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Abstract

Airline crew scheduling gives rise to many difficult and interesting
optimisation problems. With straightforward approaches to the crew
pairing problem one specifically needs to solve very large set-covering
problems. One suggested approach to these problems is column gen-
eration. In column generation, the choice of master solver can have
a significant impact on performance, both with respect to speed and
quality. We have investigated the possibility of using a heuristic in-
teger optimiser for the master problem, and make a comparison with
a simplex based algorithm. We have also tried to direct the genera-
tion process by using dual information from a network relaxation of
the pairing problem. Finally, the combination of the integer optimiser
and a simple subgradient algorithm gives a very competitive mas-
ter solver which for most problems speeds up the complete solution
process many times. Computational results are provided on several
production instances from different airlines.

Key words : Column generation, Set-covering problems, Air-
line crew scheduling






Preface

This licentate thesis is the conclusion to the five semester ECMI post-
graduate program (European Consortium for Mathematics in Industry).
The program consists of number of core and specialised courses in the field
of applied mathemathics, and an important part is the final project which
should treat a specific industry application.

My application has been airline crew scheduling. The work has been per-
formed within the ESPRIT-project PAROS (Parallel large scale automatic
scheduling), which mainly aims at improving existing solution techniques
through parallelisation and new algorithms. It has also to some extent been
sponsored by the Swedish network of applied mathemathics (NTM), as part
of their university-industry exchange program. Much of the work has been
performed on location at Carmen Systems, who provides a commercial soft-
ware used by most larger European airlines.

I would like to thank my two supervisors Dag Wedelin at Chalmers and
Curt Hjorring at Carmen Systems, for help, support and many inspiring
ideas. I also wish to thank Federico Hernandez, Olle Liljenzin and Tuomo
Takkula as well as many others in the PAROS project, and at Carmen
Systems. I would like to thank you all for your inspiration and time.

iii






Contents

1 Introduction

2 The crew pairing problem
2.1 The airline planning process . . . . . . . . . . ... ... ...
2.2 The basic pairing problem . . . . . . .. ... ...

2.3 Generalisation and the Carmen solution approach . . . . . . .

The Carmen column generator

3.1 Column generation basics . . . . . ... .. ... ... ...
3.2 The pricingstep . . .. ... .. ... ... ..
3.3 Integration of pricing and master solver . . . . .. ... ...
3.4 Discussion . . . . . . ..o e

A first integration of the integer optimiser

4.1 The integer optimiser . . . . ... ... ... ...
4.2 The active set heuristic . . . ... ... ... ... ... ..
4.3 The first integrated master solver . . . . . . . . ... ... ..
44 Testproblems . . . . . . ... ...
4.5 Computational results . . . . . .. ... ... ...
4.6 Conclusions . . . . . . . .. Lo

Stabilised duals for pricing

5.1 A relaxed network flow formulation of the pairing problem . .
5.2 The stabilisation scheme . . . . . . ... ... ... 0oL,
5.3 Computational results . . . . ... ... ... ... ......
54 Conclusions . . . . . . . ... L e

A hybrid master solver
6.1 A simple subgradient approach to the set covering problem

6.2 A combined PAQS and subgradient master solver . . . . . . .
6.3 Computationalresults . . . . ... ... ... .........
6.4 Conclusions . . . . . . . .. . . i e

Final conclusions

17
18
20
21
24
26
28

31
32
35
36
39

41
41
43
44
47

49



Bibliography

51



Chapter 1

Introduction

The airline industry has a long standing reputation for using several Oper-
ations Research (OR) techniques in its operations. Several of the planning
problems in an airline lend themselves to mathematical optimisation. Due
to the size and inherent complexity of these problems it is extremely difficult
and time consuming, if not impossible to solve them manually. A driving
force in the business is of course the enormous amounts of money that only
a fraction of percent savings represents.

The application that will primarily be addressed here is airline crew
scheduling, specifically crew pairing optimisation. These problems give rise
to very large and difficult integer programs, primarily of the set-covering
type.

The crew pairing problem is probably easiest described as the problem
of planning crew schedules for a given set of flights. What is produced is
a number of pairings which together cover all flights. A pairing consists of
a number of flight legs or non-stop flights, which represent a possible and
legal way for a crew member to work their way from home-base and back.

One of the major difficulties in airline crew scheduling is all the rules
which have to be taken into account. There can be hundreds of different
restrictions on how for example the weekly schedule of a pilot can be con-
structed. There are both government regulations and rules arising from
corporate agreement.

A brute force approach to the crew pairing problem can be to enumerate
all pairings, and then try to select the subset which have the lowest overall
cost while covering all legs. Such an approach is of course only feasible for
very small instances, since a fair sized problem easily have billions of possible
pairings. The combinatorial explosion can be reduced using different heuris-
tics, but this requires a deep understanding of the underlying structure to
give good quality solutions.

There is on the other hand a significant advantage with a complete sep-
aration of the optimisation and the construction or generation of legal pair-



ings, and that is in the modelling flexibility. With separate generation, any
rule applying only to single pairings can be easily integrated and all solutions
from the optimisation step will in this sense be legal.

Another suggested approach known as column generation tries to im-
plicitly consider all possible pairings without actually generating more than
a small subset. Here, the optimisation and generation are still separate al-
gorithms, but they are much more integrated by using feedback from the
optimisation in the generation step. Pairings are generated dynamically dur-
ing optimisation, giving much smaller optimisation problems and potentially
leading to significant speedup. The solutions are often of better quality and
can for many problems be proven optimal.

A drawback with column generation is in the modelling flexibility. In the
generation step a much more complicated subproblem is solved, and for this
to work well some modelling limitations on the problem has to be imposed,
especially with respect to the rules.

In column generation the main optimisation problems solved, known as
the master problems, tend to be very degenerate and consequently difficult
to solve. If not special care is taken to the choice of optimisation algorithms
used, the method can exhibit poor performance both with respect to speed
and quality. It is not only in the actual optimisation step this can occur,
but the nature of the feedback sent to the generator strongly affects the rate
of convergence.

The company Carmen Systems provides a software for airline crew schedul-
ing which is used by most larger European carriers. In this system a new
column generator is under implementation. We have here tried to use a
heuristic integer optimiser to solve both the integer and linear relaxation
version of the column generation master problem. In addition, an investiga-
tion into the impact of using feedback from the solution of an approximate
pairing-model has been performed.

In chapter 2 a short introduction to the airline crew scheduling problem
is given. The emphasis is of course on the pairing problem. We also describe
the basic column generation approach used in chapter 3. A rather straight-
forward integration of the integer optimiser into this system is described in
chapter 4 together with a brief overview of the optimiser itself. In chapter 5
we introduce a way of stabilising the generation step, based on an approx-
imate network model for the complete pairing problem. A hybrid column
generation master solver is presented in chapter 6, using the optimisation
algorithm of chapter 4 and a simple subgradient approach. Final conclusions
are given in chapter 7.

We give computational results for the different approaches on production
problems from several different airlines.



Chapter 2

The crew pairing problem

There are quite a number of papers and books describing the OR problems
arising in the airline industry, see for example [1]. The diversity in the
type of problems is very large. There are difficult scheduling problems both
for flying personnel and ground staff. Maximal utilisation of aircrafts is
absolutely necessary to make the airline competitive. Allocation problems
arise when trying to determine the location and size of different bases. The
list can be made very long. One of the most studied problems is airline
crew scheduling, and we focus on the part of this process known as the crew
pairing problem.

To put things in perspective we will first in section 2.1 give a brief overall
view of the airline planning process. The basic pairing problem is then
described in section 2.2 and generalised in section 2.3, where we also discuss
some possible solution approaches.

2.1 The airline planning process

It is probably the medium term planning step in an airline which is best
suited for mathematical optimisation. With medium term we here mean a
couple of months before day of operation. For the long term perspective,
the decisions will mainly have to be of a strategic nature. In the short term
the focus is on immediate problem solving where creating a solution which
causes minimal disturbance to other operations is the highest priority.

With respect to medium-term planning one can identify four common
steps, which are; construct the timetable, assign the fleet, construct the crew
pairings and assign individuals to pairings.

o Timetable

First a timetable is constructed. It is mainly commercial aspects which
influence which flights to operate. The timetable must of course also
be possible to operate with the current fleet. Therefore this step is



not completely separated from the next, but far from integrated. An-
other aspect which becomes more and more important, as air traffic is
steadily increasing, is the allocation of time slots at the airports.

o Fleet Assignment

When the timetable is fixed the actual aircraft are assigned to the
flights. The goal is of course to maximise utilisation. The aircrafts are
divided into separate fleets depending on aircraft type. For each flight
leg a certain aircraft type is usually demanded. An important side con-
straint has to do with aircraft maintenance and service. Within regular
intervals the aircraft has to visit a maintenance depot for checkup and
service.

o (Crew Pairing

With the timetable in place and aircrafts assigned to the flights, it is
possible to consider the crews. The basic problem is of course, that
each aircraft needs flight and cabin crew, for example a pilot, co-pilot
and a number of flight attendants. The number of crew on a flight
varies with aircraft type and sometimes with time of day. In this
first step one does not consider named individuals. The crew pairings
which are constructed and selected are typically one or several days
long. They must of course be in compliance with rules and regulations,
and together cover all the flights to be planned. Another important
constraint is that there must be enough crew at each base with respect
to the work-load.

e Crew Assignment

After the crew pairings are constructed, the next step is to assign
actual people to the pairings. This is a complicated process where
most airlines use some sort of bidding system. It can be based on
strict seniority or include an optimisation step where the objective is
some sort of total “fairness”, which can be rather difficult to model. In
addition to actual flying time, there is also other work to be scheduled.
There are always crews on standby in the case of illness, late changes
or other disruptions to the schedule.

The planning process does not progress one step at a time in a linear
fashion. There are constantly changes within all the four major steps, and
plans are updated along the way. Changes can occur at any stage giving
rise to what is known as different types of repair problems. If a flight is for
example cancelled one must find a way to cover all flights without disturbing
too many other crew pairings.

A really good solution to any of the four steps described above does
not only have the lowest possible cost but is also robust. When there are



changes, these should only affect a small part of the timetable, fleet or crew
and not give rise to significant chain-effects.

2.2 The basic pairing problem

Typically the crew pairing problem is solved for each aircraft fleet separately,
mainly due to different requirements on the crew. One also distinguishes be-
tween short-, medium- and long-haul problems. For short- and medium-haul
it is the combinatorial explosion which is the main concern. The structure
of the long-haul problems is quite different, and requires both another set of
crew rules and agreements as well as a somewhat different solution approach.

In figure 2.1 we give a very small example of a pairing problem. The
example only contains 6 flight-legs which are operated in exactly the same
way every day. There are only 3 different airport, A,B and C. There are
also very few rules to consider, and the objective is simply to minimise the
number crew needed to operate all flights. (RTD means working-day in
the figure.) For this problem there exist in total 18 possible pairings. The
optimal solution consists of 2 pairings starting every day, with never more
than 3 crews working simultaneously.

Ideally one would like to be able to formulate the pairing problem as a
one-shot integer program (IP), where only the legs considered are sent as in-
put. The optimiser would then decide which legs to connect, and output an
optimised solution of complete pairings. Unfortunately, this is impractical
due to the complicated rules and the often nonlinear cost function. Tradi-
tionally, pairing generation and optimisation are therefore done in complete
separation. However, this leads to a combinatorial explosion in pairing gen-
eration and to very large optimisation problems.

Imagine that we could actually generate all possible legal pairings. The
resulting optimisation problem can then in its simplest form be formulated
as a set-partitioning problem:

min cx
Az =1
z € {0,1}"

Each row of the binary matrix A represents a flight leg in need of a crew
(the right hand side is 1). The columns are the pairings, with entries in the
matrix only for the legs on which they operate. With each pairing a cost is
associated, giving the cost vector ¢. A pairing/column is part of the solution
if the corresponding variable z; has the value 1 in the optimal solution.

If complete enumeration of pairings is used, A will have a huge number
of columns (easily billions) and only a few hundred or thousand rows. (See
for example [2] for an estimate of the number of pairings in some studied
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Figure 2.1: A small example

problems.) The resulting set-partitioning problem will be extremely difficult
to solve, if not practically impossible. The generation process will also be
very time consuming if at all feasible, especially since the many complicated
rules and regulations must be taken into account.

2.3 Generalisation and the Carmen solution ap-
proach

When solving the real-life pairing problems, a proof of optimality is not the
highest priority. To restrict the combinatorial explosion encountered when
trying to generate pairings, one can apply different kinds of heuristics. This
is mainly how the existing Carmen system works at this stage, and a more
comprehensive description can be found in [3].

It is often possible to identify legs with only one or a few reasonable
followers. If for example an aircraft lands at an airport with only one flight
a day, it seems reasonable to follow the aircraft back again rather than
overnighting. By locking such legs together one can reduce the problems



significantly without losing much quality. A difficulty is how to determine
good locks automatically. This can of course be left as a manual step to the
planners, but it is time-consuming and the planner’s experience will play an
important role.

One can also restrict the problem by only considering a subset of the legs
at a time, and then proceeding iteratively by successively including some
more legs and removing some others. The legs can for example be selected
using some time-window heuristic or be based on a number of aircraft. Local
improvement schemes like this do of course not give any guarantee of global
convergence, but have been shown to work well in practice, see for example
[3].

Another possibility is to limit the number of legal follow-ons to a leg in
the generation step. At a large airport there can be hundreds of potential
legs to append to a pairing. By setting a limit on the number of follow-on
legs to consider one can significantly reduce the number of columns gen-
erated. The difficulty with this approach is of course the choice of which
leg-connections to consider. It is very difficult to tell in advance whether
the problem is restricted too much.

Let us for the time being assume that we by using a number of intel-
ligent heuristics, can limit the combinatorial growth in pairings enough to
have manageable problems. The mathematical formulation above is still
not enough to solve most real-life instances. There are two more modelling
problems which must be addressed, namely base constraints and deadheads.

Most airlines operate from a number of crew bases, where in the normal
case all crews must start and end their work-shifts or pairings. At these bases
there are naturally restrictions on the number of available crew, which then
give us the base constraints. They are most commonly formulated as limits
on the total amount of work produced by the crews from a single base. The
limit can be both upper and lower bounding.

A more difficult problem is the so called deadheading. It is for most
airlines almost impossible to cover all flights without allowing passive legs
on behalf of the crews. It is sometimes necessary, or often much cheaper, to
have flying personnel travel along as passengers on single flights, rather than
staying for a long time away from home base. It can even be worthwhile to
use other carriers’ flights. It is of course not practically possible to take into
consideration as deadheads, all flights from all carriers. A certain subset
must be selected without neither including or excluding too many. There
has been some work in this area, see for example [4], but we will not here
go into much more detail. We just note that we can not explicitly consider
all possible deadheads, since the number duty periods and connections will
then grow significantly.

A simple way to allow for more flexibility with respect to deadheads, is to
change to a set-covering model rather than set-partitioning, that is allowing
more than one crew on each flight. If a flight-leg is assigned to more than



one crew, one is converted into an active leg and the rest to deadheads. This
can of course cause legality problems, since all legs for different reasons are
not allowed as deadheads. As an example, a deadhead can for certain rules
not be legal in the middle of a duty period (or working-day).

Another reason for using a set-covering model has to do with perfor-
mance. It seems like this model gives faster convergence for most larger
problems. This can possibly be explained by the fact that when using a set-
partitioning model and solving from scratch, it can be very difficult to find
feasible solutions without adding some sort of dummy variables. The lin-
ear programming (LP) relaxation to the set-covering problem is also known
generally to be more stable and consequently easier to solve.

The base constraints are simply added to our model, represented by
the new constraints B. Note that these constraints can have entries in R
(often IT), and be much denser compared to the set-covering constraints.
The limit on the base production is represented by p, giving.

min cz
Az >1,Bx <p
z € {0,1}"

In practice, it is often the case that the pairing problem is solved in an
iterative manner with rising complexity. In the first step it is assumed that
all flights are operated every day of the week in what is known as the daily
problem. A very good solution to this simplified problem is constructed. The
idea is to use this daily solution as input when solving the weekly problem,
that is when one assumes all weeks are identical. The daily solution is said
to be rolled out over the full week. In the last step the fully dated solution
is constructed, where all irregularities in the planned flight schedule are
taken into account. This way of progressively solving problems closer to
reality, gives a benefit in that the produced plans have a high degree of
regularity. However, there is by no means any guarantee that this approach
gives optimal solutions.



Chapter 3

The Carmen column
generator

Up until now we have discussed several different aspects of the pairing prob-
lem, but only one solution approach. So far we have suggested separate
pairing generation restricted through heuristics and the solution of a set-
covering problem. Another solution that has been proposed is column gen-
eration, where good pairings are constructed selectively with a constrained
shortest path algorithm using dual input from the LP-relaxation of the set-
covering problem. The pairing generation and optimisation are then in
some sense still separate, but the improved integration of the two can lead
to smaller optimisation problems and better solutions. However, the rules
and the often non-additive cost function can be difficult to handle in the
shortest path algorithm.

Column generation has proven to be an efficient method for solving crew
pairing and other related problems. There is a wide selection of papers
addressing the solution of the pairing problem on its own. A classic paper on
the column generation approach is [5], which is probably the first published
attempt on real-life instances. There has been many others following, for
example [6] and [7].

We will first briefly discuss the basic idea in section 3.1. The column
generator under implementation in the Carmen system is described in sec-
tions 3.2 and 3.3, with a short introduction to the specific problem we have
addressed following in section 3.4.

3.1 Column generation basics

The word column refers to a variable and its corresponding column in the A-
matrix in the optimisation problem, which for our application corresponds
to a pairing.

The basic idea is to implicitly consider all possible columns/pairings,



but only to explicitly generate a small subset of them. In the simplest case,
a small set of pairings giving a feasible solution is taken as input. These
pairings constitute the initial columns in the master problem. The master
problem is formulated as a set-covering problem, just as in the previous
section, but the solution vector z is allowed to take fractional values (i.e.
the IP is relaxed to an LP). Feedback from the solution of this first master
problem is then used as input to the generation subproblem known as the
pricing step, where new columns are generated in some “intelligent” way.
Only columns which can reduce the overall cost at this stage are accepted
and added to the master problem, which is resolved, giving new input for the
pricing routine and so on. The process continues until no more attractive
columns can be found. The basic column generation idea is illustrated in

figure 3.1.
Matrix
Master
Implicit
A Columns C )
Pricing
Routine

Figure 3.1: Basic idea behind column generation

Let us first take a somewhat closer look at the mathematics involved.
The basic problem is formulated as in section 2.3, but we are starting with
a very small set of columns and ignoring base constraints for now. We will
present column generation from a lagrangean relazation point of view, since
this will be the chosen solution approach later on. The lagrangean relaxation
of the set-covering constraints gives with the multipliers y the lagrangean
function L:

L(y) = mincz + y(b— Az)
>0

It follows from LP-duality that the solution of maxy>o(L(y)), gives the
same objective value as the LP-relaxation of the set-covering problem. Let
A be the initial matrix given, and 4° the related optimal solution to the
maximisation problem. If we now introduce a new column a; with the cost
¢;, for the minimisation problem we get:

n01in 10+ (& — %A% 20 + (¢; — y0as)z;

z0,x;

If the reduced cost (c; — yYa;) < 0, we say that a; prices out. For this
set of lagrangean multipliers y°, z; will for the LP-relaxation obviously be
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part of the solution and consequently lower the total objective. The max-
imisation problem is then resolved with A' = (4%, a;) giving new lagrangean
multipliers or duals, y' which are used to price out new columns, and so on.
If no more columns a; with negative reduced cost can be found, we have a
valid lower bound on the total objective and the process terminates.

We will from now on reserve the term column generation for the overall
solution approach, and refer to the generation subproblem as the pricing
step.

The generation subproblem which produces the new columns a; is usually
formulated as a resource constrained shortest path problem which returns the
columns with the lowest reduced cost. To be able to get a reasonably general
approach, special care has to be taken as to make very few assumptions on
the cost functions and the many complicated rules.

Since most rules apply only to single working days or duty periods a
natural approach is to use these as the building components of the network.
That is, all duty periods are generated in advance, which is computationally
expensive but still much cheaper than complete enumeration of the pairings.
The duty periods can be seen as the nodes in the shortest path network and
are only connected if it is legal to do so. the costs in the network are
computed using the actual costs and the dual feedback y* from the master
problem, producing reduced costs.

What has been generated so far is a set of “cheap” columns which in
an LP-sense constitute an optimal solution. To actually solve the crew
pairing problem we do of course require integer solutions. A possibility is to
try some branch-and-price scheme together with IP-heuristics which supply
good upper bounds. For the most difficult instances one can not expect to
solve the problems to proven optimality, but will have to be satisfied with
the heuristic solutions.

3.2 The pricing step

The shortest path (SP) problem in the pricing step is solved on a duty based
network where rules are modelled as combination of arcs and resources. An
advantage with this setup is that everything generated will immediately be
legal and the algorithms can be made reasonably efficient. A big disadvan-
tage is in the lack of flexibility. First of all, it can be very difficult to model
all rules correctly as resources, and even if possible it is not a trivial task to
integrate them into a robust system.

Here, the choice has instead been to use a “black-box” legality system.
Generated pairings are sent to a legality function which returns a yes/no an-
swer and the pairings are either accepted or rejected. This complete separa-
tion of rules and generation does of course require some different modelling
for the network and shortest-path algorithms. Since most of the more com-
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plicated rules and cost calculations apply to a single duty period, the pricing
step in this system is also based on a duty network. In the simplest case, all
duty periods are initially generated. This follows the ideas in most earlier
work on column generation with application to to the pairing problem.

We will now in some more detail describe the Carmen pricing step and
refer to [8] for more information. First, a simplified but impractical model
will be described. We then discuss the modifications and extensions needed
to solve production type instances.

There are two types of arcs and two types of nodes in the duty-network
used to solve the pricing problem. Arcs either represent duty periods or legal
connections between them (ground arcs). The nodes are either connection
nodes or base nodes. A connection node has one incoming duty arc and a
number outgoing connection arcs, or the other way around. The base nodes
are the sinks, where pairings either start or end. (For this simple network,
some arcs and nodes could easily be merged, but we choose to present the
network in this way to simplify comparisons with the subsequent extensions.)

Day 1 Day 2 Day 3
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. N
Period = oo eaaaam
\ ~" S 7 N
N Ny - N
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/ v . , -~ N
/ N / \‘ \
7 AT ’ 4 -7 A \
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0y Connection i A I w
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Figure 3.2: Full duty network

The number of duty periods can for some problems be quite large. In
table 3.1 we give some statistics for a number of typical instances. The
generation of all duty periods is possible except for some extreme problems
(railways) and if not too many deadheads are fed as direct input to the
generation process. The number of duty periods generated varies very much
with the problem and the rule set.

Even though all duty periods are possible to generate, it is not feasible
to explicitly consider all connections (ground arcs) between them. Even
for a rather small problem the number of different duty period connections
can be in the millions, which is also illustrated in table 3.1. In the table el
chunks is the number of legs or sequences of legs locked together. For the
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problem LH Paros 1 the generation of all legal duty period connections was
not possible to do within a reasonable time-span.

Problem el chunks | duty periods dp conns
BA Cabin 290 5,235 275,808
BA FCS 250 10,648 1,512,903
LH FRA 268 5,438 254,382
LH Paros A320 195 3,790 352,229
LH Paros 1 927 144,624 777777
LH Paros 2 (hl) 927 24,269 | 20,000,000

Table 3.1: Duty period connections

The chosen approach to this difficulty is to instead use a relaxed network,
where all rules applying to the duty period connections are not explicitly
represented. As connection arcs we only consider connections between end-
and start-legs of duty-periods instead of unique arcs between all connecting
duty periods. This means that all duty periods with the same end-leg (start)
use the same forward (backward) connection arcs. In figure 3.3 a small
example is shown. Note that for a real-life problem, the number of duty
periods which starts or ends with the same leg can easily be in the hundreds.
The reduction in the number of arcs is significant and easily outweighs the
addition of the nodes which are necessary to model the relaxed connections.

Full Relaxed

Chunk-nodes

Figure 3.3: Full vs relaxed connection

The full network in figure 3.2 is relaxed and shown in figure 3.4. By this
further relaxation of the pairing rules the risk of generating illegal pairings
is of course increased, and for most problems this happens frequently. How-
ever, experimental results show that even for small problems where all duty
period connections can be represented, the much more compact network will
give a significant speedup.

With the network in place we now have the basics for solving the pricing
problem. With each arc a cost is associated, both for the duty periods and
connections (hotel costs etc). Using dual information provided by the master
problem, reduced costs for the duty arcs are computed with respect to the
chunks in that duty.

13



Day 1 Day 2 Day 3

b 4 I
| >
/’ 1 / _‘__/(
, | /
,
’ ! /
’ ( 1 ! ’
1 4 1 ! 4 \
' ’ ! ’ \
i ,/ ~ o ’ \
[ A \
[ [ - 1
"o /( -4 \ \
[ |” \ Y N |
vy 1 \ |
v ! \ 1
Vi ! \ ’ N 1
Vi ! \ 4 A
Ve 1! v |
i vl ‘y
d "
Base Base Base Base

Figure 3.4: Relaxed duty network

On this network a k-shortest path problem is solved, following the ap-
proach of [9]. If the column/pairing generated is legal, it is directly added
to the master problem. When this is is not the case, the second cheapest
column is generated, checked and so on. The algorithm used to solve this
k-shortest path problem is inspired by the work in [10].

If illegal pairings are generated, which is often the case, it is sometimes
possible to take measures as to prevent the same rule violation from reoc-
curing. One can often identify sub-chains of pairings as the cause of the
illegalities. If the rule which is not fulfilled spans at most two duty periods,
the network is modified or refined to prevent this special combination again.
This is done by splitting the connection nodes and introducing new and
separate connection arcs.

At this stage only problems which have a strictly additive cost function,
that is over the duty periods and duty period connections, are modelled
correctly in the network. This assumption on the cost function is of course
not always valid. It is not at all difficult to construct realistic cost functions
which do not have this feature. The most common example from industry is
when the crew’s pay is based on a maximum over some sort of credit and the

time spent away from home. Functions of this type are possible to model

reasonably well, but we will for the time being stay with approximately
additive cost functions.

3.3 Integration of pricing and master solver
At the end, what is required is of course integer solutions to the generated

set-covering problem. In the Carmen system these solutions are primarily
produced with the set-covering heuristic which will be described in the next
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chapter. In order to have better control over the generation process this
heuristic is also called a few times during generation. A schematic picture
of the complete Carmen column generator is finally shown in figure 3.5.

every K'th
Generate Start

yes
solution

duty periods T columns l duals Primal

Master

LP-solve

!

and Heuristics

Build network

Pricing

columns
k-SP Legal?
yes
no
Refine Tllegal
yes .
network subchains?

Figure 3.5: The Carmen column generator

As long as the cost function is approximately additive the column gener-
ator seems to work very well in practice. In many cases the first implementa-
tion of this column generator is beating the current more heuristic methods
in the Carmen system, but it is not yet as flexible and doesn’t have all the
supporting functionality desired in a production environment. If the costs
are not exactly additive, the lower bounds produced can of course not be
completely trusted. The additive model can then both over- and underesti-
mate the cost of a pairing. For the production rule-sets we have studied it
seems like the costs are seldomly overestimated, but quite frequently some-
what underestimated. This may mean that many unnecessary columns are
generated which can not lower the total objective, and subsequently perfor-
mance suffers a bit.

3.4 Discussion

Although the Carmen column generator is already very competitive there is
some room for further improvements which we have chosen to study more
closely. There are sometimes difficulties with reaching the desired solution
quality, or the solutions are not produced quickly enough.

As mentioned earlier the column generation master problems tend to
be very degenerate, especially with respect to the sparsity and size of the
problems. This is in some sense only natural if you consider the way they
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have been generated. Only the most attractive columns are added along the
way, and except for the first few, all should be reasonably attractive also
when solving the final IP.

Due to this degeneracy, resolving the master problem can be very time-
consuming for some problems. The first tries at column generation did in
most cases use a simplex-based master LP-solver. There has later been some
work on using different LP-algorithms in a column generation setup. For
this situation interior point methods seems to give some speedup compared
to a simplex approach, see for example [2].

In the first implementation of the Carmen column generator a simplex-
based master solver is used. This setup sometimes exhibits slow convergence
primarily due to to the amount of time spent resolving the master prob-
lem. For some instances it also seems like a surprisingly large number of
optimisation-generation loops is needed to achieve convergence.

There is of course also the problem with integer gaps. Since the column
generation process as described here is completely based on LP-feedback,
there is no guarantee whatsoever that the right columns for an optimal
integer solution are generated. Some work has been done in order to reduce
the IP-gaps, usually within the framework of branch and bound [7]. After
convergence, the idea is to fix part of the problem and generate more columns
selectively.

We have instead with the primary interest of generating higher quality
solutions, integrated a set-covering heuristic as the master solver. This is
described in the next chapter, with another modified version focusing on
solution speed following in chapter 6.

Another important performance issue when using the relaxed SP-network
described in figure 3.2, has to do with how much the network is refined. If the
amount of refinement is large the pricing step will be seriously slowed down.
The refinement in itself does of course take time, but it will also increase
the memory requirements of the network all the way until convergence.

If the refinement is in a part of the network which is interesting for the
final solution, the refinement is of course useful. Quite often the refinement
occurs rather early on, and is of no use whatsoever for the final solution.
Unfortunately this is not possible to decide in advance without a very good
estimate of the optimal solution, and nothing is done to prevent it. We have
in chapter 5 in some sense tried to find such an estimate and use it in a try
to improve performance.
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Chapter 4

A first integration of the
integer optimiser

For the column generator master problem, it has been shown that interior
point methods work very well both with respect to speed and quality [2].
This is primarily when compared to a straight forward simplex-approach.
There has also been a number of different suggestions on how to deal with de-
generacy in column generation in general, and with specifically the simplex-
algorithm in mind. For example [11] report a considerable improvement by
slightly modifying the master problem and stabilising the duals .

The heuristic integer optimiser mentioned in the previous chapter, has
been used successfully for many years within the Carmen crew pairing sys-
tem, to solve large set-covering problems. This system is used to solve the
everyday production problems for several European airlines [3]. The heuris-
tic produces many high quality integer solutions quickly [12]. In the Carmen
system it is used as an IP-solver on its own, but has been shown to work
well also as a primal heuristic in branch and bound-schemes [13].

Recent development has added some new functionality to the integer op-
timiser, and most importantly sped up the solution process many times. The
new version of the integer optimiser, from here on called PAQS, combines
the basic ideas from the original algorithm with an active set heuristic.

We have in the Carmen column generator used PAQS to solve the col-
umn generation master problem. The idea behind this is twofold. First,
the algorithm is very fast and stable even for highly degenerate problems.
Second, and most importantly, the dual feedback is generated in a rather
special way, focusing more on integer solutions. This could reduce the IP-
gap, without having to use some complicated branching strategy.

In sections 4.1 and 4.2 we describe the original integer optimiser and the
most recent developments. The first integration with the column generator
follows in section 4.3, and we briefly introduce the set of test problems we
have chosen in section 4.4. Finally computational results and conclusions
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are in sections 4.5 and 4.6.

4.1 The integer optimiser

Since the basic problem to solve in this work is the set-covering problem we
describe the algorithm specialised to this case. The basic integer heuristic in
PA QS can be seen as a dual ascent algorithm with cost perturbations. It can
also for certain parameter settings be interpreted as a dynamic programming
or greedy approach [12].

The algorithm is based on lagrangean relaxation of the set-covering con-
straints. We have again the basic optimisation problem to solve:

min cz
Az >1
z € {0,1}"
Where the entries in A are all in 0,1. The lagrangean relaxation is then:
L(y) = i b— Azx) =
(v) pofin,  cz + y(b— Ax)

in (c—yA b=
wg{%{?}n(c yA)z +y

min cx + yb
ze{0,1}n

y; >0

The components in ¢ = ¢ — yA are known as the reduced costs of the
variables. For the sub-problem with fixed y the solution in z is:

1 ife; <0,
T; = 0 if ¢; > 0,
Qorl ifg =0.

In the PAQS algorithm a row-wise update of the reduced costs is per-
formed. For every row with a given set of duals, we solve this subproblem
so that only one of the reduced costs is negative, and perturb the costs in
favour of this specific solution. The idea behind the perturbation is primar-
ily to keep the reduced costs away from zero, giving a well defined primal
solution. The one-row subproblem is:

max min cz +y(b— Ax)
y; >0 z€{0,1}"

Ajz >1
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Let r— and r* be the smallest and second smallest reduced costs which
have entries in the j’th row and with y; set to zero. These values are
projected on the positive half-line.

One primal and dual optimal solution to the one row subproblem is then
given by,

ot

Yi= 5 (4.1)

which gives a solution with one negative reduced cost. For the pertur-
bation the following two different dual values are used,

K

Y =Yj— (rt —r7) and y;-L =y, + 1 j H(r+ —r7) (4.2)

1—«k«

where x € 0,1 and y; is used only for the variable with smallest reduced
cost at this stage and y;-L is used for all the others. What happens is that
the smallest reduced cost variable becomes negative if it is not already so,
and is then shifted further away from zero in the negative direction. All the
others are moved in the positive direction.

The algorithm performs the row-wise update over all rows iteratively.
The same parameter x is used during one pass over all the constraints,
but can change between passes. There are several interpretations of the
algorithm depending on the value of k. For k = 0 we have a plain row-wise
dual ascent method. As x approaches values close to 1 the algorithm will
become more and more greedy. For x = 1/3 the row-wise update is the same
as would be the result of dynamic programming approach.

To get the best performance out of the algorithm the most critical strat-
egy decisions has to do with the update of k. By changing « along the
way, one could see the PAQS algorithm as a hybrid of the above mentioned
classical approaches.

It is also possible to solve problems with more general constraints. For
the pairing problem one typically has a number of base constraints, which
restrict the workload for each base (see section 2.3). These correspond to
more or less general linear constraints in the formulated IP/LP.

In PAQS, the general constraints are also updated one at a time together
with the set-covering constraints. The update is similar to the one described
above, but has some different characteristics for our specific application. The
general constraints are usually a lot denser, that is they each affect a large
number of columns. The single-constraint subproblem can then not always
be solved to optimality, since it would be too time consuming. A heuristic is
instead used to limit the sub-problem and to produce high quality solutions
quickly.
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4.2 The active set heuristic

Recent development has in the integer optimiser PAQ)S incorporated an
active set heuristic, which has given significant speedup and is also possible
to run in parallel on a network of workstations. A detailed description of
the active set strategy and its considerable impact on the performance of
the optimiser, is found in [14]. We here only give a brief summary and then
discuss some aspects interesting with respect to column generation.

The heuristic is to some extent inspired by the ideas behind column
generation and the general motivation behind it comes from the observation
that in the optimisation algorithm, only a small set of variables has any effect
on how the iteration proceeds. This is due to the fact that the constraint
update is usually a function of at most two variables in the constraint. If
the set of these critical variables was known in advance, it would in principle
be possible to ignore all other variables and receive the same result much
faster. This is obviously not possible, but it gives intuitive support for the
idea of having a smaller number of variables that are likely to be critical
selected in an active set.

The original algorithm then works only on the active set, and after a
number of active set iterations, a global scan over all variables is done to see
if more of them should become active. This update is based on a row-wise
comparison of the reduced costs, where the selection criterion of the active
set is based on whether a variable not yet in the active set would become
critical for any constraint if this constraint was iterated next. This criterion
was selected because it seems to be the closest one can come to the original
algorithm, short of temporarily entering variables in the active set, which
would not give the desired performance benefits. This has also been shown
to work well in practice.

There are a few things worth emphasising with the active set update.
First, a variable is activated if it has the smallest or second smallest reduced
cost for all columns with entries in a single row. This means that variables
with positive reduced cost can also be activated. Second, the optimiser
asks for new columns dynamically while it is optimising before it has fully
converged to an integer solution.

If one studies the behaviour of the active set update with respect to
columns used in the feasible solutions, most interesting columns are brought
in at an early stage, when there is no perturbation of the reduced costs
(k = 0). These columns could probably have been found also if we used
some LP-algorithm for the active set. A few columns though, are only
found attractive very close to convergence. That is, to get the best integer
solution it seems likely that the introduction of the reduced cost perturbation
is necessary. A representative example of when variables are activated is
shown in table 4.2.

In the table we see the total number of active variables at different stages
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of the solution process, represented in the column active total. The number
of variables added to the active set at different stages is illustrated in the
column active added. In the last column in integer sol it is shown when
columns in the final integer solution are brought into the active set. (Note
that we are not presenting data in a linear fashion with respect to iteration
number.)

These results have lead us to believe that PAQS could be used as the
master solver in a column generation scheme, and then be able to generate
a number of columns which are missed by a pure LP-based generator. The
basic idea is of course to exchange the global scan over all columns in PAQS
for the pricing step in column generation.

4.3 The first integrated master solver

We have chosen not to completely exchange the global scan in PAQS for the
pricing routine. Instead we keep a buffer where new columns are entered,
and old unattractive can be stored away. The active set is then updated and
iterated in the exactly the same way as previously described, with a global
scan over the buffer.

It seems worthwhile to do a number of active set updates and iterations
before calling the pricing routine. This can be motivated by the fact that
a few global scans over the buffer are often needed, before newly generated
columns are brought into the active set and start affecting the duals. Figure
4.1 gives a schematic description of the PAQS column generator.

Since the PAQS algorithm seldomly solves the problem to dual optimal-
ity, we have no guarantee that very similar duals will not be produced several
times. This means that the shortest path algorithm is likely to sometimes
reproduce columns. The PAQS algorithm has difficulties with handling du-
plicate columns, and when PAQS is run stand-alone these are preprocessed
away. In column generation mode, for every new column we dynamically
check for duplicates, remove the old one if it is more expensive or do not
add the new column if it has cost greater or equal to the old one. This also
causes some changes in the pricing routine, which before relied on the duals
being optimal.

The lower bounds from PAQS are usually fluctuating very much. This
is not a problem when running the algorithm stand-alone as a set-covering
heuristic, since the upper bounds usually develop in a stable fashion. When
PAQS is used in the column generator, wildly fluctuating lower bounds and
duals cause serious performance problems. The bottleneck is not directly in
the optimiser. If very “strange” duals are sent to the pricing routine and the
resulting columns are non-interesting, these are only put in the passive set.
The difficulties are in the pricing routine. When using very extreme non-
optimal duals, the pricing routine seems to generate many illegal rotations.
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iterations Kk | active total | active added | in integer sol
0 0 630 629 50
10 0 1220 590 17
20 0 1744 524 19
30 0 2100 356 7
40 0 2261 161 7
50 0 2300 39 2
60 0 2303 3 0
70 0 2306 3 0
80 0 2308 2 0
100 0 2310 2 0
110 0 2312 2 0
180 0 2313 1 0
400 0 2314 1 0
470 0 2315 1 0
530 | 0.060000 2316 1 0
540 | 0.076667 2317 1 0
560 | 0.110000 2319 2 1
580 | 0.143333 2320 1 0
590 | 0.160000 2321 1 0
600 | 0.176667 2331 10 1
610 | 0.193333 2360 29 1
620 | 0.210000 2434 74 1
630 | 0.226667 2604 170 3
640 | 0.243333 2701 97 0
650 | 0.260000 2841 140 2
660 | 0.276667 3029 188 1
670 | 0.293333 3213 184 2
680 | 0.310000 3423 210 1
690 | 0.326667 3589 166 0
700 | 0.343333 3947 358 0
Integer solution found!
710 | 0.356667 4085 138 0
730 | 0.373333 4139 54 0
740 | 0.385000 4173 34 0
750 | 0.401667 4217 45 0

Table 4.1: Variable activations for rail507.
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Figure 4.1: The first PAQS column generator

This takes a lot of time, especially since the column generator is built on a
relaxed network which is dynamically refined.

The behaviour of the lower bounds produced by PAQ®S is for a typical
column generation problem described in figure 4.2. For the duals produced,
the lagrangean function actually takes on negative values in some iterations.
The lower bound is of course always positive, and the lagrangean is cut at
Zero.

x 10

I I
0 50 100 150 200 250

Figure 4.2: Lower bound fluctuations

To drastically reduce the difficulties with the pricing routine, we use the
quality of the lower bound as filter for the duals. If the duals give a lower
bound within a certain range of the upper bound, they are accepted and
used for pricing. Otherwise more optimiser iterations are performed until
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acceptable duals are produced. Figure 4.3 gives a schematic description of
this setup.

Master
columns
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Global Active set
duals Solver

(columns)
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not OK
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columns
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kSP-Pricing
(generation of pairings)

Figure 4.3: The PAQS column generator

A more difficult performance issue has to do with the termination cri-
terion. When using a master solver which guarantees LP-optimality, con-
vergence in the Carmen column generator is determined only based on the
value of the reduced costs, i.e. the duals. If the LP/IP is very degenerate,
the basic PAQS algorithm will have difficulties finding the optimal duals (or
even get close to). That in turn will cause the generation process to go on
long after most sensible columns are generated, and produce very large final
IPs.

In order to somewhat tackle this problem, the termination criterion is
based on a combination of heuristics. Termination is invoked if:

e No more columns with negative reduced cost are generated and a min-
imum number of iterations have been run.

e The objective is levelling out, that is if the lower bound is higher than
for a long time and the primal solution has not recently improved.

4.4 'Test problems

We have described how to integrate the PAQS algorithm as the master
solver in a column generation setup as implemented by Carmen Systems. To
properly evaluate this approach, and the ones in the following chapters 5 and
6, we require a representative subset of the problems solved in production.
We have been careful to select test problems which represent different types
of characteristics in rules, size, flight network, timetable etc.
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In table 4.2 some statistics giving an idea about the size of the chosen
problems are presented. The first data column chunks, is the number of
single legs and legs locked together. The second column rtds, is the total
number of different duty periods represented as duty-arcs in the network.
Finally the column dp leg-conns, is the number of possible connections of
duty-periods in the relaxed network represented by the connection-arcs.

The test sets have been taken from three European carriers. The first
has a complicated rule structure and almost a “hub and spoke” network
(five first problems). The second does in some sense represent the “normal”
carrier with mathematically rather well-behaved problem instances and rule-
sets, which are not so computationally expensive (problems 7567, all and
prod). The third carrier has rather uncomplicated rules, but the resulting
optimisation problems are highly degenerate (problems bm*). Both daily
and weekly problems are addressed, indicated by a dly or wly in the problem
names.

Problem chunks rtds | dp leg-conns
Ih1 dly 881 | 73349 54124
1h9 dly 121 | 1215 822
a310 wly 1033 | 51066 45458
737 wly 2177 | 97844 54822
737 w6 wly 2177 | 49957 12081
7567 wly 1358 | 17316 2225
all wly 2052 | 53691 4745
prod wly 2548 | 69425 74361
bm dly 126 | 2762 2054
bm wly 778 | 43550 12493

Table 4.2: Test problems

All the test problems can be classified as short or medium-haul. The
column generator successfully solves the long-haul problems as well, but the
resulting integer programs are quite small and easily solved. For long-haul
problems the dead-head selection strategies also play a more important role.

We have not yet incorporated base constraints directly into the column
generation process when PAQS is the choice of master solver. In the test
runs these are for now simply ignored.

There is so far no special dead-head selection strategy incorporated in
the column generator. The only dead-heads considered are the ones given as
input and the ones suggested by the overcovers in the final solution. Which
dead-heads to select as input is not easily decided. In the Carmen system
this is left to a heuristic known as the matcher which will not be described
here.

All tests in this and the following chapters, have been run on a SUN
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Ultra Enterprise 450 ( 4 * 296 MHz UltraSPARC 2) with 512 MB ram. The
simplex solver used for comparison is CPLEX (version 6.01) and the chosen
method is primal simplex with steepest-edge pricing.

4.5 Computational results

In this section we give an overview of the most important results and factors
which affect the total solution time and quality or cost of the solutions.
Besides the obvious comparison to the simplex based generator in total
solution time and quality, a deeper analysis of the column generation process
has been performed.

A very important thing to note is that the final IPs produced by the
column generator are not in all cases solved to proven optimality. This
is for many problems too time-consuming, and the heuristically produced
integer solutions are usually of very high quality. This does of course make
it a little bit difficult to analyse any differences in the solution quality when
there are large integrality gaps.

In table 4.3 solution times and objective values for our test problems are
presented. The first column Total presents the total CPU-time, including all
setup-time, building the network, etc. The time spent in the pricing-routine
is shown in the column Gen and the time in the master solver is presented
in Opt. The column Obj represents the total objective value of the solution.
A (%) before the total CPU-time indicates that the heuristic termination
criterion was invoked, i.e. the process stalled.

Execution times are for all non-trivial problems between two and eight
times higher when PAQS is the optimiser choice. Note that for most prob-
lems, proportionally much less time is spent in the optimiser compared to
pricing, when using PAQS. Termination is for half of the problems triggered
by the heuristic criterion.

A typical behaviour for the bound development with PAQS is presented
in figure 4.4 (problem [h1 dly). The lower bound fluctuates significantly
and the upper bound is decreasing and finally levels out. The dashed line
represents the cost of the best solution achieved when running with CPLEX.
We see that this solution is reached long before termination.

Table 4.4 presents the lower bounds provided by the column generator
for either choice of optimisers. The lower bounds with PAQ@S are all put in
parenthesis, and the lower bounds used to compute the gaps are always the
ones from CPLEX. For the problems which stalled, there are no valid lower
bounds. For problem all wly there is a negative gap! This is due to cost
overestimates in the pricing routine as the cost function is not completely
additive. Unfortunately none of the test problems have strictly additive cost
functions, which means that all the lower bounds will have to be considered
as estimates. The solutions are significantly better and the approximate
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Problem Total Gen | Opt Obj
1h1l dly PAQS 24662 | 22191 | 741 709782
-7 - CPLEX 10129 7775 | 802 712740
1h9 dly PAQS 286 248 6 186242
-”? - CPLEX 209 179 1 186242
737 wly PAQS *203517 | 194325 | 7703 3288049
-7 - CPLEX 64228 | 57552 | 4582 3305330
737 w6 wly PAQS 36482 | 33716 | 2080 3335217
-7 - CPLEX 19832 | 16517 | 2336 3351619
a310 wly PAQS 59427 | 57268 | 604 1272668
-”? - CPLEX 7992 6191 | 254 1274728
7567 wly PAQS 1861 995 | 768 | 158772502
-7 - CPLEX 723 477 | 156 | 158857582
all wly PAQS *6611 2746 | 3627 | 212042374
-7 - CPLEX 3057 934 | 1894 | 212070462
prod wly PAQS *59695 | 53040 | 6255 | 67071221
-” - CPLEX 8195 5661 | 2126 | 67071568
bm dly PAQS *415 328 84 571875
-7 - CPLEX 107 94 10 559411
bm wly PAQS *13387 6879 | 6445 3709392
-7 - CPLEX 2327 320 | 1947 3752547

Table 4.3: Quality and CPU (sec)

integer gaps are for all instances except bm dly, much smaller when using
PAQS.

To better understand why the PAQS setup is slower we have to take a
closer look at what happens in the pricing step. In table 4.5 we give some
statistics on the generation. We see that many more LPs are solved when
PAQS is used. The most important difference with respect to performance
is that many more shortest path problems are solved when PAQS is the
choice for optimiser. This is also indicated by a higher degree of refinement
of the network, represented by the column Arcs (rel) in the table. In this
column we present the relative growth in the number of arcs in the network,
comparing the number of arcs at convergence and in the initial network.

Note that each optimiser call to PAQS is not necessarily followed by
a call to pricing. If the duals give a lower bound which is of too poor
quality, another optimiser call is done. Surprisingly very few columns are
regenerated in our test runs. This is probably due to the fact that the PAQS
duals are fluctuating wildly.
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Figure 4.4: Upper and lower bound development

4.6 Conclusions

From the preceding computational results we can clearly conclude that the
PA QS algorithm can be used to solve the column generation master problem.
The solution quality is significantly better than what is achieved with a sim-
ple CPLEX implementation without any branching after LP-convergence.
The lower bounds produced are on the other hand of a rather poor quality
(several percents off).

The solution times required with PA QS are unacceptably high compared
to the CPLEX-setup. If we take a closer look at where the extra time is
spent, the conclusion is quite clear. Many more optimiser-pricing iterations
are performed with PAQS as optimiser. The main reason for this is that
when using PAQS to produce duals it is very difficult to use classical termi-
nation criterion. The duals from PAQS are quite far from optimal when the
problem has grown enough. Different heuristic approaches have been tried
to overcome this problem, but has only been partly successful. The PAQS
setup is still several times slower than what is the case with CPLEX.

The PAQS algorithm is first of all a primal heuristic. A lot of primal
solutions are generated “for free”, especially in the early stages of the gen-
eration process. If we look at the upper bounds and compare to the final
solution produced when using CPLEX, we see that the PA@QS-bounds often
reach the same quality long before termination. If the runs were termi-
nated at this stage the PAQS-setup would be more competitive with regard
to speed, but still in most cases slower. It is of course also possible that
the CPLEX runs could be terminated prematurely and still give the same
integer solutions. This is somewhat difficult to say since very few integer
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Problem LB UB diff | gap (%)
Ihl dly PAQS (704855) 709782 513 0.0723
-” - CPLEX 709269 712740 3471 0.4900
9 dly PAQS (186133) 186242 9 | 0.00483
-” - CPLEX 186233 186242 9| 0.00483
737 wly PAQS (—) 3288049 14001 0.43
-” - CPLEX 3274048 3305330 | 31282 0.96
737 w6 wly PAQS (3264691) 33356217 | 26111 0.79
-” - CPLEX 3309106 3351619 | 42513 1.28
a3l0 wly PAQS 1262473 1272668 1863 0.15
-7 - CPLEX 1270805 1274728 3923 0.31
7567 wly PAQS (149442147) | 158772502 4230 | 0.00266
-” - CPLEX 158768272 | 158857582 | 89310 | 0.05625
all wly PAQS (—) | 212042374 | -26596 | -0.01254
-” - CPLEX 212068970 | 212070462 1492 0.00070
prod wly PAQS () | 67071221 | 3025 | 0.00451
- - CPLEX 67068196 | 67071568 3372 0.00503
bm dly PAQS (—) 571875 19035 3.44
-” - CPLEX 552840 559411 6571 1.19
bm wly PAQS (—) 3709392 | 119566 3.22
-” - CPLEX 3589826 3752547 | 162721 4.39

Table 4.4: Lower bounds and approximate [P-gaps

solutions are produced dynamically when CPLEX is used. Naturally the
primal heuristic could be called more often, but that will slow down the
process significantly.

Since the SP-network is dynamically refined, it is very important that we
quickly get close to the interesting part for the final solution. With PAQS
the network is refined a lot more, which slows down the pricing step. The
PA QS duals are also quite unstable which cause many uninteresting pairings
to be generated. This is a problem we will address next in chapter 5, where
we try to estimate the optimal duals and use them for the initial pricing
calls.

Proportionally less CPU-time is spent in the optimiser when the choice
is PAQS rather than CPLEX. The difference is quite significant and leads us
to believe that if the number of calls to the pricing-routine could be reduced,
we would still have a good chance of beating the existing system. Better
methods are clearly needed to decide when to terminate the generation pro-
cess. This will be the main topic of chapter 6.
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Problem Arcs (rel) | LPs | SP-calls cols
lh1l dly PAQS 2.8762 | 1109 11041 | 17053
-7 - CPLEX 2.0650 | 314 6562 8436
1h9 dly PAQS 1.3224 | 148 829 704
-” - CPLEX 1.1979 | 142 1164 765
737 wly PAQS 2.6765 | 2152 71007 | 101608
-7 - CPLEX 1.9288 | 215 23871 | 20735
737 w6 wly PAQS 1.7548 | 964 35007 | 45897
-” - CPLEX 1.4508 151 15211 14006
a310 wly PAQS 3.3783 | 614 33684 | 19563
-” - CPLEX 2.6590 97 22425 8194
7567 wly PAQS 1.2045 | 773 4976 | 46803
-7 - CPLEX 1.1279 | 237 2533 6627
all wly PAQS 1.2748 | 1770 10726 | 104455
-7 - CPLEX 1.1354 | 473 4777 | 17109
prod wly PAQS 1.6418 | 3649 46563 | 118458
-7 - CPLEX 1.1710 | 523 15332 | 24274
bm dly PAQS 24.4036 | 1292 2170 1537
-7 - CPLEX 11.2044 | 466 1103 971
bm wly PAQS 5.1673 | 2899 46689 | 75437
-7 - CPLEX 2.6668 | 379 14926 | 11877

Table 4.5: Generation statistics
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Chapter 5

Stabilised duals for pricing

We concluded in the last chapter that the duals from PAQS are generally
very unstable with respect to pricing. In this way columns that are useful
in an IP-solution may be generated, but it causes performance problems
in the pricing step. Because of the dual fluctuations many more than the
really interesting columns are produced by the pricing routine. These will
be useless in creating better bounds, both upper and lower. The dynamic
refinement of the pricing network also makes it important to quickly get
close to a reasonable solution. This is of course true with either choice of
optimiser.

We suggest a stabilisation scheme for the duals used for pricing. Given
an estimation of the set of optimal duals, we bias the duals produced by the
master optimiser towards this solution before the pricing routine is called.
To get an estimate of the optimal duals, we need to solve an approximation
of the pairing problem. A requirement is of course that this approximation
should be easy to solve, and still give reasonable results.

One obvious idea is to solve a highly restricted problem, where for exam-
ple the number of connections to consider between legs are set to a minimum.
One could even lock legs together, but it is then doubtful if the dual feed-
back is worth anything. The difficulty with restricting the problem is that
it requires a deep understanding of the specific instance, to guarantee both
feasibility and good quality.

Instead of further restricting the problem we suggest a relaxation. By
relaxing some of the pairing rules it is possible to formulate the complete
pairing problem as a network flow problem with side constraints. This
follows the approach in [4], but our formulation is somewhat different, and
is applied to another class of problems. They have with considerable success,
primarily used their model to filter deadheads for long-haul problems. So
far our primary interest is only in the initial duals which can be produced,
and to some extent the lower bounds on the total cost which are also given.

The network flow model is described in section 5.1, with the dual stabil-
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isation scheme following in section 5.2. Finally we give some computational
results in section 5.3 and conclusions in section 5.4.

5.1 A relaxed network flow formulation of the pair-
ing problem

In order to direct the generation process, we want to have an estimate of
the optimal duals for the LP-relaxation of the crew pairing set-covering
problem. In chapter 3 we noted that most complicated pairing rules apply
only to single duty periods. If the rules which apply to chains of duty periods
or complete pairings are ignored, the pairing problem can be formulated as a
network flow problem with side constraints. This is a rather simple problem
to solve and the LP-solution is for many of our test problems integer. Since
what we solve is a relaxation, the solution objective will provide a lower
bound on the complete pairing problem.

We use exactly the same network as the one used for the pricing routine
and the restrictions are of course also the same. We are still using a black-
box rule system where the only legality feedback available is a yes-no answer.
This does again make it very difficult to use problem specific characteristics
but allows for maximum flexibility. The cost function must as before be
approximately additive over the duty periods for the solution to make sense,
and the lower bound is only valid if it is strictly so, or if an additive model
underestimates the true cost.

The network flow problem is formulated as an ordinary IP, where we can
distinguish two types of constraints. First of all there are the set-covering
constraints A which are represented by the side-constraints in the network
flow model. Second, we have the actual flow constraints F'. The coefficients
in F,; are in {0, —1} and F, in {0, 1}, and we call z the connection variables.

min cgr + .z

Az >1
Fixr+F.z=0
Zj,%5 € {071}

The basic problem, putting crews on every flight, is modelled in the
same way as before with one row for each flight leg, but with one column
or variable x; for each possible duty period. A coefficient in the matrix
A is 1 if a leg is in the duty period, 0 otherwise. The right hand side is
1. Duty periods with no legal followers or predecessors are removed in a
preprocessing step, and are never part of the actual network.

One variable z; is created for each possible and legal night connection be-
tween two legs. The night connections at a base could for the basic model be
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excluded. However, variables for the base nodes give some added modelling
flexibility and they simplify the construction of actual solutions.

Flow constraints are introduced to make sure that, in a solution, a duty
period going in to a non-base airport will have another duty period going
out. For each leg that arrives to, and departs from an airport, one row is
added respectively. In these constraints, minus ones are put in the rows
representing a duty period’s end and start legs. For the night connection
variables we put ones in the rows representing the legs of the connection (two
entries per column). The right hand side is zero. For the single base problem
we get a single commodity network flow problem with side constraints.

There are many ways to model the connection between duty periods.
One could for example have a connection variable for each possible combi-
nation of duties. As described in section 3.2 there are millions of such pos-
sibilities even for moderate sized problems. If introduced here that would
give the same number of connection variables. At the other end is a further
relaxed connection model where we only consider connections at the same
airport. Such a relaxation will of course give rise to many illegal connections.

We have chosen to use the same leg to leg connections as in the relaxed
network which is used by the column generator. This is not only for the
convenience of already having the network in place. For the same reasons
as with the column generator network, these connections represent a rea-
sonable compromise between the flexibility, efficiency and strength of the
formulation.

Another reasonable compromise which is suggested by [4], uses time win-
dows for the incoming and outgoing duties. The minimum connection time
for a duty period is included already before continuations are considered.
The drawback with using this model is that it requires specific knowledge
about the rules and also that they are quite easily analysed.

For the network flow formulation, we have so far only presented a very
simplified model of the crew pairing problem. First of all, for most problems
there are more than a single base. The network model can quite easily be
extended to handle several bases, but growth in size of the IPs because of
this generalisation is not negligible.

To allow for multiple bases we use copies of all duty period columns, one
copy for each base. Duty periods are not always legal for all bases, which
means that the sub-matrices representing different bases will be slightly
different. The same applies to the connection variables as well.

The flow constraints are separated according to base, which means that
we introduce a large number of new constraints. These constraints will all
form distinct groups representing different networks, one for each base.

With the network flow model just as with the column generator in gen-
eral, we have some restrictions on the type of base constraints that can be
handled correctly. Production constraints which are additive over the duty
periods and connections are easy to handle. They are only applied to the
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duty period and connection variables, now distinct for each base. It is also
possible to put a restriction on the number of rotations from a base, by using
the base sink variables. The difficulty is with constraints on complete pair-
ings. A base constraint that for example puts an upper limit on the number
of rotations of a certain length in a solution, is not possible to incorporate.

If we allow for several bases and introduce the base constraints repre-
sented by By and B,, we get the following problem:

min cgx + c.2
Az >1
Fbu + FP2=0
Byx + Bz < p
b € Bases,zj, z; € {0,1}
The matrix structure of a two-base problem is illustrated in figure 5.1.

Connection

Base1 Base2 variables

to ones and zeroes ones and zeroes

: ones
constr minus ones and zeroes and

pase 1 zeroes

; ones
constr minus ones and zeroes

and
Zeroes

Figure 5.1: Matrix structure, multiple bases

Since the main idea behind using the network model is to speed up the
complete column generation process, and not necessarily to create a very
good lower bound, the actual solution time must be very low. For large
instances, feeding the problem formulated as in the previous section straight
into the LP /network-solver, creates problems with both size and degeneracy.
This is especially the case when there are many bases, since we are using
copies of all duty periods.

By allowing rotations to start and end at any base, the problem can
again be formulated as a single commodity network flow problem. The set-
covering constraints or side constraints, are of course still the same. All the
base constraints will with this formulation unfortunately have to be ignored.
It is not possible to distinguish which pairing belongs to which base. One
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could do some approximation, but it is very difficult to construct meaningful
constraints while maintaining validity.

In order to ensure the validity of the lower bound the minimum cost of a
connection or duty period must be computed over the bases, and then used
as arc cost in the network. The costs are usually very similar so this is not
a significant relaxation.

We also relax the integrality constraints since they are only meaningful
with respect to the lower bound produced, and we are mainly interested in
the dual feedback. The problem we have chosen to solve in order to get
approximate duals to use in a pricing stabilisation scheme is finally:

min cgx + c.2
Az >1
Fox+ F.z=0
z,z >0

The duals we will use for the stabilisation scheme in the next chapter
is of course the duals corresponding to the set-covering constraints. One
can quite easily see that these duals can be interpreted just as the ones
from the ordinary version described in previous chapters. If the duals give
a negative reduced cost to a “pairing” in the network flow version, it will
give a negative reduced cost to this pairing in the shortest path network.
(Provided of course, that the actual cost is additive)

5.2 The stabilisation scheme

The network flow relaxation of the pairing problem is solved once, before the
actual column generation process begins. The master optimisation problem
is solved in the same way as before. It is only for the pricing step that we
directly manipulate the duals. When the reduced costs are computed for
use in the SP-algorithm in the pricing routine, a weighted average of the
duals from the master problem and the network flow relaxation is used.

We have chosen to let the weight of the network-duals decrease with the
number of iterations, and finally be set to zero. Normally we set an upper
limit on the number of iterations with the stabilised duals. By using non-
optimal duals it is of course also possible to trigger premature termination,
if not specific care is taken to the termination criterion.

Let 9 be the duals produced with network model and 3* be the
current duals from the master problem given by either CPLEX or PAQS in
the 7’th iteration. The weight function w(7) should satisfy 0 < w(i) <1 The
duals used in the pricing routine g’ are then given by:

7' =w(@)y* ™ + (1 - w())y’
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Figure 5.2: Stabilised column generation

(Since y* > 0 (dual feasibility) we actually have that g > ystert.)

One can imagine any number of different weight functions, but we have
chosen a very simple one. Let C; and C5 be constants of the same magnitude,
not to large for the iterator ¢ to have any effect, and I,,,4; be the maximum
number of iterations with any active stabilisation of the duals. The weight
function is:

C . .
iy = { G5 < Do
0 if 4> Iy

5.3 Computational results

The tests have been run on the same set of problems as in chapter 4. We
have tried the stabilisation scheme using both PAQS and CPLEX as master
optimisers. The network flow problem is always solved using the CPLEX
hybrid network solver. When comparing the stabilised and the normal ver-
sion of the pricing routine, we refer to the tables in section 4.5 for the results
for the unstabilised version.

Comparing the results in table 5.1 and 4.3, we can see that the stabili-
sation gives some speedup for four of the problems when PAQS is used and
for five with CPLEX. The rest are all slower. With PAQS four of the prob-
lems are terminated due to stalling, which makes it very difficult to compare
these results (indicated by a *). The order of magnitude of the speedup is
between 10% and 40 %. For the problems which are slower the differences
are sometimes larger. For example the problem all wly solved with PAQS is
three times slower. The relation in performance between CPLEX and PAQS
does not change considerably with the introduction of the stabilisation.

The quality of the solutions is also somewhat different than what is the
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Problem Total Gen Opt Obj
Ihl dly PAQS 16867 | 14627 406 710230
-7 - CPLEX 16292 | 12734 874 713069
1h9 dly PAQS 281 242 8 186242
-” - CPLEX 228 194 2 186242
737 wly PAQS *208652 | 199280 | 7442 3291661
-7 - CPLEX 54943 | 49173 | 3273 3304459
737 w6 wly PAQS 37831 | 34473 | 2470 3338918
-7 - CPLEX 13995 | 11328 | 1524 3349902
a310 wly PAQS 55648 | 53235 511 1272592
-” - CPLEX 7332 4639 191 1275050
7567 wly PAQS 3407 1399 | 1872 | 158769698
-7 - CPLEX 710 440 144 | 158777694
all wly PAQS *19995 7276 | 12251 | 212037150
-7 - CPLEX 3230 732 | 2048 | 212069774
prod wly PAQS *63883 | 52469 | 10616 | 67071194
-” - CPLEX 8144 5043 | 2380 | 67069423
bm dly PAQS *548 410 133 574238
-7 - CPLEX 130 114 11 558130
bm wly PAQS *10968 4999 | 5808 3755323
-7 - CPLEX 2901 1003 | 1748 3740569

Table 5.1: Solution time and total objective

case with the normal setup. In table 5.2 we again illustrate the quality by
comparing the integer solutions with the lower bounds provided by CPLEX.
Note again that the lower bounds are not always valid due to the non-
additivity of the cost-function. This is obvious for the problems 7567 wly
and all wly, where the integer gaps when running with PAQS are negative!
The solutions are better when using PAQS compared to CPLEX for all
problems except for the two last, bm dly and bm wly.

We see that the solution cost is lower for four of the problems with PAQS
and for seven with CPLEX, compared to the unstabilised version in table
4.4. This is somewhat correlated to the difference in speed, and it also works
in reverse. For example bm wly with PAQS is solved much quicker with the
stabilisation in place, but the solution is considerably worse.

In order to see if the development of the duals is more stable with the
network flow start duals, we look at the dual difference from iteration to
iteration. That is we computed ||y* —**1||; and compare with the normal
setup. This is for a typical example illustrated in figure 5.3. We see that the
stabilised version is more smooth in the beginning. Around iteration 50 the
weight of the network duals is set to zero, and the development is similar.

The growth in the pricing network is more or less on par with what
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Problem LB Obj diff | gap (%)
Ih1l dly PAQS (703423) 710230 834 0.12
-”? - CPLEX 709396 713069 3673 0.52
1h9 dly PAQS (184330) 186242 9| 0.00483
-” - CPLEX 186233 186242 9| 0.00483
737 wly PAQS (—) 3291661 18125 0.55
-7 - CPLEX 3273536 3304459 | 30923 0.94
737 w6 wly PAQS (3273957) 3338918 | 30374 0.92
-7 - CPLEX 3308544 3349902 | 41358 1.25
a3l0 wly PAQS (1262032) 1272592 1786 0.14
-” - CPLEX 1270806 1275050 4244 0.33
7567 wly PAQS (149669536) | 158769698 -519 -0.0003
-7 - CPLEX 158770217 | 158777694 477 0.0047
all wly PAQS (—) | 212037150 | -28466 -0.0134
-7 - CPLEX 212065616 | 212069774 4158 0.0020
prod wly PAQS ()| 67071194 | 2998 | 0.0045
-” - CPLEX 67068196 | 67069423 1227 0.0018
bm dly PAQS ) 574238 | 21398 3.87
-7 - CPLEX 552840 558130 5290 0.96
bm wly PAQS (—) 3755323 | 165497 4.61
-7 - CPLEX 3589826 3740569 | 150743 4.20

Table 5.2: Lower bounds and approximate IP-gaps

to expect when looking at the solution times. This is illustrated in table
5.3. Worth to note is that the problem all wly solved with PAQS, does not
exhibit a large growth in the number of network arcs but is still much faster
without stabilisation. Instead many more LP-pricing loops are performed,
meaning much more time spent in the master optimiser and pricing routine.
Note also that better solutions with the stabilisation does not immediately
imply that more columns have been generated.

Besides the start duals the solution of the network flow relaxation of the
pairing problem also provides us with a lower bound. In table 5.4 we com-
pare the network lower bound with the lower bound and integer solutions
achieved through column generation with CPLEX and stabilised pricing du-
als. The lower bound from the network flow relaxation is for most problems
approximately 10 % worse than the column generation lower bound. For
the problems 7567 wly, all wly and prod wly the bounds are only around 2%
off. This can probably be explained by the fact there is only a single base
for the first two, and just a few for problem prod wly. There are also many
one day pairings for these problems. That is, the network flow relaxation
should be a good approximation of the true problem.

Solution times for the network flow relaxation are rather low compared
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Figure 5.3: Dual fluctuations for problem 787 w6 wly

to the total column generation time. The times also seem to scale rather
well with the size of the problems.

5.4 Conclusions

The present stabilisation scheme proposed for the duals used by the pricing
routine can not be concluded successful. For some problems the stabilisation
gives a considerable speedup, for some it slows down the solution process.
The solution quality is sometimes better and sometimes worse. One can
maybe say that the stabilisation gives slightly better solution when run
with CPLEX, but otherwise we have not been able to discover any pattern
for when the stabilisation is likely to work. For the time being we must
conclude the performance differences to be more or less random.

From the solution of the network flow relaxation of the pairing problem
a lower bound is provided. This bound is for some problems of rather good
quality but is very dependent on the specific problem structure.

The network flow formulation we have used can easily be strengthened
and give better bounds. Solution times will then for most difficult problems
be prohibitive with the solver we have used. We think it is worth investi-
gating how a more efficient solution approach to this special network flow
problem can be implemented. More of the underlying structure should be
possible to use also in the basic formulation of the problem.
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Problem Arcs (rel) | LPs | SP-calls | Columns
Ihl dly PAQS 2.5837 | 885 9201 13523
-” - CPLEX 2.0417 | 335 6919 8718
1h9 dly PAQS 1.3117 | 181 1055 882
-7 - CPLEX 1.1996 | 145 1042 808
737 wly PAQS 2.6071 | 2277 68878 101324
-” - CPLEX 1.7759 | 180 21018 18475
737 w6 wly PAQS 1.7769 | 1079 39746 50540
-” - CPLEX 1.3974 | 132 13013 13057
a310 wly PAQS 3.6791 | 537 31348 18902
-7 - CPLEX 2.2409 94 16987 8437
7567 wly PAQS 1.2054 | 979 5989 60366
-” - CPLEX 1.1244 | 242 2574 6418
all wly PAQS 1.3007 | 2984 17068 178109
-” - CPLEX 1.1390 | 462 4777 17159
prod wly PAQS 1.6120 | 4040 49492 126936
-” - CPLEX 1.1771 | 512 15181 22969
bm dly PAQS 25.1594 | 1427 2277 1573
-” - CPLEX 12.4724 | 518 1189 1050
bm wly PAQS 5.0078 | 2203 40443 47489
-” - CPLEX 2.6383 | 379 14695 10055
Table 5.3: Generation statistics
Problem CPU | LB (netw) | Gap (LP) | Gap (IP)
lh1 dly 187 650712 9.02 9.58
1h9 dly 1 172433 8.00 8.01
737 wly 497 2976194 9.99 11.03
737 w6 wly | 207 2986181 10.80 12.18
a310 wly 164 1165031 9.08 9.44
7567 wly 35 | 154674492 2.65 2.65
all wly 212 | 208667841 1.63 1.63
prod wly 409 | 65793431 1.94 1.94
bm dly 2 486354 13.67 14.76
bm wly 90 3256497 10.24 14.86

Table 5.4: The network flow solution
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Chapter 6

A hybrid master solver

We have seen in the two preceding chapters that it is difficult to use the
integer optimiser PAQS as a master solver in a column generation scheme.
PAQS seems suitable for solving the master problems in the early stages
of the column generation process, and also helps in finding a few critical
pairings which are missed when CPLEX is used. Unfortunately a very large
number of uninteresting columns are also generated. The main problem was
analysed in section 4.6 to be the difficulty in deciding a proper termination
criterion. In chapter 5 we tried to avoid the worst of the dual fluctuations
caused by PAQS during generation but this was not successful.

The integer solutions produced dynamically by PAQS do on the other
hand reach very good quality early on. A natural idea seems to be a com-
bination of PAQS with a more traditional optimiser approach. This would
primarily be to give better grounds for a termination criterion, but also to
help stabilising the whole generation process.

It has been noted by others, see for example [2], that subgradient algo-
rithms perform well in a column generation context. We suggest to use a
simple subgradient approach to produce the duals, when the pricing routine
is not performing well using the PA@QS-input. The decision on which opti-
miser to use is done dynamically, and often both versions are called at the
same time.

The basic subgradient algorithm is described in section 6.1 and the inte-
gration with PAQS and the rest of the system in section 6.2. Computational
results and conclusions follow in sections 6.3 and 6.4.

6.1 A simple subgradient approach to the set cov-
ering problem

Subgradient algorithms are a classical approach to many non-differentiable
optimisation problems. For the set-covering problem there are a number of
classical papers for example [15] and [16], and we refer to these for more
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detailed description. We will for this work stay with a very simple imple-
mentation which will be briefly described here.
Let us first restate the set-covering problem:

min cz
Az >1
z €{0,1}"

We are now only interested in dual solutions, and will ignore whether
the primal solution in z is feasible or not. Again we consider the lagrangean
relaxation, where the lagrangean function is defined by:

L(y) = mi b— Az) =
(v) ze%l’rll}ncw—l-y( x)

i —yA)z +yb= in cr+yb
L, (- yArtyb= wmin oty

The minimisation problem in the definition of L is called the Lagrangean
subproblem. Note again that this subproblem can be solved to optimality
by setting z; = 1, if ¢; < 0, and z; = 0 otherwise. The dual problem can
then be stated as:

L
max (v)

It is easily seen that ¢ = b — Ax is a subgradient of L in y. The subgra-
dient algorithm consists of a stepwise update of the duals in the subgradient
direction:

yF ! = max(y* + s¥¢¥,0)

In order to maintain dual feasibility, the duals are projected as to not
contain any negative components. A well known theorem states that con-
vergence is guaranteed if the step-length s* satisfies the following condition,

llgll3

where y* is the optimal dual solution. We do of course not know the
optimal dual solution and approximate with the value given by the best
known primal solution z*".

CAN
b= ok 2(y )
llgll2

Let C7 and C5 be constants in the range of approximately 100. We have
chosen to define the value of o in the following way:

42



Ozk = 701
VCo + k

The subgradient algorithm is terminated when g = 0 or the primal so-
lution objective value coincides with the dual.

6.2 A combined PAQS and subgradient master
solver

The main reason for combining PAQS and a subgradient algorithm is to
give a better termination criterion. Given that we had a reliable quality
test for the PAQ)S duals, the subgradient solver can be called when that test
is not passed. The subgradient duals are optimal or very close to, and the
traditional negative reduced cost termination criterion can in principal be
used.

It is of course very difficult to construct a really good quality test, with-
out knowing the optimal solution. One could instead always call the sub-
gradient solver, and for the pricing step use the duals which give the best
lower bound. This is somewhat inefficient since the PAQS duals often give
good lower bounds when compared to the optimal, especially in the early
stages of the generation process.

We have chosen a compromise where the subgradient algorithm is ac-
tivated when the IP gap is very large or changing drastically. Using the
IP-gap as a decision basis should be rather reliable due to the very good
integer solutions dynamically produced by PAQ@S.

For the first subgradient iteration the duals from PA QS are used as input.
It is then usually easy to drastically improve the quality of the duals in a
few steps. For subsequent calls the duals from the previous iteration are
used.

With this setup the subgradient solver is called quite often, which is
very costly with regard to CPU-time if driven to optimality. To limit the
effort spent in the subgradient algorithm, we put an upper limit on the
number of subgradient steps done for each call. A more sofisticated and
efficient subgradient algorithm could of course be implemented, but as the
results in the next chapter shows, already this crude implementation gives
a considerable speedup.

A special feature with using both PAQS and the subgradient solver at
the same time, is that the upper bound needed by the subgradient algorithm
is provided by PAQS. This makes the choice of step-length easier, and no
new heuristic is needed for integer solutions in the subgradient solver.
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Figure 6.1: The PAQS-subgradient column generator

6.3 Computational results

Again we return to the set of test problems. In this section we only present
the numerical results with the PAQS-subgradient optimiser as the master
solver. For the other versions we refer to the previous sections 4.5 and 5.3.
We have now reached the main computational result of this work.

The column generator with the PAQS-subgradient master solver is con-
siderably faster than the CPLEX version for all problems except prod wly,
a310 wly and the trivial [h9 dly. This is with respect to total runtime.

If we exclude setup time the speedup is even greater. The problems
which require more computation time are still not much slower to solve. For
the more degenerate problems with a simple rule structure (bm dly and bm
wly), solution times are down to less than a third. Compared to the version
with the PA QS optimiser on its own in chapter 4, the speedup can be more
than ten times. For a more detailed comparison we refer to tables 6.3 and
4.3.

The solutions produced with the PAQS-subgradient setup are of the
same quality as the ones produced with CPLEX. Looking at tables 6.2 and
4.4 we can see for problems with large IP-gaps that the PAQS-subgradient
master solver is for most problems superior to CPLEX also with respect to
quality. Compared to the results with PAQS as the only solver in chapter
4, the quality is somewhat worse.

The PAQS-subgradient column generator seems to give rise to the same
type of pricing problems as when running with CPLEX, which is illustrated
in table 6.3. There is of course a strong correlation between the number op-
timiser loops and columns generated and interaction with the rule system.
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Problem Total Gen | Opt Obj
Ih1 dly 4110 | 2316 65 713261
1h9 dly 221 188 4 186242
737 wly 40830 | 38474 | 244 3307023
737 w6 wly | 8752 | 7884 | 199 3346405
a310 wly 9244 | 7581 53 1274403

7567 wly 378 221 64 | 158774222
all wly 727 300 | 183 | 212077618
prod wly 11868 | 10945 | 519 | 67086650
bm dly 32 20 9 558111
bm wly 932 776 | 113 3721166

Table 6.1: Quality and CPU (sec)

Problem LB Obj diff | gap (%)
Ih1 dly (709107) 713261 3992 0.56
1h9 dly (186122) 186242 9 | 0.00483
737 wly (318005) 3307023 32975 1.01
737 w6 wly (3214424) 3346405 37299 1.13
a3l0 wly (1269298) 1274403 3598 0.28
7567 wly (158715734) | 158774222 5950 | 0.00375
all wly (211538970) | 212077618 8648 | 0.00408
prod wly (67013379) 67086650 18454 | 0.02752
bm dly (551821) 558111 5271 0.95
bm wly (3585164) 3721166 | 131340 3.66

Table 6.2: Lower bounds and approximate [P-gaps

The proportions are more or less the same for both optimisers. The genera-
tion of duplicate columns has unsurprisingly not been a problem. Very few
duplicates are generated, using very little computation time (not illustrated
in the table).

A question which naturally arises is whether the PAQS algorithm in its
original form is at all necessary together with the column generator. Is it
sufficient to use only the subgradient approach to solve the master problem?

This question is not easily answered since the use of the original algo-
rithm provides the subgradient step with an excellent upper bound, which
somewhat enhances performance. If not using the upper bounding func-
tionality provided by PAQS, other possibly expensive heuristics must be
developed. Throughout our tests PA QS does for most problems account for
very little computation time, even for the very difficult instances. We have
also noted that some solution columns are generated only when the PAQS
feedback is used.

45



Problem Arcs (rel) | LPs | SP-calls | Columns
Ih1 dly 1.3671 | 139 2821 4127
1h9 dly 1.1885 | 105 889 740
737 wly 2.0681 | 193 25692 18587
737 w6 wly 1.5585 | 146 8752 15388
a3l0 wly 2.8366 90 21496 7264
7567 wly 1.1224 | 181 2105 6218
all wly 1.0931 | 288 3129 10738
prod wly 1.1533 | 473 14489 20135
bm dly 4.8556 | 231 534 747
bm wly 2.2295 | 248 10433 6467

Table 6.3: Generation statistics

As an experiment we significantly reduced the number of PA (S iterations
and only used the subgradient duals in the pricing routine. This setup was
more efficient than CPLEX on its own, but was outperformed by the PA QS-
subgradient version both with respect to speed and quality.

We also note that the behaviour of the lower bounds produced by the
basic PAQS and subgradient algorithm, are quite different. While the PAQS
lower bound fluctuates, the subgradient lower bound behaves in a smooth
fashion except for the very first iterations. It also appears that the PAQS-
algorithm is well suited to solve the master problems in the initial stage of
the generation process. The subgradient solver is on the other hand quite
inefficient for these problems, but is very stable close to convergence.

The bound development of problem 7567 wly is illustrated in figure 6.3.
We have plotted the bounds achieved for each optimiser-pricing iteration.
The dashed line is the upper bound, and the dotted is the lower, produced by
PAQS. The solid line is the the subgradient lower bound. The subgradient
optimiser is not always called which is why this bound is set to zero in the
early iterations. We have chosen not to plot the first 50 iterations where
PAQS very quickly solves also the dual problem.

In table 6.4 we summarise the results from running the PA QS-subgradient
solver with the pricing stabilisation scheme from chapter 5. Here, as before,
we can not distinguish any clear pattern. The stabilisation scheme speeds
up the process in some cases but the solutions are then often slightly worse.
There are two problems which stick out as behaving very different compared
to the unstabilised version. The test problem lh1 dly requires more compu-
tation time with stabilisation, and the solution is significantly worse. For
problem prod wly the situation is the reverse. It is solved in half the time
with a better solution. Interesting to note is that this is the only problem
where the normal PA(QS-subgradient setup is considerably worse than the
one with CPLEX.
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Figure 6.2: Upper and lower bound development for 7567 wly

6.4 Conclusions

Column generation with the combination of PAQS and the subgradient al-
gorithm as the master solver is on the average much faster and often give
better quality solutions than a simple simplex-based approach with CPLEX.

The PAQS-subgradient setup is for most problems approximately twice
as fast as the CPLEX version. If exclusively comparing the time spent in
the optimisers, the difference is considerably larger. This lead us to conclude
that our solver should be especially interesting when working with highly
degenerate problems.

The PAQS-subgradient solver seems to be very stable. At the early
stages of the generation process, PAQS very quickly either solves the prob-
lems to dual optimality or gets close to. At that stage the subgradient
algorithm requires many iterations to reach the same quality. As the master
problem grows in size, the PAQS duals are more often of poor quality while
the subgradient duals are stable and of very good quality.

The solution quality is unfortunately somewhat worse than what is achiev-
ed when running PA @S on its own as in chapter 4, but the PA QS-subgradient
setup is often ten times faster.

Unsurprisingly using the stabilisation of the pricing duals of chapter 5,
with the PAQS-subgradient solver doesn’t give any conclusive results.
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Problem Total Gen | Opt Obj
Ih1 dly 5437 | 2725 | 37 715550
1h9 dly 240 193 2 186242
737 wly 35018 | 32301 | 177 3299285
737 w6 wly | 8624 | 7368 | 105 3357645
a310 wly 9145 | 6617 | 41 1278360

7567 wly 463 267 | 65 | 158775270
all wly 894 278 | 166 | 212072930
prod wly 5133 | 4106 | 297 | 67082483
bm dly 41 27 9 55891
bm wly 818 566 95 3748127

Table 6.4: PAQS-subgradient solver with stabilised pricing duals
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Chapter 7

Final conclusions

We have have investigated a number of heuristic approaches to column gen-
eration for the crew pairing problem. The focus has mainly been on how to
solve the master problem, but we have also tried to stabilise the input to
the pricing step directly.

In chapter 4 we used the integer heuristic PAQS on its own to solve
the master problem. For this first integration with the column generator
the primary objective was to improve the solution quality, and which have
been successful. Unfortunately this implementation has serious performance
problems with regard to speed. Many problems are solved 10 times faster
when the master solver is CPLEX, and the cost reductions are not large
enough to motivate such a difference.

When the column generator is based on a relaxed duty network, it be-
comes more important to quickly get close to reasonable solutions. This is
due to the dynamic refinement of the network which has a strong impact
on performance. In chapter 5 we tried to direct the generation process by
using dual feedback from a network flow relaxation of the pairing problem.
The idea was to avoid much of the refinement by having a reasonable es-
timate of the final solution already from the start. The results are mixed.
The stabilisation scheme we suggest in chapter 5 does sometimes improve
performance and sometimes make it worse. This is true for either choice of
master optimisers.

From the network flow relaxation in chapter 5 a lower bound on the total
cost is also provided. The bound is for most instances quite far off from the
optimal, but can for some problems be a very good approximation. This is
very much dependent on the flight and rule structure of the specific fleet in
mind.

Finally in chapter 6 we suggest a combination of PAQS and a sim-
ple subgradient algorithm as an approach to the column generation master
problem. This hybrid master solver is very competitive. Compared to the
setup with CPLEX the new solver speeds up the complete solution process
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for most problems, and is often several times faster. The PAQS and sub-
gradient algorithms seem in some sense to be complementary with respect
to solving the dual problem. Some of the quality improvements in chapter
4 are unfortunately lost, but costs are still on a par with the ones produced
with CPLEX.

Finally we would like to emphasise what we see as the main contributions
of this work. First, with the introduction of the combined master solver with
PAQS and the subgradient algorithm, we have improved the performance
of the Carmen column generator significantly. This setup is also very stable
and produces many integer feasible solutions dynamically. Second, we have
in the column generator investigated a new approach for improving the
solution quality, without using any direct branching.

Another important point common for all tests, is that they have been
run on production instances with no rule simplifications or other restrictions.
This is also true for the network flow relaxation in chapter 5, where as for
all tests the only limitation is the duty additivity of the cost function.

For the future we first of all intend to incorporate base constraints in
the PAQS- subgradient optimiser, which ought to be rather straightforward.
What is interesting here is that the base constraints tend to change the
solution characteristics and this might have an impact on performance in
either direction.

More interesting is to study some possibilities for branching techniques
that can be based on feedback from the PAQS algorithm. There are also
a few apparent ways in which to strengthen the network flow relaxation of
chapter 5 which should give better bounds and dual feedback. With this in
mind, a specialised solution approach for this formulation can be fruitful to
investigate.
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