € dy, % € dy;)

by Nicy' and apply (24) and (16). i
(21)=-(20). Condition (21) implies the weak convergence of measures

NI -1 ; F;(d d
lim —P(V1 >a:1,...,yj >m] / / yl’ yj)
N—oo CN N

10



which in turn implies the convergence of integrals

jo B = DR = 1Y)

N—oo Nkit+-tki—icy
= it gk p €dxy,..., -2 € dz;
en Ja, 1 T ( N 1, ) N ])

:/ a2 gk 2B (day . day) () Or(k1y. ..y kp).
Ay

5 The Wright-Fisher model as a limit

Recall that the Wright-Fisher model describes a population of a fixed size (say
1), where every individual chooses its parent at random among ! individuals
constituting the previous generation. Here we discuss a simple exchangeable
population model whose time-scaled ancestral process converges to the ancestral
process of the Wright-Fisher model.

Take a fixed constant 1 < I < N/2 and consider such an exchangeable
population model that in each generation exactly ! families are of size [N/I]
while other family sizes are zeros and ones. In this case

P(I/l =...=VY = [N/l],VH_l = ... =Vl = 1,
1!

Vi+i441 = ... = VN = 0) = (N)H_l

1

where I; := N —[[N/I]. Tt follows that

B(n)ey++ 03)1) ~ (2

(%)lﬂ(%)k]: N — o0

J
and hence
¢ = lim ey = 1/
N—oo

This entails

. E((Vl)kl "'(Vj)kj) leki——k;
¢j(k1="'=kj) = ngnoo Nk1+"'+kj_ch = (l)Jl 7.

Thus for this particular model the limit measure F; assigns its total mass
$;(2,...,2) = (1);11=% to the single point (1/I,...,1/1) € IR’ being a zero
measure for j > [. Now using Lemma 3.4 and induction over s we can show that

Gjps(kryenky) = (Djgslt >0 (30)
The case s = 0 follows from ;o(k1,...,k;) = ¢;(k1,..., k;) = ()01 Fr ==k,
The step from s to s + 1 is given by

L.3.4 !
rora (ke k) 2 (0ol F = S (1)l = (1)l

i=1
= Wyl M= = ) = el OO,

11



where k := ki + -+ + k;. We conclude that for £ C 7

(27) (39) 1\ 11— (a—g)—bymrrm _
qf’l = gva_g(b17""bg) = (l)all ( g) b bg :(l)all b

so that the transition matrix IT = I + ¢@ for the limit Markov chain has entries
men = (1)ol7? for € C n and the resulting coalescent process coincides with the
ancestral process for the Wright-Fisher model with the population size [.

As [ tends to infinity the generator () converges to the generator of the
standard n-coalescent in agreement with the weak convergence of the measure
Fy to the point measure in zero. For j > 1 the total mass of F; converges to
zero as [ tends to infinity.

To generalize our example take an integer valued random variable Ly with

PA<Ly<N/2)=1, NeIN

and conditional on {Ly = [}, I € IN define a population model as before.
Assuming that Ly converges weakly as N tends to infinity to some random
variable L, we deduce

E((1)k, -+ V)k;)

Giki,- o k) = 1\}1—I>noo Nkt +ki—jen
N/2
. E((Ul)kl - (V])kJ |LN — l)
- J\}gnoo Nhit—tki ey P(Ly =1)
=
= @ hTTRP(L =) = B(L);L R
1=1
and
c = lim ey = E(1/L).

N—oo

Note that the last expectation is positive even if we allow for the possibility
0 < P(L = o) < 1. In particular, if L — 1 has a Poisson distribution with
parameter A > 0, then

! ! 1—e?
c = / E(z" ') dz = / e Dy = .
0 0 A

For the generalized example it follows that the entries of the limit generator
Q are given by g¢, = E((L),L*~%) and the transition matrix II = I + ¢@) for
the limit Markov chain has entries ¢, = E(1/L)E((L),L'?) for £ C 5. The
resulting coalescent process depends on the observed value of the limit random
variable L. If L =1 < oo, the coalescent is the ancestral process of the Wright-
Fisher model with the population size [. When L = oo the sampled ancestral
lines never merge.

12
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