A CONSTRUCTIVE PROOF OF THE COMPOSITION
RULE FOR TAYLOR’S FUNCTIONAL CALCULUS

MATS ANDERSSON & SEBASTIAN SANDBERG

ABSTRACT. We give a new constructive proof of the composition
rule for Taylor’s functional calculus for commuting operators on a
Banach space.

1. INTRODUCTION

Let X be a Banach space, let £(X) denote the space of bounded
operators on X, and suppose that ai,...,a, € £(X) are commuting.
If p(2) = p(21,...,2,) is a polynomial then p(a) = p(ai,...,a,) has a
welldefined meaning. Since the polynomials are dense in O(C™) there
is a continuous algebra homomorphism

(1.1) O(C") = (a) C L(X),

where (a) denotes the closed subalgebra of £(X) that is generated by
ai,...,a,. The proper notion of joint spectrum o(a) of the operators
ai, ... ,a, was found by Taylor, [9]; it is a compact subset of C". Let

(a)" denote the subalgebra of L£(X) consisting of all operators that
commute with all operators that commute with each a,. It is easy to
see that (a)” is commutative. Taylor proved the following fundamental
result in [10].

Theorem 1.1 (Taylor). Let aq,...,a, be commuting operators on a
Banach space with joint spectrum o(a). There is a continuous algebra
homomorphism g — g(a) from O(o(a)) into (a)" that extends (1.1).
Moreover, if g = (g1, . , gm) s a holomorphic mapping, g; € O(o(a)),
and g(a) = (91(a), - , gm(a)), then

(1.2) a(g(a)) = g(o(a)).

Taylor’s original proof of this theorem was based on representation of
holomorphic functions by means of Cauchy—Weyl formulas. Later on,
in [11] and [12], he made the construction with homological methods.
Suppose that g € O(o(a)) is a holomorphic mapping and that f €
O(g(o(a))). In view of (1.2), both f o g(a) and f(g(a)) has meaning
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2
and it is natural to ask if they coincide. Putinar proved in [7] by
homological methods that this question has an affirmative answer.

Theorem 1.2 (Putinar). Suppose that g = (g1, .. ,9m) i a mapping,

gTjhE O(o(a)), g(a) = (91(a),--- ,9m(a)) and that f € O(g(o(a))).

(1.3) fg(a)) = fog(a).
A simplified proof appeared in [6].

If a is one single operator and f € O(o(a)), then f(a) is given by
the formula

(1.4) fla)= [ [f(2)wsa,
oD
where w,_, is the resolvent
1 1
r—a = s =(2—a) dz.
w " (z—a) "dz

In the case with several commuting operators, the resolvent w, , is
an (a)”-valued cohomology class in C" \ o(a). In [1] we gave a new
constructive proof of Taylor’s theorem. From the very definition of
the spectrum o(a) we defined, for each z € X, a closed X-valued
(n,n — 1)-form in C" \ o(a) that represents the class w, ,x. Then
f(a) can be defined by the formula (1.4). The form w, ,x is sort of
an abstract Cauchy—Fantappie-Leray kernel. In special situations, for
instance outside any Stein compact set that contains o(a), the form
w, «x can be realized as a classical Cauchy—Fantappie-Leray kernel.
(Contrary to the convention in [1] we include the factor (274)~™ in
the definition of resolvent class here.) This constructive approach is
natural if one wants to extend the functional calculus to larger classes
of functions. In one variable this was done by Dynkin in [5]; in several
variabels partial results have been obtained by e.g. Droste; see also the
forthcoming papers [3] and [8].

The purpose of this note is to give a proof of Theorem 1.2 along the
lines of [1] and [2]. It can be viewed as a continuation of these papers
and we keep the same notation.

2. SOME AUXILIARY RESULTS

It is sometimes convenient to replace the boundary integral in (1.4)
by a smoothed out integral. If f € O(V), V a neighborhood of o(a),
and if ¢ is a cutoff function that is identically 1 in a neighborhood of
o(a) and has support in V, then

(2.1) f(a) = - / F(2)06(2) A wra.



This immediately follows from (1.4) and Stokes’ theorem.

Lemma 2.1. Suppose that T: C* — C™ is linear and ¢ € O(c(Ta)).
Then ¢(Ta) = T*¢(a).

We already know from Theorem 1.1 that T'o(a) = o(Ta) so both
sides make sense. The lemma is the special case of Theorem 1.2 when
g is linear; for a proof see, e.g., [1] Theorem 3.1.

Let us now consider commuting operators ai,... ,an, b1,... ,byp. It
follows from Lemma 2.1 that o(a,b) C o(a) x o(b).

We will now recall from [1] and [2] how the resolvent class w, g4 in
C* xC™\o(a,b) for (a,b) can be represented in terms of w, , and w,, 4.
Let &,z is an explicit form in C*\o(a) that represents the class w, ,z.
There is a smooth d-closed form @y,_y A@,_ex in C* \ o(a) x C™ \ o(b)
which, for each fixed z € C" \ o(a), represents the class wy_p A W,
Let x(z, w) be a function in C* x C™ \ o(a) x o(b) such that {x,1— x}
is a partition of unity subordinate to the open cover

{C"\ o(a) x C™,C" x C™ \ o(b)},

of C* x C™ \ g(a) x a(b). In the set C* x C™ \ o(a) X o(b), the class
Wy—aw—b¥ is then represented by the form

5)( A Z‘jwfb A (*N‘)zfaxa

cf., formula (3.6) in [1].

Let ¢(z) and ¥ (w) be cutoff functions that are identically 1 in neigh-
borhoods of o(a) and o(b) respectively. Moreover let G(z,w) be holo-
morphic in a neighborhood of o(a) x o(b). Then (2.1) applied to the
pair (a,b) gives

G(a,b)x = — // G(z,w)0(¢ @ 1Y) ANOX A Dy A\ Wy_qX.
Integration by parts in this formula yields, cf., formula (3.7) in [1],
(29)  Glab)r = / / G2, w)F(w) A FO(2) A B AT o2

In particular, if g1 € O(o(a)), g2 € O(o(b)), and G = g1 ® go, it follows
by Fubini’s theorem that

(2.3) 91 ® g2(a,b) = g1(a)g2(b).



3. PROOF OF THEOREM 1.2

We are now ready to prove Theorem 1.2. Let a ... ,a, be a com-
muting n-tuple of operators, let ¢ = (g1,...,9m) be a holomorphic
mapping, g; € O(c(a)), and let b = g(a).

Lemma 3.1. If ¢ is holomorphic at the origin of C™ and ®(z,w) =
d(w — g(z)), then ® € O(o(a,b)) and ®(a,b) = ¢(0).

Proof. 1t follows from the spectral mapping statement in Theorem 1.1
that o(a,b) = {(z,w); z € o(a), w = g(z)}. Therefore ®(z,w) is
holomorphic in a neighborhood of o(a, b).

There are holomorphic functions ¢q,... , ¢, at the origin so that

¢(§) = ¢(0) + 22&;9;(£). Therefore,

D(z,w) = ¢(0) + ZH]'(Z, w)Pr (2, w),
7j=1
where ®;(z,w) = ¢j(w — g(z)) and H;(z,w) = w; — g;(2). Now
Hj(a,b) = bj — gj(a) = 0, where the first equality follows from lin-
earity and (2.3), and the second equality follows from our assump-
tion. Since the functional calculus is multiplicative it follows that

®(a,b) = ¢(0). O

We can now conclude the proof of Theorem 1.2. Assume that f(w)
is holomorphic in a neighborhood of o(b). Then h(z,w, ) = f(i— (w—
g(z))) is holomorphic in a neighborhood of o(a,b) x o(b) C C*™ x C™,
and in view of (2.2) above we can therefore write

h(a, b, b)x = / / 9(2))) 39 (2, ) AS(E) ABs—aro s AT o,

if ¥(z,w) is 1 in a small neighborhood of o(a,b) and ¢(§) is 1 in a
small neighborhood of o(b). For each fixed £ we can evaluate the inner
integral by Lemma 3.1 and get that

h(a,b,b)x /f )00 (&) Awe pr = f(b)z.

= f(b) = f(g9(a)). On the other hand, by the linear
n) — (z,w,&) = (z,m,n) and Lemma 2.1, we have that
h(a,b,b) = h(T(a,b)) = T*h(a,b).

Now T*h(z,m) = fog(z)®1, and hence T*h(a,b) = fog(a) according
to (2.3). Summlng up, we get the desired equality f(g(a)) = f o g(a).

Thus h(a,b,b)
mapping 7": (z,
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