A generalization of Littlewood’s Tauberian
theorem for the Laplace transform

Lennart Frennemo

0 Introduction

In this paper we will consider a Tauberian problem of the following kind:

Suppose that a and 3 are two functions of bounded variation on any finite interval
[0,T],T > 0, and suppose that a(0) = B(0) = 0. If furthermore

(0.1) /00 e *tda(t) ~ /OO et dB(t), s— 0+,
0 0

where [ satisfies some kind of reqularity condition and o satisfies a Tauberian
condition, then
(0.2) at) ~ B(t), t— oo.

Here (0.2) means that

with a corresponding interpretation for (0.1).

The method used to prove this consists in making a certain substitution in (0.1)
thereby making a convolution transform out of the Laplace transform. We then
prove that the span of translates of this convolution kernel is dense in a certain
weighted space, a result which might be of some independent interest. The solu-
tion of the problem depends on this. Our result is a generalisation of a classical
Tauberian theorem due to Littlewood [4], but sometimes also referred to as Hardy
and Littlewood’s [1] or Karamata’s [2] theorem.

As formulated above this kind of problems has been treated by Korenblum [3],
Mohr [5] and Wagner [7, 8] but with stronger conditions than ours.



1 Preliminaries

Suppose that « is of local bounded variation on the positive real line with «(0) =
0, and suppose that

(1.1) F(s) = / e *da(t)
0
exists for all s > 0.

After a partial integration in (1.1) we see that

(1.2) F(s)= 8/000 e *a(t)dt,

where the integral is absolutely convergent for all s > 0 (cf. e.g. [9, p. 41]). In
(1.2) we make the substitutions

s=exp(—z) and t=-expu

and finally obtain

(1.3) F(s) = /_oo Kz — wo(u)du = K * 6(z),
where

(1.4) K(z) = exp(—exp(—z) — x)

and

(1.5) o(u) = alexpu).

We also note that the Laplace transform (1.1) exists for all s > 0 only if

limsupt ' log |a(t)| = 0,

t—00
(cf. e.g. [9, p. 43]).
For the function ¢ of (1.5) this implies that
(1.6) |6(2)] = exp(o(1)e”), 2 — oo

This fact leads us to introduce the following classes of functions:

DEFINITION. For any positive and non-increasing function p we let LL(p) con-
sist of all measurable functions H such that

8] = [ 1H(=a)| exp(pla)e)do < oc
We also let L°(p) denote the space of all measurable functions ¢ such that
18][;° = ess Sup |¢(2)| exp(—p(z)e”) < oo.

—o0<L <00



We see that L!(p) is a Banachspace under this norm with L°(p) as its dual space,
which means that any bounded linear functional on L!(p) is of the form

K> / " K(—2)()da

for some function ¢ € L(p). (cf. e.g. [6 p. 136])

Every measurable function which satisfies (1.6) also belongs to L°(p) for some
p such that p(z) = o(1),x — oco. We then perhaps have to change the function
somewhat for negative values of its argument, which have no influence on our
problem.

For convenience we let C stand for positive constants not necessarily the same in
any two places.

2 Tauberian theorems

The following theorem is stronger than necessary for our applications to the
Laplace transform. Perhaps it is of some interest in its own.

THEOREM 1 The span of translates of the Laplace kernel K is dense in L. (p)
if p(x) = o(1),z — oo.

PROOF. Take ¢ € L¥(p) and suppose that

(2.1) Kx¢(x) =0, —oo<z<o0.

Now let
a(t) = ¢(logt), 0<t< oco.

By making appropriate substitutions in (2.1) we see that
o0
/ e a(t)dt =0, 0<s<oo.
0

By the uniqueness of the Laplace transform (cf. [9 p. 62-63]) we obtain that

Thus (2.1) implies that
(2.2) é(x) =0, ae.

It now follows from the Hahn-Banach theorem that the span of translates of K
is dense in L!(p). The arguments for this is as follows:
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Let M be the span of translates of K. Then M is a linear subspace in L} (p) such
that all functionals

6 (H) = /_ " H(—2)é(x)dz = 0

for all functions H in M.

Suppose now that M isn’t dense in L.(p). Then there must exist a function
Ky € Ll(p) and a function ¢ € L2°(p) such that

/_OO Ko(—z)p(x)dxz #0. (cf. e.g. [6 p. 114])

By (2.2) this is impossible.

THEOREM 2 Let « and (3 be two real-valued functions of bounded variation
on any finite interval [0,T],T > 0 with «(0) = B(0) = 0. Let () be positive for
t >0 and let -

(2.3) / e~*tda(t) ~ /0 T e taB), s —0+.

0

Suppose that there exist positive numbers v and m and that for any 6 > 0 we can
find a number T such that

(2.4) vB(t) < B(rt) < (1+0)r™B(t) whenr>1andt>T.

Furthermore, suppose that

(2.5) lim liminf inf olt) — a(z)
A—=14+ z—=o00 z<t<Az ﬁ(:l:)

) =0.

Then
a(t) ~ B(t), t— oo.
PROOF. By the method in Section 1 we transform (2.3) into
(2.6) K * ¢(z) ~ K x(x), = — oc.
Here K and ¢ are defined by (1.4) and (1.5) respectively and
(2.7) Y(z) = Blexpx).
By (2.4) we see that for any 6 > 0 there exist a constant X such that

(2.8)  ¥(z) <Pz +y) < (1+6)exp(my)p(z) whenz > X,y >0.



Condition (2.5) is equivalent to

Now as a first step we prove that

¢(z) = O(¢(z)), = — oo.

To do this, we combine (2.6), (2.8) and (2.9) with the fact that ¢(z) and ()
are bounded on any interval —oo < z < X.

From (2.9) we easily see that

(2.10) d(y) —d(x) > —C(1+9Y(x), z<y<z+2.

Now suppose that z < y < z + 1 and write

(211) Kx¢(y+1) — K x¢(x / K(-u)(p(u+y+1) — ¢(u+z))du =
By (2.10)

pluty+1)—d(utz)>-C+¢P(u+z)),

and hence

0/ K(—u)(b(u+y+1) - ¢w+mmu+/prmww+y+n_¢w+@muz

> C’/ K(—u)(1 +9(u+x) du+/ K(—u)(1+9(u+ x))du) >

> C/ K(—u)(1+9Y(u+z))du) =

(1+ K x9(x)).

This inequality we combine with (2.11), (2.6) and the right-hand side of (2.8)
and see that

(2.12) / K(—u)(¢p(u+y+1) — d(u+z))du <

<K*¢y+ )= Kx*x¢(zx)+C(1+ K x1¢(x)) <
C(1+9(x)).

For —1 <u < (0 we write

plut+y+1) —d(ut+z)=dut+y+1)—dy) + d(x) — dlu+z) + dy) — d(z) >
> -C(l+v)-CA+yu+)+ o) —d(x) > =C(1+¢(x))+ o(y) — ¢(x).
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Here the last inequality follows from the left-hand side of (2.8).

From this we obtain that
0
[ K@y -dwra)du > (~CU+v(e / K(-

which implies that

0

¢(y) — o(x) < CAL+4(x) + [ K(-u)(d(u+y+1) - o(u+2))du).

-1

Combining this inequality with (2.12) we see that

¢(y) — o) <C(L+4()), z<y<az+1,
which together with (2.10) gives that
(2.13) 6(y) — ¢(2)| < C(1+4(z)), z<y<z+1l
By aim of (2.13) and (2.8) we now see that for any u > 0
6(u+z) — ¢(2)] < C(1 + u) exp(mu)(1 + ¢(z)),

and for any u < 0

[6(u+ ) — ¢(z)| <O+ [u])(1 + ().
/OO K(—u)du =

|K * ¢(x |_/ K(—u)(¢(u+z) — ¢(z))du +

Since

we get the following estimate

+/ K(—u)(¢(u+ z) — ¢(x))du| <
<C(1+y(z / K(—u)(1+ |u|) du+/ K(—u)(1 4 u) exp(mu)du).

Thus
¢(z)| < K+ d(x)| + C(1 + ()
and by use of (2.6) and the right-hand side of (2.8) we have finally proved that

(2.14) é(z) = 0(W(z)), x— 0.
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Now take a non-increasing function p such that ) belongs to L°(p), perhaps after
a change of ¢ for negative values of its arguments. For any function H in L.(p)
and for any positive € we can, using Theorem 1, find a finite linear combination
K, of translates of K,

K (z) = Za,,K(x - A),

such that
IK - HIl <e.
Now write
(2.15) He¢=Hxip+(H—K)* (9 1)+ K+ (6 ).

By (2.6) and (2.8) we see that
(2.16) K.x (0 —¢)(z) =0o(1) K x¢(z) = o(¢p(x)), = — oo.
By (2.14) we have that

(H = K)* (¢ =) (z) = O)(|H — K| 9(2)), = — o0,

and hence using (2.8) we have that

0

(H — KJ) * (6 — ¥)(2) = O(1)( / |H(~u) — K(—u)p(u + z)du +

—00

0

n / " H(—u) — K. (~u)(u + 2)du) = O(1)(a) / H(=u) — K.(~u)|du +

-0

+ /000 |H(—u) — K (—u)|(1 + u) exp(mu)du) = O(1)y(z)||H — K€||11,, T — 00.

Hence
(2.17) (H— K * (¢ — ) (z) = Oy (2)|H — K|, © = o0

Since € is arbitrary, itfollows from (2.15), (2.16) and (2.17) that
(2.18) Hx ¢(x) = H*Y(x) + o(¥(x)), x — 0.

For any positive number h we let H be the characteristic function on (—#,0)
multiplied by 7~ Then by (2.18)

Rt /(:L ¢(x —u)du = h~" /i¢(w —u)du + o(¢(x)), T — 0.



We now write

b(z) o)
oo - / o(a)"
=it [ JX duvi [ 5=
@) —da—w) o [ve—w),
/ w(l“) du+h /h7¢($) du + o(1), x — oo.

By use of (2.8) and (2.9) we see that if & is small enough then to any € > 0 there
exists a constant z; such that

¢(z)

If on the other hand H is the characteristic function on (0, h) multiplied by A™!,
we can in an analogous way derive that there exists a constant x, so that

(2.20) M>1—e if x > .

(x)
By (2.19) and (2.20) it follows that

¢($) ~ lb(ﬂﬁ)a T — 00,

which implies that
a(t) ~ B(t), t— oc.

Hence we have proved Theorem 2.

Remark 1 If v is any non-negative number and if

() = L)

where L is so-called slowly oscillating function, then
F(s) ~L(s)As™, s—0+.

Hence Theorem 2 includes the almost classical Hardy-Littlewood-Karamata
theorem in its most general version.

Remark 2 Since our assumptions are weaker Theorem 2 sharpens the results
of Korenblum [3], Mohr [5] and Wagner [7, 8] applied to the Laplace transform.
Korenblum though treats a very general class of kernels. Mohr’s condition (2) is
clearly unnecessary.
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