SEPARABILITY AND HOPF ALGEBRAS

LARS KADISON AND A.A. STOLIN

1. INTRODUCTION

Over a field of characteristic zero, the separable algebras and the strongly separa-
ble algebras coincide with one another and the class of finite dimensional semisimple
algebras. In this case, separability is the cohomological point of view on semisim-
plicity [16]. Strong separability in this case is an additional constraint of symmetry
on the separability idempotent, also an interesting point of view [7]. However, it
is over a non-perfect field F' of characteristic p that the three classes of algebras
form a proper chain of inclusions. For example, there is a textbook example of a
finite field extension which is not separable but is of course a semisimple algebra
[35]. Moreover, the matrix algebra M, (F') where p divides n (and F need only have
characteristic p), is separable but not strongly separable.

In this paper we survey and study separability and strong separability in its
relations to Frobenius and Hopf algebras over a commutative ring k. We study the
problem of when Frobenius and Hopf algebras are separable or strongly separable.
It turns out that the dual bases tensor, which appears in the study of Frobenius and
Hopf algebras (cf. [3, 4, 13, 19, 20]), can be used in the construction of a symmetric
separability idempotent (Theorem 4.1). As an application of this result we prove
that an involutive, separable Hopf k-algebra is strongly separable (Theorem 5.5).
This is generalization of the following well-known result of Kreimer and Larson [22]:
if a Hopf algebra H over an algebraically closed field F' is involutive and semisimple,
then the dimensions of simple H-modules are coprime to the characteristic of the
field. Then we generalize a recent result of Etingof and Gelaki [12], which states
that if Hopf F-algebra H is semisimple and cosemisimple, then H is involutive. We
show that with a small condition on 2 € k, if a Hopf k-algebra is separable and
coseparable, then H is involutive (Theorem 6.1).

Our paper is organized as follows. In Section 2 we review some of the basics of
separable k-algebras and Frobenius k-algebras which are needed. In Section 3, we
bring together nine conditions for a strongly separable k-algebras in [21, 14, 8, 7, 1]
into one theorem (Theorem 3.4). In Section 4 we apply this theorem to Frobenius
k-algebras (Theorem 4.1) and study augmented Frobenius algebras. We prove in
Theorem 4.1 that a Frobenius algebra A is strongly separable if and only if the
transpose of its dual bases tensor maps under the multiplication mapping to an
invertible element in A. In Section 5 we study separability of Hopf k-algebras
and apply Theorem 3.4 to involutive separable Hopf k-algebras (Theorem 5.5).
In Section 6 we generalize the recent result of Etingof and Gelacki, and obtain
involutive results for strongly separable Hopf F-algebras under various constraints
on the order of the antipode and the size of p.
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2. PRELIMINARIES ON SEPARABLE AND FROBENIUS ALGEBRAS

Let k denote a commutative ground ring. We refer to k-algebras that are finitely
generated and projective over k as being finite projective algebras.

In this section, we set up some notation and recall useful facts for separable
algebras (cf. [9]) and for Frobenius algebras [10, 31, 3, 19]. We also define the trace
of an endomorphism of a finite projective k-module V, its Hattori-Stallings rank
(cf. [5]), as well as the standard trace of a finite projective algebra A.

Given an algebra A over k, we make use of several constructions. First, the dual
of Ais A* := Homy (A, k) and is also finite projective over k. A* has an A-bimodule
structure given by

(1) (afb)(c) := f(bca)

for every a,b,c € A and f € A*. An element f € A* is called a trace if af = fa
for every a € A, and a normalized trace if moreover f(14) = 1. A nonzero f € A*
is said to be nondegenerate if all a € A for which fa = 0 are zero, or all a € A for
which af = 0 are zero.

Second, the tensor-square A®y A of A has the A-bimodule structure given simply
by a(b ® c)d = ab ® cd for every a,b,c,d € A. An element ), z; ®y; € AR A
is called symmetric if ), x; ® y; = Y, y; ® T;. An element e € A ® A is called
a Casimir element if ae = ea. The A-A-bimodule epimorphism y: AQ A — A
given on simple tensors by a ® b — ab for every a,b € A is referred to as the
multiplication mapping. Equivalently, the tensor-square is canonically identified as
left A¢-modules by a ® b — a ® b with the algebra A¢ := A® A°P, where AP is the
opposite algebra of A and multiplication is given by (a ® b)(c ® d) = ac ® db. In
this way, p may be viewed as a left A°-module morphism.

Ais a separable k-algebra if u is a split A- A-epimorphism. A is a central separable
algebra, or Azumaya algebra, if it is a separable C-algebra where C is its center. If
A is k-separable and K is any intermediate ground ring for A (i.e., there are ring
arrows k & K — C forming a commuting triangle with the unit map k — C) then
A is separable K-algebra, since the natural mapping A ®; A - A @ A pulls back
the splitting map for u.

A separability element e € AR A is the image of 1 4 under any splitting mapping of
u; equivalently, e is a Casimir element such that p(e) = 1. The Casimir condition on
e € A°is given by ze = u(z)e for all z € A°. If e is symmetric, then ez = e(u/(2)®1)
where p/(a ® b) = ba. As a consequence, should a symmetric separability element
exist, it is unique, since given two of these, e and f, we have

2) e=e((f)@l) =ef =ple)f=f

We will see in Section 3 that having a symmetric separability element is equivalent
to A being strongly separable, a notion of Kanzaki from 1964 [21].

Separability is a transitive notion, in that if A is a separable k-algebra and k is a
separable K-algebra, then A is seen to be a separable K-algebra. For if ), z; ® y;
is a separability element for Kk — A and ) ;% ® wj is a separability element for
K — Ek, then it is easily verified that E@ ;Tizj Ok w;y; is a separability element
for the composite arrow K — A.

If V is a finite projective k-module, there is a notion of trace of an endomorphism
of V, f € Endg(V). Let {z;}, {g:} be a finite projective base for V. The trace of f
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is defined to be
n
3) Tr(f) =Y g:i(f(z:),
i=1

This definition does not depend on the choice of projective base and that T'r (fog) =
Tr (g o f), for under the canonical isomorphism

V @, V* = Endy (V)

given by the mapping v ® f — (w — vf(w)) (v,w € V, f € V*), the trace forms
a commutative triangle with the multiplication mapping V ® V* — k given by
v® f — f(v). The Hattori-Stallings (HS) rank of V' is the trace of the identity:

(4) re(V) := Tr (Idy).

Now any algebra A over k that is finite projective has a standard tracet: A — k
defined by

(5) t(a) :=Tr (\a),

where A\,(z) := az is in Endi(A). Of course, t(ab) = t(ba) since Tr is itself
a trace. Note that the standard trace is the so-called “trace of the left regular
representation.” Note that (1) = r;(A) and is not necessarily normalizable. If A
is a central separable algebra over k, we will see in Section 3 that (1) is invertible
in k iff A is strongly separable [14, 8].

An algebra A over k is a Frobenius algebra if there exists a k-linear mapping ¢ :
A — k, called a Frobenius homomorphism and elements z1,... ,Zn, Y1,... ,Yn € A,
called dual bases for A, such that for every a € A,

(6) Z dlazi)yi = a

or

(7) Z zip(yia) = a.

Either dual bases equation (as we will refer to them) implies the other.

It follows from an application of both dual bases equations that ), z; ® y; is
a Casimir element in A ® A. As a consequence, it is easy to see that a Frobenius
algebra A is separable iff there is d € A such that

(8) Z:L‘,dy, =1.

Since {z;}, {¢y;} is a projective base for the underlying k-module of a Frobenius
algebra A, it follows that the trace of a k-endomorphism f € Endy(A) is

9) Tr(f) = Z Py f (:))

and the HS rank of Ay is ), ¢(yix;). For example, let A = M, (k), ¢ the trace of a
matrix, with dual bases given by the matrix units e;;, e;;. Then the standard trace
Tr = n¢ and the HS rank of A over k is n%1;.

Another characterization of a Frobenius algebra A is that A is finite projective,
and either A4 = A% or 4A = 4A*. The free generator of A* as an A-module in
either case is a Frobenius homomorphism, and a finite projective base translates
via the isomorphism to dual bases.
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If £ is itself a Frobenius algebra over another commutative ring K, then A is a
Frobenius algebra also over K. For suppose ¢ : k — K is a Frobenius homomor-
phism with dual bases {z;}, {w;} in k. Then it is easy to verify the equations 6
and 7 for po¢: A - K and {z;2;}, {w;y;}. We say then that being Frobenius is
a transitive notion. (Transitivity for separability and Frobenius is best formulated
for noncommutative ring extensions [31, 15, 19]. )

The Nakayama automorphism n: A — A may be defined by either

(10) n(z) = Z d(x;2)y;,

for every z € A or the equation in A* given by

(11) z¢ = ¢n(x)

for every z € A [10, 19]. It follows from either of these equations and the dual bases
equations that for every a € A,

(12) ina@’yi = Zﬂvz ® n(a)y;-

If 4 is another Frobenius homomorphism for A, then by a theorem we call the
comparison theorem there is an invertible d € A such that ¢ = ¢d in A*. If
{#;}, {w;} are dual bases for ¢, it follows from Equation 7 that

(13) sz Qw; = Zmi @d y;.
J i

The next proposition shows that a finite projective, separable extension A/S of
commutative rings is a special type of symmetric S-algebra ([2, Prop. A.4] with the
different proof sketched in [8]). A symmetric algebra is a Frobenius algebra A such
that

(14) AAs = gAY,

equivalently, one of the Frobenius homomorphisms is a trace (and the Nakayama
automorphism is any case an inner automorphism). This proposition will be a
stepping-stone to proving a similar result for noncommutative separable algebras
in the next section.

Proposition 2.1. Suppose A is a commutative ring with subring S such that Ag
is a finite projective module. Then A is separable algebra over S if and only if
Homg(A,S) is freely generated as a right A-module by the standard trace t.

Proof. Let {y;}7, and {f;}7, be a projective basis for Ag, and note that t(a) =
Z?:l filays).

(«=) By hypothesis then there are elements z; € A such that z;t = f; in A*. Then
Yoitlazi)ys = >, fila)y; = a for all a € A and ¢ is a Frobenius homomorphism
with dual bases {z;}, {y;}. It follows that the dual bases tensor e := ), z; ® y; is
a Casimir element.

We claim that e is moreover a separability element since for all a € A we have
tla(l = >, ziyi)) = > ; filay;) — X, filyia) = 0. Then by the free generator
assumption on ¢, Y, z;y; = 1.
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(=) We may assume that a separability element has the special form )" | z; ®g
y; as each x € A satisfies x =), fi(x)y;. Then, for every a € A,

> tazy)y; = Z(Zfi(axjyi))yj

J J

ZZfz‘(awj)yiyj
i

Zaxjyj =a
J

Therefore, ta = 0 implies a = ), t(z;a)y; = 0. In addition,

fl@) = taz) fly;) =tx Dz f(y;))
J J
for every f € A* and x € A. Hence, t is free generator of A*. |

(15)

3. STRONG SEPARABILITY

In this section we bring together what is known about strongly separable al-
gebras over a commutative ground ring k [21, 14, 8, 29, 7, 1]. Among the nine
characterizations we shall consider, strongly separable algebras are characterized
by Demeyer and Hattori as the projective separable algebras with Hattori-Stallings
rank equal to an invertible element in its center [8, 14]. The theory of strongly
separable algebras introduced by Kanzaki and developed by Demeyer and Hattori
shows rather handily that a strongly separable algebra is a symmetric algebra [14].
This development led to the question if all projective separable algebras are sym-
metric algebras, which was settled in the affirmative by Endo and Watanabe using
an extended notion of reduced trace for central separable algebras [11].

We will need several facts about central separable algebras summarized by the
Proposition below. The proofs may be found in [2, 9, 30, 19].

Proposition 3.1. Suppose A is a central separable algebra with center C. Then:
1. For every A-bimodule M, we have an A-bimodule isomorphism
(16) a: MA@ A S M

given by a(m ® a) = ma, where M4 := {m € M|am = ma}.
A is a progenerator A°-module.
3. Ac¢ is finite projective, and A® is ring isomorphic to EndcA via the mapping
B given by (Va,b,x € A)
(17) B(a ® b)(x) = azb.

4. There is a C-linear projection w: A — C.

o

Lemma 3.2. Suppose A is a k-algebra with center C. Then A is k-separable if
and only if A is separable over C and C is a separable over k.

Proof. (<) This follows from transitivity of separability.

(=) A is C-separable since it is separable over any intermediate ring between
k and C. In order to show that C' is k-separable, it suffices to show that C is a
projective C¢ = C'® C-module. By Proposition 3.1, A is projective as a C-module,
therefore A° = A ®; A°P is projective as a C ®; C-module by an easy exercise. By
Proposition 3.1, C is a direct summand of A with C-linear projection 7 : A — C.
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Then 7# ®c w : A° — (C is also a C-linear projection; whence C' is a C¢-direct
summand of the projective C¢-module A¢. Hence, C is C¢-projective. O

Since a central separable C-algebra A is finite projective over its center C, its
standard trace t: A — C is defined and #(1) is the Hattori-Stallings rank of the
projective C-module A. The proof of the next proposition will set the pattern for
much of the proof of Theorem 3.4.

Proposition 3.3. Suppose A is a separable algebra over its center C. Moreover,
suppose its Hattori-Stallings rank ¢ = t(1) is invertible in C. Then there exist
elements x1,... ,Tp;Y1,--- ,Yn € A such that

1. Y,z ®c yi is a symmetric separability element,

2. Yty =z,
3. > mit(ysr) =z (Vx€A).

Proof. Put t; = ¢, a C-linear projection and normalized trace from A onto C.
By viewing ¢; € Homc (A, A) and surjectivity of the mapping  in Proposition 3.1,
we find elements z1,...,%n;y1,...,Yn € A such that t1(a) = ), z;ay;. Then
> %y = ti(1) = 1. Since Imt; = C, we have a — ), zw;ay; = ), Tiay:®
as mappings of A — A. Then injectivity of § in Proposition 3.1 implies that
> ; Ti ®c y; is a Casimir element, whence a separability element.

By the trace property of ¢; and again by Proposition 3.1, it follows that Va € A,

(18) Y ma®eTi=Yy  xi®c i

i i
By applying the transposition C-automorphism on A ®¢ A, we get (Va € A)
(19) Zayi ®C$_i=zyz' ®c Tia

i i

Whence ), y;zx; € C for all z € A. Recalling that [A, A] denotes the C-linear
space generated by the set {[z,y] := zy — yz| =,y € A}, we note that

A=CalA4, 4]
as C-modules, since for every x € A, = Y, zyx = Y, yixx; + y [T, yix] €
C + [A, A]; moreover, C N [A, A] = {0} since t1|c = Id¢ and ¢ ([z,y]) = 0 by the

trace property.
It follows that

1= i =Y yiwi+ Y [2i,y:] = 140,
i i i

which implies that )", y;z; = 1. Hence, >, y; ®c z; is also a separability element,
which additionally satisfies Equation 18.
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We now complete the proof that e := ), x; ® 7; is a symmetric separability

element.
Zﬂﬂi ®yi = sz(ZmJy]) Ui
? i
= > xz'yjj® Ty
]
= Z(z -Tz'yz')yj Ty
i
(20) = i Y 97
J

Now A*4 ®¢ A 2 A* via the multiplication map a in Proposition 3.1. But A*4
is the C-space of (non-normalized) traces. Since A = C @ [4, A], A*4 is free of
rank 1, being just the scalar multiples of ¢; or . We conclude that A = A* as
A-bimodules, so A is a symmetric algebra, with Frobenius homomorphisms ¢; or ¢
(since they differ by an invertible element).

Let {u;}, {v;} be dual bases for 1, so that

(21) z = Ztl(xui)vi

for every x € A, and ), u;v; € C. Then {tju;} and {v;} is a projective basis for
Ac. Tt follows that the HS rank of A as a C-module

(22) Cc = Z(tlui)(vi) = tl (Z uivi) = Z U;V;-
We note moreover that the dual bases tensor of a trace Frobenius homomorphism
is a symmetric element in A ® A, since for every a € A

Z au; Qu; = Z v; ® t1(ujau;)v;
J ,J

Z v; @ u;ia.
i

Hence é := ¢™! Y, u; ® v; is a symmetric separability element. By uniqueness of
such an element we have € = e. Since t = ct;, Condition 2 follows from Equation 21
by replacing é with e. Condition 3 follows from e being symmetric and ¢ a trace. [

(23)

The proposition is partially summarized by saying that a central separable al-
gebra A has a C-linear projection onto its center C' given by a — ) . z;ay;, is a
symmetric C-algebra with a dual bases tensor and symmetric separability element
> ;% ® y;. The data (t,;,y;) satisfying Conditions 1 to 3 in Proposition 3.3 we
temporarily call a strongly separable base.

We define a separable base for a k-algebra A, finite projective over k, as a k-
linear trace f : A — k together with elements z1,..., Ty, y1,.--,Yn € A such that
S, flaz;)y; = afor all a € A, and Y"1 | z;y; = 1. In fact, f is necessarily the
trace map ¢ introduced earlier by an easy computation. For example, a commutative
separable algebra A over k has a separable base by the proof of Proposition 2.1.

If (t,x;,y;) is a separability basis for A, then e := ). x; ®; y; is a symmetric
separability element by noting the following. First, a computation like Equation 23
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shows that it is symmetric by letting @ = 1. It is a Casimir element since
azwi ®yi = Zyj Qzja = sz ®yia
i j i

for every a € A. Since ), z;y; = 1 by definition, e is a symmetric separability
element. Whence a separable base is in fact a strongly separable base.

Theorem 3.4. The nine conditions below on a finite projective k-algebra A with
center C are equivalent:

1. A is k-separable and the Hattori-Stallings rank of Ac is an invertible element
in C;

. The C-algebra A has a separable base, and C is k-separable;

. The standard trace t generates Homy (A, k) as a right A-module;

. The k-algebra A has a separable base;

. There exists an elemente = ), ;Qry; such that ), x;xQry; = Y, TiQpTY;,

Vx€eA, and ), zy; = 1;

A is k-separable and there is a C-linear normalized trace map A : A — C;

. A is k-separable and A = C & [A, A] as C-modules;

. A has a symmetric k-separability element.

. For every A-bimodule M, there is a natural k-module isomorphism M4 —
M/[A, M], given by m — m + [A, M], where [A, M] is the k-span of {am —
malm € M,a € A}.

Tt W N

© 0o

A is said to be strongly separable over k if it satisfies any of the nine conditions
above.

Proof. We prove that Conditions 1 = 2 = 3= 4= 5= 6= 7= 8= 1, and Condition
8§=9=>1.

(Condition 1 = 2.) ;From Lemma 3.2, the k-separability of A implies that A
is C-separable and C is k-separable. From Proposition 3.3, the C-algebra A has a
strongly separable base, which is a special case of a separable base.

(Condition 2 = 3.) Suppose (t2 : A = C,x;,y;) is a separable base for the
C-algebra A. Then we have seen that ) . x; ® y; is symmetric separability element
for A. In particular, A is a central separable algebra, and finite projective over
C by Proposition 3.1. Since C is a C-direct summand in A by Proposition 3.1,
it is a k-direct summand, so C' is projective over k. Denote its standard trace by
t1 : C — k. jFrom Proposition 2.1 and the k-separability of C, it follows that C' is
a symmetric k-algebra with Frobenius homomorphism ¢ .

Since ), x; ®cy; is a symmetric separability element, we argue as in the proof of
Proposition 3.3 to show that A is a symmetric algebra over C: namely, we deduce
that A = C @ [A, A], from which it follows that A*4 = C and by Proposition 3.1
with M := A* that A* 2 A as A-bimodules.

Since A is a symmetric C-algebra and C' is a symmetric k-algebra, it follows that
A is a symmetric k-algebra with trace Frobenius homomorphism ¢' = ¢; o t5. Then
t' freely generates Homy (A, k) as a right A-module. But it is readily computed (by
choosing projective bases for A and C) that t' is the standard trace t : A — k.

(Condition 3 = 4.) Let {f;}, {y:} be a finite projective basis for A over k. Let
x; be elements of A such that f;(x) = t(xx;) for every x € A: then ), t(xx;)y; = .
It follows that ¢ is a nondegenerate trace, and, from Equation 23, with @ = 1, that

Zi ZiYi = Ei YiZs-
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We need to show that ) . z;y; = 1: this will finish a proof that (¢,z;,y;) is a
separable base for A over k. For every a € A,

t(a(l— Z zyi)) = ta) - t(azﬂiwi)
Z filay:) —t(a Z TiY;)
t(a(z YiTi — Z z;yi)) = 0.

It follows from nondegeneracy of ¢ that 1 — >, z;y; = 0.

(Condition 4 = 5.) Let (t,z;,y;) be a separable base. Then ). x; ®; y; is a
symmetric separability element for A. It follows that ) . z;x ® y; = Ej zj Q xyY;
for every z € A.

(Condition 5 = 6.) Let X' (a) = >, x;ay;, Va € A. Then X' : A — A is C-linear,
satisfies A'(zy) = X' (yz) and X|c = Idc. It follows that CN[A, A] = 0. At the same
time, > y;jaz; € C for every a € A: then a = )=, my;a = 3, yiaw; + 3, [wi, yia] €
C+[A, A],s0 A = CP[A, A] as C-modules. It follows that the projection A : A — C
for this decomposition, defined by A(a) := Y ; ¥jaz;, is a C-linear normalized trace.

Also, 1 =3, zy; = >, yi%i+Y_;[®i,yi], where 1, y;x; € C, whence ), y;x; =
1. It follows that }°, y; ® x; is a separability element for A.

(Condition 6 = 7.) Trivial.

(Condition 7 = 8.) Since A is k-separable, A is C-separable and C' is k-separable
by Lemma 3.2. Also by hypothesis, we see that there is a C-linear projection and
normalized trace A of A onto C' with kernel [A, A]. By Proposition 3.1, there is
e=),%; ®cY; € A° such that S(e) = A.

We now argue just like in the first stage of the proof of Proposition 3.3 that e is
a symmetric separability element.

As in the proof of ( 2 = 3) we see that C is finite projective over k, so there is
a trace t' : C' = k forming part of a separable basis (t',u;,v;) by Proposition 2.1,
equation 15. Then }; u; ®, v; is a symmetric separability element for C'. It follows
that Zi’ ; Tiuj ®k vjY; is a symmetric separability element for the k-algebra A.

(Condition 8 = 1) First of all, note that A is C-separable, C-finite projective,
and has a symmetric separability element e = )", z; ®¢ y;, since this comes from
the hypothesis via the canonical epi A ®; A - A®c A. Let t : A — C be the
standard trace, and denote the C-rank of A4, t(1) = c.

Now argue with the element e as in the proof of Proposition 3.3 that we have a C-
linear projection and normalized trace 3(e) :=t; : A — C, that A = C®[A4, 4], and
AS A as A-bimodules, given by a — t1a. Then ), t1(x;)yi;c = 1 by Equations 21
and 22.

(Condition 8 = 9.) Define an inverse to the natural k-linear mapping P, :
MA — M/J[A, M] by ¥5r: m+ [A, M] — em, where e is a symmetric separability
element and we view M as a left A°-module. Then ¥,; is well-defined since e and
its twist are Casimir elements, and is an inverse to ®,; since u(e) = 1. It follows
that M4 and M/[A, M] are naturally isomorphic.

(Condition 9 = 7.) We first let M = A. Then the natural mapping ®4 : A4 =
C S AJ[A, A] given by 7 — z+[A, A] has inverse W4 : A/[A,A] 5> C. If,:C — A
and ¢/ : [A4, A] — A denote the inclusion maps, then ¢ o ¥, is a splitting for the

(24)
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cokernel exact sequence of ¢/,
0->[4,A] > A— A/[A Al > 0.

This proves that A = C &[4, A].

Now let M = A®; A. Set e := ¥y (1® 1+ [4,M]) € (A® A)A. Since p is an
A-bimodule homomorphism M — A sending 1® 1 into 1, it follows from naturality
of ¥ that u(e) = 1. O

Let us observe a number of corollaries of this theorem. First, it is clear that
a separable commutative algebra A which is projective (and automatically finitely
generated by a theorem of Villamayor) over k, satisfies any one of several of the
nine conditions, and therefore is strongly separable.

Corollary 3.5. A separable, projective commutative algebra is strongly separable.

Secondly, it follows from Condition 3 that a strongly separable algebra A is a
symmetric algebra, since ¢ is necessarily nondegenerate, so A* =2 A as A-bimodules.
Consequently, the symmetric separability element e = ), x; ®c y; belonging to
A is an invertible solution of the Yang-Baxter Equation (YBE), when viewed in
Endk(A ® A), by a theorem in Beidar-Fong-Stolin [3]. Now applying Condition 2,
Proposition 3.3 and its proof once in the last line below, we have for every a,b € A

e(a®ble = inaz’j ® yiby;
2
Z Z bx;x;y; @ yja
i
b® Z t1(z;)y a
J

(25) = ¢c'b®a

where c is the HS rank of A over C and t; = ((e) = ¢ !t. Thus e ! = ce and the
inner automorphism by e in Auty A ® A is the permutation solution of the YBE.

It follows from Condition 1 that strong separability and separability are indis-
tinguishable if & is a characteristic zero field.

Corollary 3.6. If A is a separable algebra over a field k of characteristic zero,
then A is strongly separable.

Proof. By Wedderburn’s theory, we have a ring isomorphism,
(26) A2 M, (D1) X+ x My, (Dy),

where the center of each division ring D; is a field Fj finite separable over k and
the center of A, C' =2 F} x --- x F}. It follows easily from Equation 4 that the HS
rank of A over C is

(27) ro(A) = (ni[Dy : Fy],... ,ni[D:: F]) € C.
But each entry is nonzero, so A is strongly separable. |

Corollary 3.7. If A is a separable algebra over a field k of characteristic p, then
A is strongly separable if and only if each simple A-module M has dimension over
Z(Enda (M)) not divisible by p.
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Proof. Wedderburn theory gives us the decomposition 26 and consequently the C-
rank 27 where C' = F} X - - - X F;. The hypothesis on simple A-modules is equivalent
to each entry in 27 being nonzero in the field F; of characterisic p, since a simple
A-module M is of the form D} and Z(Enda(M)) = F; by Schur theory. It follows
that the HS rank of A is invertible and A is strongly k-separable. O

By Proposition 3.3, a central separable k-algebra with Hattori-Stallings rank
invertible in k is a strongly separable k-algebra. The reader might enjoy showing
how the following obviously separable algebra A with zero HS rank fails each of
the nine conditions in the theorem: Let p be a prime, F = Z, and A = M,(Z,).
For example, the central separable F-algebra A does not satisfy A = F @ [A, A]
(Condition 7) since 1 € [A4, A]. Although A has several separability elements, it has
no symmetric separability element by the theorem.

We believe that Condition 7 for strong separability in Theorem 3.4 is due to
Kanzaki [21], as well as Condition 5, Conditions 2, 3 and 4 are due to Demeyer [8],
Condition 1 to Hattori and Demeyer, Condition 6 to Hattori [14], and Condition 9 to
Aguiar [1]. Condition 8 for strong separability is stated by Demeyer [8], considered
in [7] for k = C, and proven in [18]. Onodera’s Condition [29] is closely related to
Conditions 1 and 8 via Equations 22 and 23: it states that A is strongly separable
iff it has a trace and Frobenius homomorphism ¢ with dual bases {u;}, {v;} such
that ), u;v; is invertible.

4. AUGMENTED FROBENIUS ALGEBRAS

Let k be a commutative ring throughout this section. We first consider when a
Frobenius algebra is strongly separable.

Theorem 4.1. Suppose A is a Frobenius algebra with Frobenius homomorphism ¢
and dual basis {z;}, {y;}. Then

U= Z Yil;
i

is invertible in A if and only if A is strongly separable. Moreover, the Nakayama
automorphism s given by

(28) n(z) = uzu™!
for every xz € A.

Proof. (=) Consider the element e := Y, y; ® z;u”" in A® A. Then e satisfies the
Kanzaki Condition 5 for strong separability by choice of u and the fact that the
dual bases tensor is Casimir.

;From Equation 12 we obtain

n(a)e = Z Yi © iau~,
i

for every a € A. Applying the multiplication mapping p to both sides of this
equation, we obtain Equation 28.

(<) By Demeyer’s Condition 4 for strong separability, A has a (stongly) sepa-
rable base (t,z;, w;) where t is the standard trace on A {z;}, {w;} form dual bases
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fort, > . z; ®w; is symmetric, and )~ zjw; = 1. Then by the comparison theorem
there exists d € A° such that t = ¢d. Then by Equation 13 we have

Z.’L‘i ®y; = ZZJ' ®dwj.
i J
Then

U= Zyimi =d2wjzj =d
i J

and wu is invertible.
We finally note from Equations 6 and 10 that for every = € A,

n(z) = Z¢($z’$)yi = Ztu_l(zjw)uwj =uzu™'. O

The implication < for k a field of characteristic zero is equivalent to Beidar-
Fong-Stolin’s [3, Proposition 4.3].

A k-algebra A is said to be an augmented algebra if there is an algebra homomor-
phism € : A — k, called an augmentation. An element ¢t € A satisfying ta = €(a)t,
Va € A, is called a right integral of A. It is clear that the set of right integrals,
denoted by f;, is a two-sided ideal of A, since for each a € A, the element at is

also a right integral. Similarly for the space of left integrals, denoted by fj.

Now suppose that A is a Frobenius algebra with augmentation e. We claim that
a nontrivial right integral exists in A. Since A* = A as right A-modules, an element
n € A exists such that ¢n = € where ¢ is a Frobenius homomorphism. Call n the
right norm in A with respect to ¢. Given a € A, we compute in A*:

¢na = (¢n)a = ea = e(a)e = ¢ne(a).
By nondegeneracy of ¢, n satisfies na = ne(a) for every a € A.

Proposition 4.2. If A is an augmented Frobenius algebra, then the set f; of right
integrals is a two-sided ideal which is free cyclic k-summand of A generated by a
right norm.

Proof. The proof is nearly the same as in [32, Theorem 3], which assumes that A
is also a Hopf algebra. The proof depends on establishing the equation, for every
right integral ¢,

(29) t=¢(t)yn. O

The right norm in A is unique up to a unit in k. Similarly the space fﬁ of left

integrals is a rank one free summand in A, generated by any left norm. If [} = fj,
A is said to be unimodular. In general the spaces of right and left integrals do not
coincide, and one defines an augmentation on A that measures the deviation from
unimodularity. In the notation of the proposition and its proof, for every a € A,
the element an is a right integral since the right norm n is. From Equation 29 one
concludes that an = ¢(an)n = (ng)(a)n. The function,

(30) m:=n¢: Ak

is called the right modular function, which is an augmentation since Va,b € A we
have (ab)n = m(ab)n = a(bn) = m(a)m(b)n and n is a free generator of [}.
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We moreover have
(31) moa =e.

by [20, Prop. 3.2]. As a consequence, if A is an augmented symmetric algebra, then
A is unimodular.

Proposition 4.3. Suppose A is a separable augmented Frobenius algebra with norm
n and augmentation €. Then e(n) is invertible and A is unimodular.

Proof. For any augmented Frobenius algebra (A, ¢, x;, y;, €) we note the useful iden-
tity for the right norm n,

(32) n= Z ¢(nw;)y; = Z (zi)y;-
i i
If A is moreover separable, there is d € A such that ), z;dy; = 1 by Equation 8.
Then by Equation 32

D e(@i)e(d)e(yi) = e(d)e(n) = 1.
i
It follows that €(n) is a unit in k. But for every z € A, a computation like in [25],
namely,
e(x)e(n)n = nzn = m(z)n® = m(z)e(n)n,

gives e(z)e(n) = m(zx)e(n), whence e(z) = m(z). Thus, A is unimodular. O

5. HOPF ALGEBRAS

Pareigis proved in [32] that every finite projective Hopf algebra H has a bijective
antipode S (with inverse denoted by S~!). In addition, the dual Hopf algebra H*
has a right Hopf module structure over H with right H-comodule H* the dual of
the natural H*-module H* and right H-module H* the twist by S of the natural
left H-module H* [32]. The fundamental theorem of Hopf modules then leads to

the isomorphism,
¢
/ ®H = H*

as left H-modules. Whence H is a so-called P-Frobenius algebra where P :=
(f, Ig*)*, where [ If,* is the invertible k-module of left integrals in H* [34]. If P = k,
H is an ordinary Frobenius algebra with Frobenius homomorphism a left norm in
H* [24, k = pid]. That |, fl* >~ P =k is guaranteed if k has Picard group zero (e.g.
when k is a field, semi-local or a polynomial ring).

In this section, k& will continue to denote a commutative ring and o Hopf algebra
H is always finite projective as a k-module; moreover, we will assume H is a Frobe-
nius algebra with o special Frobenius homomorphism f : H — k. We require of f
that it be a right norm in the dual Hopf algebra H*, which is no loss of generality
since S is an anti-automorphism and S f is a left norm in H*. We will refer to such
an H as simply Hopf algebra in this section.! Tt has been shown that also H* and
the quantum double D(H) are Hopf algebras in this sense [20], and more detailed
proofs may be found in either of [13] or [19].

I These Hopf algebras have been called FH-algebras by Pareigis [33].
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Proposition 5.1. Let H be a Hopf algebra with Frobenius homomorphism and
right norm f and right norm t in H. Then (f,S™'ts,t1) is a Frobenius system for
H.

Proof. This follows from a short computation like that in [13, Lemma 1.5] using
a— f=1pgf(a) for every a € H:

> 57 t2)f(tra) > S7H(ts) f(ta)tzas
(t) (t),(a)

> fltar)as

(@)
= f(ta=a,

since ft = ¢, the counit, and so f(¢) = 1. O

This proposition has two corollaries.
Corollary 5.2. A Hopf algebra H is separable if and only if €(t) is invertible.

Proof. The forward implication follows from Proposition 4.3. The backward im-
plication follows from the proposition, since ﬁ E(t) S~1(ty) ® t; is a separability
element. m

Recall that a Hopf subalgebra of H is a subalgebra K such that S(K) = K
and A(K) C K ® K. The next corollary is generalizes a proposition in [25] for
semisimple Hopf algebras over a field.

Corollary 5.3. Suppose k is a local ring. If H is a separable Hopf algebra free
over k and K is a k-free Hopf subalgebra, then K is separable as well.

Proof. It follows from [20, Lemma 5.2] that H is free as the natural right K-module.
Let n be a right norm for K. By expanding ¢ in basis for H over K, we find A € H
such that ¢t = An. Then €(t) = ¢(A)e(n). Since €(t) is invertible and the non-units
in k form an ideal, €(n) is invertible. Whence K is separable. O

We use the notation a < g := }>,) g(a1)az and g = a := 3 aig(as) for the
standard right and left actions of g € H* on a € H.

Proposition 5.4. Given an Hopf algebra H with right norm and Frobenius homo-
morphism f € H* and right norm t € H, the Nakayama automorphism for f and
its inverse are given by:

(33) n(a) = §%(a = m™") = (§%a) = m™,
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Proof. We compute (like in [13, Lemma 1.5] but opposite Nakayama automorphism)
using the right modular function m given by at = m(a)t for all a € H:

S @) = S 87 (t2)f(atr))
> flat)S(t2)

> flartr)atz S(ts)
= Zf(alt)az

= Zm(al)@

The rest of the proof follows from noting that m is a group-like element in H*,
so the convolution-inverse m~! =m o S and m o0 S? = m. |

Recall that a Hopf algebra is involutive if S? = Id.

Theorem 5.5. Suppose H is an involutive, separable Hopf algebra. Then H is
strongly separable.

Proof. We continue with the notation in the two propositions above. By Proposi-
tion 4.3, H is unimodular and €(t) is invertible in k by its proof. It follows from
Proposition 5.1 that the dual bases tensor is Y S71(t2) ® t1, which since S = S~1
satisfies

> t1S7Ht:) = €(t)ln
)
a unit, whence H is strongly separable by Theorem 4.1. O

As a special case of the last proposition we have similar results over fields by
Kreimer, Larson [22], Beidar-Fong-Stolin [4], and Aguiar [1].

We compute the trace of the k-linear automorphism S? : H — H in the next
proposition.

Proposition 5.6. If H is a Hopf algebra with right norms t € H and f € H* such
that f(t) = 1, then

(34) Tr(S%) = f(1)e(?)
Proof. Since f is a Frobenius homomorphism with dual bases {S™1(t2)}, {t1}, it
follows from Equation 9 that the trace
Tr(S?%) =) f(t:15%(S7 (t2)) = ) F(t1S(t2)) = e(t) F(1)
(t)
as claimed. O
If H is a finite dimensional Hopf algebra over a field, it follows that the trace of

S? is nonzero iff H is semisimple and cosemisimple, a result of Larson-Radford [23].
We then easily obtain the following generalization from Corollary 5.2, also noted in

[4]:

Proposition 5.7. If H is a Hopf k-algebra, then Tr (S?) is invertible if and only
if H is separable and coseparable.
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Now let us assume that H is strongly separable over an algebraically closed field
k. Then it follows from Theorem 4.1 that u = 37 t1.5 ~1(ts) is invertible. In this
case H = @)\ M,, (k), where M, (k) is the algebra of n x n-matrices with k-entries.
Then we have the following

Proposition 5.8. Let tr) be the matriz trace on My, (k). Then

f(z) = Z natra(zu™?t)
A

Proof. First we note that f(zy) = f(yu~'zu) by Theorem 4.1. Then f(zyu) =
flyuwu=tzu) = f(yzu) and therefore f(zu) = Y, Thtra(z) for some T\ € k or
f(z) =3, Tatra(zu~t). We must prove that Ty = ny.

Since H is a Frobenius algebra with Frobenius homomorphism f, we observe
Tx # 0. Let E}; be the matrix units in My, (k). Then {E}}; {(1/T\)Eju} form
dual base with respect to f. Let us introduce uy = Zij(l/TA)Ei)‘jE;‘iu. Then
clearly u = ), ux and we have:

u = Z(u,\) = Z(l/T,\)E{}EﬁU = Z(I/T)\)n,\uA
A A A
which proves the Proposition.
O

Corollary 5.9. Suppose H is an involutive, semisimple Hopf algebra over an al-
gebraically closed field k. Then Tr(S?) = dimH and if H is cosemisimple then
dimH # 0 in k.

Proof. Theorem 5.5 and its proof imply that H is strongly separable and u =
>y 118~ (t2) = €(t)1 i Then

Tr(S?) = e(t)f(1) = €(t) antn(u_l) = antn(lM”(k)) = Zni = dimH
A A

A
If H is cosemisimple we already know that 77 (S?) # 0 and hence dimH # 0. O

6. SEPARABILITY AND ORDER OF THE ANTIPODE

It was proved recently in [12] that if a Hopf algebra H over a field k is semisimple
and cosemisimple, then S2 = Id. Equivalently if H is separable and coseparable
over a field k, then S? = Id. Using this result we prove the corresponding statement
for Hopf algebras over rings.

Theorem 6.1. Let k be a commutative ring in which 2 is not a zero divisor. Let
H be separable and coseparable Hopf algebra which is finite projective over k. Then
S? =1d.

Proof. First we note that H is unimodular and counimodular. Then it follows
from [4, Corollary 3.9] or [20, Theorem 4.7] that S* = Id. Localizing with respect
to the set T = {2",n = 0,1,..} we may assume that 2 is invertible in k. Then
H=H,®H_ where Hy = {h € H : S?(h) = £h}, respectively. We have to prove
that H_ = 0. It suffices to prove that (H_),, = 0 for any maximal ideal m in H.
Since H,,/mH,, is separable and coseparable over the field k/m, we deduce from
the main theorem in [12] that (H_),, C mH,, and therefore (H_),, C m(H_)n,.
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The required result follows from the Nakayama Lemma because H_ is a direct
summand in H. O

Corollary 6.2. If H is separable and coseparable over a commutative ring k, then
H is strongly separable over k.

We believe that strong separability of a Hopf algebra H over a field k and the
fact that ged (dimH, char(k)) = 1 imply that H is coseparable. This fact is known
in case of fields of characteristic 0 simply because strong separability is equivalent
to separability in this case [23]. For the remainder of this paper we will assume
that k is algebraically closed, H is strongly separable over k, char(k)) > 2 and
ged (dimH, char(k)) = 1. We continue with the notation we used in Section 5.

Lemma 6.3. Letu =} t1S71(ts). Then tra(u) = tra(uy) = nxe(t).

Proof. We already know from the proof of Proposition 5.8 that { E}}}, {(1/nx) Eju}
form dual bases with respect to f. Therefore we have:

Z Z(l/nx)E}\iUEij = Z"Kltr,\(u)lMM(k) = ZS_I(tz)h =e(t)ln
X if A (*)
Hence try(u) = tra(uy) = nxe(t) as required. O

Now we recall that n(z) = uzu~—! by Theorem 4.1. On the other hand, n*" = Idg
by [13] where n = dimH. Therefore we see that u3" = OEwm, (), wheregy #0 € k
and Epr, (k) := 1x is the unit matrix in My, (k) (in the sequel we will denote
IUEM"A(k) =zl € Mn/\ (k) by Ilf)\).

By considering the Jordan normal form of u) and recalling the assumption
ged (n, char(k)) = 1, we can assume without loss of generality that uy = axdiag(¢y:),
where a) # 0 € k and (2, is a primitive 2n-root of unity in k. Clearly numbers
ay are defined up to ¢§, and try(uy) = axfa(Can) where fr(z) = Sars' fuzb is a
polynomial with non-negative integer coefficients.

Let ko be the prime subfield of k. We see that f((an) € ko[(2n]. Let us introduce
a formal complex conjugation in the following way.

Let Py C ko[z] be the set of all polynomials of degree < N. Let o : Py — Py
be a linear map defined by o(z*) = zV=*. Then if q(z) € Py and ¢((y) = a € k,
we define o (a) := (0¢)({w)-

It is clear that if char(k) = 0 then this is the usual complex conjugation.

Corollary 6.4. We have the following formula for Tr(S?):

7r(s?) = Y- (1Y) - 5 AGnEnh)Gn)

A

Remark 6.5. We see that in the case char(k) = 0, Tr(S?) # 0 as it is a sum of
strictly positive numbers; whence H is coseparable and S? = Idg. If we managed
to prove that the operator of left multiplication by w on H had eigenvalue €(t) on
each Hy := M,, (k), then it would follow that Tr(S?) = dimH # 0 in k. However
we only know that this is true on Hy, := M; (k) generated by ¢t € H because

ut = e(u)t =ty e(t)e(S7(t2)) =t Y _ e(tre(ta)) = e(t)t
() ()
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It is well-known that if S* = Idg and char(k) > dimH then semisimplicity
implies cosemisimplicity. The following theorem enables us to improve this result.

Theorem 6.6. Let S?™ = Idy, where gcd(m,char(k)) = 1. Then there exists a
diagonal invertible d € H such that S*(z) = dzd™', df* = £1,, oan(tra(d)) =
tra(d) and Tr(S?) =3, (tra(d))?.

Proof. Let z* € H be the transpose of z € H. Then ¢(z) = S(z') is an auto-
morphism of H and therefore there exists an invertible A € H such that S(z) =
A7zt A. Further S?(x) = A1 Alx(A~1A%) ! = uzu ! (since for unimodular Hopf
algebras S? = n by Proposition 5.4) and we deduce that u = dc where d = A~ At
and c is in the center of H. Clearly we have that S?(x) = dzd='. We recall
that uy = axdiag(Cks) and it follows that dy := dEwm, (k) is a diagonal matrix.
On the other hand we have: A® = dA and we obtain that A = A'd = dAd
or d;l = A)\d,\AXI. Taking into account that u}* = aTEM”(k) we conclude
that d' = bEwy, ) = dy™ = b~"En, () for some b € k. Then b»* = 1 and
ay = :i:EM”(k). The latter implies that entries of d are 2m-roots of unity. Then
o2m (tra(d)) is well-defined and it follows that

oam (tra(d)) = tra(d™") = tra(Axdr ALY = tra(d).

Since uy = cxdy for some ¢y € k and try(u) = nxe(t) (by Lemma 6.3) we have:

Tr(S%) = e(t)d natra(u™?)

- e(t)icglmm(dl)

= e(t)é0;1(C(t))_ltT,\(U)tT/\(d_l)
> (tra(d)?

A
which completes the proof. O

Corollary 6.7. 1. Let H be strongly separable over a field k of characteristic
p =8N £3 > dimH (this is equivalent to that of /2 ¢ F,). If S'¢ = Idy,
then S? = Idy.

2. Let H be strongly separable over a field k of characteristicp = 4N+3 > dimH
(this is equivalent to that of /—1 € F, ). If S® =1dy, then S? = Idy.

Proof. We prove the first statement. It is sufficient to prove that Tr(S?) # 0. Let
us consider separately two cases, one where dj = 1, and the other where d§ = —1,.

In the first case the eigenvalues of dy are cg' of multiplicities A;‘, 7 =0,1,..7.
Then dimH) = (E;:o A})?. We note that ¢§ = —1 and (s —(§ = (s +G=v2¢
F,.
’ Then the condition try(d) = try(d—') implies that (4; — A5+ A3 — A7) (s +¢3) =
2(Ag — A2)(2 and consequently —2(A; — A5 + Az — A7)? = —4(Ag — A2)%. Since
V2 ¢ T, we deduce that A3 = A} and A} + A} — A2 — A} = 0. Then

tra(d) = Ag — A} + (A7 — A9)G + (43 — A7) =
Ag — A+ (A — AD)(G — ) = A5 — AL + (A - 4)V2
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and
(tra(d))® = (A7 — AD)” + 2(A} — AD)® +2V2(4A5 — A})(A} — 4}) =
(A5 — A2 + (A} — A3)* + (43 — A7)’ + XV2, X €F,

In the second case the eigenvalues of dy are cfg."l of multiplicities B;‘, j=1,..8.
Since (§5 = —1 and ¢} = (3 we can write that try(d) = Yi_, (Bs — Bsya)(Z3 ™!
In this case o16(tra(d)) = tra(d) implies that (B; — Bs + By — Bg)(C16 + (7)) =
—(By — Bg + Bs — Br)((35 + (36) and therefore R(1 + (3) = S(¢s + ¢2), where
R = B—Bs+By—Bg, S = —(By—Bg+Bs—By). Tt follows that R((s+(3') = R+S
and hence

R=S=B)-B})+B} -By =By —By + B} —B} =0
Therefore we have obtained the following expression for tr)(d):

tra(d) = (By — B3)(Cie — (o) + (B3 — Bg)(¢s — Cio)

Then we compute (try(d))?:

(tra(d))? = 2(B} — B2)? +2(B} = B)* +YV2 =
(B} = B})’ + (B3 — By)” + (B3 — B})> + (B} - B}’ +YV2, Y €F,

Let us assume that Tr(S?) = z + yv/2 = 0. This means that = y = 0 because
V2 ¢ F,. In our case we have:

z=) (A) — A}’ + (A} — A3)° + (43 — A% +
A
Y (B} =B’ +(BY - By)* + (B} - BY)’ + (B} - BR)”
A

Let us consider z as an element of Z. It is clear that z < dimH < p. On the other
hand x > 0 because we have the one-dimensional component Hy, on which the
corresponding A())‘0 is 1 and the other multiplicities A7, Bj.‘ are zeroes. It follows
that Tr(S?) # 0 in k. O
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