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Introduction. The nonlinear Boltzmann equation describes the evolution of a
gas which is seen as a collection of interacting particles. The model is physically
relevant when the gas is rarefied and the binary collisions of particles prevail. The
equation reads as follows:

V1 VI=QU ), @ eDCR xR, EeR,

where f = f(&, z,t) is the distribution function of a gas, which depends on the velocity
variable £, and space and time variables z, t. Also, Q(f, f) is the quadratic integral
collision operator which acts on f as a function of £&. We leave the details to the
next section and refer to the books by Cercignani, Illner and Pulvirenti [12], and
Truesdell and Muncaster [34] for the physical background, mathematical theory and
applications of this equation.

Due to the complex structure of the collision operator and high dimension of the
problem, the only way to obtain solutions of the Boltzmann equation in physically
nontrivial situations is to use numerical computations. The most efficient methods
for solving nonlinear kinetic problems are currently the particle methods with the two
best known examples being Bird’s method (Direct Simulation Monte Carlo or DSMC)
[4] and the Nanbu scheme [25], later modified by Babovsky [2]. In these methods the
random dynamics of N-particle systems is modelled (the number of particles N is
in practice several orders less than the actual number of molecules in a gas) and the
averages of the random process realizations are taken as an approximation to the solu-
tion. The main drawback of particle methods is that the convergence of the averages
is slow and the results are subject to random fluctuations. If, instead of the particle
approach, traditional techniques of numerical analysis of partial differential equations
are used, such as finite difference or finite element schemes, several difficulties arise.
The major one is that the numerical complexity of calculating the collision integral
grows faster with the number of approximation points than is the case for particle
schemes (typically O(N?) vs. O(N)). Thus the application of these “deterministic”
methods in the current stage of computing technology is restricted essentially to prob-
lems with symmetries where the dimension of the problem can be a priori reduced.
On the positive side, the accuracy obtained by using these methods can be higher
than for the particle methods, since the averaging step is not needed. It is therefore
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reasonable to study these approaches if one has in mind applications to problems for
which the accuracy of the numerical solution is of critical importance (see papers [27]
and [32] for examples of such studies).

In this paper we study one approach which can be characterized as deterministic,
namely the discrete-velocity models (DVM). Such models were considered, starting
from the works of Carleman [11] and Broadwell |8|, as model equations with the same
formal properties as the Boltzmann equation, which are however more accessible for
numerical and in some cases analytical treatment. The dependence on the molecu-
lar velocity & is discretized in these models in such a way that all or at least some
of the invariants of the original equation are preserved, which means that correct
limit solutions can be expected on the macroscopic level. The formal theory of such
equations as well as their mathematical and numerical aspects are described in de-
tail in lecture notes by Gatignol [15], Cabannes [10] and the book by Monaco and
Preziosi [24]. However, for a long time the question of connection between DVM and
the Boltzmann equation was left without a strict analysis; only in the 1980s dis the
first works in that direction appear: |1, 33, 6, 16, 19]. While the numerical results
suggested that DVM can be used to approximate the Boltzmann equation, there was
until recently no strict mathematical proof of convergence for the models which retain
the conservation properties of the Boltzmann equation.

The model introduced by Goldstein et al. [16] and Inamuro and Sturtevant [19] was
later used by Buet [9] who developed an efficient numerical scheme for the Boltzmann
equation, based on a combination of that model and a Monte-Carlo approach. He
also gave a heuristic argument on why the convergence to the Boltzmann collision
integral should be expected. The rigorous proof of the consistency of the model
was given by Bobylev, Palczewski and Schneider [7] whose proof was based on very
recent, detailed results from number theory. Another scheme of the same type, for
which the consistency is also proved, was introduced by Rogier and Schneider [30] for
a two-dimensional velocity space and generalized to three dimensions by Michel and
Schneider [22]. According to the approach of papers [7], [30] and [22], the discrete-
velocity model is considered as a quadrature formula for the five-dimensional integral
in the collision operator, and the convergence of such a quadrature to the collision
integral is proved.

The question of convergence of solutions of the DVM equations to solutions of the
Boltzmann equation was studied by Mischler [23|. Using the weak formulation of the
discrete equations, he generalized the weak L' theory of DiPerna and P. L. Lions
to DVM and proved that the solutions (taken in the DiPerna-Lions sense) converge
weakly in L' to a solution of the Boltzmann equation. The strong L' convergence
was proved for a finite-volume scheme which conserves mass but not the momentum
and energy. A result of strong L! convergence for the homogeneous Cauchy problem
was also proven by Palczewski and Schneider [28].

It should be noted also that, while the numerical complexity of directly calculating
the collision term using a DVM with N velocities is O(N27¢), ¢ > 0, the efficiency
of the scheme can be improved by using Monte Carlo techniques as in the method of
Buet [9] or by using the solution symmetries, as Ohwada has done [26].

In this paper we propose and analyse a discrete-velocity model with a structure similar
to the ones discussed above. This model is also conservative, satisfies an entropy
condition and has only physical collision invariants. To obtain the model we follow
the same scheme as Bobylev et al. [7], but use a different form of the collision term,
which was first introduced by Carleman [11]. In this form, variables of integration
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are used so that the integration over a sphere in the collision term is replaced by the
integration over planes in R3. This leads to a significant simplification in the structure
of the quadrature formula and allows us to prove a consistency result, analogous to
the one given by Bobylev et al. [7], while using simpler and more direct techniques.
A model of this type with two-dimensional velocity space was previously considered
by B. Wennberg and F. Golse |[35]. We prove the error estimates, for the quadrature
formula, with error bounds from Ch'/* to C.h'~¢ for distribution functions from the
class C™, m > 1. The collision cross-sections should be smooth and satisfy specific
conditions on the angular dependence. Based on these results we establish consistency
in classes of continuous functions polynomially decaying at infinity. The modifications
analogous to the ones done by Mischler [23] allow us to prove the weak L! convergence
to a DiPerna-Lions solution of the Boltzmann equation. In the last section we present
the results of numerical computations for the space homogeneous relaxation problem.

1. The Boltzmann equation and discrete-velocity models. The collision
integral Q(f, f) is given by the expression

1) QU.f) = / / (FE) al) — 1(€) 9(n) BE — n,w) dwdy, € € RS,
R3 g(2)

where
§I=§—‘U(wa§—77)7 n':n—l—w(w,ﬁ—n).

In the obvious splitting, Q(f,f) = QT (f,f) — Q@ (f,f), Q" and QT are usually
referred to as the “gain” and the “loss” term, respectively.

The function B(u,w) is of the form

B(u,w) = By (\u|, |(U|I’T))‘) ueR we A,
u

It contains the information about the binary interactions of particles and reflects the
physical properties of the model. The condition B(u,-) € L*(S (2)), u € R3 is usually
assumed to obtain separately convergent integrals for the “gain” and “loss” parts
of (1.1). If the particle interactions are modelled by inverse power forces with angular
cut-off, then

(1.2) By(r,x) = r7b(z),

where v € (=3,1], and b € L([0,1]). In the case of “hard sphere” molecules,
By(r,z) = rz.

In discrete-velocity models it is assumed that the velocities of the particles belong to
a finite set V = {&}N,; C R3; thus the distribution function f(¢), £ €R? is replaced
by a finite-dimensional approximation f;, & €V, and the values of f; are determined
from the following system of equations:

af;

(1.3) E""ﬁi'vfi:Qi(faf)a (,t) EDCR* xR, &€V,

(1.4) Qi(f, ) =D Al (fufi — fif),
Gkl
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where Afjl are constant coefficients and the summation is taken over all indices corre-
sponding to the discrete velocities in V. If the coefficients Afjl satisfy the conditions

(1.5) Af} = Alk 7

Ji

Kkl _ Aij
At =4

then a symmetry property analogous to the one of the Boltzmann equation (cf. [12])
holds:

(1.6) D QS v = —i D A (frfi— Fif ) Wk + 0 — i — ),

i€Z3 i,9,k,1
and if
(1.7) AR £0 only if &+¢& =& +& and €+ &2 =&+ €,

then the discrete analogues of the conservation laws and the entropy condition follow
from (1.6):

1
(1.8) > Qif. ) & | =0 > Qi(f, f) log fi < 0.
i il i
Collision invariants can be defined as those vectors ; for which
(1.9) Yi+; =+ when AF #0,

and it is true that f; is an equilibrium distribution if, and only if, log f; is a collision
invariant, see Gatignol [15]). According to (1.7) the linear combinations of 1, & and
|€;2 are collision invariants. The differences from the classical Boltzmann equation
can appear when there are other solutions to the system (1.9) as indeed is so for
some models [15]. This also leads to the equations of hydrodynamical limit having
a different structure than for the Boltzmann equation and may display itself in non-
physical behavior of the solutions.

We deal with a specific situation when the collision invariants of the DVM are re-
stricted to the physical ones, as in the models studied in [16, 19, 7] and [30, 22]. The
velocity set V' is assumed to be part of the regular grid

(110) Zn = hZ3 = {h(il,ig,i3) ‘ 11.3 € Z}

contained in a bounded set B, C R3. To simplify the presentation, we consider the
consistency problem for the infinite model with V' = Zj. We return to the question of
choosing the set B;, C R® in section 6, where we address the problem of convergence
for solutions of the discrete equations. The DVM discussed by Bobylev et al. |7] is
obtained by applying a rectangle quadrature approximation to the outer integration
over R% in (1.1) and then approximating the inner integral over S(2), based on its
representation as

ﬁz/ (r(555 o) 1(B55 - o) - rie 1) PE S s,

where ¥;; is the sphere of diameter |§; — &;| passing through the points & and &,
and 6 is the angle between §; — ; and w. For this approximation, those points of Zj,
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which fall on the sphere ¥;; are taken with equal weights |§?7 |

B

, where |S;;| is the total
number of such points. Thus, setting
i k+l=14+7

9 B(&: — ‘,wk.l 2 2_ 2, 22
n B(& —¢&; ZJ)X'IZ;’ where x* = k2412 = i+

|Sij| | cos Gf}

(1.11) A} = B®

0 otherwise,

one obtains a model of the type (1.4) with the properties (1.5) and (1.7), which thereby
satisfies (1.8). It is known that this model has no other collision invariants except
mass, momentum, and energy [9].

The consistency theorem for this model is given by Bobylev et al. [7]:

THEOREM 1.1. Suppose f is a continuous function on R3 such that

sup | f(&)[(1+&%)% < +o0,

and q(u,w) = B(u,w)/cosf is continuous and satisfies 0 < q(u,w) < a + blu| for
ueR, we S?. Then

Qf, f)(&) — Qi(f, f)—h—00

uniformly with respect to & on compact subsets of R3.
Suppose now that f and ¢(u,w) = w™2q(w, 2%) are smooth (C*, k > 6) functions and
f has compact support. Then for sufficiently small h,

Q(f, f)(&) — Qi(f, f)| < C€h2/175—5

with the same uniformity condition for &;.

The main difficulty of the proof is to establish the consistency of the approximation for
the integrals over the spheres. The convergence of this approximation for continuous
integrands is related to properties of the distribution of integer points on spheres of
large integer radius; the proof here is based on recent results from number theory (see
references in Bobylev et al. [7]). Note that the error estimate of the theorem indicates
a very slow rate of convergence for h — 0 although the practical convergence observed
in numerical experiments is much faster.

In the approach of Schneider with Rogier [30] and with Michel [22] the same velocity
grid Zj, is used, but the order of sphere and space integrations is reversed. First, a
grid for calculating the integral over the sphere is defined as a central projection of
the set

Fr ={(p1,-»pa) € Z* | |ps| < N, g.c.d.(p1,..,pa) = 1}

onto S(?). The weights for the quadrature formula over the sphere are obtained from
a subdivision of the sphere into the set of cells R(p) centered around the points ﬁ,

p € F&, and the following approximation is obtained for Q(f, f):

(1.12) Q(f, N&) ~ D \R(p)\/(f(ffl)f(n')—f(é“i)f(n))B(&—m%)dn-
PEFY, R4

A quadrature formula of the type (1.4) is obtained by using only those values of 7 in
(1.12) for which ¢’ and n’ belong to Z;. From the collision geometry it follows that
this set is the d-dimensional lattice

{h(rp+m)|reZ, meZ p-m=0}
5



with the volume of the fundamental cell equal to h%|p|?; thus, the inner integral is
approximated as follows:

/ (1€ £0) = £(6) F0) B(& . B ~ 10 >SS Blhtro+m). 2
(1.13) % (f(€ + hrp) F(&: + hm) —F(&) F(& + h(rp+m))).

By combining expressions (1.12) and (1.13), the equations for the discrete model of
the type (1.4) are obtained, with the coefficients A} given by

(1.14) Af} = B2 (pak|” | R(pir) | B(& — &5, wi5) XIT X (k—il<N}

where Xf]l is as in (1.11) and py = (¢ — k)/g.c.d.(41 — k1,...,0q — kq). From the
definition of the coefficients Af}, it is clear that the relations (1.5), (1.7) hold. It is
proved [30, 22|, that the collision invariants reduce to the classical ones (and the proof
is equivalent to the one given by Buet for his model [9]). The convergence result of
the type of Theorem 1.1 is also obtained, with the convergence estimate C.h'~¢ in
the case of two dimensions, and C.h%/11~¢ in three dimensions.

2. A discrete-velocity model using Carleman’s variables. In this paper we
introduce a discrete-velocity model based on Carleman’s representation of the Boltz-
mann collision integral [11]. The principles for constructing this model are similar to
those considered above. The main difference is that in Carleman’s variables the inte-
gration over spheres in the collision term is replaced by integration over planes. Thus,
after applying the rectangle formula for the integral over R3, the question of uniform
distribution of integer points in the domain of integration becomes much simpler than
for spheres.

The Carleman representation involves a change of variables:

(n,w) = (p=¢(—ww,&—n), g=n+ww,&—n)).

For fixed values of  and p, ¢ runs twice over the plane F¢,, containing { and orthogonal
to & — p, when w runs over the unit sphere. The functional determinant of the inverse
transform is |€ — p| 2.

It is convenient for our purposes to modify these new variables as follows:

u=p—-§ w=q-¢
We also use the notation E, for the plane orthogonal to w:
E,={weR®| (u,w) =0}.
In the new variables the collision operator is transformed as follows:
(2.1) Q(f,9)(&) = //(f(£ +u)g(€ +w) — F(€)g(é + u+w)) By, w) dw du,
R3S E,

where

(2.2) B(u,w) =2 |u|"2B, (m J%) .
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To construct the discrete-velocity model we use the same velocity space Zp defined
by (1.10) as in the two models discussed above. Recall that the letters i, j, k, [ always
denote vectors in Z3. Using them as the indices of velocity variables, we always mean
multiplication by h: &; = hi, etc. When considering functions on Zj, the lower index
is used to denote the value at the corresponding point: f; = f(&) = f(hi), i € Z3.

To introduce a quadrature formula which uses the values of the distribution function
only at the points of Z}, for approximating the integrals in (2.1), we follow the same
formal scheme as Bobylev et al. [7] and Buet [9]. First we work formally, assuming

that the collision kernel B in (2.1) is a smooth function. We leave the necessary

modifications due to singularities of B to the end of this section. In our notations

F(&u,w) = (f(€+u)g(€ +w) — F(€)g(€ +u+w))B(u, w)

and

G(&,u) = / F(&,u,w) dw du.

u

The integrals over R? are approximated by the three-dimensional rectangle formula:

(2.3) / G(€, u) du~ b3 GE, u).

R3 kEZs

Then the values of the integrand at the points of Z; lying on the planes E,, are
used to calculate integrals over the planes. To obtain an expression for this last
approximation, let us consider the set £,, , which is the intersection of the discrete
velocity space and the plane E,, for a fixed k € Z3, k # 0:

(2.4) Logn E By N Zy={hl e R® | (ug,l) =0, 1 € Z*} = hLy,
where
(2.5) Ly={leZ’| (k1)=0},

which is the set of solutions of the linear Diophantine equation (k,l) = 0. This last
set forms a lattice of rank two in Z3, i.e.,

Ly = {exm + ean ‘ e1,e € Z3 m,n € 7},

where the vectors e; and es, called the basis vectors of the lattice, are linearly in-
dependent over R as vectors of R3. Then the standard lattice rule can be used for
calculation of the integrals over E,, :

(2.6) / F(&, up,w) dw = by, Z F(&,up,w) = h2Ay Zﬁ(&,uk,wl),

B, wELuy ,h leLy

where §,, and Ay are the areas of fundamental cells of £, » and Ly, respectively
(that is, the areas of the parallelograms spanned by the lattice basis vectors). We
have 9, = h2Ay. Note that, though the basis of the lattice can be chosen in different
ways, Ay (and d,, ) does not depend on this choice [18|, and we have the following
explicit expression for Ay |31]:

(2.7) Ag = [k|/a(k).
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Here k| = (k1 + k2® + ks?)/2 and g(k) = g.c.d.(k1, ko, k3), the greatest common
divisor of the components of k. This quadrature formula can be interpreted intuitively
as follows: each basis of the integration lattice Ly j defines a splitting of the plane
E,, into the set of equal parallelograms centered around the corresponding lattice
points. They are all obtained by shifting the fundamental cell. Summing up the
values of the integrand at the points of the lattice times the area of the cell gives the
approximation (2.6).

Combining (2.3) and (2.6) we arrive at the following expressions for the discrete
collision term for &; € Zp:

(2.8) Q(f,9)(&) =h" > ApY  (f(& +u)g(& +w) — £(&)9(& + we + wy)) By,

kez3 lELk

where Ejk = B(ug,w;).
Using (2.8) it is easy to obtain the expression for the discrete collision term in the
form (1.4). The definition of the coefficients Afjl is now

(2.9) AF = BS A Briixt,

where ijl is as in (1.11). To obtain this we used the fact that

(k—d) L(l—1) . [ k+l=i+
{j:k-l—l—z' ifand onlyif ' yo 2 g2 f2

From this form of the discrete collision operator, the symmetry conditions (1.5) can be
observed easily. Clearly, (1.7) is also fulfilled. The proof of the statement that the col-
lision invariants are reduced to the classical ones can be obtained by analogy with the
two models discussed above by repeating the arguments of Rogier and Schneider [30]
or Buet [9]. Thus, the discrete-velocity model obtained for the collision term satisfies
all of the conservation properties discussed above. We summarize these properties in
the following theorem.

THEOREM 2.1. The discrete-velocity model defined by (1.3), (1.4) with the velocity
space (1.10) and coefficients defined by (2.9) satisfy the discrete mass, momentum,
and enerqgy conservation laws as well as the entropy property, expressed by the condi-
tions (1.8). All of the solutions to the equation (1.9) are given by the linear combina-
tions of 1, & and |&;|2. This means that there are no other collision invariants except
the classical ones.

To treat the problem of consistency of the discrete-velocity model described, we have
to make some smoothness assumptions on the integrands, in particular the function
B(u,w). As can be seen from (1.2) and (2.2), B(u,w) has a singularity at u = 0
even when the kernel function By in the collision term is smooth. Thus, to include
physically meaningful cases we have to admit singularities in B(u,w); accordingly we
assume that for some g > 0

(2.10) H\u|ﬂ§(u,w)HC < 400
for an integer m > 0. Here || - ||cm denotes the norm of C™(P), P being the domain
of definition for B:
P={(u,w) eR’> xR® |u L w}.
8



This assumption is fulfilled for any m > 1 with 8 =1 for “hard sphere” interactions,
since for these B(u,w) = 2|u|~!. For the collision kernels of the type (1.2) assump-
tion (2.10) and the condition < 3, which will be used in subsequent analysis, put
specific restrictions on the values of v and the form of function b(x), so that one can
find the cases with both “hard” (y > 0) and “soft” (y < 0) interactions with the
values of § in the interval 1 < g < 3.

In the formal construction of the model we need to assign some values to the coeffi-
cients Af}, for k =1 and ¢ = 7, which correspond to the points of singularity of the
collision kernel §(u, w). We put Afjl = 0 for these 7, j, k, [. Since these coefficients
correspond to “trivial” collisions which do not give any contribution to the collision
term, all the steps of formal analysis of the DVM still hold and Theorem 2.1 is also
true.

In the next three sections we give the consistency analysis for the discrete collision
term of the model.

3. A consistency result for the discrete-velocity model. The key result of
the paper is the following theorem.
THEOREM 3.1. Assume that f, g € C™(R®) with compact support (m > 1) and

that the kernel B in the collision term satisfies (2.10) with 0 < B < 3. Then, for
sufficiently small h

Q(f,9)(&) — Qn(f,9) (&) < Ch™, & € 2,

where

. m B—m
= b b 3 )’
r mln(m_‘_3 8 m/(m+ + m+3—ﬂ)

and the constant C' does not depend on h and &;.

Remark. We note that the third term in the expression for r can be omitted when
m > 3. In assumption (2.10), as well as in the formulation of Theorem 3.1, the
condition of C™ can be changed to Lipschitz continuous/Lipschitz differentiable.
The consistency of the quadrature formula in the class of polynomially decaying con-
tinuous functions is then obtained as a corollary. As could be expected, no convergence
estimate is available for that case. We consider the spaces of a.e. bounded functions
Lg° with » > 0, which consist of those f for which ||f||, = [[{(€)"f(&)||L~ < +o0,
where (£) denotes the polynomial weight (1 + £2)'/2,

COROLLARY 3.2. Let the collision kernel be such that |u|?B(u,w) is continuous and
for some v: 0 < v <2, sup{p) " Bo(p,x) < +oc. Assume that f,g € C N LX(R3).

psT
Then for all e > 0

(3.1) 1Q(:9) = Qn(f.9)llr—y1-c = 0 as h —0.

From the assumptions of Theorem 3.1 it follows that the function

(3.2) F(&u,w) = (f(E+u)g(€+w) — F(€)g(E+u+w))|ul’Bu, w)

belongs to C™(R3 x P). For ¢ in a compact set K, the support of F*(¢,-,-) is
uniformly bounded. For a fixed compact K, let us denote by R and L global bounds
for the support and the Lipschitz constant of these functions:

(3.3 R =sup {Ju] + o] | F(€ u,w) 0, (ww) € P, £ € K},
(3.4) L = supLipV™F(E,-,-).
EEK P
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Set
(3.5) G(§,u):/E F(& u,w)dw.

The first step in the proof of the consistency theorem is to consider separately the
two possible error sources: space and plane discretizations. The difference in (3.1) is
estimated as follows: (3_° denotes summation over all points but zero)

Q9 - 0@ = | [ 10 [ Fgiuww) dudu

E,

— h5 ZO |uk|_BAk Z F(giaukawl)‘

kez3 lEL
<| [ PG du— h Y k6w
R3 k€Z3
+ ZO h3\uk|_ﬁ( /F(fi,uk,w) dw— thkZF(fi,uk,wl)N
kez3 Euk leLy
36 =] s, h)‘ +\ S°° BB Ri(&i, F h)‘ —$+ R,
|[k|<R/h |[kI<R/h

where

(6, Fo) = el ([ P€ua ) 280 3 FE ),

E'n};k lELllj

Sk(¢, G, h)=/|u|—ﬂG(§,u) du —h3|uk|"PG(€, ug).

By

Here By is the cube with the side length h and center ug, and L¥ and Efk are the
intersections of Ly and E,, with the ball of radius R centered at 0. Now, the term R
represents the total error due to the discretization of the plane integrals, and 8 is the
error of the three-dimensional rectangle formula for the function G'. In the next two
sections we give the bounds for each of these two terms.

4. Approximation of the integrals over planes. The first problem is to
approximate the integrals over the planes F, using the lattice formula (2.6). For a
fixed k € Z*, and a basis for the integration lattice Ly p, the plane E,, is split into a
set of equal parallelograms { Dy, 1 }1c1, , centered at the lattice points. We estimate the
local approximation error on each parallelogram cell by using a standard approach
based on the Bramble-Hilbert lemma (cf. [13]). Then, summation over all cells lying
on the plane gives an estimate for the plane quadrature, which is subsequently used
to estimate the total error given by the term R in (3.6).

The further analysis is based on the following classical lemma.

LEMMA 4.1. Let Qg C R™ be an open bounded set with a Lipschitz boundary, such
that |Qo| = 1. Let A be a linear invertible mapping on R™, and Q = A(Qp). Let
g €W (Q), m=1,2,p€ (n/m,o0], and

(4.1) B(g) = /Q o(x) dz — |21g(0).
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Then
(4.2) 1E(g)| < CIQIMY | AI™|g|m p,0-

Here, C' does not depend on Q and g, ||A|| denotes the matriz norm of the mapping
A, q the conjugate exponent to p, and

1

43 lobnpo=( 3 10%1,7). " p <00, lmona = max 0%

lor|=m
The proof of the lemma for the case when (2 is a unit n-dimensional cube and A is
a scalar operator can be found in Raviart [29]. The generalization to the formulation
above is then evident (cf. also [13]). To apply the result of the lemma to the inte-
gration lattice Ly p, take a square of the unit area Dy as the reference domain g
and the fundamental cell Dy ;, I = 0 as Q; let Ay p: Do — Dy ; be a linear bijection
transforming Dy into Dy ;. Then, with Lemma 4.1, the following bound for the error
of plane integration is obtained.
LEMMA 4.2. Let K C R® be a compact set and let F(&,u,w) € C*(R® x P) have
compact support in (u,w) uniformly with respect to & € K. Let R and L be the
constants defined by (3.3) and (3.4). Then

(4.4) |Ri (&, F, h)| < Cr,pluk| P || Ak,nll,

where Cr 1, does not depend on k or h and is uniform with respect to £ in K.
Proof. Using Lemma 4.1 we get the estimate

|Ri(&, F, h)| = |Uk\_ﬁ‘ / F(€ up,w)dw — h*Ag ) F(&Uk,wl)‘

ER lEL,}j

§|Uk|_ﬁz ‘ /F(&,uk,’w)—h2AkF(§,uk,wl)‘

lEL};2 Dy

< Clur| P Aknll D [Dial[F (€, ug, -)

leLf

1,00,Dp1 < CLR?|ug|P|| Ak

B

which proves the lemma. O
Remark. For functions of the class W;*(Q) with m > 3, an estimate of the form
(4.2) can be obtained for

Bilg) = /Q o) ds—|9lg0)— Y d; |0/l /Q 0ig(z) dz

2<|j|<m—1

with a suitable choice of the coefficients d; (see [29]). Then, if the function F in the
formulation of Lemma 4.2 is of class C™, the bound (4.4) can be changed to

(4.5) |Ri(&, F, h)| < Cr,Ll| Akpl™

Lemma 4.2 shows that quadrature formula (2.6) converges whenever the linear size
of the cell, given by the norm of A p, tends to zero as h — 0. For lattice (2.5), the
value of the norm can be expressed in terms of the length of the maximal basis vector.

11



If {e1,ey} is a basis of Ly, that is {hei, hea} is the one of Ly p, we have (taking the
spherical norm for definiteness)

(4.6) |Ak n|| = hmax(|e1 + ez, |e1 — e2|) < 2h max(|e1], |e2]).

A bound for the norms of the basis vectors for the lattice defined by a linear Diophan-
tine equation may be obtained using a rather elementary argument, which we recall
in the next lemma.

LEMMA 4.3. Let a € Z3, (a,x) = 0 be a linear Diophantine equation. Then the basis
of solutions {e1, ex} of this equation can be chosen so that

(4.7) exl[ea] < /4 ]al.

Proof. Let L, be a lattice of solutions to (a,z) = 0. Then det(L,) = |a|/(a1, az, as),
where (a1, as,a3) is the greatest common divisor of aq, as, az. This can be easily
checked directly using the expression of the solution with parameters obtained by the
Euclid algorithm, or it can be obtained as a corollary of a more general fact: [31,
Lemma 4C, Ch.1], Now the bound (4.7) follows from the inequality

(4.8) erllea] < /4 det L,

which is known as Hermite’s bound for the reduced basis of a lattice: [18, p.71]. O
Remark. Since Lemma 4.3 deals only with two-dimensional lattices, the estimate
(4.8) can be proved using simple geometrical arguments. Since det(L,) is the area of a
basis parallelogram, det(L,) = |e1||ez| sin(e1, e2); thus condition (4.8) is equivalent to
sin(ey, es) > 1/3/4 = sin(7/3). Then, if the angle between the vectors of the original
basis is less than 7/3 , we can also use e1, ea — ney as a basis for any integer n. For
some n the angle between e; and es — ney is then greater or equal /3.

The inequality (4.7) implies that, for the vectors of the reduced basis, the bound

le;| < \/% la| is valid. In fact, the constant in this estimate can be improved to give
(4.9) lei| < al,

so that the norm of the linear mapping Ay, can be estimated as

(4.10) A nll < 2h[K] = 2o

We see that this bound does not imply convergence of the norm to zero when h — 0.
It is easy to verify that indeed there is no uniform convergence for all k. This is shown
by taking the integer vectors k of the form (k1, k2, 0), with kq, ko relatively prime and
\k| > 1/(2h). For such k, ||Agrl|| = 2|ux| > 1. Thus, the quadrature formulas over
different planes do not converge uniformly. However, using the inequality (4.7) we can
show that the fraction of points ug, for which || Ak r|| remains large, becomes small as
h tends to zero. We use this in the next lemma to prove that the error of the integral
plane quadrature tends to zero.

LEMMA 4.4. Let K C R® be a compact set, and let F(&,u,w) € C*(R® x P) have
compact support in (u,w) uniformly with respect to & € K. Let R and L be the
constants defined by (3.3) and (3.4). Then for sufficiently small h

(4.11) ‘ S W3Re(€, F, )| < Crooh,
keZ3
12



with

r = min (— 1/(4+ —ﬁ))

1+8

This estimate is uniform with respect to & on compact subsets of R3.

Proof. Let us take a compact K C R, N=N(h)=R/h for R defined by (3.3), and
Ap = {k € Z3| |k| < N}. Then the sum over Z* in (4.11) can be replaced by the
sum over Ap,.

Lemma 4.3 offers a basis {e1 , €5 )} of integral solutions to (k,z) = 0, satisfying

(4.7) and (4.9). Let ¥, and efm)n be the basis vectors with maximal and minimal

Euclidean norms, respectively. Take a constant o € (0,1) (to be fixed later).
If the inequality \egfi)n| > |k|® holds for a subset By, = Bp(«) of Ay, we can use (4.7)

to get [el)y| < \/g\k\l_a. Hence, with (4.9)

(4.12) |Ag.nll < 2hle) | = Clug|* >R,

max

Then,

Z 2| R (€, F, h)| < Cr,ph® Z B3y | A1
+EBn kEBy,

S CR7Lha/ |u\_ﬁ+1_°‘du = CR7Lh,a.

lu|<R

For the remaining part of the indices k£ we have

An\ By = {k € An | e8] < [k|*} € {k € A | el < N} Dy

min min

Now, it is easy to estimate the number of points in Dj,, and hence in Ay \ By,. Simple
geometrical arguments show that

(4.13) ‘{jeZi"\ |j|§n}‘ < Cn?,

(4.14) ‘Eukﬂ{jez3| \j|§n}‘ < COn?,

Using (4.13) and (4 14) we conclude that the number of different vectors elk) satisfying

min

the inequality |emm| < N¢ is estimated by CN3*, and the number of vectors k € A,
on each plane {k € Z* | (e ®) k) = =0} is estlmated by CN2. This yields
‘Dh‘ < CN2+3OL

and if B < 1

> BREFR)| < Cpp D By
keDy, keDy,

24+3a
< Cpph*R™PH! (%) = Crpht™3.

By letting o = ; we obtain the estimate C(F)h'* for both parts of > h3Rx (&, F, h).
JEAR
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If B > 1, then |ug|™P*! is unbounded on Dy, and the contributions of “large” and
“small” k should be considered separately. For this purpose let us take some o € (0, 1),
and split the above sum in the following way:

D T e N [ e e S N A [

keDy, k<Nl-—c Nl-o<k<N
keDyp,
R 24+ 3a
<C lu| P du 4+ B3 | = max |ug| P+
h N1-o<k<N
|U|SR1_G}LU

< CR(ha(4—ﬂ) + h1—3a—a(1—ﬂ))‘

Thus, if o = a/(4— ), and a = 1/(4 + fff_é), we find

> WRe(E, FLB)| < Crh®.
kEDp,

By combining the estimates for B, and Dy, we complete the proof of the lemma. O
Remark. For functions from the class C™, the estimate of Lemma 4.4 can be im-
proved. By applying inequality (4.5) instead of (4.4), we find that for m = 2 the
value

. /2 B—2
r = min (5,2/(5—1— E)),

is obtained, and for m > 3,

5. Approximation of the integrals over R3 and proofs of the consistency
results . This section treats the approximation error of the quadrature formula over
R3, which is given by the term § in (3.6). Let F(&,u,w) and G(&,u) be defined by
(3.2) and (3.5), F € C(R® x P), and for a compact K C R3, let R and L be the
constants defined by (3.3) and (3.4). Then suppG(£,-) € B(0,R), and G(§,-) is a
C*-function outside a neighborhood of origin, uniformly bounded for all ¢ € K. Thus
the only difference between the present situation and the one covered in Lemma 4.2 is
that now the integrand |u|PG(&, ) (recall that Q(f,g) = [gs |u| PG (&, u) du) has a
singularity at w = 0. Thus the aim of the first lemma is to give a Lipschitz condition
for the function G.

LEMMA 5.1. Let K C R® be a fivred compact set; then for u,uw’ # 0 and £ € K

lul PG (& u) — 0| P G(& )| < Cryplul = (Jul =7 + [o'| ) lu — |,

Proof. First, we prove that G satisfies an analogous inequality obtained by choosing

B = 0. Let us fix two nonzero vectors v and v’ € R3, and denote by A,_,,’ the rotation
map, with respect to the line orthogonal to both u and v/, which transforms FE, to
E,. Then G(&,u') = fEu F(&,u', Ay_syw) dw and, from the Lipschitz condition for
F, it follows that

|G(&,u) — G(&, )] SL/ (Jlu— o]+ |w— Aysyuw|) dw'.
E.n{|u|<R}
14



To estimate w — A,y w, we note that for all vectors z in the unit ball B(0,1)

U u u u u—u
o= Aucss] <[ = s ] <[ - ] <ol
and, hence, |w — Ay_w| < 2'“@""' |w|. Then
u— o]

IG(€,w) - G(€&, )| < Llu— 1| /dw+2L / | dw < Crplul~ u— 1.

Eyn{[u|<R} E,0{|u|<R}

Now, the estimate of the lemma is obtained using the uniform boundedness of G from
the elementary inequality

—B _ B 1— (27”7 -8
—\a: ‘ y‘ | :x_ﬁ_1—| |1(”)y| | < Cg=P1 <1+ (E) ) =Co 'y P +a27F)
xr—1y -2 x

which holds for all z, y > 0, z # y. O
LEMMA 5.2. Let K C R3 be a compact set with R and L as the constants given by
(3.3) and (3.4). Then

‘ Z Sk(&, G, h)‘ < Cpr,Lh",
kez®

where r = min(1,3 — B3), and the bound is uniform with respect to £ in K.

Proof. Using Lemma 5.1, the Lipschitz constant of |u|~P?G(&,u) on each cube By

(that is |[u| =P G(¢, u)|1 - Bk) is estimated by Cr p, max lu|~1=#, so that by applying
) ) k

Lemma 4.1 we obtain

s < Y | [l e wdi-n6Ew)

kez3 k|<R/h j,

g/\u|_ﬁG(§,u)du+CR,Lh Z h3r%ax\u|_1_'g.
By o<|k|<R/h "

The integral over By is bounded as C [ Bo lu| =P du = C1h3P. Standard arguments

show that the last sum is bounded by Cyh”~! so that the estimate of the lemma
follows. O

The proof of Theorem 3.1 is now achieved by combining the estimates of Lemmas
4.4 and 5.2. To prove Corollary 3.2, we state the stability result for the discrete
collision operator (Qp, in the norms of L°. The desired result can then be obtained by
approximation. For the original Boltzmann collision operator with the collision kernel
satisfying the conditions of Corollary 3.2, the estimate |Q(f, g)|lr—y < C||fll-llgll- is
known [11, 21]. We prove an analogous estimate for Q.

LEMMA 5.3. Let B satisfy the conditions of Corollary 3.2, and let X\ = sup (p)~"Bo(p, ) .
pyT
Then for all f, g € C N LP(R3) with r > 3

1@u(fs Dl 1y < C ALl llgll-

where C depends only on r.
15



Remark. The result of the lemma indicates that at infinity the discrete collision term
may decay slower than the Boltzmann collision integral. The reason is that the size
of the cells of the quadrature formula for planes can be on the order of the relative
velocity. Thus the result of Corollary 3.2 involves lower order polynomial norms than
might be expected. _

Proof. The kernel B is estimated according to (2.2) as follows:

(5.1)  B(u,w) < 2M|u|"2(Vu2 + w?)” < 2X[u 72 ((u) + (€)Y + (€ + w)7).

Due to the homogeneity of Qy, it suffices to estimate the expression +Qp({-)™", {-)™").
The “gain” and “loss” terms Q,J{ and @), can be dealt with separately; we give the
proofs only for the QZ’ term, since the estimates for (), are obtained in the same way.
It is sufficient to consider only the terms corresponding to the first term in estimate
(5.1), the other two being similar. Thus for the @Q;-term we need to estimate the
expression

(5.2) Li=h* Y ()l —€75€ =)0 Y ().
§'€EZy n'€&+Ler_¢
For any monotonously decreasing function ¢(x), z € [0, 00),

oo

B eln) < hp(0) + [ () da.

n=0 0

Accordingly, the inner sum over the lattice points in (5.2) can be estimated as follows:

S¢—e Y ()" < 26p_¢ max (n)”"

n’€£+£§1_§ £+E€’_€
+2 max((er; Jeal)  sup /(n’)""dn’+ / (')~ dn
lg£+E§’_§ l
EtEer ¢

(5:3) < 208" — &l {max) "+ e1l€ — &l (M) T+ C2 () T

where the supremum is taken over all lines / on the plane { + E¢/_¢ passing through
the point &, and 7)., is the point where (n')~" attains its maximum on the plane
£+ E¢_¢. From the collision geometry, |n),,.| = |£| cos 0, where 6 is the angle between
¢ and & — £. Then, for any smooth function 1

| [ v ae e

<on [ ve©)ld

We apply this estimate for the expression obtained by substitution of estimate (5.3)
into (5.2) and, for simplicity, deal only with the second term in (5.3), since the
same arguments can be used for the remaining two terms. For £(£,¢&') = (¢) "¢ —

E7HE = ) ([€] cos )7,
‘h3 > 3(5,g')—/38(§,£’)d£’

§'ezZy R

<cn [ [Vee(.&)lds,

Thus, to estimate the sum over ¢’ € 2} one needs only the bounds for [ &(¢,¢’) d¢’
and [ [V (&, &) d¢’. We split the integration over ¢ into two parts:

[ eeera=[ +f -
R3 {|cos6|>%} {lcosf|<3}
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For the first integral on the right hand side, we have

/ (€Y TIE = €] (E — &) {[€] cos 6) "+ de’
{|cos8|>1}

<2 [ ()T - g - 97 de <O,

For the second one, using the polar coordinates & — & = pw, we get

/ (€)TIE = €71 — €)7(1€] cos By de’
{|cosf|<L}

< tn20 02 / “olo) (el + 7 dp [ (ela) " da

|§‘ / V(€] + p)""dp < Cp(€) 7L

We get the estimate for the integral of the gradient norm with the same exponent by
using the same arguments. The estimate of the lemma then follows. O

Now Corollary 3.2 can be proved by the following argument: given f and g € C'N
L (R3), we can take sequences of smooth functions with compact support f,, and g,
such that || fn — f|lr—e and ||gn —gllr—e — 0, and a sequence B™ such that |u|2B" (u, w)

is smooth and |||u|?(y/|ul? + \w|2>_7(§" — E)HLOO — 0. Then
1Qr(f59) — QU 9 < |Qr(S; 9) — Qul(fn; gn)ll
+||Qh(fnagn) - Q(fnagn)H + ||Q(fnagn) - Q(fa g)”a

where || - || is the norm || - ||,—y—1—c. The second term on the left side converges to 0
for every fixed n, and the other two converge to 0 as n — oo uniformly in A, which
proves the statement of Corollary 3.2.

6. Convergence to the solutions of the Boltzmann equation. The con-
sistency results of Theorem 3.1 and Corollary 3.2 indicate the formal correspondence
between the Boltzmann equation and the equations of DVMs. Some additional steps
should be taken to justify the use of a numerical algorithm based on the DVM equa-
tions. First we need to make more precise the way the distribution function is ap-
proximated by the solution of the discrete problem. For this we use the finite-volume
approximation, following S. Mischler [23]. The distribution function is approximated
by a piecewise constant function

F&z )~ fal&mt) = 3 filw,t)xe, (€)

where C; are cubic cells with the side length h centered at &. The values f; at the
nodes (or cells) are determined from a system of equations of the form (1.3). This
system can be rewritten in terms of the function f5(&,x,t) as the Boltzmann-like
equation:

(6.1) %-H)h )'va:fh:// [fa(€) fu(n') = o () fa(n)] Br(&m, &' ') dnd€' dn,

where vp,(§) = ) &ixe (§), and the kernel By, is given by

(6-2) By (&, ) hng”xe v, xepxe, &M ELT):
17kl
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The transition to the finite velocity space can now be made by taking a positive
constant R (which in a subsequent analysis is made dependent on n) and defining a
new collision kernel BZ as

(63) Brlf(ga ﬂ;ﬁ'ﬂ?l) = B% (ga ﬂ,ﬁla 77,) X{|§|<R7 |77|<R, |§’|<R, |77'|<R}’

which yields a finite number of velocities (or collision coefficients Af’]l) for every n.
Now the convergence of the solutions to the Cauchy problem for equation (6.1) to
solutions of the Boltzmann equation can be studied. In the space homogeneous case
the result of Palczewski and Schneider [28] can be adopted without any changes,
since their proof uses only the consistency result analogous to the one proved in the
previous sections. In the space inhomogeneous case we meet difficulties that are partly
the same as for the model considered in Mischler [23] but there are some new ones as
well. First, the existence of long time solutions to system (6.1) (with the kernel B, as
well as BE) is not known. Second, for the model considered, it is difficult to prove the
properties required in Mischler’s convergence proof. To overcome these difficulties we
use the approximation scheme used by DiPerna and Lions [14| for proving existence
of solutions to the Boltzmann equation.

We consider the Cauchy problem for the Boltzmann equation with given L! initial
data fO:

of B

(6.5) F(&2,0)= O, 2),

where the solution f is to be understood in the DiPerna-Lions sense, see [14]. We also
introduce for § > 0 an auxiliary Cauchy problem

66) e gy = Qoo fr) = (140 [ F3d8) Qs 1),

(67) f5(£7x70):f(?(£ﬂm)’

where Qs is a collision operator of the form (1.1) with the kernel

. (1
Bs(§,m, w) = min {57 B(§ —n,w) X{5§|g_g'|§|g_n|§1/5}} * 15 (€, 1, w).

The initial data is f¢ = fOx{jej<1/s} * (6, ) + S exp (— 2|2 — |€[2), where 15 demotes
C* mollifier with the support in a g neighborhood of 0. To approximate the solutions
of (6.6)—(6.7) one might use a DVM approximation of type (6.1) with the kernel B,
obtained from Bj according to (2.9), (6.2) and (6.3). However this leads to technical
difficulties in proving convergence; the reason is that, for such a choice of the kernel,
we cannot control the L' norm of the collision terms Qs, uniformly in n. Thus we
have to introduce an additional truncation into the DVM to get the needed properties.
This is done by defining the kernel

By (&€ n') = Bg(&,n,¢ ) &),

X{|Senl<an}

where S¢,, denotes the set of points of the discrete velocity space falling on the sphere
which has the vector £ — 7 as the diameter; « is a large positive parameter. Since this
kernel satisfies the necessary symmetry properties, the conservation of the (discrete)
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mass, momentum and energy still holds. We can now define the discrete collision
operator QE as in (6.1) and formulate the approximate initial-value problem:

(68) 86—? +Un(£) ' VQ:F = égna(Fa F) = (1 + 6de£)_1Q<IS%na(Fa F)a

(69) F(ga €T, 0) = fc?n(é.a JI),

where F' denotes the approximate solution fs,, to shorten notations. The initial data
f2 is a piecewise constant in & approximation of fg:

(6.10) = xe,©) J 13 -) dn

Our aim now is to prove that the parameters §, & and R can be chosen in such a way
that the solutions to the discrete problems converge to solutions of the Boltzmann
equation.

THEOREM 6.1. Let the initial condition f°(&,x) in (6.4)—(6.5) be a function from
L'(R? x R3) and satisfy the condition

/f”(E,:v)(l L€+ |22 + log fO(¢, 2)) da dE < Co.

Then there are sequences 6, — 0, o, — 00 and R, — oo, such that the sequence
fs,ann (& z,t) = F(§, x,t) of solutions to the problem (6.8)-(6.9) with the initial data
(6.10), converges weakly in L' asn — oo up to extraction of a subsequence, to f(£,x,t)
which is a solution to (6.4)—(6.5).

Proof: We prove that for any fixed 6 > 0, T" > 0, and for all € > 0 we can take a > 0,
R > 0 such that

(6.11) sup ||f5—F||L1 < e,
te[0,T]

for an infinite subsequence of n. From this and the result of DiPerna and Lions [14],
which says that fs — f weakly in L', the statement of the theorem follows by a
diagonalization argument.

From the mild form of the equations,

f6(£7'7:7t) - F(§,x,t) = (f(?(x7t) - f(?n(aj7t)) +
| (QUs (6= €5.5) = QR (P F) € = 0a(€)5,9)) d.

The difference in the integral can be represented as
t ~ ~
(6.12) | (@st )06 = £5.9) = Qolfo )€ = v (€)s.5)) s

= [ (@5 196 = 00(6)5,) = Qo Ui 5) €. = (3. 5)) s

t

+ ) (Qsan(fos )€ = 0a(€)5,9) = QS f5)(& 2 = va(©)s,5) ) ds
t

+ Q(san F5, [5)(€, @ — vn(€)s,5) — QE,.(F, F) (&, z — vn (€)s, s)) ds.

0
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Here ann denotes the collision operator of the infinite DVM corresponding to R = oo.
The last integral is estimated as 5% fo lfs — F| ngds. Indeed we have, denoting by

£, @ the mean values of |f|, lg| over the cubes €;,

1Q3an (f 911y < Z 3 H(E) dee Y X, 5,01 camyBE =& =)

éez, VeicE WEEHLy
- 32“’5) 32 |s,,|<an}z5§’ 5365—5777—5)
glezh n EZ ¢ 5’71’
1 - 1 B
(613) <53 F€) =5 30 T00X,s,, cany 37 7S] < 5511yl
ez, n'€Zy

and the same estimate for Q?a_n. This gives the Lipschitz property for @?an, uniformly
with respect to n:

~ ~ b
||Q5Ran(fa f) - Q(SRCm,(g’g)”L}Dg < (5_3||f - g”Lis’

and thus proves the needed estimate. The remaining three terms in the expression
(6.12) contain only the limit solution fs which according to [14] satisfies

(6.14) / > 0% f5(& m, )| (1 + |2f* + [£]F) dw dg < Cs(T,m, k), t€0,T),
|a|<m

for all m > 0, k > 0. Thus the first integral in (6.12) converges to 0 as n — oo by
continuity. To estimate the third term in (6.12) we use

Qsan(Fs: f5) — Qfun(F5, f5) = (140 [ f5de)™"
(Q&an(f&X{|§|>R}a f5) + Qsan(fs, faX{|g|>R})>-

Thanks to the L2° estimate of Lemma 5.3 and an L° bound implied by (6.14), this
difference converges to 0 in LX° for any » > 3 as R — oo uniformly with respect
to n in any time interval [0, T]. For the second integral in (6.12) we have according
to Lemma 5.3 the sequence (Qsan)o> of bounded bilinear forms on C' N Lg°. By
Alaoglu’s theorem there is a subsequence still denoted by (Qsan) and a bounded
bilinear form (s, such that

chan(f&a f5) — Q5a(f5a f5)a n — 00,

pointwise in x, ¢ and, due to the uniform bounds, in Lglag. On the other hand,

Q&an(fé;f&) — Q(Sn(f57 f5)7 a — 0,

uniformly in n. To obtain this we denote by ¢, (§,7n) the piecewise constant function
with values +[Sep|; then from (6.13) follows

||Q6an(f67f6) - Q&n(f&f&)“[,l

_52//\1% o) onl€' i), e dif
(6.15) < glbllglfslze s [on€ x|

{lon|>a}
n'|<R
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For the sequence of functions ¢,, the following holds:

1 . 2, (Ray 3
(6.16) /@i(ﬁlaﬂ’)dn/ = 3 Z (E‘Sgﬂ) < 5 Z (tg(m)) <C,

where t3(m) denotes the number of integer points on the sphere of radius /m and
the constant C' does not depend on n. This estimate follows from the Gauss formula
for v3(m) [17, Theorem 2, Chapter 4| and the estimates in Barban [3, Theorem 2|.
The condition (6.16) implies the necessary weak L' compactness of (¢,,) and thus the
right-hand side of (6.15) tends to 0 as & — oo uniformly in n. Since the consistency
result of Corollary 3.2 says that Qsn(fs, fs) = Qs(fs, fs) as n — oo, we obtain
Qsa — Qs(fs, f5) as @ = oco. Now for the second integral in (6.12) we have

| (@st £)(6 = 00(6)5.9) = Qs ) 6.0 = 00(6)5,)) ds
= [ (@160 = 00€)5.5) = Bl ) 6= 0a()5.)) ds

+ [ (@l 5)(6.2 = 00(05.5) = Qenfon o) (€2 = 10(€)5.9)) ds
=e1(a) + ea(a,n),

where €1(a) = 0, @ — 00, and e3(c,n) — 0, n — oo for any fixed a.
It follows now, from combining the estimates for all four terms in (6.12) and the
convergence of the initial data, that

Ifs = Fllz:, (@) < 53/ 1fs = Flizi ds + e1(a) + e2(a, n) +e3(n) + ea(R, n),

where €3(n) — 0 as n — oo and e4(R,n) — 0 as n — oo for fixed R. Thus (6.11)
follows by Gronwall’s inequality. This completes the proof of the theorem. O

7. Numerical results. Spatially homogeneous relaxation. The accuracy
of the collision integral approximation, as well as its computational cost, is illus-
trated by a comparison with the exact solution of the space homogeneous Boltzmann
equation for Maxwellian molecules, which was obtained by A. Bobylev [5] and, inde-
pendently, by M. Krook and B. Wu [20]|. This solution has the form

(7.1) fle.n = et (1420 - B ew (- ),

T(t) =1 — Gexp(—At)

with 6 € [0,2],and A = % f_llg(z)(l—z2) dz for g(z) such that B(v, w) = (1|’U°i’)g( B ))

We choose the collision kernel such that B(u,w) = |u|~ (u? + w?)” ?; then g(z) = 3
and A = Z. We also take § = 2 so that f(0,0) = 0. For the numerical scheme we take
the pomts of the regular grid Zh in a cube of suitable size (determined by the param-
eters of the distribution function), and include in the model only those collisions for
which the postcollisional velocities remain in the fixed cube. For the parameters of

the solution (7.1) chosen as above, we take the cube with the side length 7.0 centered
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at the origin as the domain of computation. The size of the cube is kept fixed in the
time-dependent problem. We denote by N the number of velocities in each direction;
the total number of velocities is thus N3. To increase the numerical efficiency, we
follow J. Schneider [22] in using the symmetry properties of the DVM coefficients in
the numerical algorithm. All computations were performed on Sun Dual UltraSparc
1700 / 167 MHz.

In the first test we compare the exact value of the collision operator computed on
f(&€,0) and the values obtained by using discrete-velocity models. We measure the
difference between the exact and approximate data by calculating relative maximum
error

2mle|f(§i) — fil

€oo(f, fn) = max | £ (&)] + max|fil

The results are presented in the Table 7.1.

TABLE 7.1
Relative errors of the collision term approximation and computation times depending on the
number of velocities in each direction

Number of velocities 8 10 12 14 16 18 20 22
e (@, Q1) 0.044 | 0.035 | 0.033 | 0.028 | 0.024 0.021 0.019 0.017
CPU time, sec. 0.38 1.96 7.25 23.01 | 66.43 | 135.47 | 286.94 | 638.13

The results of the computations show that the dependence between the step in the
velocity space h and the error of approximation is close to linear for the interval of A
chosen.

The second problem we address is the time relaxation in a space homogeneous gas. In
the numerical scheme, the discrete-velocity approximation (1.4) of the collision term
is combined with the forward Euler time-stepping method. The time step is chosen
so as to make the time integration error neglectable in comparision with the error of
the discrete-velocity approximation. We compare numerical solutions with the exact
one given in (7.1); this is done by computing the relative mean error in the solution

2> [f(&) — fil
erlf: fu) = IS

as a function of time, and we also compute a fourth-order moment

mZP0 () = 1Y fi(t)e2e2,

which is compared with the exact value of the corresponding moment for solution
(7.1):

m220) (1) = /R €8, 1(6, 1) de.

The results for the calculation of the moment are shown on Fig. 7.1. The relative
error in calculating the moment is below 2.5 - 1073 for N = 10 and decreases with
increasing N. The Fig. 7.2 presents the mean error in the distribution function in
dependence on time.
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F1G. 7.1. Fourth-order moment for the Bobylev-Krook- Wu solution, computational vs. exact.
Solid line: exact; diamonds: N = 6; crosses: N = 8; squares: N = 10.
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F1G. 7.2. The relative mean error in the distribution function. Diamonds: N = 6; crosses:
N = 8; squares: N = 10; X-marks: N = 12; circles: N = 14; triangles: N = 16.
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8. Conclusions. The main results of the paper are Theorem 3.1 and Corollary
3.2 which give the consistency result for the discrete-velocity model introduced here
and Theorem 6.1 which formulates the convergence result for a modified model. The
consistency proof uses the Carleman representation (2.1), thus avoiding the difficulties
in justifying the sphere integral approximation. However, analysing convergence to
L' solutions still requires the properties of the model in the standard reperesentation,
including the approximation of integrals over spheres. Thus the estimate (6.16) is one
of the key points in the proof of Theorem 6.1.

Some generalizations of the approach of this paper are possible, of course, including
choosing other quadrature formulas for the integrals over R3, planes and spheres.
Another important aspect is the development of an efficient numerical scheme based
on the discrete-velocity model. This is planned as the subject of future work, in
which the numerical computations for the space inhomogeneous problems will also be
included.
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