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Abstract
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1 Introduction

The Ising model is one of the most investigated examples of Markov random
fields. It is well known that this model can have a Gibbs state multiplicity on
Z® for d > 2. For a general introduction to Gibbs states and the Ising model,
see [9]. Several other properties for this model have been further looked
into over the last few decades and we shall here focus our attention on three
different results for the Ising model; these are the global Markov property
for the plus measure ([10]), phase transition on nonamenable graphs with
an external field ([16]) and certain large deviation properties ([22], [23]). We
extend these results to the beach model and the iceberg model. These models
are examples of subshifts of finite type for which there can exist more than
one measure of maximal entropy if the parameter of the model is chosen large
enough. In [12] it was shown that the phase transition property for the beach
model has the same monotonicity property regarding the “temperature” as
the Ising model. One implication of this property can for the Ising model be
stated as the existence of a critical inverse temperature (in [0, oo] ) such that
to the right of this value we have phase transition for the Ising model and
to the left of this value we do not have phase transition. The iceberg model
is also an example of a subshift of finite type with a possible Gibbs state
multiplicity regarding measures of maximal entropy (see [5]). This model can
be viewed as a lattice analogue of the Widom-Rowlinson model (introduced
in [24]), and it has recently been shown in [3] that there exists a graph,
for which the model on this graph, does not share the same monotonicity
property regarding the “temperature” of the model as the Ising model and
the beach model. The purpose of this paper is to extend some results for the
Ising model to the beach model and to the iceberg model on general graphs.
In the study of large deviation properties we will restrict our attention to the
beach model on Z<.

In the most general setting of a graph that we will discuss, let G = (V| E)
be a countably infinite graph of bounded degree, where V' is the set of nodes
and E is the set of edges. Call two nodes x and y nearest neighbours if
there is an edge between them and denote this relationship by x ~ y. If W C
V be a finite subset of V, let OW :={z € V—W : 3y € W such that z ~ y}
be the boundary of W. For two subsets A;, Ay € V', we define the distance
d(A;, A2) as the length of the shortest path between A; and A,. If A; or
Ay = () then d(A;, As) := co. The rest of the paper is organised as follows. In
Section 2 we define the Ising model and present the results for the Ising model
that we have extended to our subshift of finite type context. We also give the
definitions for the beach model and the iceberg model and make some short
remarks on known properties for these models. Then we prove the global



Markov property for our models in Section 3. In Section 4 we regard the
asymmetric versions of the models defined on a nonamenable graph and in
Section 5 we study large deviation properties.



2 The models

Let G be a countably infinite graph of bounded degree with vertex set V
and edge set E. We consider a system on G whose symbol set on V is F,
a finite set of at least two elements. A configuration on A C V is a map
na : A — F. The values of such a configuration on a subset B C A is given
by na(B). A measure y on FV is said to be a Markov random field if p
admits conditional probabilities such that for all finite W C V, all & € FW
and all ny_w € FV=" we have

p(éwlnv-w) = p(éwlnv_w(OW)). (2.1)

In other words, the Markov random field property says that the conditional
distribution of what we see on W given everything else depends only on the
values on the boundary oW.

A consistent set of conditional distributions for all finite W and all boundary
conditions 7y _y is called a specification, denoted by Q. The specification
Q is said to be Markovian if every element in Q is Markov (see (2.1)). If uis a
measure on FV satisfying all conditional distributions in a Markovian Q, we
say that u is a Gibbs measure for Q. Such measures are automatically Markov
random fields and the existence of Gibbs measures follows from standard
compactness arguments (see [9]). The fundamental question is whether a
Markovian specification allows the existence of more than one Gibbs measure.
If this is the case, we say that we have a phase transition. One of the most
studied models which can exhibit a phase transition is the Ising model. We
give a short description of this model in the next example and then we quote
the results for it that we have extended to the beach model and the iceberg
model.

Example 2.1: The Ising model. The Ising model on a graph G is a certain
random assignment of plus and minus ones on V. We will here define the
specification for the Ising model. Let F' = {—1,1} and let v be a probability
measure on X = {—1,1}V and let € X be a random element chosen
according to v. We say that v is a Gibbs state for the Ising model on
G with external field » and coupling constant J if, for all finite sets
W cV,allw € {-1,1}" and v-a.a. w" € {~1,1}V\W we have

haw (W')+Tbw (W' ")

Pn(W) = w'[n(V\W) = ") = —Z—e

2,1
where aW(wl) = ZUEW wl(v)’ bW(wlaw”) = Zu,vEWUﬁW:uwvw(u)w(U)’ Z;J[;:h,(]
is a normalisation constant and w € {—1,1}" is defined by letting w(v) be
W'(v) for v € W and w”(v) forv e V —W.
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It is well known that this specification is consistent and hence the existence
of a Gibbs measure follows. We now demonstrate a way to construct a Gibbs
state for the Ising model. Let (W,) 1T V be a sequence of finite subsets
converging to V in the sense that W, C Wy C W5... and U;W; = V. Fix a
sequence 4, € {—1,1}V~""»_and consider weak subsequential limits of the se-
quence {l/%n’h, 7} where the probability measure l/%n,h’ ; is obtained by fixing
0, on V — W, and choosing a configuration on W, according to the specifi-
cation with boundary condition §,,. Any weak subsequential limit is a Gibbs
state (see [9] p.67). We shall henceforth suppose that J > 0. This will yield
some good monotonicity properties for the Ising model. For two probability
measures v and p on FV, we write v < u to indicate that v is stochastically
smaller than p, which means that [ fdv < [ fdu for all increasing functions
f on FV. Now for the Ising model, with (W) still fixed, consider the two
sequences {vy, 5 ;} and {vy, , ;} of measures coresponding to §, = +1 and
0, = —1 respectively. Standard monotonicity arguments (see [19] p.188)
imply that vy, , ; < v, 2 v 5 for any 6 € {—1,1}""" and that
the sequences {vy, , ;} and {vy, , ;} are stochastically increasing and de-
creasing in n respectively. Such arguments also imply that the weak limits
Uy =iy oo vy 7 and vy 5 i= limy, o0 vy, 5 exist and are independent
of the sequence (W,). In addition one has v, ; < v < v ; for any Gibbs
state v with parameters h, J. We will call the measures v}, ; and 1/,“; ; the
minus and plus measures for the Ising model with parameters h,J respec-
tively. The first theorem that we have extended to our models was proved
for the Ising model by Goldstein ([10]). Before we quote this theorem we
introduce notation that will prove useful for us in the next sections and give
the definition of the global Markov property. A probability measure y is said
to have the global Markov property if ;1 admits conditional probabilities
such that for all W C V, all bounded measurable functions f onF" and all
Nv_w we have

u(flnv-w) = u(flnv-w(OW)).

The difference between this definition and the local Markov property (see eq.
(2.1)) is the possibility of having infinite W’s.

Theorem 2.2: ([10]) Let G = Z¢. For the plus measure for the Ising model
with h = 0, the global Markov property holds.

This theorem is easy to extend to every countably infinite graph of bounded
degree, using the same method as in [10]. Note also that the extension of
the theorem to h # 0 follows from the same argument. Dobrushin ([6]) has
given an example of a Gibbs measure for the Ising model on Z* satisfying
the local Markov property which does not satisfy the global Markov prop-
erty. Choosing h = 0 and J large enough, this example consists of a convex
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combination
1 1

i _
pH= T okt

of Gibbs measures, where put denotes the limiting nontranslation invariant
measure on Z3 obtained by taking the limit of the measures p,/* on the
standard boxes A, where the boundary condition equals +1 if the third
coordinate is > 0 and equals -1 otherwise and p7 is defined analogously by
reversing the sign of the boundary condition for the boxes A, except for
those points in dA,, for which the third coordinate equals 0. This example of
Dobrushin is not an extremal measure and in the paper [10] where Goldstein
proves Theorem 2.2 above, he also conjectures that every extremal Gibbs
measure on Z¢ satisfies the global Markov property. This conjecture has
been shown to be false by Israel ([15]). In Section 3 we modify the argument
of Goldstein to show that the global Markov property holds for the plus
measure both for the beach model and the iceberg model defined on any
countably infinite graph of bounded degree. These models will be defined
below. Note that Goldstein also has proved the global Markov property the
plus measure for the Widom-Rowlinson model. This model is an example
of having a continuous underlying structure (R?). The iceberg model is a
lattice analogue of this model.

Next we quote a theorem of Jonasson and Steif ([16]). For the Ising model on
Z? with h # 0, it is a well known result (see [7] p.151) that phase transition
cannot occur, whilst on a binary tree with h # 0 phase transition can occur
(see [9] p.250). The following definition gives a useful way of making a general
distinction between graphs.

Definition 2.3: A countably infinite graph of bounded degree is called
nonamenable if

i [OW]
MG) = il T >0
If k(G) = 0 the graph is called amenable (k(G) is called the Cheeger

constant ).

One example of a class of amenable graphs is {Z¢, d > 1}. A tree with
uniform degree d > 3 is on the other hand nonamenable.

Definition 2.4: An infinite graph G = (V, E) is quasi-transitive if there
exists a finite number of vertices x1,...,xy in V such that for any x € V,

there is an automorphism of G taking x to some x;. If k kan be taken to 1,
the graph is transitive.

Theorem 2.5: ([16]) Let G be countably infinite graph with maximum
degree d < oco. For the Ising model the following holds:
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a) If G is nonamenable, h > 0 and J > (2k(GQ)) '(2h+1+log(3(d+1))),
then a phase transition occurs.

b) If G is amenable and quasitransitive, then phase transition does not
occur for any h > 0 and J € [0, 00).

We have extended part (a) of this result to both the beach model and the
iceberg model. The fact that A > 0 for the Ising model corresponds to the
case of an asymmetric beach model and asymmetric iceberg model. The
notion of “asymmetric” for these models will be explained in Section 4.

The last result for the Ising model that we have extended, is the result of large
deviations for the magnetisation on Z¢ in a box A,,. The following results are
well known from statistical mechanics. For a configurationn : Z¢ — {-1,1},
let

be the magnetisation in a finite A C Z%. Denote by m* the spontaneous
magnetisation [ Yodv™ under the plus measure. It is not hard to show that
m* > 0 if and only if we have phase transition. The results that we have
extended are the following:

Theorem 2.6: Fix the dimension d. Let h = 0 and fix J. Let m € (m*,1).
Then there exist positive constants Ay, Ay, ¢1, co such that

Ajectltnl < VJ:J(YAn >m) < Agec2ltnl,

Theorem 2.7: Fix the dimension d. Let h = 0 and fix J such that m* > 0.
Let m € (—m*, m*). Then there exist positive constants A, c such that

vy ;(Ya, <m) > Aemc0hn,

The two theorems above are regarded as “easy to prove” in statistical me-
chanics. The last theorem is a surface order lower bound large deviation
property to the left of the expected value for the magnetisation. In this re-
gion, the Ising model has a clear distinction from the i.i.d. case where we
always have volume order large deviation. The corresponding surface order
large deviation upper bound has been of larger interest over the last decade.
The first result concerning this matter was obtained by Schonmann [23]:

Theorem 2.8: Fix the dimension d. Let h = 0 and m € (—m*, m*). There
exists a Jy such that J > J; implies that there exist positive constants A, c
such that

vy ;(Ya, <m) < Aedl0An],
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Soon after Schonmann had shown this, Aizenman et. al ([1]) showed that
for dimensions large enough there was a gap between the lowest value of J;
that you could obtain from Schonmann’s argument and the critical inverse
temperature. Pisztora ([22]) has narrowed this gap by using FK-measures.
When we extend this result to the beach model and the iceberg model, we
will essentially follow arguments from Schonmann (with some suitable mod-
ifications). We have not tried to apply Pisztora’s arguments on either the
beach model or the iceberg model.

We are now going to give definitions of the beach model and the iceberg
model on a countably infinite graph of bounded degree. Before we do this,
we give the definition of a subshift of finite type. A configuration n: A — F
is a restriction of a configuration ( : B — F if A C B and ( agrees with
n on A. In this case ( is called an extension of 7. Note that if we choose
G = Z? then G acts on configurations by translation. For y,z € Z¢ we let
T,(z) =z +y, and for A C Z? we set T,A = {z +y: z € A}. Further, if
n:A— F,welet Tyn(z) =n(T_y(x)) for z € T,A.

Definition 2.9: Let n; : A; — F; 1 <1 < K be a finite set S of config-
urations with A; C Z% finite for each 1 < i < K. The subshift of finite
type in d dimensions corresponding to S is the set X C F z consisting of all
configurations n : Z* — F such that for all y € Z% it is not the case that Tyn
is an extension of some n; (The n;’s should be thought of as the disallowed
finite configurations.)

A configuration 77 : A — F is said to be compatible with & if Ip € X such
that 7 is a restriction of 7.

Definition 2.10: For a subshift of finite type X we say that X is strongly
irreducible if there is an r > 0 such that whenever we have two finite
compatible configurations ng : A — F and ng : B — F where the distance
between A and B is greater than r, there exists ann € X that is an extension
of both ns and np.

We will after Theorem 2.15 make a comment on why we let our interest
focus on strongly irreducible subshifts of finite type. Note that even if the
definition above is some kind of restriction, many interesting systems satisfy
it.

The next definition gives a measure of the degree of complexity of a subshift
of finite type. Let A, = [-n,n]? and X, = {7 : A, — F with 7 compatible}.
Further we let N,, = |A},| where | - | is the cardinality. Let X (77) = {n € X :
n is an extension of 7}.



Definition 2.11: The topological entropy of X" is

H(X):= lim log N

n—00 |A |

Suppose that p is a translation invariant measure on X. Then the measure
theoretic entropy of y is

H(p) := lim — 2 p(X (7)) log (X (7))

NEXny

Both of these limits exist by subadditivity and one can show that for any such
p we have H(u) < H(X). It is in fact well known that H(X) = sup, H(u)
where the supremum is taken over all translation invariant measures on X.
See [20] for an elementary proof. We say that u is a measure of maximal
entropy if H(u) = H(X). The study of phase transitions for subshifts of
finite type has (in [4], [5], [12]) concerned itself with the existence of more
than one measure of maximal entropy. Note that the definition of a subshift of
finite type cannot be generalised to a more general graph, since the definition
uses the notion of translations. The next result is due to Burton and Steif
[4] and is one of the main properties needed for a generalisation of the notion
of measures of maximal entropy for subshifts of finite type to a countably
infinite graph. It tells us that for translation invariant measures for subshifts
of finite type on Z¢, looking for measures of maximal entropy is the same as
looking for measures with uniform conditional probabilities as defined below.
Before we quote the result, we make the following definitions.

Definition 2.12: Given f,g € F, let s = {f,g} € F x F denote a symbol
pair. We say that a set S C F' x F' is symmetric if {f, g} € S implies that

{9, f}€S.

Definition 2.13: Let G = (V,E) be a countably infinite graph and let
S C F x F be a symmetric set of symbol pairs. The symmetric nearest
neighbour system (SNNS) corresponding to S is the set X C FV con-
sisting of all configurations n : V — F' such that for all x,y € V with x ~ y
it is not the case that {n(z),n(y)} € S (the set S should be thought of as
the set of disallowed pairs).

Definition 2.14: Given an SNNS X, a measure i on X having the local
Markov property is said to have the uniform conditional probability

(u.c.p.) property if

V finite W V compatible naw, p(:-|nsw) is uniform over all ny on W



that together with nsw constitute a compatible configuration on W U OW'.

Theorem 2.15: [4] Let G = Z¢ and let u be a translation invariant proba-
bility measure for a strongly irreducible subshift of finite type that is also a
symmetric nearest neighbour system. Then the following are equivalent:

(i) p is a measure of maximal entropy.

(ii) The conditional distribution of y on any finite set W given the con-
figuration on OW is u-a.s. uniform over all configurations on W that toge-
hter with the configuration on OW constitute a compatible configuration on
W uow.

When considering a probability measure for a SNNS on a general graph, the
point is that the property (ii) generalises perfectly well to general graphs,
but the property (i) does not. Therefore we shall say that a phase transition
occurs on G for a SNNS if there exists more than one u.c.p. measure. A
trivial example of such a phase transition is obtained by setting F' = {0,1}
and disallowing zeros and ones to sit next to each other. Then there exists
a u.c.p. measure that with probability one gives the configuration the value
0 for all vertices in G' and there exists a corresponding u.c.p. measure that
gives the value 1 on all vertices in GG. To prevent such trivial examples of
phase transition we again assume that the SNNS is strongly irreducible. This
property (see definition 2.10) is defined in the same way as for subshifts of
finite type. Note that even in the case of G = Z2?, there is not equivalence
between phase transitions for measures of maximal entropy and phase tran-
sitions for u.c.p. measures. An example of this is the generalised hardcore
model ([4]) where F' = {0,1,..., N} and positives are not allowed to sit next
to each other. If N is chosen large enough for this model, then there is phase
transition with respect to u.c.p. measures since then there exist two extreme
u.c.p. measures that give different probabilities to the value 0 at the origin
([2]). This situation can almost be thought of as an “infinite checkerboard”.
Yet there is only one convex combination (each of probability 1/2) of those
two extreme u.c.p. measures that is translation invariant and hence a mea-
sure of maximal entropy. Since translation invariance is a necessary condition
in the definition (2.11) of measure theoretic entropy, the set of measures of
maximal entropy is not the same as the set of u.c.p. measures. Since there
is no generalisation for the measure theoretic entropy to general graphs, but
there is an obvious generalisation of u.c.p. measures regarding this matter,
we will study u.c.p. measures.

Definition 2.16: The beach model. Let M; and M, be positive integers
such that M; < M, and let

F:F1UF2UF3UF4
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where
Fy={-My,—My+1,...,—M; —1}
Fy={-M;,-M; +1,...,—-1}
F3:{1,2,...,M1}
F4:{M1+1,M1+2,...,M2}.

Call a symbol f € F

negative if feFiUF,
positive if feFs;UF,
unprivileged if f € FyUF,
privileged if feF,UF;

and consider the SNNS where a negative may not sit next to a positive unless
both are privileged. At a first sight the beach model can be regarded as two-
parametric, but so far the only parameter that has been paid attention to
is the ratio M := % This is because that the notion of phase transition
for measures of maximal entropy is only dependent on M ([12]). Let u be
a measure having the u.c.p. property. Nonuniqueness on Z? for d > 2 for
measures of maximal entropy (or u.c.p. measures) for this model was first
obtained in [4], where they studied the case M; = 1 and M; = M. Note
that for rational M’s it has been shown (see [12]) that on Z¢ for d > 2, there
exists an M.(d) > 1 such that if M < M,(d) then we do not have phase
transition and for M > M.(d) we have phase transition. Simulations done
by Nelander ([21]) indicate that the critical value for d = 2 lies between 2.0
and 2.25. In this paper it is also conjectured that M,.(d) is nonincreasing in
d. Results on phase transition for the beach model on more general graphs
than Z¢ can be found in Higgstrom ([14]). Here he also introduces a version
of the beach model that allows real-valued M’s. Observe that we in this
paper set M; = 1, which corresponds to using integer values of M. This is

for the sake of simplicity. Our theorems are easy to extend to rational values
of M.

Remark: There are now powerful random-cluster methods for the study
of the beach model and the iceberg model. A reference to these tools is
Héggstrom ([13]).

Example 2.17: The iceberg model. Let N; and N, be positive integers
and let N := x—f, and define the symbol set H = H_ U Hy U H, where

H, == {—NQ,—NQ+1,...,—1}
HO - {01,02,...,0]\]1}
H+ - {1,2,...,N2}.
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The Iceberg model in d > 2 dimensions was introduced in [5] and is the SNNS
for which no element of H_ sits next to an element of H,. This model can
also be viewed as a variant of the Widom-Rowlinson model, which was first
studied in [24]. Note that there is an important difference between the beach
model and the iceberg model in that the occurence of phase transition is
increasing in M on any graph G for the beach model ([13]), but not increasing
in N for all G for the iceberg model ([3]).

We now give a short description of stochastic domination for these SNNS. We
have already made a brief introduction on this subject for the Ising model.
When we define stochastic domination for the beach model and the iceberg
model we declare n < ¢ if p(z) < §(x) for all z € V. One then makes the
following definition (see [19]).

Definition 2.18: If ;1 and v are probability measures on FV where F is a
finite set contained in R and where V' is countable (perhaps finite), we say
u = v if there exists a probability measure m on FV x FV whose first and
second marginals are p and v respectively and such that

m{(n,d): n <} =1.

The following lemma, which is an analogue of Holley’s theorem and can be
proved by use of the coupling method (see [17]), is proved for V = Z¢ in [4].
We omit the proof of our lemma since it is easily generalized for a countably
infinite graph V.

Lemma 2.19: Let S be a finite set contained in V. For the beach model
or the iceberg model, let n < § be defined on 0S and be compatible. Then
p(-|m) < u(-|0) where pu(-) denotes a probability measure that has the u.c.p.
property.

Using this theorem, one can define ™ and =~ analogously to the Ising model.
For example let ™ be obtained as the limit limy, o iy, of measures py),
which assigns all nodes in V' — W,, the maximal value on V' — W,, and which
have the suitable distribution on W,,. Compactness and monotonicity then as
usual imply existence. The following simple condition tells us whether there
is phase transition for the beach model and the iceberg model respectively.
This also covers the asymmetric case, but we defer the definition of the
asymmetric beach model until Section 4. The proof is not hard to show and
is omitted.

Theorem 2.20: For v € V let {n(v) = +} denote the event that n(v) is
positive. Then there is phase transition if and only if

Jv € V such that u*(n(v) = +) # p (n(v) = +).

11



This means that we can simply show phase transition if we find a v € V
such that u*(n(v) = +) # u (n(v) = +). The coupling method in the proof
of Lemma 2.19 can also be used to prove the FKG-property. We say that
a bounded function g : 7w — R on a finite set W C V is increasing if

771(,[1,) < 771(,12,) implies g(nl(,[l,)) < g(n%)) for all 77%,) and all 771(,[2,) with 77‘(,[1,) < 77512,).

Theorem 2.21 (FKG-property): Let W be finite and denote by pw (+|nw)
the conditional u.c.p. measure on W given the compatible configuration nay,
either for the beach model or for the iceberg model. Then for increasing
g1, 92 : nw — R we have that

pw (9192 |mw) > pw (910w ) pw (92w ).-

This can be proved by use of standard coupling arguments by letting

p(nw) = pw (w naw )

and

_ tw (nw |1aw ) g1 (nw)
J g1 (mw)dpa(nw)
Then, by standard coupling arguments one can show that u; < ps and by
applying these measures to g9, the FKG-property follows.

Before we end this section we introduce notation that will prove useful for
us in the next sections. Let Fy be the o-algebra generated by the set X’ of
compatible configurations on V' and let F4 the sub o-algebra generated by
the set of all compatible configurations on A C V. Denote by P(X, Fy) the
set of probability measures on (X, Fy). Given p € P(X,Fy) let u(-|Fow)
be the conditional measure on W given a compatible configuration on the
boundary 0W. For any function f € Fy, denote by u(f) the expectation of
f. With this notation the local Markov property can now be defined as:

V finite W C V' V bounded f € Fw : u(f|Fv_w) = u(f|Fow).

We will make use of this definition mainly in the next section.

12



3 The global Markov property

As we have seen, many systems have the local Markov property. Another
property is the global Markov property which for an SNNS can be defined
as follows:

Definition 3.1: A measure p on X is said to have the global Markov
property (GMP) if

VACV Vbounded f € Fa: p(f|Fv_a) = u(f|Foa)

This definition is different from the definition of the local Markov property
in the sense that for the local Markov property A is required to be finite.

To prove this property for the beach model on any countably infinite graph of
bounded degree, we will need a characterisation of the graph. Given r € N,
we say that an infinite connected locally finite graph is r-separated if

VACV IW,) 1TV 3 Vnd((W, — A) —0A, 0 ANW,)N(V =W,)) >r

where (W,,) is a sequence of finite subsets of V.

Lemma 3.2: Any countably infinite graph of bounded degree is r-separated
for any r € N.

The proof of the lemma above is given at the end of this section.

Theorem 3.3: For the beach model on an (r=3)-separated graph and for
the iceberg model on an (r=2)-separated graph, the GMP holds for p*.

Before we prove this theorem we introduce the concept of maximal exten-
sions:

Definition 3.4: Let nw be a compatible configuration on W C V. We
say that ny : V. — F € Fy is a maximal extension of ny if ny is an
extension of ny such that for all extensions ny : V — F € Fy of ny satisfies
nv(z) > fy(x) Vo € V. We denote the restriction of such a maximal
extension to B C'V by nk|nw.

Such an element exists for the beach model and for the iceberg model since
if 0 and « are in X and oW = aw = nw, then oV a € X where o V a(z) =
max{o(z), a(z)}. To see this, suppose o V o ¢ X. Then there exists a pair
x,y € V such that = ~ y and the symbol pair for ¢ V a on z,y is one of the
disallowed symbol pairs. From the definition of the beach model (and the
iceberg model respectively) it now follows that either o(z,y) or a(z,y) is a
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disallowed pair, yielding that either o or « is not compatible. Uniqueness is
obvious from the definition.

The maximal extension of a configuration ny on W is closely related to the
value at each point in W for both the beach model and the iceberg model:

Lemma 3.5:
VW Viw € Fw Vo €V —W: ng|pw = min{n;|n.}

We prove this lemma for the beach model. The arguments can easily be
changed to be valid for the iceberg model.

Proof of Lemma 3.5: Fix W and choose an x € V — W. We prove this by
showing that
() g [nw < mingew {7 7.}

(ii) 7 I > mingew {0 1.}
(i) Since 7>y |nw together with ny is an extension of 7, to V, it follows

that
n_wlnw < nf_wlne Yu e W.

Hence 7] |nw < mingew {n]|n.}-

(ii) It is clear that n}|nw can only equal -1,1 or M. If it equals -1, it is

neighbouring some point v € W such that n, € (-M,—-M +1,...,-2).
Then mingew {n} |n} = —1. If nf|lnw = +1, then there exists either a
point v € W with d(u,z) = 1 having n, = —1 or a point v € W with
d(u,z) = 2 having n, € (—M,—M +1,...,—2) which gives the conclusion

that min,ew {n;|n,} < 1. If it equals M then the inequality is trivial. This
ends the proof of (ii).
O

Proof of Theorem 3.3: We prove this theorem for the beach model. The
proof for the iceberg model is analogous. Fix A C V' and choose a sequence
(W,) 1V such that Vn d(W, — A) — 0A, 0(ANW,) N (V —W,)) > 3. Let
u?,},n, 4 denote the measure on W, where ny, _4 is chosen according to u™,
the boundary configuration ngw, is chosen to be 73y, [7w,-4 from Lemma
3.5 and nw, 4 is chosen according to the u.c.p.-property given the boundary
condition naw,na)y on O(W, N A). Note that the boundary condition on
d(W,NA) is a restriction of the union of ny, 4 and 13y, |17w, -4 since d(W,, N
A) = (O(W,NnA)N(W,—A))U(O(W,NA)NOW,,). Hence nyw,n4) is uniquely
determined by n, — 4 since ngwn |mw,, — 4 is uniquely determined by ny, 4. Let
. aa(:|mw,—a) denote the conditional probability measure given the above
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construction on W,, N A given Fy, _4. It is clear that for f € Fy,na,9 €
an—Av

i a(9f) = [ 0t @dn)gn) sl a(fm,a). (3.1)

We have the following lemma which we will prove later:

Lemma 3.6: For the beach model on any 3-separated graph and for the
iceberg model on any 2-separated graph, for all A C V there exists a sequence
(W,) 1V such that

Vo iy, aaCliw.—a) € Fw,noa.

From domination arguments we have that pu*|w, =< py 4 =, on Wi,
Hence

lim iy, 4 = pt. (3.2)

n—oo

That this is a sufficient condition for the GMP for u* follows from an argu-
ment similar to Goldstein ([10]): We are going to show that

Vf € UnFw,na Ifo € Foa V9 € UnFw,-a pt(gf) =1 (9fx)- (3:3)

?Using monotone class arguments? for functions gives that this will be
enough to show the GMP. Fix m and let f € Fy, na. Let n:V = F e Fy
and let nw, _4 be the restriction of n to W,, — A. Let

fa(M) = 153y, na (f W, —a)

for n > m. Fix n > m and let g € Fy,_a. It follows from (3.1) and (3.2)
that (3.3) will be satisfied by

foo = lim fn(n)a (34)

n—0o0

and fo € Fayq since f, € Fy,noa from Lemma 3.6, provided that this limit
exists (see Lemma 3.5 p.31 [25]). Lemma 3.5 gives that the sequence of mea-
sures fiyy ~4(f|Mw,—4)|w,n.na is nonincreasing in n and hence the existence
of the limit (3.4) is easily established using monotonicity and compactness
arguments. This completes the proof.

|

Next we prove Lemma 3.6 for the beach model. The proof can easily be
adapted to the iceberg model.
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Proof of Lemma 3.6: Fix A C V and choose a sequence W,, T V such that
Vn d(W, A) 0A, 0W,NA)N(V —W,)) > 3. Fix n and fix a compatible
an 4. Let nV) 8(W NA) — F be the restriction of the union of ny, 4 and
Naw, |[Mw,—a to (W, N A). Let n® : 9(W,, N A) — F be the restriction of the
union of Ny, 94 and n;Wn |mw,naa to O(W,NA) where nw, na is the restriction
of nw, —a to W,NAA. The lemma follows once we have proven that n() = 5?.
It is clear that n") = n® on W, N (W, N A). Hence we have to show that
n = n® on W, NO(W, N A). Fix z € OW, NO(W,NA). From Lemma 3.5
we have that n{!) = mlnuew “a{nF|n.} and that {2 = ming,ew, noa{n |7}
which implies () < n{?). We have that

(1) — - -
np) = dmin (gl = min {0

since 0} |n, = M if d(z,u) > 3. We will be done with the proof if we show
that {u € W,, — A, d(u,z) <2} C W,,NA since then n{!) > n{?). Since the
graph is 3-separated we have that

d((Wp — A) — DA, 8(W, N A) N (V — W) > 3 =

d(W, —A) —0A,x) >3 since z € OW, NO(W,, N A) =
{ueW, —A, du,z) <2} CW,N0JA
since if u € W, — A and u ¢ W,, N 0A, then u € (W,, — A) — 0A.

|

Proof of Lemma 3.2: Fix an r € N. Fix A C V and choose a sequence
(Ay) T A of finite subsets of A converging to A. Let (V;,) 1V be an increasing
sequence of finite subsets converging to V. For n > 1 define

B, ={z € 04; d(z,A,) =1}
C,={z€((V,—A) —0A4; dz,A— A,) >r}.

Clearly (B,) 1 0A as n tends to infinity. Since every vertex in the graph has
bounded degree, it also follows that

Vo € (V — A) — OA In, such that d(z, A — A,) > 1 Vn > n,.

Using that Vo € (V — A) — 0A 3n!, such that x € (V,, — A) — 0A Vn > nl,
we have that

Vz € (V — A) — 0A Inj, such that x € C,, Vn > nj.
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Hence, since (C,,) is increasing, (C,) 1 (V — A) — 0A. Now let
W, =A4,UB,UC,. (3.5)

Since (4,) 1T A, (B,) 1 0A and (C,,) 1 (V —A) —0A, we have that (W,,) 1T V.
We are now going to show that d((W,,—A)—0A, o(W,NA)N(V-W,,)) > rby
showing that o(W,NA)N(V -W,) C A— A, and using that (W, —A)—0A =
Cy. Let z € 0(W,, N A)N(V —W,,). We know from (3.5) that W,, N A = A,,.
This gives that x € V — A, and d(z, A,)) = 1. Supposing that z € V — A will
give a contradiction, since if z € V' — A, then by using d(z, A,) = 1 we have
that x € 0A and that x € B,, which would imply x € W,,. Hence z € A and
since ¢ & A, it follows that x € A — A,,.
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4 Phase transition on nonamenable graphs

In this section we study asymmetric versions of the beach model and the
iceberg model. First we prove a phase transition result for the asymmetric
beach model. Then we make a remark on the fact that the proof can easily
be adapted to prove the analogous result for the iceberg model.

The asymmetric beach model was introduced by Burton and Steif in [5],
where it was shown that this model on Z¢ has a unique measure of maximal
entropy when M is chosen sufficiently large. This is believed to hold for
all M for the asymmetric beach model. Earlier they showed ([4]) that the
symmetric beach model (k = 0) on Z? exhibits a phase transition when M
is chosen large enough. Jonasson and Steif ([16]) have generalized the result
of uniqueness of Gibbs states for the Ising model on Z¢ with an external
field to the corresponding result on a quasitransitive amenable graph. They
have also shown that the Ising model on any nonamenable graph exhibits
a phase transition when the inverse temperature is chosen sufficiently large.
Here we show the corresponding result for the asymmetric beach model on
nonamenable graphs. Recall definition 2.3 that a countably infinite graph of
bounded degree is nonamenable if and only if
— [OW |
w(G) = w ﬁgltﬁ ca |W| > 0.

Definition 4.1: The asymmetric beach model Let £k € N and let F' =
{-M +k,-M+k+1,...,—1,41,42,..., M} and let X be the SNNS for
which no nearest neighbours have opposite sign unless both have absolute
value equal to 1.

This definition differs slightly from the definition of the symmetric beach
model (k = 0) in that £ > 0. On a nonamenable graph we have the following
theorem:

Theorem 4.2: Fix k € N. For the asymmetric beach model on a nona-
menable graph with maximum degree d, there exists an M'(G, k) such that
we have phase transition whenever M > M'(G, k).

Proof of Theorem 4.2: We will need the following lemma due to Kesten
([18]).

Lemma 4.3 Let G be an infinite graph with maximum degree d and let C,,
be the set of connected sets with m vertices containing a fized vertex x. Then
ICn| < (e(d+1))™.

Fix z and let C,, be as in the above lemma. For C' € Uy_,Cp,, let Ac =
{n(0C) = —1,n(0(C°)) = +1}, i.e. the event that the outer boundary of C
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equals —1 and the inner boundary of C' equals +1. Let {n(z) = +} denote
the event that 7(x) is positive. For a sequence (W,,) 1V, where the W,,’s are
finite connected subsets of V' containing z, let p, be short notation for pyy,
defined in Section 1. Now for any n € {1,2,...}, we have

@) =0 <im(U U 403 3 mde) (41)

If we show that for each C € U,,C,,,

c
1y, (Ac) < (W) , (4.2)

then by inserting this into (4.1) and using Lemma 4.3, we get

tr (n( i (%)m

which is less than 1/2 uniformly in n if M — k > (6e(d + 1))4/*).

To prove (4.2), fix n and fix C' € U,,Cy,. Define Q¢ to be the set of compatible
configurations on C'UJC which equal —1 on OC' and suppose that n € A¢ is
a compatible configuration on C U 9C. Note that n € Ac = n € Q¢. Define
the subgraph Cps(n) of C as

Cows(n) = {v € C:n(v) = +}.

Now let 77 € FCY9C be the configuration obtained from 7 by reversing the
sign of any node in Cps. Note that 7j(z) will be negative for all z in C'. This
yields that 7 € Q¢. Also note that the set {n' € Q¢|7' = 7} has cardinality
at most 2/¢!. This is because from 7 one can recover n up to the sign for each
node in C.

Given 7 € Q¢ such that n € Ag, define the class B(7) to be
{p€Qc:plx)=n(x) Yo € C—0(C°, p(z) <0 Vzed(C}.
Clearly
B() € Qc, |B@)| = (M — k)", and B(@) N B(if) =0
for 77 # 7, since if 7 # 7' they must differ at some point in C'— 9(C*) as they

are = —1 on 0(C°).

19



We therefore obtain
tn (Ac) = pn (n(0(C°)) = +1|n(0C) = =1) iy, (n(9C) = —1)

) {E€ € A} 2
FIOC) = =) < 1 € Gy (M — ko

< py, (n(9(C*))

9[C| 9 IC|
= (L = Ry = ((M - k)n(c)/d)
uniformly in n, where we in the last inequality used that |0(C*)| > |0C|/d.
Hence (4.2) is shown.

A similar argument gives that M > (6e(d + 1))#*(%) is a sufficient, condition
to show that u(n(z) = —) < 1/2 uniformly in n. Clearly this condition is
valid if M — k > (6e(d + 1))%*%. From this we can choose M'(G, k) to be
k + (6e(d + 1))¥*(_ This finishes the proof of Theorem 4.2.

|

Remark: Note that one can show phase transition for the symmetric beach
model on a nonamenable graph using the same method as above with £ =
0, but the point is that it is generally harder to get phase transition in
asymmetric situations.

Remark: An asymmetric definiton of the iceberg model is easily obtained
by fixing £ € N and letting H_ = {—N+k,—N+k+1,...,1}, Hy = {0} and
H*™ ={1,2,...,N}. The proof above is then easily generalised to be valid for
the asymmetric iceberg model by letting Q¢ in the proof of (3.2) above be the
set of compatible configurations on C'U dC which are in {—1,...,—Ny} on
0C and which equal 0 on 9(C®) and choosing N'(G, k) = k+ (6e(d+1))¥/*),
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5 Large deviation results

In this section we study large deviation results for the symmetric beach model
on Z?¢. We show some volume order and surface order large deviation prop-
erties for the magnetization in a box A,, where (A,,) denotes the increasing
sequence of boxes

Ap={zeZ':—n<z;<n,i=1,...,d}

converging to Z%. Let sgn : Z\{0} — {—1,1} be the sign function. We
define the spontaneous magnetization for the plus state for the beach

model as
(M) = [ sqn(no)dp* ().

It is not hard to show that m* > 0 if and only if we have phase transition.
The magnetization Y4(n) in a finite A C Z¢ is defined as

mw=@zwma

T€EA

where |A| denote the number of vertices in A. Since u* can easily be shown
to be extremal, we have that u* has a trivial tail o-field (see Theorem 7.7.a.
p. 118, [9]). The translation invariance and the triviality of the tail o-field
for ™ imply that p* is ergodic (Proposition 14.9. p. 293, [9]). Since sgn
is a bounded function we have that Y, converges put almost surely to m* as
A1V (Theorem 14.A.8. p.306, [9] and the following remark on p.307).

Remark: Note that the process {sgn(n,), = € Z¢} under y* is distributed
according to the “site-centred ferromagnet”, a model introduced by Haggstrom
in [12].

Let YJQ; denote the magnetization on A, where the boundary condition on
J(A¢) is chosen to be M.

Lemma 5.1: Fix M. Y| converges to m* (= m*(M)) in probability.

We now state the volume order large deviation theorem, which holds to the
right of m*.

Warning: throughout this section A and ¢ below represent generic constants
that may change value for different expressions.

Theorem 5.2: Fix M and let m € (m*,1]. There exist positive constants
Ay, Ag, c1, ¢y such that

Aje Ml <t (Y, > m) < Age linl,
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This theorem corresponds to volume order large deviation for the Ising model
to the right of the expected value for the magnetisation in a box A,. The first
inequality is easy to prove once we have established the following lemma.

Lemma 5.3: Fix M and d. There exists an o« > 0 such that

V finite A C Z¢ V nu € Fa pt(na) > ol

Proposition 5.4: Fix M such that m* > 0. Let m € (—m*,m*). There
exist positive constants A, c such that

pt(Ya, <m) > Aemclohl

This proposition corresponds to a surface order large deviation lower bound
to the left of the expected value of the magnetisation for the Ising model
in a box A, (see e.g. [23]). This surface order large deviation property
is different from what one obtains for i.i.d. processes, since deviations are
always of volume order in that case. We are now about to introduce a
sufficient condition for an upper bound of surface order large deviation to
the left of the expected value for the magnetisation in a box A, for the beach
model. The condition used by Schonmann in [23] for the Ising model is
similar. Note that Pisztora ([22]) has sharpened Schonmann’s surface order
large deviation result by using FK-measures but we have not tried to apply
Pisztora’s arguments on the beach model.

Definition 5.5: C C Z? is an enclosing set of B C Z? if

(1) BCC
(73)  C'is finite
(7i1) C and C° are each connected.

Let # be the set of subsets S of Z? such that z; = 0 for all z € S. For a
finite S € H consider the event

Eg = {there exists an enclosing set C of S such that nyce) = +1}.

Definition 5.6: Givenn € X, we say K C Z¢ is a positive cluster (with
respect ton) if K is connected, n(x) > 1 for allx € K and K is maximal with
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respect to these two properties. A negative cluster is defined analogously.
A cluster is either a positive or a negative cluster.

Denote by E,; ... the event that there is absense of negative infinite clusters.

The sufficient condition that we have is the existence of A, ¢ > 0 such that
pt(Es) < Ae~Sll for any finite S € H, (5.1)
provided that u*(E.,.) and where
1S|| = inf{|R| : R C Z%, R is connected, S C R}.

For each dimension d > 2 Burton and Steif ([4]) have shown that if M >
4e28% then the probability of the occurence of an enclosing set of the origin
with inner boundary of cardinality [ with only plus or minus ones on the
inner boundary surrounding a fixed point decreases exponentially with /.
They have also shown that in this case there are no negative infinite clusters
a.s. It follows that for M > 4e28? (5.1) holds. Our main result is

Theorem 5.7: Let m € [—1,m*). If (5.1) holds then there exist positive
constants A, ¢ such that

(Yo, <m) < Aemcl0hnl

Remark: For the Ising model Aizenman et. al. ([1]) have shown that for
dimensions large enough, there is a gap between the critical inverse tempera-
ture f, and B; = inf{f : The corresponding condition to (5.1) for the Ising
model is valid}. In the proof of that theorem they use the fact that there
exists a constant K < oo such that 3.(d) < K/d for all d. Their method of
showing this gap cannot be used for the beach model (yet) since it has not
even been shown that M, (d) is decreasing in d for the beach model, although
one would suspect this ([21]).

Let
T,={x € A,, z4=0}

be a d—1 -dimensional cross section of A,,. Set also T, = {x € A, : z4 = k}.
To prove Theorem 5.7 we will need the following lemma.

Lemma 5.8: If (5.1) holds and m < m*, then there exist positive constants
A, ¢ such that
pt(Xr, <m) < Aexp(—cn®™).
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Proof of Lemma 5.1: We have from Lemma 2.19 that Yj’n > Y,,. Hence
Ve >0

P(Yy <m*—¢) = 0asn— o0 (5.2)
since Y3, goes to m* a.s. Now we show that Ve > 0, P(Y," > m* +¢) —
0 as n — oo by showing that for large n the expectation of YAJ; is close to m*.
We use a well known method from statistical mechanics. Let A C A,, and
denote by ,uj{n(YA) the expectation of Y, given plus boundary conditions on
OA,,. Note that Y, can be expressed as ﬁ > wea Yz. Choose € > (. Clearly

we can choose k such that p} (Yo) < m* + §. Now choose n, > k such that
[An—Ang| <5 Vn > n.. We now have that

[An|
1
Y +

zEA,

Y.+ > Y)<

TEA, & TEAR—Ay_g

e, (Ya,) = py, ( |A

\Alan"( 2 Yot > D)= |An\( Do mk, (Ya) + A —Api]) <

TEA, _§ TEAL—Ap_ TEA, _1

|A |((m + )‘An k“l“A _An k\)<m + € Vn>n€

Hence Ve > 0 Jn, such that pf (Ya,) < m* +e€ Vn > n.. This gives that

limsup, px (Ya,) < m*. This gives together with (5.2) and the boundedness
of Yy, that YA*; converges to m* in probability.

|

Proof of Theorem 5.2 The first inequality is easily seen from the fact that
pH(Ya, =m) > p*(na, = M) > o™
from Lemma 5.3. Here we can choose A; = 1 and ¢; = log(1/a) to get
pt(Ya, > m) > Aje Al For the proof of the other inequality we again
use a method from statistical mechanics. Let ¢ = m — m*. From Lemma
5.1 we can choose k such that P(Y)\ > m* +¢/2) < 37%/¢. Forl € N, let
i = (i1, 99, ...,1q) € {—L,...,1}? and define the disjoint regions
={reZ% —k<z;—i;(2k+1) <k, j=1,...,d}.

Note that for n such that (2n + 1) = (2k + 1)(2l + 1) we have that A, =
Uie{,...3eBi. Let

G=1if Yp, > m" + 5
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Let F' be the event that m > G > 5 where we sum over i € {-,..., l}d.
Let E be the event that napey = +M foralli € {—1,...,1}% Using the FKG-
property and the fact that F¢ implies that Y5, < (1 — £)(m* 4+ £) + 5 <
m* + ¢ where the union is over i € {—1,...,(}% we have for n such that
(2n+1) = (2k +1)(20 + 1) that

pr(Ya, 2m" +e) < pt(Ya, = m" +€|E) < p* (F|E).

Since conditional on FE, the variables ((;) are ii.d. 0-1 random variables,
there are at most 224D ways of assigning values to the variables ({;) to
indicate the event F. Using that on F the variables ((;) are i.i.d. we have
that

w(FIB) < 2P0 (P(Y, > m* + )1 <
S 2(2l+1)d32/63—(2l+1)d — A26_62|An|.
The extension for all n is routine.

|

Proof of Lemma 5.3: Let o = (51)(+2+2¢°) Pix A and let k = |A|. Let

na € Fa. For a finite W C Z9, let

1
aa7)

Cw={yeZ: d(y,W)<2}.

We have for = € Z¢ that |Cy| = 1+2d + 2d(1 + 242) = 1 4 2d + 2d? and for
zeA

U Cs = Ca.

€A
We have that |C4| < (1 + 2d + 2d?)k and that [{nc, € Fo,} < (2M)/Cal,
Note that if x € 0Cy4 then d(z, A) = 3. This yields that every compatible
Nac, is compatible with every 74 by irreducibility which gives that

1
pr(nalFocy) > 7erma—

(2M)/Ca’’
where we use that for any compatible configuration on 0C'y there exists at
least one ccompatible configuration on C4 which restricted to A equals 74
and agrees with the configuration on 0C4. Hence

ptna) = > ptmec ) malnec,) > D u*(nacA)Wz

nBCAEJ:BCA nBCAEJ:@CA
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1
> M+(7760A)(W)k=a’“.

noc, €Foc,

|

Proof of Proposition 5.4: Fix n and let E,, be the event that ny,) = —M.
Lemma 5.3 give us that

pt(Ya, <m) > pt(En)ut (Ya, < mlE,) > o)yt (Yy, < mlE,).

However u*(Yy, < ml|E,) tends to 1 as n tends to infinity by applying
Lemma 5.1 to X, (which is defined analogously to X ) and using the local
Markov property. This finishes the proof.

|

Next we will prove Lemma, 5.8 in the case d = 2. The method used for d = 2
can easily be generalized for larger dimensions. We will make some remarks
on the case of larger dimensions after the proof of Lemma 5.9.

Proof of Lemma 5.8: Set ¢ = m* — m. By the triviality of the tail o-field
for ™, it is possible to choose an L € N such that

pt(Yp, <m* —e/3) < 37%¢)2.

For N € {1,2,...} to be chosen later, define the regions
Ri={zx€Z*:-L<z,—(i—-1)NQL+1) <L, =0},

J
SjIUR,’fOIjEN.

i=1

Consider the random variables

G=1if Yg, >m" —¢/3,
(; = 0 otherwise
Z;i=j"'> G

i=1

By Lemma 5.9 below and our choice of L it is possible to choose N €
{1,3,5,...} large enough that for any k and i; < i < - -- < iy,

/,L+(Czk = OK‘“ = ... = Cik—l — 0) < 3*3/6.
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Then
M+(Cz'1 == C’lk = 0) < (3_3/€)k' (53)
On the other hand, by translation invariance ( see [4]), for n such that 2n+1 =
(2L +1)Nj, j € {1,3,5,...},
pt (Yo, <m* —€) < Nut(Ys, <m” —¢)

< Nut(Z; <1-¢/3) (5.4)

where we used the fact that if Z; > 1—¢/3 then Yg, > (1 —¢/3)(m* —¢/3) —
€/3 > m* —e. Since there are not more than 27 choices of describing random
variable Z;, it follows from (5.3) that

pt(Z; <1 —¢/3) < 29(373/)Ue/3l < 33/¢(2/3) = Ae~n

for some positive A and c¢. Together with (5.4) this finishes the proof when
n is such that 2n 4+ 1 = (2L + 1) Nj. Note that L is a function of € and that
N is a function of (L, €¢) and hence a function of e. Hence N in eq. (5.4) can
be incorporated in A above. The extension for all n is routine.

Next we will prove Lemma 5.9 for the case d = 2.

Lemma 5.9: Let R;, i € N and S}, j € {1,2,...,i} be as in the proof of
Lemma 5.8. Assume that (5.1) holds. Then, for fixed L, given € > 0, it is
possible to find N such that

[ (FIE) — u™(F)| <,

for any pair of negative events E and F which depend respectively on {n, :
z € S;} and {n, : x € R} for some j.

Definition 5.10: For n € X we say that an enclosing set A of B has an
M-boundary if AD B, nga(z) € {2,..., M} Vx € 0A and nyac) = +1.

Proof of Lemma 5.9: Set
E={n,=-MVz €S}
By use of the FKG-property and Lemma 2.19,
w*(F) < p* (F|E) < u* (F|B). (5.5)

Given z € Rj;1, let Gj(x) be the event that every R;, i = 1,...,7 is con-
tained in an enclosing set of R; having an M-boundary and the innermost
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(to be defined below) collection of such enclosing sets also contains the point
x € Rj;1. By the innermost collection G of such subsets, not necessarily
containing x, we mean the collection of enclosing sets with the prescribed
property for which the number of nodes in such a collection is minimized.
That existence 1mphes uniqueness of such a collection follows from the fact
that if C; = U_, A ]; and Cy = UL A%) are two such innermost collections
with C; # Cy and each Ap, is an enclosmg set of B; with an M-boundary,
then C5 := ngl(Agi) N Ag}) consists of enclosing sets with M-boundaries
having less nodes than C; and Cs. That A( ) N A() is an enclosmg set
of B; follows from the fact that 8( A(Q)) C 0Ap 1) U aAB and that

(Asgi) N A(Bi))c necessarily is connected. Decompose GJ( ) into the disjoint
events (k=1,...,7)

Gjk(z) = {G;(x) occurs and the element of G which contains
X, also contains Ry but does not contain
R; with 1 <i < k).

Write also
H s = {7755 =—MVzx € Ss\Srfl}

where s € {0,...,j} and r € {1,...,s}. Now

5y _ 15 (Gin(@) 0 Hips 0 Hig)
e ok J
M ( y,k(x)l ) M+(HkJmH1k 1)

(5.6)

By the FKG-property
pH(Hyg OV Hy 1) > pt (Hig)pt (Hyg 1) > o®FDUR0 0 (1) (5.7)

where « is from Lemma 5.3. On the other hand for any C such that C is the
innermost enclosing set enclosing both Ry and z and C' does not contain R;
for1 <7<k,

©(C has an M—boundary N Hy ; N Hy 1)

< pu*(C has an M—boundary N Hy 1)
= u(C has an M —boundary)-

pt(Hi -1|C has an M—boundary)
< u*(C has an M—boundary)u™ (Hy j_1).

In the last inequality we used the fact that C' does not contain R;,7 =
., k—1; therefore by the Markov property of 4+ and by the FKG-property
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this inequality follows. Indeed for the increasing event {C has an M —boundary
and the decreasing event H, ;_;, the FKG-property (Theorem 2.20) implies
the last inequality. Observe that it is possible that C' N (Uf:_fRi) # () and
that the last inequality holds trivially in this case. Summing over C gives

p(Gip(x) N Hig—1 N Hyy)
(5.8)
< pt(there is an enclosing set of Ry and z having an
M—boundary)u™ (Hy g—1)-

From (5.6), (5.7), (5.8), and (5.1),
/,L+(Gj,k($)|E') < Aexp[—c(j —k+1)N(2L +1)] - o QL) —k+1)

= Aexp[(—cN —loga)(2L +1)(j — k + 1)].
Hence
W (G5 (@) B) < Z 4 Gy@)| ) < 3 Aespl(—cN ~ loga) 2L+ 1)1}

From these inequalities it is clear that there exists Ny such that if N > N,
then

iH(Gy(2)|B) < e/ 2L+ 1). (5.9)
Set
G; = U G(z).

Then by (5.9), for N > N,

Now
P (FIE) = p (F|E N Gj)p*(G5|E)
+ut(FIEN (Gt ((GHIE). (5.11)

But on EN (G%), Rj41 is isolated from S; by enclosing sets of Ry, i =1,...,j
having M-boundaries. Therefore by the Markov and FKG properties

pH(FIEN(GS)) < pt(F).
So by (5.10) and (5.11)

pH(FIE) < pt(F) +e
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and using (5.5) the proof is complete.

|

In d > 2 one can prove Lemma 5.8 in an analogous way using the following
definitions of R; and Sj, 1,5 € N4 1

Ri={reZ': 1<z, — (i, -1)NRL+1) <L, r=1,...,d —1; 24 =0},
S; = U R;.
1<i, <4, r=1,...,d—1

Lemma 5.9 can then be stated with E depending on {n, : z € S;\R;} for
some j and ¢ and F' depending on {n, : = € R;} where i is such that R; C S;.
Note that when one proves the analogue of (5.9) there is an extra polynomial
factor in 7, due to the number of sets R; at distance r from R;.

Proof of Theorem 5.7: By Lemma 5.8 and translation invariance
pt (X, <m) < put(3k € [-n,n] N Z such that X, , <m)

< (@2n+ Dyt (Xp, <m) < Ae @M

if m < m*. This completes the proof.
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