FROM FINITE DIFFERENCES TO FINITE ELEMENTS

A short history of numerical analysis of partial differential equations

VIDAR THOMEE

ABsTRACT. This is an account of the history of numerical analysis of partial dif-
ferential equations, starting with the 1928 paper of Courant, Friedrichs, and Lewy,
and proceeding with the development of first finite difference and then finite element
methods. The emphasis is on mathematical aspects such as stability and convergence
analysis.

0. Introduction.

This article is an attempt to give a personal account of the development of
numerical analysis of partial differential equations. We begin with the introduc-
tion in the 1930s and further development of the finite difference method and then
describe the subsequent appearence around 1960 and increasing role of the finite
element method. Even though clearly some ideas may be traced back further, our
starting point will be the fundamental theoretical paper by Courant, Friedrichs,
and Lewy (1928)! on the solution of problems of mathematical physics by means
of finite differences. In this paper a discrete analogue of Dirichlet’s principle was
used to define an approximate solution by means of the five-point approximation
of Laplace’s equation, and convergence as the mesh width tends to zero was es-
tablished by compactness. A finite difference approximation was also defined for
the wave equation, and the CFL stability condition was shown to be necessary
for convergence; again compactness was used to demonstrate convergence. Since
the purpose was to prove existence of solutions, no error estimates or convergence
rates were derived. With its use of a variational principle for discretization and
its discovery of the importance of mesh-ratio conditions in approximation of time
dependent problems this paper points forward and has had a great influence on
numerical analysis of partial differential equations.

Error bounds for difference approximations of elliptic problems were first de-
rived by Gerschgorin (1930) whose work was based on a discrete analogue of the
maximum-principle for Laplace’s equation. This approach was actively pursued
through the 60s by, e.g., Collatz, Motzkin, Wasow, Bramble, and Hubbard, and
various approximations of elliptic equations and associated boundary conditions
were analyzed.
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For time dependent problems considerable progress in finite difference methods
was made during the period of, and immediately following, the Second World War,
when large scale practical applications became possible with the aid of computers.
A major role was played by the work of von Neumann, partly reported in O’Brien,
Hyman and Kaplan (1951). For parabolic equations a highlight of the early theory
was the important paper by John (1952). For mixed initial-boundary value prob-
lems the use of implicit methods was also established in this period by, e.g., Crank
and Nicolson (1947). The finite difference theory for general initial value problems
and parabolic problems then had an intense period of development during the 50s
and 60s, when the concept of stability was explored in the Lax equivalence theorem
and the Kreiss matrix lemmas, with further major contributions given by Douglas,
Lees, Samarskii, Widlund and others. For hyperbolic equations, and particularly
for nonlinear conservation laws, the finite difference method has continued to play
a dominating role up until the present time, starting with work by, e.g., Friedrichs,
Lax, and Wendroff.

Standard references on finite difference methods are the textbooks of Forsythe
and Wasow [14] and Richtmyer and Morton [28].

The idea of using a variational formulation of a boundary value problem for its
numerical solution goes back to Lord Rayleigh (1894, 1896) and Ritz (1908), see,
e.g., Kantorovich and Krylov [21]. In Ritz’s approach the approximate solution was
sought as a finite linear combination of functions such as, for instance, polynomials
or trigonometrical polynomials. The use in this context of continuous piecewise lin-
ear approximating functions based on triangulations adapted to the geometry of the
domain was proposed by Courant (1943) in a paper based on an address delivered to
the American Mathematical Society in 1941. Even though this idea had appeared
earlier, also in work by Courant himself (see Babuska [5]), this is often thought of
as the starting point of the finite element method, but the further development and
analysis of the method would occur much later. The idea to use an orthogonality
condition rather than the minimization of a quadratic functional is attributed to
Galerkin (1915); its use for time-dependent problems is sometimes referred to as
the Faedo-Galerkin method, cf. Faedo (1949), or, when the orthogonality is with
respect to a different space, as the Petrov-Galerkin or Bubnov-Galerkin method.

As a computational method the finite element method originated in the engi-
neering literature, where in the mid 50s structural engineers had connected the well
established framework analysis with variational methods in continuum mechanics
into a discretization method in which a structure is thought of as divided into ele-
ments with locally defined strains or stresses. Some of the pioneering work was done
by Turner, Clough, Martin, and Topp (1956) and Argyris (1960) and the name of
the finite element method appeared first in Clough (1960). The method was later
applied to other classes of problems in continuum mechanics; a standard reference
from the engineering literature is Zienkiewicz [43].

Independently of the engineering applications a number of papers appeared in
the mathematical literature in the mid 60s which were concerned with the con-
struction and analysis of finite difference schemes by the Rayleigh-Ritz procedure
with piecewise linear approximating functions, by, e.g., Oganesjan (1962, 1966),
Friedrichs (1962), Céa (1964), Demjanovi¢ (1964), Feng (1965), and Friedrichs and
Keller (1966) (who considered the Neumann problem). Although in fact special
cases of the finite element method, the methods studied were conceived as finite
difference methods; they were referred to in the Russian literature as variational
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difference schemes.

In the period following this, the finite element method with piecewise polynomial
approximating functions was analyzed mathematically in work such as Birkhoff,
Schultz, and Varga (1968), in which the theory of splines was brought to bear on
the development, and Zldmal (1968), with the first stringent a priori error analysis
of more complicated finite elements. So called mixed finite element methods, which
are based on variational formulations where, e.g., the solution of an elliptic equation
and its gradient appear as separate variables and where the combined variable is
a saddle-point of a Lagrangian functional, were introduced in Brezzi (1974); such
methods have many applications in fluid dynamical problems and for higher order
elliptic equations.

More recently, following Babuska (1976), Babuska and Rheinboldt (1978), much
effort has been devoted to showing a posteriori error bounds which depend only on
the data and the computed solution. Such error bounds can be applied to formulate
adaptive algorithms which are of great importance in computational practice.

Comprehensive references for the analysis of the finite element method are Babus-
ka and Aziz [4], Strang and Fix [34], Ciarlet [11], and Brenner and Scott [8].

Simultaneous with this development other classes of methods have arisen which
are related to the above, and we will sketch four such classes: In a collocation
method an approximation is sought in a finite element space by requiring the dif-
ferential equation to be satisfied exactly at a finite number of collocation points,
rather than by an orthogonality condition. In a spectral method one uses glob-
ally defined functions, such as eigenfunctions, rather than piecewise polynomials
approximating functions, and the discrete solution may be determined by either or-
thogonality or collocation. A finite volume method applies to differential equations
in divergence form. Integrating over an arbitrary volume and transforming the in-
tegral of the divergence into an integral of a flux over the boundary, the method is
based on approximating such a boundary integral. In a boundary integral method a
boundary value problem for a homogeneous elliptic equation in a d-dimensional do-
main is reduced to an integral equation on its (d — 1)-dimensional boundary, which
in turn can be solved by, e.g., the Galerkin finite element method or by collocation.

An important aspect of numerical analysis of partial differential equations is
the numerical solution of the finite linear algebraic systems that are generated by
the discrete equations. These are in general very large, but with sparse matrices,
which makes iterative methods suitable. The development of convergence analysis
for such methods has parallelled that of the error analysis sketched above. In the
50s and 60s particular attention was paid to systems associated with finite differ-
ence approximation of positive type of second order elliptic equations, particularly
the five-point scheme, and starting with the Jacobi and Gauss-Seidel methods tech-
niques were developed such as the Frankel and Young successive overrelaxation and
the Peaceman-Rachford (1955) alternating direction methods, as described in the
influential book of Varga [39]. In later years systems with positive definite matrices
stemming from finite element methods have been solved first by the conjugate gra-
dient method proposed by Hestenes and Stiefel (1952), and then making this more
effective by preconditioning. The multigrid method was first introduced for finite
difference methods in the 60s by Fedorenko and Bahvalov and further developed
by Brandt in the 70s. For finite elements the multigrid method and the associated
method of domain decomposition have been and are being intensely pursued by,
e.g., Braess, Hackbusch, Bramble, and Widlund.
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Many ideas and techniques are common to the finite difference and the finite
element methods, and in some simple cases they coincide. Nevertheless, with its
more systematic use of the variational approach, its greater geometric flexibility,
and the way it more easily lends itself to error analysis, the finite element method
has become the dominating approach both among numerical analysts and in ap-
plications. The growing need for understanding the partial differential equations
modeling the physical problems has seen an increase in the use of mathematical the-
ory and techniques, and has attracted the interest of many mathematicians. The
computer revolution has made large scale real world problems accessible to simu-
lation, and in later years the concept of computational mathematics has emerged
with a somewhat broader scope than classical numerical analysis.

Our approach in this survey is to try to illustrate the ideas and concepts that
have influenced the development, with as little technicalities as possible, by con-
sidering simple model situations. We emphasize the mathematical analysis of the
discretization methods, involving stability and error estimates, rather than model-
ing and implementation issues. It is not our ambition to present the present state
of the art but rather to describe the unfolding of the field. It is clear that it is not
possible in the limited space available to do justice to all the many important con-
tributions that have been made, and we apologize for omissions and inaccuracies;
writing a survey such as this one is a humbling experience. In addition to references
to papers which we have selected as important in the development we have quoted
a number of books and survey papers where additional and more complete and
detailed information can be found; for reason of space we have tried to limit the
number of reference to any individual author.

Our presentation is divided into sections as follows: 1. The Courant-Friedrichs-
Lewy paper; 2. Finite difference methods for elliptic problems; 3. Finite difference
methods for initial value problems; 4. Finite difference methods for mixed initial-
boundary value problems; 5. Finite element methods for elliptic problems; 6.
Finite element methods for evolution equations; 7. Some other classes of approxi-
mation methods; 8. Numerical linear algebra for elliptic problems.

1. The Courant-Friedrichs-Lewy paper.

In this seminal paper from 1928 the authors considered difference approxima-
tions of both the Dirichlet problems for a second order elliptic equation and the
biharmonic equation, and of the initial-boundary value problem for a second or-
der hyperbolic equation, with a brief comment also about the model heat equation
in one space variable. Their purpose was to derive existence results for the orig-
inal problem by constructing finite dimensional approximations of the solutions,
for which the existence was clear, and then showing convergence as the dimension
grows. Although the aim was not numerical, the ideas presented have played a
fundamental role in numerical analysis. The paper appears in English translation,
together with commentaries by Lax, Widlund, and Parter concerning its influence
on the subsequent development, see the quotation in References.

The first part of the paper treats the Dirichlet problem for Laplace’s equation,

(1.1) —Au=0 in€Q, withu=g on 0,

where Q C R? is a domain with smooth boundary 0€2. Recall that by Dirichlet’s
principle the solution minimizes [[, |Ve|?dz over ¢ with ¢ = g on Q. For a
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discrete analogue, consider mesh-points z; = jh, j € Z 2 and let Qp, be the mesh-
points in €2 for which the neighbors z;1e,,Z;1e, are in Q (e1 = (1,0), ex = (0, 1)),
and let wp be those with at least one neighbor outside Q. For U; = U(z;) a
mesh-function we introduce the forward and backward difference quotients

(1.2) U = (Uje, = Uj)/h,  OU; = (Uj = Uj—g,)/h, 1=1,2.
By minimizing a sum of terms of the form (0,U;)? 4 (02U;)?
mesh-function U; which satisfies

one finds a unique

(1.3) —8151Uj - 8252[]]' =0 for Zj € Qh; with Uj = g(:vj) on we;
the first equation is the well-known five-point approximation
(1.4) AUj = Ujte, + Uj—e; + Ujpe, + Uj—ey) = 0.

It is shown by compactness that the solution of (1.3) converges to a solution u of
(1.1) when h — 0. By the same method it is shown that on compact subsets of €2
difference quotients of U converge to the corresponding derivatives of u as h — 0.
Also included are a brief discussion of discrete Green’s function representation of the
solution of the inhomogeneous equation, of discretization of the eigenvalue problem,
and of approximation of the solution of the biharmonic equation.

The second part of the paper is devoted to initial-value problems for hyperbolic
equations. In this case, in addition to the mesh-width A, a time step & is introduced
and the discrete function values Ul ~ u(z;,ty,), with t, = nk,n € Z. The authors
first consider the model wave equation

(1.5) Ugp — Ugy = 0 for z € R%, ¢ >0, with u(-,0), us(-,0) given,
and the approximate problem, with obvious modification of the notation (1.2),
8t5tUJn — aﬁny =0 forjeZ, n>1, with U} given for n =0, 1.

When k = h the equation may also be expressed as Uf+1+U;_1 -Un,-U; =0,
and it follows at once that in this case the discrete solution at (z,t) = (zj,tn)
depends only on the initial data in the interval (z — ¢,z + t). For a general time-
step k the interval of dependence becomes (z — t/A,z + t/\), where A = k/h is
the mesh-ratio. Since the exact solution depends on data in (z — ¢,z + t) it follows
that if A > 1, not enough information is used by the scheme, and hence a necessary
condition for convergence of the discrete solution to the exact solution is that A < 1;
this is referred to as the Courant-Friedrichs-Lewy or CFL condition. By an energy
argument it is shown that the appropriate sums over the mesh-points of positive
quadratic forms in the discrete solution are bounded, and compactness is used to
show convergence as h — 0 when A\ = k/h =constant < 1. The energy argument
is a clever discrete analogue of an argument by Friedrichs and Lewy (1926): For
the wave equation in (1.5) one may integrate the identity 0 = 2u;(uy — Ugy) =
(uf + u2): — 2(ugtt)y in = to show that [,(uf + u2)de is independent of ¢, and
thus bounded. The case of two spatial variables is also briefly discussed.

In an appendix brief discussions are included concerning a first order hyperbolic
equation, the model heat equation in one space variable, and of wave equations
with lower order terms.



2. Finite difference methods for elliptic problems.

The error analysis of finite difference methods for elliptic problems started with
the work of Gerschgorin (1930). In contrast to the treatment in Courant, Friedrichs,
and Lewy (1928) this work was based on a discrete version of the maximum prin-
ciple. To describe this approach we begin with the model problem

(2.1) —Au=f inQ, withu=0 on 09,

where we first assume €2 to be the square Q& = (0,1) x (0,1) C R?. For a finite
difference approximation consider the mesh-points z; = jh with h = 1/M, j € Z?
and the mesh-function U; = U(z;). With the notation (1.2) we replace (2.1) by

(2.2) —AhUj = —8151Uj — 828_2[]]‘ = fj for T; € Q, Uj =0 for Tj € oQ.

This problem may be written in matrix form as AU = F, where A is a symmetric
(M —1)2 x (M —1)? matrix whose elements are 4, —1, or 0, with 0 the most common
occurrence, cf. (1.4).

For the analysis one first shows a discrete maximum-principle: If U is such that
—ARU; <0 (> 0) in Q, then U takes its maximum (minimum) on 0€; note that
—ARU; < 0 is equivalent to U; < (Ujye, + Uj—ey + Ujte, + Uj—e,)/4. Letting
W(z) = 5 — |z — zo|® where zo = (3, 3) we have W(z) > 0 in ©, and applying the
discrete maximum principle to the function V; = £U; — | AU |oW; one concludes
easily that, for any mesh-function U on €,

|U|Q < |U|aQ + C|AhU|Q, where |U|5 = mg),3(|U]|
Zj

Noting that the error z; = U; — u(z;) satisfies
(2.3) —Ath = fj + Ahu(acj) = (Ah - A)U(SL']) = Tj, with ‘Tj| S Ch2||u||c4,
one finds, since z; = 0 on 02, that

U —ulg = |2]g < Clrla < Ch?||ul|cs.

The above analysis uses the fact that all neighbors z;1., of the interior mesh-
points z; € ) are either interior mesh-points or belong to 9€2. When the boundary
is curved, however, there will be mesh-points in Q which have neighbors outside .
If for such a mesh-point x = x; we take a point by , € 0Q with [by , — 2| < h and
set U; = u(bp,z) = 0, then it follows from Gerschgorin, loc. cit., that |U — ulg <
Chl|u||gs. To retain second order accuracy Collatz (1933) proposed to use linear
interpolation near the boundary: Assuming for simplicity that €2 is a convex plane
domain with smooth boundary, we denote by {2;, the mesh-points z; € €2} that are
truly interior in the sense that all four neighbors of z; are in Q. (For the above
case of a square, € simply consists of all mesh-points in €2.) Let now @y be the
mesh-points in {2 that are not in Q4. For z; € @, we may then find a neighbor
y = x; € Qp Uy such that the line through x and y cuts 02 at a point z which is
not a mesh-point. We denote by wj, the set of points £ € 92 thus associated with
the points of wy, and define for x = x; € w;, the error in the linear interpolant

bhuj = u(z;) — au(z;) — (1 — @)u(Z), where a =v/(1+7v) < 1 if |z — Z| = yh.
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As u = 0 on 0f)2 we now pose the problem
—AU;j=f; inQp, LU;=0 inw,, U(Z)=0 on wp,
and since o < 1/2 it is not difficult to see that

(2.4) Ulawuan < C([Ulay, + [£nUla, + |AnU]Q).
Using again (2.3) together with |¢5z|z, < Ch?||u|lcs, 2 = 0 on Wy, one finds that
\U —ula,us, < Ch?||u|lcsa. Another approximation near 92 was proposed by Short-
ley and Weller (1938). For z; € @y, it uses the points defined by the intersections
of 002 with the horizontal and vertical mesh-lines through z;, which together with
the neighbors that are in (2 form an irregular five-point star. This gives an ap-
proximation to —A which is only first order accurate, but, using it in a boundary
operator ¢; similarly to the Collatz interpolation error it will yield a second order
error bound.
Consider more generally the variable coefficient Dirichlet problem

d d
2. Ay = — = in d = (9
(2.5) U Z ajk ijﬁxk Z i B =f mQCR* wu=g onodQ,

dk=1

where the matrix (ajx) is uniformly positive definite in Q, and a corresponding
finite difference operator with finitely many terms of the form

(2.6) Apu(z) = —h™?2 ZaJ u(z — jh), a; =a;(z,h), j€ 7>

which is consistent with A so that Apu(r) - Au(z) as h — 0. Following Motzkin
and Wasow (1953) such an operator is said to be of positive type if a; > 0 for j # 0,
with ag < 0.

For mesh-points x, let N(x) be the convex hull of the set of neighbors of x defined
by (2.6), i.e., the mesh-points = — jh with a;(x, h) # 0, and let Q;, denote the set
of mesh-points with N(z) C . The remaining mesh-points in Q form the set @,
of boundary mesh-points. We set Qp, = Qp U@p,. For z € Q) we want to use the
equation ARU(x) = My f(z) as an analogue of the differential equation in (2.5),
where Mj, is a linear operator approximating the identity operator I (in most cases
My, = I). For z € &y, ApU(z) is not defined by the values of U on €y, and at such
points we therefore want to choose an equation of the form

Lhu(z) := Z aju(z — jh) = mu(g, f), a; = a;(z,h),

T EQ

where my, is a suitable linear operator. The values of u at points in &y, will now be
included in the right hand side by u = g on 0€2. Together these equations form our
difference scheme, and we say (see Bramble, Hubbard, and Thomée (1969)) that
this is of essentially positive type if Ay is of positive type and ao =1, ) 40 la;| <
v < 1 for z € wp. A discrete maximum-principle shows that the analogue of
(2.4) remains valid in this case (with Ap replaced by A; and without the term
|Ul|s,)- The scheme is said to be accurate of order ¢ if Apu — MpAu = O(h?) on
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Qp, and £pu—mp(u|sq, Au) = O(h?) on &p. Under somewhat more precise natural
assumptions one may now conclude from (2.4) that |U —ulq, < Ch?||u|get+z. Error
bounds may also be expressed in terms of data, and a O(h?) error bound holds if
f € C3(Q), g € C*(09Q) with s > ¢q. For homogeneous boundary conditions this
follows easily using the Schauder estimate ||u||ge+2 < C||f||¢s. For inhomogeneous
boundary conditions a more precise analysis may be based on a representation using
a nonnegative discrete Green’s function Gj; = G(z;, 1),

Uj = p Z GlehUl + Z Glel, for z; € Qh,

z EQp T]EWR

where h¢Y ] o Gj < C and Y, o Gy < 1, and where also a discrete ana-
logue of the estimate st (x,y) ds < C6 for the continuous problem holds, where
s = {y € Q; dist(y,00Q) = 0}. The latter is related to the important observation
by Bahvalov (1959) that the regularity demands on the solution u of the contin-
uous problem can be relaxed in some cases by essentially two derivatives at the
boundary without loosing the convergence rate. For less regular data one can ob-
tain correspondingly weaker convergence estimates: When f € C*(Q), g € C*(09)
with 0 < s < ¢, O(h®) order convergence may be shown by interpolation between
C*®-spaces. The regularity demands of f may be further relaxed by choosing for M},
an averaging operator, see Tikhonov and Samarskii (1961); this paper also demon-
strated how to construct finite difference approximations of elliptic equations with
discontinuous coefficients by taking local harmonic averages. When the boundary
itself is nonsmooth the exact solution may have singularities which make the above
results not applicable. Laasonen (1957) showed that the presence of a corner with
an accute inner angle does not affect the rate of convergence but if the angle is 7«
with o > 1 he shows the weaker estimate O(h'/®~¢) for any € > 0.

As an example of an operator of the form (2.6), consider the nine-point formula

—Agg)u(:v) =1h?(20u(z) — 4 Z u(z — jh) — Z u(z — jh)).

l71=1 [71]=]72]=1

With My f = f + 75h*Apf one finds A( Ju + MpAu = O(h*) and Bramble and
Hubbard (1962) showed that the operator £}, can be chosen so that the correspond-
ing scheme is of essentially positive type and accurate of order ¢ = 4. Further,
Bramble and Hubbard (1963) constructed second order accurate schemes of essen-
tially positive type in the case of a general A (d = 2), also with mixed derivative
terms. Here the neighbors of £ may be several mesh-widths away from x. Related
results were also obtained in special cases by Wasow (1952), Laasonen (1958), and
Volkov (1966), see also Bramble, Hubbard, and Thomée, loc. cit.

We shall now turn to some schemes that approximate elliptic equations contain-
ing mixed derivatives but are not generally of essentially positive type. Assume
now that A is in divergence form, A = — Z?’k:l(@/&fvi)(aikau/ﬁxk). To our above
notation 8;, 9; of (1.2) we add the symmetric difference quotient d; = (9; + 8;)/2
and set, with a( ) — = a;x(x + %hei),

A;ll)u = — Z 5¢(a§,’§)6ku), Ag)u = — Z 0; (agl)aiu) — Z 0; (aikéku).
ik i iZk
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These operators are obviously consistent with A and second order accurate. Except

in special cases the A;Ll) are not of positive type and the above analysis does not
apply. Instead one may use energy arguments to derive error estimates in discrete
lo-norms, see Thomée (1964). For x € @y, let as above by, , € 0€2, and consider the
discrete Dirichlet problem

(2.7) A U=f onQyp, U=g(bhy) onw,, with A= Al(zl) or A;f).

With Dj;, the mesh-functions which vanish outside €2, we define for U,V € D,

d
UV)=r>"U; v, U= (U,0)Y2, and U]y = [U]+ > 18U

J Jj=1

By summation by parts one easily derives that |V||? < C(A4,V,V) for V € Dy, and
this shows at once the uniqueness and hence the existence of a solution of (2.7).
When @, C 012, application to U — u, using the second order accuracy of A shows
that ||U — ul|y < C(u)h?. When @, ¢ 9Q, h? has to be replaced by vk, but with
|- ||; a slightly weaker norm it was shown in Bramble, Kellogg, and Thomée (1968)
that ||{U — u|| < ||U — u||} < C(u)h.

Consider now a constant coefficient finite difference operator of the form (2.6),
which is consistent with A of (2.5). Introducing the symbol of A;,, the trigonometric
polynomial p(§) = _; aje ¢ we say that Ay, is elliptic if p(€) # 0 for |§]| < 7, | =
1,2, £ # 0. For the five-point operator —Aj we have p(§) = 4 — 2cos&; — 2cos &
and —Ayp, is thus elliptic. For such operators A; we have the following interior
estimate by Thomée and Westergren (1968). Set ||U||s = (h? > z,e8 U]-Q)l/2 and

1Ullks = (X< 105T1%) " where 8 = 884 ---854, o] = a1 + - - + g, and let
Qo C Q1 C Q1 C Q. Then for any o and h small we have

0rUla, < C(l1AnUllLa, +IUlle,), if > Jof +[d/2] - 1.

Thus, the finite difference quotients of the solution of the equation A U = f may
be bounded in 2y by the difference quotients of f in a slightly larger domain €2,
plus a discrete lp-norm of U in ;. Assuming u is a solution of (2.1) this may be
used to show that if A is accurate of order ¢ and @)}, is a finite difference operator
which approximates the differential operator @) to order ¢, then

(2.8) QrU = Qulg, < C(w)h? + C|lU - ullg, -

Thus, if we already know that U —u is of order O(h?) in the l3-norm, then Qru—Qu
is of the same order in maximum-norm in the interior of the domain.

Finite difference approximations for elliptic equations of higher order were stud-
ied by, e.g., Saulev (1957); the work in Thomée (1964) concerns also such equations.

3. Finite difference methods for initial value problems.

In this section we sketch the development of the stability and convergence theory
for finite difference methods applied to pure initial value problems. We first consider
linear constant coefficient evolution equations and then specialize to parabolic and
hyperbolic equations.



We begin with the initial-value problem for a general linear constant coefficient
scalar equation

(3.1) us=P(D)u forze R t>0, wu(-,0)=wv, where P(¢)= Z Pt
la| <M

with v = u(z,t), v = v(z), £ =& ---&]?, and D = (0/0z1,...,0/0x4). Such
an initial-value problem is said to be well posed if it has a unique solution that
depends continuously on the initial data, in some sense that has to be specified.
For example, the one-dimensional wave equation u; = pu, has the unique solution
u(z,t) = v(x + pt) and since |[u(-,t)||z, = [|v||z,, this problem is well-posed in L,
for 1 < p < oco. Similarly, for the heat equation u; = u,, we have

1 o0
u(z,t) = \/H/ e—(w—y)2/4tv(y) dy,

and ||u(-,t)||z, < [|v||z,, 1 < p < co. More precisely, (3.1) is well posed in L, if
P(D) generates a semigroup E(t) = e*F'(P) in L, which grows at most exponentially,
so that the solution u(t) = E(t)v satisfies ||u(t)||z, < Ce**||v||, for t > 0, for some
k. For p = 2, which is the case we will concentrate on first, we see by Fourier
transformation and Parseval’s relation that this is equivalent to

(3.2) etP8)| < Cert, Ve e R?, t>0,

or Re P(i€) < k for £ € R%; if only the highest order terms are present in P(D), this
is equivalent to Re P(i¢) < 0 for ¢ € RY, in which case (3.2) holds with k = 0, so
that E(t) is uniformly bounded in Lo for ¢ > 0. In the above examples P(i§) = ip¢
and P(if) = —¢£2, respectively, and k = 0.

Generalizing to systems of the form (3.1) with v and v N-vectors and the P,
N x N matrices, the condition for well-posedness in Ly is again (3.2) where now
| - | denotes any matrix norm. Here it is clear that a necessary condition for (3.2)
is that Re\;(£) < & for £ € R%, for any eigenvalue \;(€) of P(if), and if P(if)
is a normal matrix this is also sufficient. Necessary and sufficient conditions for
(3.2) were given by Kreiss (1959b), and depend on the following lemma. Here,
for any N x N matrix A with eigenvalues {X;}}_; we set A(A) = max; Re)\; and
Re A = (A+ A*)/2, where A* is the adjoint matrix. For Hermitian matrices A < B
means Au - u < Bu-u for all u € RY. With this notation, (3.2) holds if and only
if the set F = {P(i€) — x; &€ € R} satisfies the conditions of the following lemma:

Let F be a set of N x N matrices. Then the following conditions are equivalent:
(i) |et4 < C for A€ F, t >0, for some C > 0;
(i) A(A) <0 and Re(z|R(A;2)|) < C for A€ F, Rez >0, for some C > 0;
(i1i) A(A) < 0 for A € F and there exist C; and Cy and for each A €
a matric S = S(A) such that max(|S|, |S7) < C; and such that SAS™?!

B = (bji) is a triangular matriz with off-diagonal elements satisfying |bji|
Comin(|Re\;|, |ReAx|) where A\j = bjj;

(iv) Let 0 < v < 1. There exists C > 0 such that for each A € F there is a
Hermitian matriz H = H(A) with C~'I < H < CI and Re (HA) < yA(A)H < 0.
10
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Equations of higher order in the time variable such as the wave equation u; =
Ugz May be written in system form (3.1) by introducing the successive time deriva-
tives of u as dependent variables, and is therefore covered by the above discussion.

For the approximate solution of the initial value problem (3.1), let A and k
be (small) positive numbers. We want to approximate the solution at time level
tn = nk by U™ for n > 0 where U° = v and U™*! = E U™ for n > 0, and where
FE is an operator of the form

(3.3) Exv(z) = Zaj(h)v(x —jh), X =k/h™ = constant,

with summation over a finite set of multi-indices j = (jy,...,5q4) € Z% such oper-
ators are called explicit. The purpose is to choose Ej so that E'v approximates
u(ty,) = E(t,)v = E(k)™v. In numerical applications we would apply (3.3) only
for x = x; = lh,l € Z%, but for convenience in the analysis we shall think of
Eiv as defined for all z. As an example, for the heat equation u; = wuy, the
simplest such operator is obtained by replacing derivatives by finite difference
quotients, QU = 0;0,U™. Solving for U"*! we see that this defines Epv(z) =
Mv(x+h)+ (1 —=2\)v(x) +  v(z —h), A = k/h%. We shall consider further examples
below.

We say that Fj is consistent with (3.1) if u(x,t + k) = Egu(z,t) + o(k) when
k — 0, for sufficiently smooth solutions u(z,t) of (3.1), and accurate of order r
if the term o(k) may be replaced by kO(h™). By Taylor series expansion around
(x,t) these conditions are seen to be equivalent to algebraic conditions between the
coefficients a;(h). In our above example, u(z,t + k) — Exu(z,t) = kuy + $k>uy —
Mgy — 5 AR e = KO(R?) when up = Uy, so that r = 2.

For the purpose of showing convergence of Efv to E(t,)v and to derive an error
bound one needs some stability property of the operator Ej: This operator is
said to be stable in Ly if for any 7' > 0 there are constants C' and x such that

|ERv|| < Ce®™*||v|| for v € La, n > 0, where ||-|| = ||- ||z, If this holds, and if (3.1)
is well posed in Lo and Ey is accurate of order r, then it follows from the identity
Ef — E(tn) = Y72 B~/ (Ex — E(K)E(t;) that, with ||« [ls = || - [|z+(re).
n—1
(34) (B — E(ta))oll < C Y khT|E(t) vl ar4r < Cr W |[v]lprgr,  for t, < T,
§=0

where we have also used the fact that spatial derivatives commute with E(¢).

The sufficiency of stability for convergence of the solution of the discrete problem
to the solution of the continuous initial value problem was shown in particular cases
in many places, e.g., Courant, Friedrichs, and Lewy (1928), O’Brien, Hyman, and
Kaplan (1951), Douglas (1956). It was observed by Lax and Richtmyer (1959)
that stability is actually a necessary condition for convergence to hold for all v €
Lo; the general Banach space formulation of stability as a necessary and sufficient
condition for convergence is known as the Lax equivalence theorem, see Richtmyer
and Morton [28]. We note that for individual, sufficiently regular v convergence may
hold without stability; for an early interesting example with analytic initial data
and highly unstable difference operator, see Dahlquist (1954). Without stability,
however, roundoff errors will then overshadow the theoretical solution in actual
computation.

11



We shall see that the characterization of stability of finite difference operators
(3.3) is parallel to that of well-posedness of (3.1). Introducing the trigonometric
polynomial E(§) = > ; a;j(h)e¥ "¢ the symbol of Ej, Fourier transformation shows
that Ej is stable in Lo if and only if, cf. (3.2),

Ex(€)"] < Ce™™, Ve € RY, n > 0.

In the scalar case this is equivalent to |Ex(¢)| < 1+ Ck for ¢ € R? and small k,
or |Ex(€)] <1 for £ € R? when the coefficients of Ej are independent of h, as is
normally the case when no lower order terms occur in P(D). For our above example
Er(€) =1 — 2X + 2Xcos hé and stability holds if and only if A = k/h? < 1/2. For
the equation u; = pu, and the scheme 9,U}" = d,U T we have E, (&) = 14+ipAsin h¢
and this method is therefore seen to be unstable for any choice of A = k/h.

Necessary for stability in the matrix case is the von Neumann condition
(3.5) p(Er(§)) <1+ Ck, Vée€RY,

where p(A) = max; |A;| is the spectral radius of A, and for normal matrices Ej (&)
this is also sufficient. This covers the scalar case discussed above. Necessary and
sufficient conditions are given in the following discrete version of the above Kreiss
matrix lemma, see Kreiss (1962), where we denote |u|y = (Hu,u)Y? and |A|y =
sup,,o |Aulg/|u|g for H positive definite:

Let F be a set of N x N matrices. Then the following conditions are equivalent:
(i) |A™| < C for A€ F, n>0, for some C > 0;
(ii) p(A) <1 and (|| = 1)|R(A;2)| < C for A€ F, |z| > 1, with C > 0;
(iii) p(A) <1 for A€ F and there are C; and Cy and for each A € F a matriz
S = S(A) such that max(|S|, |S7!|) < C1 and such that SAS™! = (bjx) is trian-
gular with off-diagonal elements satisfying |bji| < Comin(l — [A;|,1 — [Ag|) where
Aj = bjj;
(iv) Let 0 <« < 1. There exists C > 0 and for each A € F a Hermitian matriz
H = H(A) with C'I < H<CI and |Alg <1—v+vp(A).

Application shows that if Ej is stable in Lg, then there is a x such that F =
{e "k ER(€); k < ko, £ € R?} satisfies conditions (i) — (iv). On the other hand, if
one of these conditions holds for some «, then Fy is stable in L.

Other related sufficient conditions were given in, e.g., Kato (1960), where it was
shown that if the range of an N x N matrix is in the unit disc, i.e., if |[Av-v| < 1 for
|v| <1, then |[A™v-v| < 1, and hence, by taking real and imaginary parts, |A"| < 2
for n > 1.

Using the above characterizations one can show that a necessary and sufficient
condition for the existence of an Lg-stable operator which is consistent with (3.1)
is that (3.1) is well-posed in Lo, see Kreiss (1959a). It was also proved by Wendroff
(1968) that for initial value problems which are well-posed in Ly one may construct
Lo-stable difference operators with arbitrarily high order of accuracy.

It may be shown that von Neumann’s condition (3.5) is equivalent to growth of at
most polynomial order of the solution operator in Lo, or ||[Efv||, < Cni|v|t, for
tn, < T, for some g > 0. This was used by Forsythe and Wasow [14] and Ryabenkii
and Filippov [29] as a definition of stability.
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For variable coefficients it was shown by Strang (1965) that if the initial-value
problem for the equation u; = Z|a| < Pa(z)D%u is well posed in Lo, then the one

for the equation without lower order terms and with coefficients fixed at € R? is
also well-posed, and a similar statement holds for the stability of the finite difference
scheme Fyv(z) =3, a;j(z, h)v(z — jh). However, Kreiss (1962) showed that well-
posedness and stability with frozen coefficients is neither necessary nor sufficient
for well-posedness and stability of a general variable coefficient problem. We shall

return below to variable coefficients for parabolic and hyperbolic equations.

We now consider the special case when the system (3.1) is parabolic, and begin
by quoting the fundamental paper of John (1952) in which maximum-norm stability
was shown for finite difference schemes for second order parabolic equations in one
space variable. For simplicity we restrict our presentation to the model problem

(3.6) U = Ugy forze R, t>0, withu(-,0)=v inR,

and a corresponding finite difference approximation of the form (3.3) with a;(h) =
a; independent of h. Setting a(§) =}, aje "¢ = E(h™'¢) one may write

(3.7) U"(z) = zj:anj'v(x —jh), where a,; = 2i " e WEa (&)™ dE.

T —T

Here the von Neumann condition reads |a(£)| < 1, and is necessary and sufficient
for stability in L. To show maximum-norm stability we need to estimate the a,;
in (3.7). It is easily seen that if the difference scheme is consistent with (3.6) then
a(€) = e + 0(£2) as € — 0, and if we assume that |a(€)] < 1 for 0 < [¢] < 7 it
follows that

(3.8) a(¢)| < e for |¢| <m, withe> 0.

One then finds at once from (3.7) that |a,;| < Cn~/2 and integration by parts
twice, using |a’(¢)| < C|¢|, shows |an;| < Cn'/2j~2. Thus

Yolansl<C Y nT24 3 %<
J

j<nt/? j>nl/?

so that [|[U"]|ec < C||v|lo by (3.7) where || - |loo = || - [|z..- We remark that for
our simple example above we have |Exv(z)| < (A4 |1 =2 + A) ||v]|oo = ||v]|co for
A < 1/2, which trivially yields maximum-norm stability.

In the general constant coefficient case the system (3.1) is said to be parabolic in
Petrowski’s sense if A(P(€)) < —6|¢|M + C for ¢ € R?, and using (iii) of the Kreiss
lemma one shows easily that the corresponding initial value problem is well posed
in Ly. For well-posedness in L., we may write

u(@,t) = (Et)v)(x) = | Gl@—y,tv(y)dy
R
where, cf., e.g., Friedman [15], with D* = D2,

(3.9) DGz, )| < Cpt—(al+d/M(=0(e™ /YD) gy g 4 < T
13



This implies that ||D%u(-,t)||ec < Ct~1®/M||v||s, so that the solution, in addition
to being bounded, is smooth for positive time even if the initial data are only
bounded. Consider now a difference operator of the form (3.3) which is consistent
with (3.1). Generalizing from (3.8) we define this operator to be parabolic in the
sense of John if, for some positive § and C,

p(Er(h71€)) < e %" 1 Ok, foréeQ={¢ g <m j=1,...d}

such schemes always exist when (3.1) is parabolic in Petrowski’s sense. Extending
the results of John (1952) to this situation Aronson (1963) and Widlund (1966)
showed that if we write U"(z) = Efv(z) = }_, anj(h)v(z — jh), then, denoting
difference quotients corresponding to D* by 05, we have, cf. (3.9),

0% an; (h)| < Chit (al+d/M o(=e((il™ /) /MDY gy o

which implies that |0 E7 v/ < Cty e/ M10]|co. In the work quoted also multistep
methods and variable coefficients were treated.
From estimates of these types follow also convergence estimates such as, if Dy
is a difference operator consistent with D* and accurate of order r,
|IDRU™ — D%u(tn)]|oo < C’hr||v||Wr+|a| for t, <T.
Note in the convergence estimate for &« = 0 that, as a result of the smoothing
property for parabolic equations, less regularity is required of initial data than for
the general well-posed initial value problem, cf. (3.4). For even less regular initial

data lower convergence rates have to be expected; by interpolation between the
W spaces one may show (see Peetre and Thomée (1967)), e.g.,

U™ = u(tn)llcoc < Ch¥|lv]lws, for 0<s<r, t, <T.

We remark that for nonsmooth initial data v it is possible to make a preliminary
smoothing of v to recover full accuracy for ¢ bounded away from zero: It was shown
in Kreiss, Thomée, and Widlund (1970) that there exists a smoothing operator
of the form Mypv = @, * v, where ®,(z) = h=¢®(h~1xz), with ® an appropriate
function, such that if Mpv is chosen as initial data for the difference scheme, then

U™ —uta)lloo = 1B My — E(tn)vlleo < CHT "M |[]|co.

Let us also note that from a known convergence rate for the difference scheme for
fixed initial data v conclusions may be drawn about the regularity of v. For example,
under the above assumptions, assume that for some p, s with 1 <p < 00,0 < s < r,
we know that [|[U™ — u(t,)||r, < Ch® for t, < T. Then v belongs to the Besov
space Bp>° (~ W;), and, if s > r then v = 0. Such inverse results were given in,
e.g., Hedstrom (1968), Lofstrom (1970), and Thomée and Wahlbin (1974).

We now turn our attention to hyperbolic equations, and consider first systems
with constant real coefficients

d
(3.10) up =Y _ Ajuy, fort>0, withu(0)=nv.
1=1
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Such a system is said to be strongly hyperbolic if it is well-posed in Lo, cf. Strang
(1967). With P(¢) = Y°7_, A;¢; this holds if and only if for each & € R? there
exists a nonsingular matrix S(&), uniformly bounded together with its inverse, such
that S(£)P(€)S(€)~! is a diagonal matrix with real elements. When the A; are
symmetric this holds with S(£) orthogonal; the system is then said to be symmetric
hyperbolic. The condition is also satisfied when the eigenvalues of P(&) are real
and distinct for £ # 0; in this case the system is called strictly hyperbolic.

One important feature of hyperbolic systems is that the value u(z,t) of the
solution at (z,t) only depends on the initial values on a compact set K(z,t), the
smallest closed set such that u(z,t) = 0 when v vanishes in a neighborhood of
K (z,t). The convex hull of K(z,t) may be described in terms of P({): if K =
K(0,1) we have for its support function ¢(§) = sup,cx 2 - £ = Amax(P(§))-

Consider now the system (3.10) and a corresponding finite difference opera-
tor of the form (3.3) (with M = 1). Here we introduce the domain of depen-
dence K (x,t) of Ey as the smallest closed set such that EPv(z) = 0 for all n, k
with nk = t when v vanishes in a neighborhood of K(xz,t). Corresponding to
the above the support function of K (z,t) satisfies ¢(¢) = A1 maxg; 20 j - . Since
clearly convergence, and hence stability, demands that K = K(0,1) contains the
continuous domain of dependence K = K (0,1) it is necessary for stability that
Amax(P(€)) < A7'max,, 20 - & this is the CFL-condition, cf. Section 1. In
particular, ming; 20 Ji < Amin(41) < AMmax(Ar) < maxg, 40 j;- For the equation
ug = pug and a difference operator of the form (3.3) using only j = —1,0, 1, this
means A|p| < 1: In this case u(0,1) = v(p) so that K = {p}, and the condition is
thus p € K = [-A~1, A7 1].

We shall now give some sufficient conditions for stability. We first quote from
Friedrichs (1954) that if a; are symmetric and positive semidefinite, with ), a; = I,
then |Ex(h=1¢)| = | > a;je’¢| <1 so that the scheme is Ly-stable. As an example,
the first order accurate Friedrichs operator

(3.11)  Exv(x) = (@' + MAj)v(z + he;) + (d7'T — MAj)v(z — he;))

1

DN | =

d
j=
is Lo-stable if 0 < X < (dp(A4;))~*. It was observed by Lax (1961) that this criterion
is of limited value in applications because it cannot in general be combined with
accuracy higher than first order.

The necessary and sufficient conditions for Ls-stability of the Kreiss stability
lemma are of the nature that the necessary von Neumann condition (3.5) has to be
supplemented by conditions assuring that the eigenvalues of Ej () sufficiently well
describe the growth behavior of E(£)". We now quote some such criteria which
utilize relations between the behavior of the eigenvalues of Ej (&) for small £ and
the accuracy of Ei. In Kreiss (1964) E is defined to be dissipative of order v, v
even, if p(Ex(h~1€)) < 1 —6|¢|” for € € Q with § > 0, and it is shown that if E}
is consistent with the strongly hyperbolic system (3.10), accurate of order v — 1,
and dissipative of order v, then it is Ly-stable. Further, it was shown by Parlett
(1966) that if the system is symmetric hyperbolic, and Ej, is dissipative of order
v it suffices that it is accurate of order v — 2, and by Yamaguti (1967) that if the
system is strictly hyperbolic, then dissipativity of some order v is sufficient. For
strictly hyperbolic systems Yamaguti also showed that if the eigenvalues of Ej(&)
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are distinct for @ 3 £ # 0, then von Neumann’s condition is sufficient for stability
in L2.

For d =1 (with A = A;) the well-known Lax-Wendroff (1960) scheme
Epv(z) = 1N A% + AA)v(z + h) + (1 — AN2A?)v(z) + 1 (A\?A% — AA)v(z — h)

is Lo-stable for Ap(A) < 1 if the system approximated is strongly hyperbolic. Lo-
stable finite difference schemes of arbitrarily high order for such systems were con-
structed in, e.g., Strang (1962).

It is also possible to analyze multistep methods, e.g., by rewriting them as single
step systems. A popular stable such method is the leapfrog method (iUJ” = 9, U
(or UJ’-’Jr1 = UJ’?_I +Ap(U}y 1 = U 1)). The eigenvalues 71(€), 72(§) appearing in the
stability analysis then satisfy the characteristic equation 7 — 77! — 2\psiné = 0,
and we find that the von Neumann condition, |7;(§)| < 1for { € R, j = 1,2, is
satisfied if Ap < 1, and using the Kreiss lemma one can show that Ly-stability holds
for Ap < 1.

As an example for d = 2 we quote the operator introduced in Lax and Wendroff
(1964) defined by

Ex(h™ ) = T +i\(Apsiné; + Aysinéy)
— A?(A7(1 — cos &) + 2 (A142 + A2 A1) sin &y sinés + A3(1 — coséa)).

Using the above stability criterion of Kato they proved stability for A|A;| < 1/v/8
in the symmetric hyperbolic case.

Consider now a variable coefficient symmetric hyperbolic system

d
(3.12) up = ZAj(x)uwj, where A;(z)* = A;(z).

=1

Using an energy argument Friedrichs (1954) showed that the corresponding initial
value problem is well-posed; the boundedness follows at once by noting that after
multiplication by u, integration over z € R?, and integration by parts,

MOT =~ [ (3 05/0550.) de < 261wt

For finite difference approximations Exv(z) =), a;j(z)v(x — jh) which are con-
sistent with (3.12) various sufficient conditions are available. Kreiss, Parlett, and
Yamaguti, loc. cit., studied difference operators which are dissipative of order v,
i.e., such that p(E(z,&¢)) < 1 —cl¢|” for z € RY ¢ € Q, with ¢ > 0, where
E(z,&) = 3, aj(z)e”¥¢. As in the constant coefficient case it was shown that
Ej is stable in Ly if the a;(z) are symmetric and if Fj is accurate of order v — 1
and dissipative of order v; if (3.12) is strictly hyperbolic, accuracy of order v — 2
suffices. The proofs are based on the Kreiss stability lemma and a perturbation
argument.

In an important paper it was proved by Lax and Nirenberg (1966) that if Fj is
consistent with (3.12) and |E(z,£)| < 1 then E} is strongly stable with respect to
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the Ly-norm, i.e., ||Eg|| < 1+ Ck. In particular, if the a;(x) are symmetric positive
definite stability follows by the result of Friedrichs quoted earlier for constant co-
efficients. Further, if E} is consistent with (3.12) and |E(z,&)v-v| <1 for |v| <1,
then FEj is Lo-stable.

As mentioned above, higher order equations in time may be expressed as systems
of the form (3.1), and finite difference methods may be based on such formulations.
In Section 1 we described an example of a difference approximation of a second
order wave equation in its original form.

We turn to estimates in L, norms with p # 2. For the case when the equation
in (3.10) is symmetric hyperbolic it was shown by Brenner (1966) that the initial
value problem is well-posed in Ly, p # 2, if and only if the matrices A; commute.
This is equivalent to the simultaneous diagonalizability of these matrices, which in
turn means that by introducing a new dependent variable it can be transformed
to a system in which all the A; are diagonal, so that the system consists of N
uncoupled scalar equations.

Since stability of finite difference approximations can only occur for well-posed
problems it is therefore natural to consider the scalar equations u; = pu, with p
real, and corresponding finite difference operators (3.3). With a(§) as before we
recall that such an operator is stable in Ly if and only if |a(¢)] < 1 for £ € R.
Necessary and sufficient conditions for stability in L,,p # 2, as well as rates of
growth of ||E}||z, in the nonstable case have been given, e.g., in Brenner and
Thomée (1970), cf. also references in [9]. If |a(£)| < 1 for 0 < [{| < m and a(0) =1
the condition is that a(¢) = e?*¢ 8" (1+o(1) 35¢ — 0, with areal, Re 3 > 0, v even.
Thus E}, is stable in L, p # 2, if and only if there is an even number v such that Ej,
is dissipative of order v and accurate of order v — 1. As an example of an operator
which is stable in Ly but not in L,, p # 2, we may take the Lax-Wendroff operator
introduced above (with A replaced by p). For 0 < A|p| < 1, this operator is stable
in Lo, is dissipative of order 4, but accurate only of order 2. It may be proved
that for this operator cn/® < ||EP|lcoc < Cn'/® with ¢ > 0, which shows a weak
instability in the maximum-norm.

An area where finite difference techniques continue to flourish and to form an ac-
tive research field is for nonlinear fluid flow problems. Consider the scalar nonlinear
conservation law

(3.13) ur+ F(u)y, =0 forzeR, t>0, withu(-,0)=v onR,

where F(u) is a nonlinear function of u, often strictly convex, so that F"(u) > 0.
The classical example is Burger’s equation u; + uu, = 0, where F(u) = u?/2.
Discontinuous solutions may arise even when v is smooth, and one therefore needs to
consider weak solutions. Such solutions are not necessarily unique, and to select the
unique physically relevant solution one has to require so called entropy conditions.
This solution may also be obtained as the limit as ¢ — 0 of the diffusion equation
with eug, replacing 0 on the right in (3.13).

One important class of methods for (3.13) are finite difference schemes in con-
servation form,

(314) UM =UP ~ A(HPyjp— HP1)p) forn>0, with U? = v(jh),

where H? , , = H(U},U}, ;) is a numerical flux function which has to satisfy

H(V,V) = F(V) for consistency. Here stability for the linearized equation is neither
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necessary nor sufficient for the nonlinear equation in the presence of discontinuities
and much effort has been devoted to the design of numerical flux functions with good
properties. When the right hand side of (3.14) is increasing in Uiy, l=—1,0,1, the
scheme is said to be monotone (corresponding to positive coefficients in the linear
case) and such schemes converge for fixed A to the entropy solution as k¥ — 0, but
are at most first order accurate. Examples are the Lax-Friedrichs scheme which
generalizes (3.11), the scheme of Courant, Isaacson, and Rees (1952), which is one-
sided (upwinding), and the Engquist-Osher scheme which pays special attention to
changes in sign of the characteristic direction. Godunov’s method replaces U™ by
a piecewise constant function, solves the corresponding problem exactly from ¢, to
tn+1 and defines U™T! by an averaging process.

Higher order methods with good properties are also available, and are often
constructed with an added artificial diffusion term which depends on the solution,
or so called TVD (Total Variation Diminishing) schemes. Early work in the area
was Lax and Wendroff (1960), and more recent contributions have been given by
Engquist, Harten, Kuznetsov, MacCormack, Osher, Roe, Yee; for overviews and
generalizations to systems and higher dimension, see Le Veque [23] and Godlewski
and Raviart [16].

4. Finite differences for mixed initial-boundary value problems.

The pure initial value problem discussed in Section 3 is often not adequate to
model a given physical situation and one needs to consider instead a problem whose
solution is required to satisfy the differential equation in a bounded spatial domain
Q C R% as well as boundary conditions on 9 for positive time, and to take on
given initial values. For such problems the theory of finite difference methods is less
complete and satisfactory. In the same way as for the stationary problem treated
in Section 2 one reason for this is that for d > 2 only very special domains may
be well represented by mesh-domains, and even when d = 1 the transition between
the finite difference approximation in the interior and the boundary conditions
may be complex both to define and to analyze. Again there are three standard
approaches to the analysis, namely methods based on maximum-principles, energy
arguments, and spectral representation. We illustrate this first for parabolic and
then for hyperbolic equations.

As a model problem for parabolic equations we shall consider the one-dimensional
heat equation in Q = (0, 1),

(41) up=1uzp, nQ, u=0 ond={0,1}, fort>0, wu(-,0)=v in Q.
For the approximate solution we introduce mesh-points x; = jh, where h = 1/M,
and time levels t,, = nk, where k is the time step, and denote the approximate

solution at (xj,t,) by U'. As for the pure initial-value problem we may then
approximate (4.1) by means of the explicit forward Euler difference scheme

U = awéwU; in Q, with U}Hl =0 onod, forn>0,
with U = V; = v(z;) in Q. For U™~! given this defines U™ through

U =AU+ UM+ Q=200 0<j <M, Uf=0,j=0,M.
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For A = k/h? < 1/2 the coefficients are nonnegative and their sum is 1 so that we
conclude that [U™+!| < |U™| where |U| = max,,cq |U;|. It follows that [U™| < |V,
and the scheme is thus stable in maximum-norm. Under these assumptions one
shows as for the pure initial-value problem that |U™ — u(t,)| < C(u)(h?® + k) <
C(u)h?. Tt is easy to see that k < h?/2 is also a necessary condition for stability.

To avoid to have to impose the quite restrictive condition A < 1/2, Laasonen
(1949) proposed the implicit backward Euler scheme

U} = 0,0,U; in€Q, withU=0 ondQ, forn>1,
with U, ]O = v(z;) as above. For U1 given one now needs to solve the linear system
(142U} = MNUF +U}) =UH 0<j<M, UP=0,j=0M.

This method is stable in maximum-norm without any restrictions on k£ and A. In
fact, we find at once, for suitable k,

U"| = U U"| + o,

|_1+2)\ 1+2)\

and hence |U™| < |[U™~1| < |V|. Here, the error is of order O(h? + k).

Although the backward Euler method is unconditionally stable, it is only first
order accurate in time. A second order accurate method was proposed by Crank
and Nicolson (1947) which uses the equation

(4.2) étU]n = 8w5wU;L_l/2, 0<j <M, where U" 172 _ %(UJ” + UJTL—l)_

The above approach will now show |[U"| < |[U™™!| only if X < 1.
For this problem, however, the energy method may be used to show unconditional
stability in l3-type norms: With (V, W) = hz "V;W; and ||V|| = (V, V)2 one

finds, upon multiplication of (4.2) by 2UJ’-1 1/ , summatlon, and summation by
parts,

M
8| U2 = 28U, U2 = - Z Ul o2 <o,

which shows ||[U™| < ||[U™7!|, i.e., stability in I holds for any A > 0. In the
standard way this yields the error estimate ||[U™ — u(t,)|| < C(u)(h? + k?); a corre-
sponding estimate in a discrete H'-norm may be obtained similarly, and this also
yields a maximum-norm estimate of the same order by using a discrete Sobolev in-
equality. The energy approach was developed by, e.g., Kreiss (1959a), Lees (1960),
and Samarskii (1961).

Stability in [5 may also be deduced by spectral analysis, as observed in O’Brien,
Hyman, and Kaplan (1951). We illustrate this for the Crank-Nicolson method:
Representing the mesh-functions vanishing at £ = 0 and 1 in terms of the eigen-
functions ¢, of 0,04, the vectors with components Ppj = V/2sin mpjh, 0 <3 < M,

and eigenvalues y, = —2h~?(1 — cos wph), one finds
M1
1—MA(1—cos)
n __ n —
Uu" = 112::1 (Va <pp)E(7rph’) Pp where E(g) - 1+ )\(1 e é‘)’
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and ||[U™|| < ||V|| follows by Parseval’s relation since |E(£)| < 1 for £ € R, A > 0.
This is analogous to the Fourier analysis of Section 3 for pure initial value problems.

We remark that although the maximum-principle type argument for stability
for the Crank-Nicolson method requires A < 1, it was shown by Serdjukova (1964)
using Fourier analysis that the maximum-norm bound |U™| < 23|V| holds. Precise
convergence analyses in maximum-norm for initial data with low regularity were
carried out in, e.g., Juncosa and Young (1957).

For the pure initial value problem, difference schemes or arbitrarily high order
of accuracy can be constructed by including the appropriate number of terms in
a difference operator of the form U;“"l = Zfz_ p alUJ”_l. For application to the
mixed initial boundary value problem (4.1) such a formula would require additional
equations for U near z = 0 or z =1 when s > 2 or ¢ > 2. For the semi-infinite
interval (0, 00), Strang (1964) showed that with s = 1 any order of accuracy may be
achieved together with stability by choosing an “unbalanced” operator with g > 2.
The stability of schemes with additional boundary conditions has been analyzed
in the parabolic case by Varah (1970) and Osher (1972) using the GKS-technique
which we briefly describe for hyperbolic equations below.

We note that the above methods may be written as U"t! = E,U", where Ej,
acts in different spaces Ny of vectors V = (Vj, ..., VM)T with Vi = Vi = 0, where
M depends on k. In order to deal with the stability problem in such situations,
Godunov and Ryabenkii (1963) introduced a concept of spectrum of a family of
operators { E}, with Ej defined in a normed space Ny, with norm ||-||x, k small. The
spectrum o ({Ej}) is defined as the complex numbers z such that for any € > 0 and
sufficiently small k there is a Uy € Ng, Ug # 0, such that ||ExUx — 2Ux||x < €||Uk||x,
and the following variant of von Neumann’s criterion holds: If {Ey} is stable in
the sense that |[EPV|y < C||V||k for t, < T, with C independent of k, then
o({Ex}) C {z;|z| < 1}. It was demonstrated that the spectrum of a family such as
one of the above is the union of three sets, one corresponding to the pure initial
value problem and one to each of the one-sided boundary value problems for the
differential equation in {z > 0,¢f > 0} and in {z < 1,¢ > 0}, with boundary
conditions given at x = 0 and x = 1, respectively. For instance, in the example
of the explicit method, o({E)}) equals the set of eigenvalues of the operator Ej
associated with the pure initial-value problem, which is easily shown to be equal
to the interval [1 — 4\, 1], and hence A < 1/2 is a necessary condition for stability.
The proof of the equality between these sets is nontrivial as the eigenfunctions of
E. do not satisfy the boundary conditions. Using instead a boundary condition of
the form ug — yu; = 0 at z = 0, will result in instability for certain choices of ~.

We now turn to the two-dimensional model problem in the square = (0,1)2,
(43) w=Au inQ, w=0 ond, fort>0, withu(-,0)=v in .

Again with h = 1/M we use mesh-points z; = jh, now with j € Z2. We consider
the above methods collectively as the ¥-method, with 0 <9 <1,

U = AR(OUT + (1 —9)UF™Y) inQ, UP=0 ondQ,

where ¥ = 0,1, and 1/2 for the forward and backward Euler methods and the Crank-
Nicolson method, respectively. The above stability and error analysis carries over
to this case; the ¥-method is unconditionally stable in I for 1/2 < 9 < 1 whereas
for 0 <4 < 1/2 the mesh-ratio condition A\(1 —2¢) < 1/4 has to be imposed.
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For the model problem (4.3) we consider also the alternating direction implicit
(ADI) scheme of Peaceman and Rachford (1955). Noting that the Crank-Nicolson
scheme requires the solution at time ¢, of the two-dimensional elliptic problem
(I — 3kAR)U™ = (I + 2kAR)U™ !, the purpose of the ADI method is to reduce
the computational work by solving only one-dimensional problems. This is done by
introducing the intermediate value U™~1/2 for the solution at ¢,,_1/9 = t, — k/2 by
the equations

n—1/2 _ yrn—1 _ _

- k/2 : = 010,U" Y2 + 9,0,U™ 1
Uun — Un—1/2 _ _
- 010.U™ 12 1 9,0,U™.

Elimination of U™~1/2 gives, since the various operators commute,
U" = EkUn_l = (] — 38151)_1(I + 58151)( — 58252)_1(]4- %8252)[]”_1.

By either energy arguments or by the spectral method one sees easily that this
method is stable in the discrete ls-norm and since it is second order accurate in
both space and time one finds ||[U™ —u(t,)|| < C(u)(h®+ k?). We may also express
the definition of Ej, (using a different U~ 1/2) by

Uiz = (I — §8j5j)_1(1 + gﬁjéj)U”_U_l)/z, for j =0, 1.

In this form, which generalizes in an obvious way to more dimensions, it is referred
to as a fractional step method and depends on the splitting of the operator Ay into
010, and 0505. This has been a very active area of research during the 60s, with
contributions by, e.g., Douglas, Kellogg, Temam, Wachspress, Dyakonov, Samarskii,
Marchuk, and Yanenko, see the survey article by Marchuk [25].

In the same way as for the elliptic problems studied in Section 2, complications
arise when the boundary mesh-points do not fall exactly on €2, which is the case
in the presence of a curved boundary. Using, e.g., linear interpolation or Shortley-
Weller type approximations of the Laplacian one may show O (k+h?2) error estimates
for the backward Euler method by means of a discrete maximum-principle, and one
may also use energy arguments, with the crudest boundary approximation, to show
O(k + h/?) error estimates, see Thomée [37].

We now turn to hyperbolic equations and consider first the spatially one-dimen-
sional wave equation

Ut = Ugy 0 Q=(0,1), with u(-,0),u(-,0) given.

Here one may define the ¢¥-method, ¥ € [0, 1], which is a special case of a family of
schemes studied in Newmark (1959), by

(4.4) 00 UT = 0,0, (1 — 9UP + 39U + UPY)),
with Ugt = Uy = 0 for n > 0 and U7 and U given. This scheme is unconditionally

stable for £ <9 <1, and for 0 < ¥ < 1 it is stable if A = k*/h? < 1/(1 — 2¢); for
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¥ = 0 we recognize the explicit scheme of Section 1, which can easily be shown to
be unstable for A = 1, see Raviart and Thomas [27].
As a simple first order hyperbolic model problem we consider, with p > 0,

ug = pu, in Q=(0,1), wu(l,t)=0, fort>0, withu(,0)=v inQ.

Note that since the solution is constant along the characteristics x + pt = constant
no boundary condition is needed at x = 0.
Consider first the “upwind” scheme, see Courant, Isaacson, and Rees (1952),

U = pd, U, j=0,...,M—1, Uptt=0, forn>0, withU}=uv(z;),
which may be written in explicit form as
Ut = (1= XAp)US + AUy, 0<j<M, Upt=0

When Ap < 1 the method is stable in maximum-norm; this condition may be
expressed by saying that the characteristic traced back from (z;,t,41) cuts t =t,
in [z, x;41], which we recognize as the CFL condition. By the lack of symmetry
it is only first order accurate. For pA > 1 one can use instead the Carlson scheme
(see Richtmyer and Morton [28])

U = pgmeH, 1<j<M, U"Jrl 0, form >0, with UJ(-) = v(z;),

which determines U;H'l for decreasing j by U;‘_"’ll =(1- (,0)\)_1)U;""1 + (pA) U
Again this method is maximum-norm stable, but only first order accurate.
A second order method is the box scheme of Wendroff (1960),

QUL 1 jp = pO,U; T2, 1<j<M, Uit =0, Uj_yjp=3(U;+U;).

With U™ and Uy given this determines U fjll for decreasing j as a combination

of U;‘H, 71, and UJ'. Stability in I may be shown by an energy argument.

We end this section with two examples where the finite difference operators used
in the interior of {2 require modification near the boundary or additional artificial
boundary conditions. In our first example we describe a special case of an energy
argument proposed by Kreiss and Scherer (1972), see also [18]. We consider the
initial-boundary value problem, with p > 0,

—pu,=f inQ, withu(l,t)=0, fort>0, u(,0)=v in Q.

Assume that we want to apply the six-point Crank-Nicolson equation

5 77m A rm—1/2 n—1/2 )
(4.5) O UT — pd U2 =172 for1<j<M -1
At the right endpoint of 2 we set Uy, = 0. For x = 0 the value of u is not
given, and we therefore use the one-sided equation 9;U — pOUy —12 0 172,

With the obvious definition of the composite difference operator D, we may erte

Uy — poU;‘_l/2 = f"_l/2 for 0 < j < M. Introducing temporarily the inner

product (U, V) = 1hUoVO - hZM 'U;V; we have (D,U,U) = —1U3 if Uy = 0,
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which yields (8,U", U"=1/2) + 2 p(U5~"/%)2 = (f»=1/2,Un=1/2). Together with the
inequality hfoUy < pUZ + Ch? f2 this easily shows the stability estimate

n—1

[ < CIU°I* + Ck Y NFHY2)1%, where f = (hfo, fi,-- -, far—)-
1=0

Note that the choice of the term with j = 0 in (+,-) is essential for the argument.

Applying this to the error U —u, with the truncation error 7 for f, and observing
that 7; = O(h?) for j > 1, 79 = O(h), we find ||U — u|| = O(h?). This approach
was also used in the reference quoted to construct higher order schemes. We note
that the modification of (4.5) for j = 0 may also be interpreted as using (4.5) for
j = 0, and adding the boundary condition h%0,0,U} = UP —2U% + U™, = 0.

We finally give an example of the stability analysis based on the use of discrete
Laplace transforms developed by Kreiss (1968), Gustafsson, Kreiss, and Sundstrom
(1972), the so called GKS-theory. Consider the initial-boundary value problem,
again with p > 0,

ug = pu, forxz >0, t>0, withu(z,0)=uv(z) forz>0.
Assume that we want to use the leapfrog scheme
(4.6) 8AtUJ” = péwU;‘ for j > 1,n>1, with U]Q, Ujl given for j > 0,

where we assume pA = pk/h < 1 so that the corresponding scheme for the pure
initial value problem is stable. Again an additional boundary condition is required
for 7 = 0 in order to apply the equation at j = 1; following Strikwerda [35] we
illustrate the theory by sketching the argument for stability in choosing the extrap-
olation U} = U{‘_l for n > 1.

By subtracting a solution of the pure initial value problem one is reduced to
assuming that U JQ =U jl =0 for j§ > 0, but then has to impose the inhomogeneous
boundary condition U(?H = U7 4 B" for n > 0, and to show for this problem the
stability estimate

1U|lx < CulBlw, with U2 =k e n> (UM, (B2 =Fk) e > i|g"[>
n=0 7=0 n=0

Note that k is a parameter allowing for a certain exponential growth in time.
Applying discrete Laplace transforms in time to (4.6) one finds that the trans-
formed solution U;(z) satisfies

(z— 27 YU; = \p(Uj41 — Uj_1), where U(z) =k Z 2 """,

n=0

which is referred to as the resolvent equation. It is a second order difference equation

in j, and provided the two roots 7 (2), 72(2) of its characteristic equation Ap(7 —

771) = z—2~1 are distinct, the general solution is U;(2) = ¢ (2)71(2) +-ca(2)ma(2).

It follows from the stability of the scheme for the initial value problem that for

|z| > 1, with the proper ordering, |m1(2)| < 1 and |m2(2)| > 1. In fact, if this
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were not so and since 71(2)72(2z) = 1, we have 71 5(2) = e*% for some &, and z is
therefore a solution of the characteristic equation z — 271 — 2iApsiné = 0 of the
leapfrog scheme for the pure initial value problem. By von Neumann’s condition
we therefore have |z| < 1 which contradicts our assumption. Since we want f]j to
be in l2(Z;) we must have cy(z) = 0, and taking the Laplace transform also at
4 =0, we find ¢1(2)(z — 71(2)) = 26(2), and thus U;(2) = 28(2)m1(2)7 /(2 — 71(2)).
With z = e®*, s = k + in we obtain using Parseval’s relation

7T/k - 7I'/’C 9 ~ 9
oIz =3 [ @iePa=n [ LUBDE
= J—m/k
J

—a/k |2 = m(2)2(1 = [1a(2)[?)

By studying the behavior of 71 (z) one may show that |z—7; ()| > cand 1—|7(2)|? >
1 — | (2)] > ¢(|z] — 1) = c(e®* — 1) > ckk, with ¢ > 0. Hence

w/k

IU1l% < Ch(lm)_l/_ p B()? dn = C(Aw)HBIE,

which shows that the method is stable. Using similar arguments it is possible to
show that the alternative extrapolation defined by U} = U7* is unstable.

5. Finite element methods for elliptic problems.

In this section we summarize the basic definitions, properties, and successive
development of the finite element method for elliptic problems. As a model problem
we consider Dirichlet’s problem for Poisson’s equation in a domain Q C R¢,

(5.1) —Au=f inQ, withu=0 on 0f.

The standard finite element method uses a variational formulation to define an
approximate solution uy of (5.1) in a finite-dimensional linear space Sp, normally
consisting of continuous, piecewise polynomial functions on some partition of €2:
By Dirichlet’s principle the solution u of (5.1) may be characterized as the function
which minimizes J(v) = || Vv||? — 2(f,v) over H} = Hj(S2), where (-,-) and || - || are
the standard inner product and norm in Ly = Ly(2). The Euler equation for this
minimization problem is

(5.2) (Vu, Vo) = (f,¢), Ve € Hp;

this weak or variational form of (5.1) may also be derived by multiplying the elliptic
equation in (5.1) by ¢ € H}, integrating over €2, and applying Green’s formula in the
left-hand side. The standard finite element method assumes S, C H} and defines
the approximate solution uy as the minimizer of J(v) over S, or, equivalently,

(5.3) (Vun, Vx) = (f,x), Vx € Sh.

In terms of a basis {(Pj};-vz"l for Sy, our discrete problem (5.3) may be stated in
matrix form as Aa = f, where A is the matrix with elements ajr = (V&;, Vo)
(the stiffness matrix), f the vector with entries f; = (f, ®;), and « the vector of

Np,

unknown coefficients o in up = ) jo1@;®;. Here A is a Gram matrix and thus,
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in particular, positive definite and invertible, so that (5.3) has a unique solution.
From (5.2) and (5.3) follows that (V(up — u), Vx) = 0 for x € Sy, that is, uy is
the orthogonal projection of u onto S with respect to the Dirichlet inner product
(Vv, Vw).

We recall that defining u;, as the minimizer of J(x) is referred to as the Ritz
method, and using instead (5.3), which is suitable also for nonsymmetric differential
equations, as Galerkin’s method. Some further historical remarks are collected in
the introduction to this paper.

For the purpose of error analysis we briefly consider the approximation in Sj,
of smooth functions in 2 which vanish on 0€2. We first exemplify by the Courant
elements in a convex plane domain 2. For such a domain, let 7, denote a partition
into disjoint triangles 7 such that no vertex of any triangle lies on the interior
of a side of another triangle and such that the union of the triangles determine a
polygonal domain €2;, C Q with boundary vertices on 0€2. Let h denote the maximal
length of the sides of the triangles of 7, and assume that the angles of the 7, are
bounded below by a positive constant, independently of h. Let now S; denote
the continuous functions on the closure Q of Q which are linear in each triangle
of T, and which vanish outside €25,. With {Pj};\;” the interior vertices of Ty, a
function in S}, is then uniquely determined by its values at the points P; and thus
dim(S,) = Np. Let ®; be the “pyramid” function in Sj, which takes the value 1
at P; but vanishes at the other vertices; these functions form a basis for S,. A
given smooth function v on {2 which vanishes on J€2 may now be approximated by,
e.g., its interpolant Ipv = Zjvzhl v(P;)®; € Sp, which agrees with v at the interior
vertices, and one may show

(5.4) |Inv —v|| < CR?||v||z and ||V(Inv —v)|| < Chljv||s, for v e H?>nN Hy,

where || - ||, denotes the norm in the Sobolev space H" = H"(2).
More generally we consider the case when  C R?% and {S;} is a family of
finite-dimensional subspaces of H} such that, for some integer r > 2,

(5.5) iélsf{||v—x||+h||V(v—X)||}§ChS||v||s, for1<s<r, wve€H*NH,.
X€ESh

The spaces Sy, are thought of as consisting of piecewise polynomials of degree at
most 7 — 1 on a partition 75 of @, and the bound (5.5) shown by exhibiting a
X = Inu where I, : H" N H} — S}, is an interpolation type operator, see Zldmal
(1968). The proof often involves the lemma of Bramble and Hilbert (1970):

Let D C R?* and assume that F is a bounded linear functional on H"(D) which
vanishes for all polynomials of degree <r. Then |F(u)| < C 3, 2, | D%ullL,(D)-

To use this to show (5.4), e.g., one considers the difference Ij,u—u on an individual
T € Tp, transforms this to a unit size reference triangle 7, invokes the Bramble-
Hilbert lemma with D = 7, noting that I,u — u vanishes for linear functions, and
transforms back to 7, using the fact that the bound for |F'(u)| in the lemma only
contains the highest order derivatives. In this example 5 # € but the width of
Q\Qy, is of order O(h?) and the contribution from this set is bounded appropriately.
When 02 is curved and r > 2, however, there are difficulties in the construction and
analysis of such operators I near the boundary; we shall return to this problem
below. When (2 is polygonal and €} = Q, the Bramble-Hilbert argument for (5.5)
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may be used also for r > 2, but in this case the solution of (5.1) will not normally
have the regularity required. For comprehensive accounts of various choices of
partitions 75 and finite element spaces Sj, we refer to, e.g., Ciarlet [11] and Brenner
and Scott [8].

We return to the finite element equation (5.3) using Courant elements. One
way of triangulating Q C R? is to start with the three families of straight lines
x1 = lh, x9 = lh, x1 + 292 = lh,l € Z. The triangles thus formed may be used
in the interior of {2 and then supplemented by other triangles near 02 to form a
triangulation 75 with the desired properties. With the notation (1.2) the equation
corresponding to an interior vertex x; = jh, j € Z 2 then takes the form

(56) —818_1[]]' - 8252[]_7' = h_2(f, @j), where Uj = uh(mj).

We recognize this as essentially the five-point finite difference equation (2.2), but
with the right hand side f; = f(z;) replaced by an average of f over a neighborhood
of z;. Taking f(z;) may be considered as a quadrature rule for the right hand side
of (5.6). Recall that such averages were proposed also for finite difference methods.

Whereas a finite difference method may be obtained by replacing derivatives by
finite differences, with some ad hoc modification near the boundary, the basic finite
element method thus uses a variational formulation in a way that automatically
accomodates the boundary conditions. We recall that the error analysis for the finite
difference method uses a local estimate for the truncation error, together with some
stability property, such as a discrete maximum-principle. The finite element error
analysis, as we shall now see, is based directly on the variational formulation and
is global in nature. The difficulties in the construction of finite difference equations
near the boundary are even greater for Neumann type boundary conditions, whereas
in the variational approach these are natural boundary conditions which do not have
to be imposed on the approximating functions.

Under assumption (5.5) we now demonstrate the optimal order error estimate

(5.7) lup, — ul| + b||V(up — u)|| < Ch¥||ulls, forl<s<r.

Starting with the error in the gradient we note that since uj is the orthogonal
projection of u onto Sp, with respect to (Vv, Vw), we have, by (5.5),

(58)  V(ur — vl = inf [[V(x —u)ll < Ch* ™ Hlulls, for1<s<r;
XEPR

for linear finite elements this was observed in Oganesjan (1963). For the Lo-error we
apply a duality argument by Aubin (1967) and Nitsche (1968): Let ¢ be arbitrary
in Lo, take ¢ € H2 N H} as the solution of

(5.9) —Ap=¢p inQ, withy)=0 on 9,

and recall the elliptic regularity inequality ||¢||2 < C||Ay|| = C||¢||- We then have
for the error e = up, — u, for any x € S,

(5.10) (e, ) = —(e; A¢p) = (Ve, Vi) = (Ve, V(¢ — x)) < [[Ve[ [V(¥ = x)ll;
and hence, using (5.8) and (5.5) with s = 2, the desired result follows from

(e, 0) < (CR*~Hulls) (ChllYl2) < CB*|lulls[¢ll-
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In the case of a more general, not necessarily symmetric, elliptic equation, and an
approximation by Galerkins method, the estimate for the gradient may be obtained
by application with V = H} of the lemma of Céa (1964):

Let V be a Hilbert space with norm |- | and let A(u,v) be a continuous bilinear
form on V such that |A(u,v)| < M |u||v| and A(u,u) > plul?, p > 0. For F a
continuous linear functional on V, consider the equation

(5.11) A(u,p) = F(p), VoelV.

Let S, C V and let up, € Sy, be the solution of A(up,x) = F(x) for x € Sn. Then
lup, —u| < Mp~tinfyes, [x — ul.
Since A(up, — u, x) = 0 for x € Sy, this follows at once from

plup, — ul® < A(up — u,up, —u) = A(up — u, x —u) < Mup — ul [x — ul.

Note that the problem (5.11) has a unique solution in V' by the Lax-Milgram lemma.
We remark that the finite element error estimate for, e.g., the Courant elements,
will require the solution to have two derivatives, whereas four derivatives were
needed in the five-point finite difference method. This advantage of finite elements
stems from the use of averages and disappears when a quadrature rule is used.

The error analysis given above assumed the approximation property (5.5) for
some r > 2. The most natural example of such a family in a plane domain €2 would
be to take for S} the continuous piecewise polynomials of degree at most » — 1 on
a triangulation 7 of € of the type described above, which vanish on 0€2. However,
for » > 2 and in the case of a domain with curved boundary, it is then not possible,
in general, to satisfy the homogeneous boundary conditions exactly, and the above
analysis therefore does not apply. One method to deal with this difficulty is to
consider elements near Jf2 that are polynomial maps of a reference triangle 7, so
called isoparametric elements, such that these elements define a domain €25 which
well approximates €2, and to use the corresponding maps of polynomials on 7 as
approximating functions. Such finite element spaces were proposed by Argyris and
by Fried, Ergatoudis, Irons, and Zienkiewicz, and Felipa and Clough, and analyzed
in, e.g., Ciarlet and Raviart (1972), and other types of curved finite elements were
considered by, e.g., Zlamal and Scott, see Ciarlet [11].

Another example of how to deal with the boundary condition is provided by the
following method proposed by Nitsche (1971), again in a plane domain 2. It uses a
family 75, of triangulations which is quasi-uniform in the sense that area(r) > ch?
for 7 € Ty, with ¢ > 0 independent of h. In this case certain inverse inequalities
hold, such as ||Vx| < Ch~Y||x|| for x € Sp; this follows at once from the corre-
sponding result for each 7 € T, for which it is shown by transformation to a fixed
reference triangle and using the fact that all norms on a finite dimensional space
are equivalent, see, e.g., Ciarlet, loc. cit. With (-, -) the Ls-inner product on 012,
the solution of (5.1) satisfies, for x € Sy,

ou ox
— — (u, == ! =—(A = .
5,0 X) = (s 50) + 7R, x) = —(Au, x) = (£, %)
Using inverse and trace inequalities, the bilinear form N, (-, -) is seen to be positive
definite on Sy, for « fixed and sufficiently large, and we may therefore pose the

discrete problem N, (up, x) = (f, x) for x € Sp. Nitsche showed

Ny(u, x) == (Vu, Vx) —

lun, — ull + RIIV (u, — W)l + B2 |lup | £y co0) < OB [ull,-
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The bound for the third term expresses that u; almost vanishes on 0f).

Other examples of methods used to deal with curved boundaries for which S ¢
H} include a method of Babuska (1973) with Lagrangian multipliers, the method
of interpolated boundary conditions by Berger, Scott, and Strang (1972), Scott
(1975), and an approach by Bramble, Dupont, and Thomée (1972) and Dupont
(1974) where the finite element method is based on an approximating polygonal
domain with a correction built into the boundary conditions.

In some situations one may want to use finite element spaces S defined by
piecewise polynomial approximating functions on a partition 75, of Q which are
not continuous across interelement boundaries, so called nonconforming elements.
Assuming €2 polygonal so that it is exactly a union of elements 7, one may introduce
a discrete bilinear form by Dy (¢, x) = >_ ¢, (V, VX)-. Provided S, is such that
Ixllin = Dr(x,x)/? is a norm on Sj, a unique nonconforming finite element,

solution uyp, of (5.1) is now defined by Dp(un,x) = (f, x) for x € Sp, and it was
shown in Strang (1972) that

D _
(5.12) llup, — ull1,n < C inf |ju— x|1,n+ C sup [Dnfu, ) = (f, X)|
XESh XESh [Ixll2,n

As an example, consider an axes parallel rectangular domain, partitioned into
smaller such rectangles with longest edge < h, and let S;, be piecewise quadratics
which are continuous at the corners of the partition. Then || - |15, is a norm
on Sp. In Wilson’s rectangle, the six parameters involved on each small rec-
tangle are determined by the values at the corners plus the (constant) values of
02x/0xz?, | = 1,2. The functions in Sj, are not in C(£2) but using (5.12) one may
still show |lup — ul|1,n < C(u)h.

The analysis above assumes that all inner products are calculated exactly. An
analysis where quadrature errors are permitted was also worked out by Strang
(1972). For instance, if (f,x) is replaced by a quadrature formula (f, x)n, a term
of the form C'sup,cg, |(f,Xx) — (f, X)nl/[[VX|| has to be added to the bound for
IV (un, — u)||. For example, if the quadrature formula is exact on each element for
constants and if f € W, (Q) with ¢ > 2, then the O(h) error for ||V (up — u)|| is
maintained. The situations when curved boundaries, nonconforming elements, or
quadrature errors occur, so that the basic assumptions of the variational formulation
are not satisfied, are referred to in Strang, loc. cit., as variational crimes.

Because of the variational formulation of Galerkin’s method, the natural error
estimates are expressed in Ls-based norms. In the maximum-norm it was shown by
Natterer (1975), Nitsche (1975), and Scott (1976), see Schatz and Wahlbin (1982),
that, for piecewise linear approximating functions on a quasi-uniform family 7 in
a plane domain €2, we have

lun = ullz., < Ch*log(1/R)|[ullwz,  IIV(un — w)llr., < Chllullwz
For polygonal domains and with piecewise polynomials of degree r — 1 > 1,
lun — ullLo + BlIV (un — u)llz, < CR"|Jullwy,,
but Haverkamp (1984) has proved that the above factor log(1/h) for piecewise

linears may not be removed, even though it is not needed when estimating I, u — u.
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We shall now consider a finite element method for our model problem (5.1) which
is based on a so called mixed formulation of this problem. Here the gradient of the
solution u is introduced as a separate dependent variable whose approximation is
sought in a different finite element space than the solution itself. This may be done
in such a way that Vu may be approximated to the same order of accuracy as u.
With Vu as a separate variable, (5.1) may thus be formulated

(5.13) —dive = f inQ, o=Vu in Q, withu=0 on 0.

With H = {w = (w1,ws) € La X Ly; divw € Ly} we note that the solution
(u,0) € Lo x H also solves the variational problem

(514) (divo,0) + (f9) =0, Vp€Ls,  (0,0)+ (u,divw) =0, Vo € H,

where the (+,-) denote the appropriate Ly inner products, and a smooth solution of
(5.14) satisfies (5.13). Setting L(v, u) = %||pl|? + (div g + f,v) the solution (u,o)
of (5.13) may also be characterized as the saddle-point satisfying

(5.15) L(v,0) < L(u,0) < L(u,u), Vv € Lo, p € H,
and the key to the existence of a solution is the inequality

(5.16) inf sup (v, div 1)

>c¢>0, where [|ullf; = [|ull® + [|div ul|*.
ver, ned [[V][ulla

With S, and Hj certain finite-dimensional subspaces of Ls and H we shall
consider the discrete analogue of (5.14) to find (up,on) € Sp X Hp, such that

(5.17) (divon,x) + (f,x) =0, VX € Sh,  (0h, %) + (un,divep) =0, Vo € Hp,

As in the continuous case this problem is equivalent to the discrete analogue of
the saddle point problem (5.15), and in order for this discrete problem to have a
solution with the desired properties the choice of combinations Sy, x Hp has to be
such that the analogue of (5.16) holds, in this context referred to as the Babuska-
Brezzi inf-sup condition (Babuska (1971), Brezzi (1974).

One family of pairs of spaces which satisfy the inf-sup condition was introduced
in Raviart and Thomas (1977); the first order accurate pair of this family is as
follows: With 7 a quasi-uniform family of triangulation of 2, which we assume
here to be polygonal, we set S, = {x € Ls; x|, linear ,V7 € Ty}, with no continuity
required across inter-element boundaries. We then define Hy, = {¢ = (¢1,%2) €
H;y|, € H(t), V71 € Ty}, where H(7) denotes affine maps of quadratics on a
reference triangle 7 of the form (I1(&) + aé1(&1 + &2),12(8) + B&2(&1 + &2)), with
11(£),12(€) linear, o, B € R. This space thus consists of piecewise quadratics on the
triangulation 7, which are of the specific form implied by the definition of H(7),
and dimH (7) = 8. As degrees of freedom for Hj, one may use the values of ¢ - n at
two points on each side of 7 (6 conditions) and in addition the mean-values of
and 19 over 7 (2 conditions). We note that the condition ¢ € H in the definition
of Hj, requires that divy € Lo, which is equivalent to the continuity of x - n across
inter-element boundaries. For the solutions of (5.17) and (5.13) holds

lun — ull < CR*|lullz and [lon — ol < Ch*||ullss1, s=1,2,
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and correspondingly higher order estimates were derived for higher order Raviart-
Thomas elements.

We now turn to negative norm estimates and superconvergence. Recalling the
error estimate (5.7) which holds for the model problem under the approximation
assumption (5.5), we shall now see that for » > 2, the duality argument used
to show the Lo-norm estimate yields an error estimate in a negative order norm.
Introducing such negative norms by [|v||—s = sup,epys (v, )/[|¢lls for s > 0, the
error in uy, satisfies

5.18 up —ul|—s < Ch¥8|lull,, for0<s<r—2, 1<qg<r.
( g

In particular, ||up — ul|——2) < Ch*~2|lu||,. Since 2r —2 > r for r > 2 the
power of h in this estimate is higher than in the standard O(h") error estimate
in the Ly-norm. To show (5.18), we use the solution ¢ of (5.9) and recall that
[¥|ls+2 < C|le||s- This time (5.10) yields, for 0 < s <7 —2,

[(e: @)l < |[Vell inf [[V(¥ =) <[[Vell (ChHH[3[lsr2) < CRTH[ Vel Il

By (5.8) this gives |(e, ¢)| < Ch¥t%||ul|,||¢||s for ¢ € H®, which shows (5.18). As an
application of (5.18), assume we want to evaluate the integral F(u) = [, u1) dz =
(u, ), where u is the solution of (5.1) and 1 € H"~2. Then for the obvious approx-
imation F(up) = (up,®) we find the superconvergent order error estimate

[ (un) = F(u)| = [(un =, )] < [lun = ull——2)[$llr—2 < CH*72||ull, [[$]lr—2.

One more example of these ideas is provided by Douglas and Dupont (1974),
which concerns superconvergent nodal approximation in the two-point boundary
value problem

d , du
—_—— a’_

dx( dx)

Defining the partition 0 = zg < 1 < --- < zpr = 1, with ;41 — x; < h, we set

(5.19) Au = +apu=f inI=(0,1), withu(0)=u(l)=0.

Sy ={x€C); x|r, eMy_1, 1 <i < M; x(0) = x(1) = 0},

where I; = (z;_1,x;). Clearly this family satisfies our assumption (5.5). The
finite element solution is now defined by A(up,x) = (f,x) for x € Sk, where
A(v,w) = (avg, wy) + (apv,w), and the error estimate (5.18) holds.

Let g = g% denote the Green’s function of the two-point boundary value problem
(5.19) with singularity at the partition point Z, which we now consider fixed, so that
w(Z) = A(w, g) for w € H} = H}(I). Applied to the error e = uj, —u, and using the
orthogonality of e to Sy, with respect to A(-,-), we find e(Z) = A(e,g) = A(e,g—X)
for x € Sp, and hence that

7)) < C inf |lg — < COp™ ! inf ||lg — .
(@) < Cllells_inf llg —x[lx < el inf llg = Xl

Although g% is not a smooth function at Z it may still be approximated well by a
function in Sy, since it is smooth except at z and the discontinuity of the derivative
at £ can be accommodated in Sy. In particular, we have
nf. lg — xllh < CR" llgllar(0,2)) + 91l Er((m,1))) < Ch™ 7,
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so that |e(Z)| < Ch* ~2||u||,. Note that for A = —d?/dz? the Green’s function g®
is linear outside Z and so g® € Si. We may then conclude that e(z) = 0, which is
a degenerate case.

We now touch on some superconvergent order estimates for the gradient in the
two-dimensional model problem (5.1) using piecewise linear approximations for S,
in (5.3). It was shown in Oganesjan and Ruhovec (1969) that if the triangulations
Tr are uniform then ||V (up — Inu)||1,(0,) < Ch?||ullgs, where as above Ij, denotes
the interpolant into Sp. This implies that at the midpoints of the edges of 7} the
average of Vuy, from the two adjacent triangles is a O(h?) approximation to Vu in a
discrete I sense. Such results have been improved to maximum-norm estimates and
to triangulations that are perturbations in various ways of uniform triangulations
by C.M. Chen, Q. Lin, J.C. Xu, Zhou, Zhu, and others, and the approximation at
other points than midpoints of edges has also been studied, see, e.g., references in
Krizek and Neittaanmaki [22] or Wahlbin [41]. We remark that for uniform, axes
parallel triangulations it follows from (5.6) that finite differences may be used as in
(2.8) to approximate both the gradient and higher order derivatives to order O(h?)
in the interior of €.

All error estimates quoted above are a priori error estimates in that they depend
on certain norms of the exact solution of the problem. In principle, these norms
could be bounded in terms of norms of the data of the problem, but generally such
bounds would be rather crude. During the last decades so called a posterior:i error
estimates have been developed which depend directly on the computed solution,
and on the data. Such estimates may be applied to include an adaptive aspect in
the solution method, by detecting areas in a computational domain where the error
is larger than elsewhere, and using this information to refine the mesh locally to
reduce the error by an additional computation. Pioneering work is Babuska (1976)
and Babugka and Rheinboldt (1978); for a recent survey, see Verfiirth [40].

We illustrate this approach for the two-dimensional problem (5.1) in a polygonal
domain €, using piecewise linear finite element approximations. With {®;} the
basis of pyramid functions we define 2; by Qj = supp ®;. Given the finite element
solution up € Sy, of (5.3), we now consider the local error equation

—Aw; = f in§};, with w; =u; on 09;.

It is then proved in Babuska and Rheinboldt, loc cit., that, with ¢ and C positive
constants which depend on geometrical properties of the triangulations 7y,

e n} < IV — w2 < C Yk, where n; = [V (w; — un).

J J

The error in Vuy, is thus bounded both above and below in terms of the local quan-
tities n;, which can be approximately determined. It is argued that a triangulation
for which the quantities n; are of essentially the same size gives a small error in
Vup, and this therefore suggests an adaptive strategy for the solution of (5.1).

Another approach was taken in Eriksson and Johnson (1991), showing an a
posteriori error estimate of the form

8u
(5.20) IV (ur, —w)|| < C(( Zh’2||f||L2(T) Y2 th oup )2,
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where the v with length h., are the edges of 7; and [-], denotes the jump across
~v. Under a certain assumption on the local variation of h,, which is weaker than
quasi-uniformity the a priori estimate

(5.21) IV (un =)l < CY_ B2 llullFra ()

is also derived. Together with (5.20) this may be used to justify an adaptive scheme
with a given tolerance and an essentially minimal number of triangles. Analogous
a posteriori and a priori bounds are demonstrated for ||up — u|| and, in Eriksson
(1994), also in maximum-norm, where the analogue of (5.21) reads ||V (up—u)||z. <
CmaXT(hTHuHWgo(T)).

Superconvergence of the error in the gradient has been used in, e.g., Zienkiewicz
and Zhu (1992) to derive a posteriori error bounds for adaptive purposes.

We finally mention the p- and h-p-versions of the finite element method: So far
it has been assumed that the approximating subspaces S}, are piecewise polynomial
spaces of a fixed degree based on partitions 75 with max,¢7, diam(7) < h, and
higher accuracy is achieved by refining the partition. An alternative approach
proposed in Babuska, Szabd, and Katz (1981) is to fix the mesh and then let the
degree of the polynomials grow. The two approaches are referred to as the h-version
and the p-version of the finite element method, respectively. A combination of the
two methods, the h-p-version has been studied in Babuska and Dorr (1981). For
more material about the p- and h-p-method, see Babuska and Suri (1990).

6. Finite element methods for evolution equations.

This section is concerned with the application of the finite element method to
time dependent problems. We begin with the model heat equation and discuss then
the wave equation and finally some simple first order hyperbolic model problems.

We consider thus first the approximate solution of the parabolic problem
(6.1) w—Au=f(t) inQ, withu=0 ondQ, t>0, wu(,0)=v inQ,

in a finite dimensional space S; belonging to a family satisfying (5.5). As a first
step we discretize this problem in the spatial variable by writing it in variational
form and defining up, = up(-,t) € S, for t > 0 by

(62) (uh,t7 X) + (VUh, VX) = (f(t)7 X)7 VX € Sh7 > 07 Uh(o) = Up = V.

With respect to a basis {®; }jvz”l of S;, this may be written as a system of ordinary

differential equations Ba' + Aa = f where A is the stiffness matrix introduced in
Section 5 and where B = (bjx), bjx = (®;, i), is referred to as the mass matrix.
A fully discrete time stepping scheme may then be obtained by discretization of
this system in time, using, e.g., the single step ¥-method: With k the time step,
tn = nk, U™ = (U™ — U™ 1)/k, and with 9 € [0, 1], the approximation U™ € S},
of u(t,) for n > 1 is then defined by

(6.3) (OU™, x) + (VU™ + (1 —9)U™ 1), Vx) = (f* %, x), Vx €S, n>1,
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with f* = f(sk) and U° given. For 9 = 0 and 1 these are the forward and backward
Euler methods and for ¢ = 1/2 the Crank-Nicolson method. Note that the forward
Euler method is not explicit because the matrix B is nondiagonal.

For the semidiscrete problem (6.2) Douglas and Dupont (1970) showed that

(6-4) [[un (t) — u(@)]| + (/O IV (un —w)|?ds)*? < |lon —v]| + C(w)h" .

For a proof we note that the error e = uj, — u satisfies (e, x) + (Ve, Vx) = 0 for
X € Sp,t > 0, and hence (e, e)+(Ve, Ve) = (es, x—u)+(Ve, V(x—u)), from which
the result follows after integration and with the appropriate choice of x. Because
of the contribution from ||V (x — u)|| on the right, (6.4) is of suboptimal order in
Ly-norm. In this regard the estimate was improved by Wheeler (1973) to

t
(6.5) lun (t) — u(t)]| < ||lve —v|| + CR"(||v||» + ||ue||~ds), for ¢ > 0.
0

This was done by introducing the elliptic or Ritz projection, the orthogonal pro-
jection Ry, : H} — Sp, with respect to the Dirichlet inner product, thus defined by
(V(Rpu—u),Vx) = 0 for x € Sy, and writing e = (up, — Rpu) + (Rpu —u) = 0+ p.
Here, by the error estimate (5.7) for the elliptic problem, ||p(t)|| < Ch"||u(t)]|.,
which is bounded as desired, and one also finds (6, x)+(V0,Vx) = —(ps, x) for x €
Sh, t > 0. Choosing x = 0 and integrating this yields [|0(t)]| < [|0(0)]| + [y ||o¢]| ds
which is easily bounded as desired. In particular, for v; € S}, suitably chosen, this
shows an optimal order error estimate in L.

Defining the discrete Laplacian Ay, : Sy, — Sy, by —(Aryy, x) = (Vo, Vx) Vb, x €
Sy, and using the Las-projection P, onto Sp the above equation for # may be written
as 0; — A0 = —Pypy, and, with Ej(t) = e®*? the solution operator of (6.2) with
f =0, we find by Duhamel’s principle that () = E'h(t)H(O)—{—f(;t E;,(t—s)Pypi(s) ds.
An obvious energy argument shows the stability property || Ep(t)vn|| < ||v||, which
again gives the above bound for . The error estimate for the semidiscrete problem
thus follows from the stability of Ep(t) together with error estimates for the elliptic
problem; for finite difference methods stability was similarly combined with a bound
for the truncation error.

The use of the elliptic projection also yields an estimate of superconvergent order
for V6. In fact, by choosing this time x = 6; in the variational equation for 6, we
find after integration and simple estimates that ||V8(¢)|| < C(u)h" if v, = Rpv. For
piecewise linears (r = 2) this may be combined with the superconvergent second
order estimate for V(Rpu — Ipu) quoted in Section 5 to bound V(up — Inpu), with
similar consequences as in the elliptic case, see Thomée, Xu, and Zhang (1989).

Estimates for the fully discrete ¥-method (6.3) were also shown in Douglas and
Dupont (1970) and Wheeler (1973). The contribution from the time discretization
that has to be added to (6.5) at ¢t = ¢, is then Ck f;” ||uee||ds, with a stability
condition k < ygh? for 0 <9 < 1/2, and Ck? fot"(||uttt|| + ||Aug||)ds for 9 = 1/2.

The ¥-method for the homogeneous equation may be defined by U™ = E}, vp
where Exp, = r(—kAg), 7r(A) = (1+ (1 — 9)A)/(1 +9A). Two-level schemes using
more general rational functions () of arbitrary order of accuracy were constructed
in Baker, Bramble, and Thomée (1977), under the stability assumption |r(A)] <1
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for A € o(—kAp). Stable two-level time-stepping methods for the inhomogeneous
equation of arbitrary order of accuracy may be constructed in the form U"t! =
r(—kARU™ + k Z;”zl q;(—kAp) f(tn + 7jk) where 7(A) and the ¢;()) are rational
functions, with, e.g., the backward Euler method included for m = 1,7, = 0,7(\) =
qg1(A) = 1/(1 + X), see Brenner, Crouzeix, and Thomée (1982). Stable multistep
time discretization schemes of accuracy of order ¢ < 6 have also been derived by
LeRoux (1979) and others, see Thomée [38].

The regularity requirements needed for optimal order convergence in some of
the above error estimates make it natural to enquire about error estimates under
weaker regularity assumptions on data or on the solution. To illustrate this we
now consider the solution of the homogeneous equation, i.e. (6.1) with f = 0, and
recall that the solution of this problem is smooth for ¢ > 0 even if v is only in
Ly, say, and satisfies ||Ju(t)||s < Ct—*/2||v||. Similarly, for the semidiscrete solution,

||A‘;’;/2uh(t)|| < Ct=*/?||vp,||, and using this one may show the nonsmooth data error
estimate

un(t) — u()|| < CR"t™"/?||v||, fort >0, ifwv, = Pyv,

so that optimal order O(h") convergence holds for ¢ > 0, without any regularity
assumptions on v. The corresponding result for the backward Euler method reads

U™ = u(t,)|| < CA 62 + ktZY)|v]l, forn>1, if vy = Pyo.

Results of this type were shown by spectral representation in, e.g., Blair (1970),
Helfrich (1974), and later by energy methods, permitting also time-dependent co-
efficients, in Huang and Thomée (1981), Luskin and Rannacher (1982), Sammon
(1983a,b), see Thomée [38]. For stable fully discrete approximations of the form
U™ = E vy with Egp, = r(—kAp) one then has to require |r(co)| < 1, see Baker,
Bramble, and Thomée, loc. cit. The Crank-Nicolson method lacks this smooth-
ing property, but Rannacher (1984) showed that using this method with two initial

steps of the backward Euler method, one has |U™ —u(t,)| < C(h" ;r/2+k2t;2)||v||
for n > 1.

The methods quoted in Section 5 for handling the difficulty of incorporating
homogeneous Dirichlet boundary conditions in the approximating spaces Sy have
been carried over from the elliptic to the semidiscrete parabolic case in Bramble,
Schatz, Thomée, and Wahlbin (1977). This may be accomplished by replacing the
gradient term in (6.2) and (6.3) by more general bilinear forms such as N,(-,-)
described there, or by using other approximations of the Laplacian than the above
Ap. Within this framework negative norm estimates and superconvergence results
were derived in Thomée (1980). We also quote Johnson and Thomée (1981) where
the mixed method discussed in Section 5 is applied to (6.1).

In the fully discrete schemes discussed above, Galerkin’s method was applied in
space but a finite difference type method was used in time. We shall now describe
an approach which uses a Galerkin type method also in time, the discontinuous
Galerkin time-stepping method. This method was introduced and analyzed in
Lesaint and Raviart (1974) and Jamet (1978), and generalized in the case of or-
dinary differential equations in Delfour, Hager, and Trochu (1981). In the present
context it was studied in Eriksson, Johnson, and Thomée (1985). With a not
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necessarily uniform partition of [0, oo) into intervals J, = [th—1,ts), n > 1, let
Sp = {X = X(z,t); X|y, = ZJ OXJ I xj € Sh}, where S; are finite element
spaces satisfying (5.5). Since the elements X € Sj, are not required to be continu-
ous at the t; we set U} = U(t,, £0) and [U"!] = U}~ " — U™ '. The discontinuous
Galerkin method may then be stated: With U° = v}, given, find U € S}, such that,
forn > 1,

(6.6) / (U, X) + (VU,VX)]ds + (U™, XT71) :/ (f, X)ds, VX € Sp,.
In JIn

In the piecewise constant case, ¢ = 0, this may be written, with k, =t,, — t,,_1,

(6.7) (0, U™ x)+ (VU",Vx) = / fds,x), 0, U" = U™ —U""")/kn;

this reduces to the standard backward Euler method when the average of f is
replaced by f(t,). It was shown in Eriksson and Johnson (1991) that for the error
in the time-discretization in (6.7)

), where £, = (1+10g(tn/kn))"/?,

10" = un ()| < Cln max(y
Isn

with up the solution of the semidiscrete problem (6.2) and [|¢[|s;, = supey, lle@)]-

For ¢ = 1 the method requires the determination on J, of U(t) of the form
Ut) = U+ (t — tn-1)/kn Vi with UT"',V,, € Sy, and such that (6.6) holds,
which gives a 2 x 2 system for these elements in Sy. In this case we have

IU — unlls, < Clymax(k}
j<n

i)s UL = un(tn)|| < Ol Eng;((k?”Ahuh,tt”Jj)v

thus with third order superconvergence at the nodal points. For the total error in
the fully discrete scheme, with, e.g., piecewise linear elements in space, one has

) ])7

1T = u(tn)ll < Cln max (k5 || Ay, + h* 5 = sup [lu(?)]]2-
=n ted

J

All our error estimates so far have been a priori error estimates, expressed in
terms of the unknown exact solution of our parabolic problem. We close by men-
tioning briefly some a posteriori estimates by Eriksson and Johnson, loc. cit., based
on an idea of Lippold (1991), where the error bounds are expressed in terms of the
data and the computed solution. For ¢ = 0, » = 2 such an estimate is

)

(6:8)  JIUZ = ultn)]| < Clnmax (0% + k)£, + kill0.U7 || + h? U7

= (2, [[ov/on] )",
with v denoting the edges of 7 and [-], the jumps across . Error bounds are also
available for ¢ = 1, and the estimates generalize to variable h.

Estimates such as (6.8) may be used to design adaptive schemes in which the
time-step is successively chosen so that the error is bounded by a given tolerance.
The earlier a priori estimates are then needed to show that such a procedure will end
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in a finite number of steps, cf. Eriksson and Johnson, loc. cit. This approach was
further developed in a sequence of paper by Eriksson and Johnson, see the survey
paper Eriksson, Estep, Hansbo, and Johnson [13]. A Petrov-Galerkin method with
continuous in time approximations was studied by Aziz and Monk (1989).

We now briefly consider the question of maximum-norm stability for the finite
element scheme. For the solution operator F(t) of the homogeneous equation in
(6.1) (f = 0) the maximum-principle shows at once that |E(t)v||L., < ||v|lL.,
and the smoothing estimate |A%/2E(t)v||. < Ct=%/?||v||1.. also holds for s > 0.
However, considering the case 7 = d = 2 one can easily see (cf. Thomée [38]) that
the maximum-principle does not apply for the semidiscrete finite element analogue.
This is in contrast to the corresponding finite difference method and is related to
the fact that the mass matrix B is nondiagonal. In this regard, it was shown by
Fujii (1973) that if B is replaced by a diagonal matrix whose diagonal elements are
the row sums of B, and if all angles of the triangulation are nonobtuse, then the
maximum-principle holds and hence ||uy(t)||z., < ||vn]|z,, for ¢ > 0. This method
is called the lumped mass method and can also be defined by

(uh,‘h X)h + (V’U,h, VX) = 07 VX S Sh7 t> 07

where the first term has been obtained by replacing the first term in (6.2) by
using the simple quadrature expression Qp,(uptx) on each 7, where Qp,(¢) =
area(T) 2?21 ©(P;) with P; the vertices of 7.

Even though the maximum-principle does not hold for (6.2), it was shown in
Schatz, Thomée, and Wahlbin (1980) that, for d = r = 2 and quasi-uniform 7y,

|Er (vl + tIEL#)vnlloe < ClullvnllL,, fort>0, £, =Ilog(1l/h).

The proof uses a weighted norm technique to estimate a discrete fundamental solu-
tion. For d =1,2,3 and r > 4, Nitsche and Wheeler (1981-82) subsequently proved
stability without the factor £, and this and the corresponding smoothing result
were shown for d = 1 and r > 2 in Crouzeix, Larsson, and Thomée (1994). Re-
cently logarithm free stability and smoothness bounds have been shown for general
d and r, first for Neumann boundary conditions in Schatz, Thomée, and Wahlbin
(1998), and then for Dirichlet boundary conditions in Thomée and Wahlbin (1998).
We note that the combination of stability and smoothing shows that the semigroup
Ey(t) is analytic, and via a resolvent estimate for its infinitesimal generator Ay, this
may be used to derive stability estimates also for fully discrete approximations of
the form U™ = r(—kAp)"v, where r(z) is a rational function with the appropri-
ate stability and consistency properties, see Palencia (1992) and Crouzeix, Larsson,
Piskarev, and Thomée (1993). Other maximum-norm error bounds have been given
in the literature by, e.g., Dobrowolski (1978), Nitsche (1979), and Rannacher (1991).

We now turn to hyperbolic equations and begin with a brief discussion of semidis-
crete and fully discrete finite element schemes for the initial boundary value problem
for the wave equation,

uy —Au=f mQCR? withu=0 ondQ, fort>0

u(-,0) =v, u(-,0)=w in Q.
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Assuming as usual that S, C H} satisfies (5.5), the semidiscrete analogue of our
problem is to find up(t) € Sy, for ¢ > 0 from

(uh,tta X) + (Vuha VX) = (fa X) VX € Sh7 t> 07 with Uh(o) = Uh, uh,t(o) = Wkp,-

Similarly to the parabolic case this problem may be written in matrix form, this
time as Ba” + Aa = f for t > 0, with «(0) and «/(0) given, where B and A are
the mass and stiffness matrices.

Analogously to the analysis in the parabolic case it was shown in Dupont (1973a),
with a certain improvement in Baker (1976), that under natural regularity assump-
tions and with appropriate choices of v, and wy,

[[un () — u(@)]| + AV (un(t) — u(®))[] < C(u)h".

One possible fully discrete method for the wave equation is, cf. the case 9 = 1/2
of the Newmark type method (4.4),

(0:0:U™, x) + (VU™ + 3U™ + U1, VX) = (f(ta), X); VX € Sh, n>1,

where U® and U! are given approximations of u(0) = v and u(k), respectively.
Setting U™*1/2 = (U™ + U™t1)/2 one shows for the homogeneous equation (f = 0)
that the energy ||0,U™||% + ||VU™t1/2||? is conserved for n > 0, and, also in the
general case, that ||U™*Y/2 — u(t, + 1k)| = O(h" + k?) for appropriate initial
values U® and U', u sufficiently regular, and t,, bounded. Although the error is
then estimated at the points ¢, + %k it is easy to derive approximations also at
the points t,,. For the homogeneous equaton more general time stepping schemes
based on rational functions of the discrete Laplacian A were studied in Baker and
Bramble (1979), where the second order wave equation was written as a first order
system.

We proceed with some results for first order hyperbolic equations, and begin
with the periodic model problem

(6.9) ugt+u,=f forxeR, t>0, withu(-,0)=v on R,

where f, v, and the solution sought are 1-periodic in z; the Ly inner products and
norms used below are based on intervals of length 1.

To define an approximate solution, let S, € C*(R), with k& > 0, denote 1-periodic
splines of order r (i.e., piecewise polynomials of degree » — 1) based on a partition
with maximal interval length h. The standard Galerkin method for (6.9) is then to
find up(t) € Sy, for t > 0 such that

(uh,t7X) + (uh,:mX) = (fa X)a VX € Sh7 t> 07 with Uh(O) = Up.

The equation may again be written in the form Boa' + Aa = f where as usual B is
the mass matrix but where the matrix A now has elements aj, = (7, ®x) and is
skew-symmetric.

We first establish the simple error estimate, cf. Swartz and Wendroff (1969),

(6.10) lun(t) — u@®)|| < |lvn —v|| + C(w)h™t, for t > 0.
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For this, we use an interpolation operator )y into Sj which commutes with time
differentiation and is such that ||Qpv — v|| + A||(Qrv — v)z|| < Ch"||v||,. It remains
to bound 0 = up — Qru, which satisfies (6, x) + (02, x) = —(pt + pz, x) for x € Sh.
Setting x = 6 and observing that (6;,60) = 0 by periodicity, we conclude

1d
2dt
which shows [|0(t)|| < [|6(0)]| + C(u)h"~ < ||vp — v|| + C(u)h™"1, and yields (6.10).

We observe that the estimate (6.10) is of non-optimal order O(h™~1), because
the first derivative of the error in QQpu occurs on the right side of (6.11). For
special cases more accurate results are known. For example, for the homogeneous
equation, with Sy consisting of smooth splines (k = r — 2) on a uniform partition,
the last term in (6.10) may be replaced by the optimal order term C(u)h". In this
case superconvergence takes place at the nodes in the sense that ||up (t) — Ipu(t)|| <
C(u)h* if v, = Ipv, where I v denotes the interpolant of v in Sy,. This follows from
Fourier arguments, see Thomée (1973), after observing that the Galerkin method
may be interpreted as a finite difference method for the coefficients with respect
to a basis for Sp. This was generalized to variable coefficients in Thomée and
Wendroff (1974). It was shown by Dupont (1973b), however, that the improvement
to optimal order is not always possible. In fact, if Sy is defined by a uniform
partition with » = 4, k = 1 (Hermite cubics), and if v is a non-constant analytic
l-periodic function and vy, € Sy, is arbitrary, then sup,¢ g g l[un(t) — u(t)|| > ch?,
¢ > 0, for any t* > 0.

Leaving the standard Galerkin method, it was shown in Wahlbin (1974) that with
Sy, defined on a uniform partition and 0 < k& < r — 2, optimal order convergence
holds for the Petrov-Galerkin method

d .
(6.11) 1611 = 611101l < (lleell + lle= 161l < Cu)(B” + R=H)]16]],

(Ut + Uh,zs X +hXe) = (fi X +hXz), VX € Sk, t >0, with uy(0) = vp.

In Dendy (1974) and Baker (1975) nonstandard variational schemes with optimal
order convergence without requiring uniform meshes were exhibited for the initial
boundary value problem

ug+u,=f forxel=(0,1), u(0,¢t)=0, fort>0, with u(-,0)=nw.

We now quote some space-time methods for this initial boundary value problem
for (z,t) € Q =1 x J(J = (0,T)), and introduce the characteristic directional
derivative Du = u; + u,. Let T, = {7} be a quasi-uniform triangulation of Q with
max diam(7) = h and let S, = {x € C(Q); x| €IL,_1 : x =0 on 0Q~}, where
00~ is the inflow boundary ({0} x J) U (I x {0}). With ((v,w)) = fOT fol vw dz dt,
the standard Galerkin method in this context is then to find u; € Sy, such that

Standard arguments show as above the non-optimal order error estimate
(6.13) lun — ull + llun — wllL,00+) < OB ullr,

where 9QT = 9Q \ Q™ is the outflow boundary. This method does not work well
in the case of discontinuous solutions. To stabilize the scheme one could consider
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an artificial dissipation in the form of an additional term h((Vuy, Vx)) on the left
in (6.12), but such a method would be at most first order accurate.

The so called streamline diffusion method was introduced by Hughes and Brooks
(1979) and analyzed in Johnson, Névert, and Pitkéranta (1986). It consists in sub-
stituting x + hDx for the test function x in (6.12), and (6.13) then holds with
R~ replaced by h"~/2. In the discontinuous Galerkin method studied by Le-
saint and Raviart (1974) and Johnson and Pitkédranta (1986), cf. the corresponding
method for parabolic equations introduced above, one determines up € S, = {x €
Lo(Q); x|» € M,_1;x = 0 on 9Q~}, thus without requiring uy, € C(Q), from

(D)= [ [undon (e + 02} ds = (1) Vx €T, 7€ T,
—
where ((-,-)), denotes restriction to 7. This method also satisfies (6.12), with h"~1/2
instead of A"~!, and here the error in Duy, is of optimal order O(h™1).

Winther (1981) investigated a Petrov-Galerkin method defining uy, in continuous,
piecewise II,_; spaces Sj based on rectangles 7 = I; x J;, where I; and J; are
partitions of I and J, by the equation ((Dup, x))r = ((f,x))- for all x € II,,_2 and
all 7, and proved optimal order O(h") convergence. This method coincides with the
cell vertex finite volume method, and is associated with the Wendroff box scheme,
see Morton [26].

These types of approaches have been developed also for advection dominated dif-
fusion problems, see, e.g., Johnson, Névert, and Pitkdranta (1984), Hughes, Franca
and Mallet (1987), and to nonlinear conservation laws, Johnson and Szepessy
(1987), Szepessy (1989). For such time dependent problems Pirroneau (1982),
Douglas and Russel (1982), and others have also analyzed the so called charac-
teristic Galerkin method in which one adopts a Lagrangian point of view in the
time-stepping, following an approximate characteristic defined by the advection
term, in combination with a finite element approximation in the diffusive term.

7. Some other classes of approximation methods.

Methods other than finite difference and finite element methods, but often closely
related to these, have also been developed, and in this section we sketch briefly
four such classes of methods, namely collocation methods, spectral methods, finite
volume methods, and boundary element methods.

In a collocation method one seeks an approximate solution of a differential equa-
tion in a finite dimensional space of sufficiently regular functions by requiring that
the equation is satisfied exactly at a finite number of points. Such a procedure for
parabolic equations in one space variable was analyzed by Douglas (1972), Douglas
and Dupont (1974b); we describe it for the model problem

Ut = Uy in [ =(0,1), u(0,t) =u(l,t)=0 fort>0, withu(-,0)=wvinl.

Setting h = 1/M, z; = jh, j =0,...,M, and I; = (xj_1,2;), we introduce the
piecewise polynomial space S, = {x € Cl(I_);v‘Ij € Il,_1, v(0) = v(1) = 0}, with
r > 4. Letting &, i =1,...,r —2, be the Gaussian points in (0, 1), the zeros of the
Lagrange polynomial P,_,, we define the collocation points &;; = z;_1 + h¢; in I,
and pose the spatially semidiscrete problem to find u; € Sp such that

uh,t(ﬁji,t):uh,m(ﬁji,t), fOI‘jZl,...,M, ’iZl,...,T—2, t>0,
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with up(-,0) = v, an approximation of v. This method may be considered as a
Galerkin method using a discrete inner product based on a Gauss quadrature rule.
For v;, appropriately chosen one may then show the global error estimate

t
r 1/2
lun(t) = w@)llo., < OB (max ju(s)llr+z + ( / luelZ2ds) ")

Further, for » > 4, and with a more refined choice of initial approximation vy,
superconvergence takes place at the nodes,

fun(es,t) = u(zy, )] < Crh*sup 3 [ul@(s)l,, fort<T.
s<t
=" p+2¢<2r—1

We note the more stringent regularity requirements than for the Galerkin methods
discussed in Section 6. These results carry over to fully discrete methods using
both finite difference approximations and collocation in time.

For a two-point boundary value problem, results of a similar natur were derived
by de Boor and Swartz (1973).

Spectral methods are in many ways similar to Galerkin/collocation methods. The
main difference is in the choice of finite dimensional approximating spaces. We begin
by considering an evolution equation in a Hilbert space framework.

Let thus H be a Hilbert space with inner product (-, -) and norm ||-||, and assume
L is a nonnegative operator defined in D(L) C H, so that (Lu,u) > 0. Consider
the initial value problem

(7.1) ur+Lu=f fort>0, withu(0)=wv.

Let now {p;}32, C H be a sequence of linearly independent functions in D(L)
which span H and set Sy = span {(pj};-vzl. We define a “spatially” semidiscrete
approximation uy = un(t) € Sy of (7.1) by

(7.2)  (unpx) + (Lun, x) = (f,x) Yx €Sy, t 20, with uy(0) = vn.
Introducing the orthogonal projection Py : H — Sy we may write (7.2) as
uN,t—{-LNuN:fN =Py f, fort>0, where Ly =PyLPy.

Clearly (Lnx,x) = (LPnXx, Pnx) > 0. With un(t) = Zjvzl a;(t)ej, this equation
may be written Ba/ + Aa = f for ¢ > 0, where the elements of the matrices A
and B are (Ly;, ¢;) and (¢;, ¢;), respectively. Clearly B is a Gram matrix and so
positive definite.

As a simple example, let L = —(d/dz)? on I = (0,1) and H = Ly(I), D(L) =
H? N H{, and let the ¢;(z) = ¢jsinmjz be the normalized eigenfunctions of L.
Then B = I, A is positive definite and Py is simply the truncation of the Fourier
series, Pyv = Z;.V:l(v, )i, with Ly = Z;.V:l(wjf(v, @;j)p; = PyLu.

We note that the error ey = uy — u satisfies

6N7t+LN6N:fN—f—|—(LN—L)u for t > 0, eN(O):vN—v,
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and hence, since En(t) = e~V is bounded,

(7.3) lenl < [low — o]l +/0 ([(Px = DFll + [[(Ly = L)ul)) ds

It follows that the error is small with vy — v, (Py — I)f, and (Ly — L)u.

In our above example we see that if vy = Pyv, and if the Fourier series for v, f,
and Lu converge, then the error is small. In particular, the convergence is of order
O(N~") for any r provided the solution is sufficiently regular.

Another way to define a semidiscrete numerical method employing the space Sy
of our example is to make Sy a Hilbert space with the inner product (v,w)y =
hZJ —0 ’U(JJJ) (xz;) where z; = j/(N — 1). This gives rise to a projection Py
defined by Pyu(z;) = u(z;),j =0,...,N — 1, and the semidiscrete equation (7.2)
now becomes the collocation equation

unt(zj,t) + Lun(zj,t) = f(zj,t) for j=0,...,N—1, t>0.

This is also referred to as a pseudospectral method and the error estimate (7.3) will
be valid in the discrete norm corresponding to (-,)n.

Spectral and pseudospectral methods using the above sinusoidal basis functions
are particularly useful for periodic problems. For initial-boundary value problems
for hyperbolic equations basis functions related to Chebyshev and Lagrange polyno-
mials are sometimes useful. Such methods are successfully applied in fluid dynamics
calculations. Spectral methods have been studied since the 70s, see Gottlieb and
Orszag [17], Canuto, Hussaini, Quarteroni, and Zang [10], Boyd [6], and references
therein.

We now turn to the finite volume method which we exemplify for the model
problem

(7.4) —Au=f inQ, withu=0 on 99,

where € is a convex polygonal domain in R?. The basis for this approach is the
observation that for any V' C €2 we have by Green’s formula that

(7.5) Ou s = / fd.

% 8')7;

Let now 7p, = {Tj};yz”l be a triangulation of Q and consider (7.5) with V = 75,7 =
1,..., Np. Let Q; be the center of the circumscribed circle of 7;. If 7; has an edge
7;i in common with 7;, then Q; —Q; is orthogonal to v;;, and du/0n in (7.5) may be
approximated by the difference quotient (u(Q;) —u(Q;))/|Qi — @;|. This produces
a finite difference scheme on the nonuniform mesh {Q;}; for the boundary triangles
one may use the boundary values in (7.4). Writing the discrete problem as AU = F
the matrix A is symmetric positive definite, and the solution satisifies a discrete
maximum-principle. When the 7}, is quasi-uniform (and such that the @); are on
O) one has [|U —ull1,, < Ch*~|u||s for s = 2 in a certain discrete H'-norm, and,
under an additional symmetry assumption on 7, also for s = 3. This method may
be described as cell centered and goes back to Tikhonov and Samarskii (1961) in
the case of rectangular meshes; for further developments, see Samarskii, Lazarov,
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and Makarov [30]. For such meshes it was used in Varga [39] to construct finite
difference schemes.

An associated method is the following vertex centered method, also referred to
as the finite volume element method: Let S, C Hj be the piecewise linear finite
element space defined by 7. The straight lines connecting a vertex of 7 € T, with
the midpoint of the opposite edge intersect at the barycenter of 7 and divide 7 into
six triangles. Let Bj; , be the union of the two of these which have P; as a vertex.
For each interior vertex P; we let B; be the union of the corresponding B; -, and
let Sy, denote the associated piecewise constant functions. Motivated by (7.5) we
then pose the Petrov-Galerkin method to find uj; € S such that

(7.6) M) =305 [ Gitds= () Vo €

B;

this may also be thought of as a finite difference scheme on the irregular mesh {P;}.
The B; are referred to as control volumes; they were called mesh regions in Mac
Neal (1953). Associating with x € S, the function ¥ € S, which agrees with x at
the vertices of Ty, one finds that A(v, %) = A(%, x) so that (7.6) may be written
A(up, x) = (f,x) for x € Sp. icular, (7.6) has a unique solution, and using the
Babuska-Brezzi inf-sup condition it was shown in Bank and Rose (1987) that the
standard error estimate ||up — u||; < Chl|ul|2 holds for this method.

Finite volume methods are useful for operators in divergence form and have also
been applied to time dependent conservation laws, see Heinrich [20], Morton [26].
For the model heat equation the vertex centered method is similar to the lumped
mass finite element method.

In a boundary integral method a boundary value problem for a homogeneous
partial differential equation in a domain €2 is reformulated as an integral equation
over the boundary 0€). This equation may then be used as a basis for numerical
approximation. We shall illustrate this approach for the model problem

(7.7) Au=0 inQCR¢ withu=g ondQ,

09 smooth. To pose the boundary integral equation, let T'(z) = —(27) ™! log|z| for
d =2 and I'(z) = c4|z|~9*? for d > 2 be the fundamental solution of the Laplacian
in R?. For any u with Au = 0 on 9Q we have by Green’s formula

ou or
. = | To-y)Ldsy— | ——(z- Q.
(7.8) u(x) /BQ (z —y) an, ds, o2 Oy (x —y)u(y)dsy, =€

With z on 02 the integrals on the right define the single and double layer potentials
VOou/On and Wu (note that K(z,y) = (OI'/0n,)(z —y) = O(jx — y|~(¢=2) for
z,y € Q). For x € Q approaching dQ the two integrals tend to VOou/dn and
%u-l—Wu, respectively, so that (7.8) yields %u =Vou/On+Wu. With u = g on 09
this is a Fredholm integral equation of the first kind to determine du/dn on 0%,
which inserted into (7.8) together with u = g on 92 gives the solution of (7.7).
Instead of this direct method one may use the indirect method of assuming that
the solution of (7.8) may be represented as a potential of a function on 9%, so that

u(z) = /39 I'(z —y)v(y)dsy, or u(x) :/a or —(z —y)w(y)dsy, =z €

Q (9ny
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With V and W as above, if such functions v and w exist, they satisfy the first and
second kind Fredholm integral equations

(7.9) Vv=g and 1w+ Wuw=yg.

Writing H® = H®(0R2), V and W are pseudodifferential operators of order —1,
bounded operators H® — H*®*1, in particular compact on H?; for d = 2 the kernel
of W is actually smooth. The first kind equation is uniquely solvable provided a
certain measure, the transfinite diameter dgq of 0€2, is such that dgn # 1, and the
second kind equation in (7.8) always has a unique solution. Similar reformulations
may be used also for Neumann boundary conditions, for a large number of other
problems involving elliptic type equations, and for exterior problems; in fact, this
approach to the numerical solution is particularly useful in the latter cases.

The use of boundary integral equations, particularly of the second kind, to study
boundary value problems for elliptic equations has a long history, and includes
work of Neumann and Fredholm. We shall not dwell on this here but refer to, e.g.,
Atkinson [1].

In the Boundary Element Method (BEM) one determines the approximate sol-
ution in a piecewise polynomial finite element type space of a boundary integral
formulation such as the above using the Galerkin or the collocation method.

The numerical solution of second kind equations by projection methods, which
include both Galerkin and collocation methods, were studied in an abstract Banach
space setting in the important paper by Kantorovich (1948), and their convergence
was established under the appropriate assumptions on the projection operator in-
volved. Consider, e.g., the second kind equation in (7.9) (with d = 2) in C(0Q)
with the maximum-norm |- |, and let Sp, C C(0Q) be finite-dimensional. With
Py, : C(092) — Sp a projection operator, the corresponding discrete problem is
%wh + PoWwy, = Prg, and if |P,W — W], — 0 in operator norm one may show
that |wp, — W] < C|Ppw — w|s, so that the discrete solution converges as fast as
the projection as h — 0.

The collocation method may also be combined with quadrature, as suggested in
Nystrom (1930): as an example we may use, e.g., the composite trapezoidal rule on
a uniform partition, and then apply collocation at the nodal points so that, with
0Q = {z(s); 0 < s <1} and K(s,t) the kernel of W, the discrete solution is

Ny,
wp(z(s)) = 2g9(x(s)) — QhZK(s, sj)w;, for 0<s<l,
i=1
where the w; are determined by setting wp(z(s;)) = w; for ¢ = 1,...,Np. It is

not difficult to see that since the trapezoidal rule is infinitely accurate for smooth
periodic functions we have |w, — w|. = O(h") for any r > 0.

For the second kind equation in (7.9), using Galerkin’s method and a finite
dimensional subspace S, of Ly(0%2), the discrete approximation wy € Sy to w is
determined from

5(wn, X) + (Wwn, x) = (g,x), Vx € Sp, where (-,-) = (-, ") 1,(80)-

Writing | - |5 for the norm in H?, one has |w, — w|op < C,(u)h" if Sy is accurate of
order O(h"), and by a duality argument one may show the superconvergent order
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negative norm estimate |wy, —w|_, < C,.(u)h?", see Sloan and Thomée (1985); using
an iteration argument by Sloan (1976) this may be used, in principle, to define an
approximate solution wy, with @y — w|o = O(h?").

After early work of Wendland (1968) and Nedelec and Planchard (1973) the study
of the Galerkin finite element approach using first kind equations was pursued from
the mid 70s by Hsiao, Le Roux, Nedelec, Stephan, Wendland, and others, see the
surveys in Atkinson [1], Sloan [31], and Wendland [42]. Within this framework we
consider the numerical solution of the first kind equation in (7.9) with d = 2 in the
finite dimensional space S}, of periodic smoothest splines of order r, i.e., S, C C" 2
consists of piecewise polynomials in Il,_;. Our discrete problem is then to find
vy, € Sy, such that

<V’Uh,X> = <gaX>a VX € Sh-

It was shown in the work quoted above that the bilinear form (Vv,w) associated
with V : H=%/? — H'/? is symmetric, bounded, and coercive in H~/2 i.e.
(Vv,w) = (v,Vw) < Clv|_1/2lw|_1/2 and (Vv,v) > c|v|2_1/2, with ¢ > 0.

An application of Céa’s lemma and approximation properties of S; then show

hr+1/2|’U|r,

[vp —v| 12 < Cxlélgh X —v|-12<C
and an Aubin-Nitsche type duality argument first used by Hsiao and Wendland
(1981) implies |vp, —v|_p—1 < Ch?" Tt v],.. For z an interior point of 2 we therefore
find for u, = Vo, that |up(z) — u(z)| < Cylvp —v|_r_1 < Ch?" 1, since I'(z — y)
is smooth when y # z.

Expressed in terms of a basis {®;} of S, this problem may be written in matrix
form as Aa = g where A is symmetric positive definite. However, although the
dimension of A has been reduced by the reduction of the original two-dimensional
problem to a one-dimensional one, in contrast to the finite element method for a
differential equation problem, the matrix A is now not sparse. We also note that
the elements (V®;, ®;) require two integrations, one in forming V®; and one in
forming the inner product.

In order to reduce this work the collocation method has again been considered
by Arnold and Wendland (1983); here vy, is determined from Vup(2(s;)) = g(z(s;))
at Np, quadrature points s; in [0,!], where Nj, = dim Sj;. Applied to our above
model problem this method, using smoothest splines of even order r, has a lower
order of maximal convergence rate, O(h"t1) rather than O(h?"+1); if r is odd and
the mesh uniform Saranen (1988) has shown O(h"*1) in || - ||_2. A further step
in the development is the qualocation method proposed by Sloan (1988), which is
a Petrov-Galerkin method, thus with different trial and test spaces. For S} the
smoothest splines of order r on a uniform mesh (so that Fourier analysis may be
applied) and with the quadrature rule suitably chosen, negative norm estimates of
order O(h™3) for even r and O(h"**) for odd r may be shown.

In the vast literature on the numerical boundary integral methods much attention
has been paid to the complications arising when our above regularity assumptions
fail to be satisfied, such as for domains with corners in which case V and W are
not compact.
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8. Numerical linear algebra for elliptic problems.

Both finite difference and finite element methods for elliptic problems such as
(2.1) lead to linear algebraic systems

(8.1) AU = F,

where A is a nonsingular matrix. When €2 is a d-dimensional domain, using ei-
ther finite differences or finite elements based on quasi-uniform triangulations, the
dimension N of the corresponding finite dimensional problem is of order O(h~%),
where h is the mesh-width, and for d > 1 direct solution by Gauss elimination is
normally not feasible as this method requires O(N3) = O(h~3%) algebraic oper-
ations. Except in special cases one therefore turns to iterative methods. In this
section we summarize the historical development of such methods.
As a basic iterative method we consider the Picard method

(8.2) Untl = U™ — 7(AU™ — F) forn >0, with U° given,
where 7 is a positive parameter. With U the exact solution of (8.1) we have
U —U=R{U™'-U)=---=R"(U°-U), where R=1—-"TA,

and hence the rate of convergence of the method depends on ||R™| where | - | is
the matrix norm subordinate to the Euclidean norm in RY. When A is symmetric
positive definite (SPD) we have ||[R™|| = p™ where p = p(R) = max; |1 — 7A|
denotes the spectral radius of R, and (8.2) converges if p < 1. The optimal choice is
T =2/(A1 + An), which gives p= (k — 1)/(k + 1), where K = K(A) = An /A1 is the
condition number or A; note, however, that this choice of 7 requires knowledge of
A1 and Any which is not normally at hand. In applications to second order elliptic
problems one often has k = O(h™2) so that p < 1 — ch? with ¢ > 0. Hence with
the optimal choice of 7 the number of iterations required to reduce the error to a
small € > 0 is of order O(h~2|loge|). Since each iteration uses O(h~%) operations
in the application of I — 7 A this shows that the total number of operations needed
to reduce the error to a given tolerance is of order O(h~%~2), which is smaller than
for the direct solution when d > 2.

The early more refined methods were designed for finite difference methods of
positive type for second order elliptic equations, particularly the five-point operator
(2.2). The corresponding matrix may then be written A = D — E — F where D
is diagonal and E and F are (elementwise) nonnegative and strictly lower and
upper triangular. The analysis was often based on the Perron-Frobenius theory of
positive matrices. A commonly used property is diagonal dominance: A = (a;;)
is diagonally dominant if it laij| < laii|, ¢ = 1..., N, irreducibly diagonally
dominant if it is also irreducible, so that (8.1) cannot be written as two lower order
systems, and strictly diagonally dominant if there is strict inequality for at least one
i. Examples are the Jacobi (after Jacobi (1845)) and Gauss-Seidel (Gauss (1823),
Seidel (1874)) or Liebmann (1918) methods which are defined by

(8.3) U™t = U™ — B(AU™ — F) = RU™ + BF, with R=1— BA,
in which B =By = D' or B= Bgg = (D — E)~! with Ry = D~'(E + F) and

Rgs = (D — E)~'F, respectively. In the application to the model problem (2.1)
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in the unit square, using the five-point operator, the equations may be normalized
so that D = 41 and the application of R simply means that the new value at any
interior mesh-point z; is obtained by replacing it by the average of the old values
at the four neighboring points z;4.,. The Gauss-Seidel method also takes averages,
but with the mesh-points taken in a given order, and successively uses the values
already obtained in forming the averages. The methods were referred to in Geiringer
(1949) as the methods of simultaneous and successive displacements, respectively.
For the model problem one may easily determine the eigenvalues and eigenvectors
of A and show that with A = 1/M one has p(R;) = costh = 1 — 172h? + O(h*)
and p(Rgs) = p(Rj)? = 1—n2h%+ O(h*) so that the number of iterates needed to
reduce the error to ¢ is of the orders 2h272|loge| and h™272|loge|. The Gauss-
Seidel method thus requires about half as many iterations as the Jacobi method.

If A is irreducibly diagonally dominant then p(Ry) < 1 and p(Rgs) < 1 so that
both methods converge, see Geiringer, loc.cit.; for A strictly diagonally dominant
this was shown in Collatz (1942). Further, Stein and Rosenberg (1948) showed that
if D is positive and E and F' nonnegative and p(By) < 1 then p(Bgs) < p(By),
i.e., the Gauss-Seidel method converges faster than the Jacobi method.

Forming the averages in the Jacobi and Gauss-Seidel methods may be thought
as relaxation; in the early work by Gauss and Seidel this was not done in a cyclic
order as described above, and which is convenient on computers, but according to
the size of the residual or other criteria, see Southwell (1946, 1956) and Fox (1948).
It turns out that one may obtain better results than those described above by
overrelaxation, i.e., choosing B, = (D—wE)™!and R, = (D—wE)~Y((1-w)E+F)
with w > 1. These methods were first studied by Frankel (1950) in the case of
the model problem, and Young (1950, 1954) in more general cases of matrices
satisfying his property A, which holds for a large class of difference approximations
of elliptic problems in general domains. Frankel proved that for the model problem
the optimal choice of the parameter is wop: = 2/(1 + /1 — p?) where p = p(By) =
cosh, i.e., wopt = 2/(1 + sinwh) = 2 — 2wh + O(h?), and that correspondingly
p(Ru,,,) = Wopt — 1 =1 —2wh + O(h?). The number of iterations required is thus
then of order O(h™'), which is significally smaller than for the above methods. It
was shown by Kahan (1958), also for nonsymmetric A, that p(R,) > |w—1] so that
convergence can only occur for 0 < w < 2. On the other hand, Ostrowski (1954)
showed that if A is SPD, then p(R,) < 1 if and only if 0 < w < 2.

We consider again an iterative method of the form (8.3) with p(R) < 1, and
introduce now the new sequence V" = Z;.L:O Bnij U7 where the Bn; are real. Setting
pn(N) = Y0, Bnj N, and assuming p, (1) = > i—oBnj = 1 for n > 0, we obtain
easily V" —U = p,(R)(U® = U). For V™ to converge fast to U one wants to choose
the By, in such a way that p(p,(R)) becomes small with n. By the Cayley-Hamilton
theorem p, (R) = 0 if p,, is the characteristic polynomial of R, and hence V™ = U if
n > N, but this is a prohibitively large number of iterations. For n < N we have by
the spectral mapping theorem that p(p,(R)) = maxyeq(r) [Pn(A)|- In particular, if
R is symmetric and p = p(R), a simple calculation shows that, taking the maximum
instead over [—p, p] D o(R), the optimal polynomial is p, () = T,,(A/p)/Tn(1/p)
where T, is the nth Chebyshev polynomial, and the corresponding value of p(p, (R))
is bounded by

Tn(l/p)—l — 2((1_{_—\/'0@)" + (H——\/l)ﬁ)—n)_l < 2(1+—pl_p2)n'
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For the model problem using the Gauss-Seidel basic iteration we have as above
p = 1—m2h% + O(h*) and we find that the average error reduction factor per
iteration step in our present method is bounded by 1 — v/27h 4+ O(h?), which is of
the same order of magnitude as for SOR. The use of the sequence V" instead of the
U™ was called linear acceleration by Forsythe (1953) and is sometimes attributed
to Richardson (1910); in Varga [39] it is referred to as a semi-iterative method.

We now describe the Peaceman-Rachford alternating direction implicit iterative
method for the model problem (2.1) on the unit square, using the five-point discrete
elliptic equation with h = 1/M. In this case we may write A = H + V where H
and V correspond to the horizontal and vertical difference operators —h20;0; and
—h2050,. Note that H and V are positive definite and commute. Introducing an
acceleration parameter 7 and an intermediate value U™t'/2 we may consider the
scheme defining U™t from U™ by

(r+ H)U"? = (r=V)U"+F, (r+V)U"™ = (r—HU"/?+F,
or after elimination, with G, appropriate and using that H and V commute,
Ut = R, U"+G,, where R, = (1] — H)(rI+H) Y (71 - V)(rI +V)™!

The error satisfies U™ — U = R*(U® — U), and with p; the (common) eigenvalues
of H and V, ||R.|| < max;|(T — w;)/(7 + pi)|* < 1, and it is easy to see that
the maximum occurs for i = 1 or M. With py = 4sin®(37h), py = 4cos®(37h)

1/2

the optimal 7 is Topr = (papar)"/? with the maximum for 4 = 1, so that, with

k=k(H)=kr(V)=pun/p,

(prpar)*/? — M1>1/2 kY21

=~ =1—mh+ O(h?.
(p1pne) Y% 4 k12 +1 " (%)

1Ry < (

This again shows the same order of convergence rate as for SOR.

A more efficient procedure is obtained by using varying acceleration parameters
75,5 = 1,2,..., corresponding to the n step error reduction matrix R, = H?=1 R;;.
It can be shown that the 7; can be chosen cyclically with period m in such a way
that m ~ clogx ~ clog(1/h) and

P o||l/m _ 73 ,“z _ —1
| —lgngﬁ(HLJer) < 1= c(log(1/m) ™, e>0.

The analysis indicated depends strongly on the fact that H and V commute, which
only happens for rectangles and constant coefficients, but the method may be de-
fined and shown convergent for more general cases, see Birkhoff and Varga (1959).
We remark that these iterative schemes may often be associated with time-stepping
methods for parabolic problems and that our discussion in Section 4 of fractional
step and splitting methods are relevant also in the present context. For a com-
prehensive account of the above methods for solving systems associated with finite
difference methods, including historical remarks, see Varga [39].

We now turn to the development of iterative methods for systems mainly asso-
ciated with the emergence of the finite element method. We begin by describing
47



the conjugate gradient method by Hestenes and Stiefel (1952), and assume that A
is SPD. Considering the iterative method

Untt = (I — 7, A\U" + 1,F forn >0, with U°=0,

we find at once that, for any choice of the parameters 7;, U™ belongs to the Krylov
space K, (A; F) = span{F, AF,..., A" 'F}. The conjugate gradient method de-
fines these parameters so that U™ is the best approximation of U in K, (A; F) with
respect to the norm defined by |U| = (AU, U)/2, i.e., as the orthogonal projection
of U onto K, (A;F) with respect to the inner product (AV,W). By our above
discussion it follows that, with x = k(A) the condition number of A,

n -1 H1/2 — 1\~

(8.4) Um = Ul < @)U < 2( ) U

The computation of U™ can be done by a two term recurrence relation, for

instance in the following form using the residuals »™ = F' — AU™ and the auxiliary
vectors ¢" € K,,11(A; F), orthogonal to K, (A; F),

+1
gt — g4 U4 ¢, ¢"th=rrtt - (A, 07 ’qn)q", U®=0, ¢"=F.

(Ag™, q™) (Ag™, q™)

In the preconditioned conjugate gradient (PCG) method the conjugate gradient
method is applied to equation (8.1) after multiplication by some easy to determine
SPD approximation B of A~! and using the inner product (B~'V,W); we note
that BA is SPD with respect to this inner product. The error estimate (8.4) is
now valid with kK = k(BA); B would be chosen so that this condition number
is smaller than x(A). For the recursion formulas the only difference is that now
rm = B(F—AU™) and ¢° = BF. An early application of PCG to partial differential
equations is Wachspress (1963) and it is systematically presented in Marchuk (1975)
and Axelsson and Barker (1982), where reference to other work can be found.

One way of defining a preconditioner is by means of the multigrid method. This
method is based on the observation that large components of the errors are as-
sociated with low frequencies in a spectral representation. The basic idea is then
to work in a systematic way with a sequence of triangulations and reduce the low
frequency errors on coarse triangulations, which corresponds to small size prob-
lems, and higher frequency residual errors on finer triangulations by a smoothing
operator, such as a step of the Jacobi method, which is relatively inexpensive.

One common situation is as follows: Assuming €2 is a plane polygonal domain we
first perform a coarse triangulation of €2. Each of the triangles is then divided into
four similar triangles, and this process is repeated, which after a finite number M of
steps leads to a fine triangulation with each of the original triangles devided into 4™
small triangles. Going from one level of fineness to the next the procedure may be
described in three steps: 1. Presmoothing on the finer triangulation, 2. Correction
on the coarser triangulation by solving a residual equation, 3. Postsmooting on the
finer triangulation. This procedure is then used recursively between the levels of
the refinement leading to, e.g. the V-cycle or W-cycle algorithms. It turns out that
under some assumptions the error reduction matrix R corresponding to one sweep
of the algorithm satisfies ||R|| < p < 1, with p independent of M, i.e., of h, and that
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the number of operations is of order O(N) where N = O(h~2) is the dimension of
the matrix associated with the finest triangulation.

The multigrid method was first introduced for finite difference methods in the 60s
by Fedorenko (1964) and Bahvalov (1966) and further developed and advocated by
Brandt in the 70s, see, e.g., Brandt (1977). For finite elements it has been intensely
pursued by, e.g., Braess and Hackbusch, Bramble and Pasciak, Mandel, McCormick
and Bank; for overviews with further references, see Hackbusch [18] and Bramble
[7]-

A class of iterative methods that have attracted a lot of attention recently is
the so called domain decomposition methods. These assume that the domain € in
which we want to solve our elliptic problem may be decomposed into subdomains
Qj, 7 =1,...,M, which could overlap. The idea is to reduce the boundary value
problem on {2 into problems on each of the £2;, which are then coupled by their
values on the intersections. The problems on the €2; could be solved independently
on parallel processors. This is particularly efficient when the individual problems
may be solved very fast, e.g., by fast transform methods. Such a case is provided
by the model problem (2.1) on the unit square which may be solved directly by
using the discrete Fourier transform, defined by F,, = > Fie=2mimjh Tn fact,
we then have (—ARU)y, = 272|m|2U,, and hence Uy, = (2x2|m|?)~1E,, so that
by the inverse discrete Fourier transform UJ = ¥ (27%|m|?) =1 F,,e2™ ™" Using
the Fast Fourier Transform both F,, and U7 may be calculated in O(N log N)
operations.

The domain decomposition methods go back to the Schwarz alternating proce-

dure (1869), in which Q = Q; U ,. Considering the Dirichlet problem (2.1) on
one defines a sequence {u*} starting with a given u° vanishing on 652, by

—AuFtt = fin @, with ®*t = w?* on Q1 N Q,, v =0 on 99 N 0L,

—Au? 2 = £ in Qy, with u?*+2 = w®**1 on 909, N Q4, w12 =0 on 9Q, N L,

and this procedure can be combined with numerical solution by, e.g., finite elements.
A major step in the analysis of this so called multiplicative form of the Schwarz
alternating procedure was taken by Lions (1988). A modification referred to as
the additive form was first studied by Matsokin and Nepomnyashchikh (1985) and
Dryja and Widlund (1987).

The following alternative approach may be pursued when 2; and 2, are disjoint
but with a common interface 9€2; N 0€Q9: If u; denotes the solution in Q;, 5 =1, 2,
transmission conditions u; = us, Oui/0n = Oua/dn have to be satisfied on the
interface. One method is then to reduce the problem to an integral type equation
on the interface and use this as a basis of an iterative method. For a survey of
domain decomposition techniques, see Smith, Bjgrstad, and Gropp [32].
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