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Abstract

The theme of this paper is the control of certain large-scale struc-
tures in swirling jets, such as the opening angle of the near-conical jet
often observed in swirling jets, which have undergone vortex break-
down. To this end, a theory for the control of conically self-similar
free-vortex solutions is developed for domains bounded by a conical
streamsurface. In order to satisfy an obvious prerequisite for deter-
ministic control, it is proved that if in addition to the opening angle of
the bounding conical streamsurface and the circulation thereon, either
of the radial velocity, the radial tangential stress or the pressure on
the bounding streamsurface are given then a conically self-similar free-
vortex solution is uniquely determined in the entire conical domain. In
addition, shown that for flows inside a cone the same conclusion holds
for Yih et al’s [24] parameter T, but for exterior flows it is shown
by explicit construction that in this case nonuniqueness may occur.
For given values of the opening angle of the bounding conical stream-
surface and the circulation thereon the asymptotic analysis of Shtern
& Hussain [17] is applied to obtain asymptotic formulae relating the
opening angle of the cone along which the jet fans out and the radial
tangential stress on the bounding surface to each other. However, these
formulae are shown to be rather inaccurate for moderate values of the
circulation at the bounding surface. To amend this shortcoming, an
alternative, more accurate asymptotic analysis is developed to derive
second order correction terms for both of these formulae, which con-
siderably improve the accuracy. A striking property of these formulae
is that the opening angle of the cone along which the jet is fanning
out is independent of the value of the viscosity as long as it is small
enough for the first order asymptotic formulae to apply.

1 Introduction

Swirling jets have many crucial engineering applications for instance in vor-
tex burners, but they also occur naturally in tornados and in the air flow
above a vortex sink in water. However, the underlying physical principles
of swirling jets are poorly understood and theoretical models can only be
used on rare occasions as design tools. In addition, accurate computation
of swirling jets using CFD is time-consuming, due to the high turbulence
level typically present. Consequently, control of swirling jets based on CFD



is likely to consider only a limited region of the parameter space. There-
fore, both large reductions in cost and improved designs can be obtained
provided that we find simple models for the control of certain key features
of swirling jets. Fortunately, there are some essential large-scale features
of jets of almost laminar character, as is hinted by the linear expansion of
the far field of a non-swirling jet with downstream distance, see e.g. [14]
or [9]. The self-preserving character of these flows provides the possibility
to determine the exact degree of the expansion, from knowledge of only the
total axial momentum and the almost constant turbulent eddy viscosity.

For swirling flows it is well known that at a certain degree of swirl the
jet near the axis splits up, sometimes resulting in an almost conical annular
jet which surrounds a recirculation zone, see e.g. [2]. The opening angle
of this spreading jet is of great importance in engineering applications and
is another example of an almost laminar feature, since it is essentially de-
termined by the balance of the centrifugal force and a pressure gradient.
Whereas there is little hope to find a simple model for the prediction of the
effects of changing the inlet configuration on turbulent mixing, there may
be some chance to predict the effects on more laminar features such as the
opening angle. Indeed, in this article our aim is to obtain such a model, but
to achieve this we will restrict our attention to the conically self-similar solu-
tions to the Navier—Stokes equations. Perhaps there is some self-preserving
swirling jet, which is closely approximated by a conically self-similar solu-
tion. Indeed, the flow inside the cone shown in [2] is a natural candidate
for such a flow. However, even if we will never find these solutions in na-
ture, understanding how to control them remains relevant as an intermediate
step before taking on the infinately more difficult quest of controlling fully
turbulent flow.

The swirling conically self-similar solutions to the Navier-Stokes equa-
tions, which were originally discovered by Long [10, 11] and independently
by Goldshtik [6], provide a framework where laminar-like features of swirling
flows can be studied without the imposed complexity of a highly turbulent
flow. However, one inherent difficulty with all conically self-similar solutions
is that they may either satisfy the no-slip condition at some conical bound-
ary 6 = 0. (where 6 is the polar coordinate in a spherical coordinate system
(R,0,%)), but then they will have a singularity at the symmetry axis § = 0
[15], or they may be perfectly regular at the symmetry axis, but then they
cannot satisfy the no-slip condition at the conical boundary [20, 24, 16, 17].
The physical reason for this is simple, as pointed out in [17], since all coni-
cally self-similar solutions require that the total axial momentum is the same
for each spherical section of the flow domain, whereas momentum decays at
walls due to friction. In this paper we will be concerned with the second
case, i.e. we will consider the conical boundary as a bounding streamsur-
face rather than a wall and our velocity field will be bounded throughout
the entire flow domain except for the apex of the cone, which we will place



in the origin. This case is often referred to as the free-vortex case.

Despite the failure of conically self-similar free-vortex solutions to sat-
isfy all of the relevant boundary conditions, these solutions exhibit features
typical of swirling jets. For example, it has been shown [24, 16, 17] that
there are three kinds of conically self-similar free-vortex solutions:

1. A near-axis jet. The fluid flows downstream in the vicinity of the
symmetry axis, § = 0, and upstream close to the cone 8 = 6,.

2. A surface jet. The fluid flows downstream along the cone 6 = 6. and
upstream along the symmetry axis.

3. A two-cell flow. The fluid flows downstream along some conical stream-
surface § = 65 and upstream both along the cone # = 6. and along the
symmetry axis.

The two-cell flow case is depicted in figure 1. The near-axis jet corre-
sponds to the limit §; = 0 and for the surface jet we have that 6, = 6..
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Figure 1: The geometry of the two-cell flow case. The symmetry axis is in the z
direction, 6. is the angle of the bounding streamsurface and T'. is the circulation
thereon. 6, is the angle of the streamsurface, which separates the two cones. The
thick arrows indicate the direction of the radial velocity component.

The near-axis jet solution is very closely related to Long’s vortex, which
has attracted much attention as a fundamental flow problem see e.g. [3, 5, 4].



The surface jet solutions have attracted comparatively little interest, yet
these may be the easiest to observe in nature. Indeed, the flow inside the
conical jet observed by [2] seems to be a natural candidate for an approx-
imately conically self-similar flow. In this paper, however, we shall mainly
focus on the two-cell flows, and our primary aim is to find ways of deter-
mining 0, from knowledge of flow at § = 6. only.

Throughout this paper, we will assume that the opening angle of the
bounding conical streamsurface 8, and the circulation K on this streamsur-
face are given. Before deriving any formulae for the opening angle in terms
of the flow parameters a more fundamental question must be addressed,
namely what additional quantities are needed to enable unique control of
conically self-similar solutions. From the theory of non-swirling jets we may
expect that the total axial momentum J, would do, but the numerical and
asymptotic studies of Shtern & Hussain in [16, 17] (see also [18]) tell us that
this situation is not so simple. There are combinations of values of 6., K
and J, for which several solutions exist. This important issue explains the
observed bistability of tornados, but for control purposes it is highly unde-
sirable to have several possible solutions for the same set of values of the
control parameters, since that may allow the swirling jet to toggle between
a desirable and an undesirable flow state at random. Consequently, alter-
native quantities which describe the intensity of the axial flow are needed.
The axial velocity and the pressure at the bounding streamsurface are two
candidates. A third option is to use the surface radial tangential stress as
suggested by Goldshtik & Shtern [7]. Finally we will consider Yih et al.’s [24]
parameter T for which no unambiguous physical interpretation was avail-
able until recently when it was shown that it can be related to the axial
velocity and the pressure at the bounding streamsurface [21]. Below we will
prove that for given values of 8, and K, either of the three first quantities
mentioned above will specify a conically self-similar solution uniquely. The
sole exception is in the case of a bounding plane (i.e. when 6. = 0), in
which case the pressure on the surface is always zero, and hence it contains
no information of the axial flow. In addition, we will prove that for 6., K
and Yih et al.’s parameter T" we have uniqueness when 6. < 90° (i.e. for
flow inside a cone), but not necessarily when 6, > 90°(i.e. for flow outside a
cone). We will also show by explicit construction that we may in fact have
nonuniqueness for given values of 6, < 0, K and T', and we will explain this
intricate behaviour physically.

The question of what uniquely determines a conically self-similar free-
vortex solution has received virtually no attention in the literature. The ma-
jor difficulty is the lack of appropriate mathematical techniques to approach
questions of uniqueness for non-linear boundary value problems. Whereas
a numerical approach may indicate the existence of a solution by explicit
construction of the solution (approximately) and nonuniqueness of a prob-
lem by explicit construction of two different solutions for the same problem,



the uniqueness issues are subtle in that numerics may easily be deceptive.
Sometimes, this is due to the numerical algorithm, which may be biased
to give only one of several possible solutions. Amnother difficulty is that
nonuniqueness may occur only in small portions of parameter space in which
case it requires both luck and perseverance to detect it. For example, even
though Yih et al. formulated their problem 17 years ago, no previous nu-
merical study has revealed the nonuniquenesss mentioned in the previous
paragraph, and the common belief among workers in the field that the so-
lution was uniquely specified by 8., K and T is manifested by the comment
in [17] that conically self-similar free-vortex solutions do “not show any fold
and non-uniqueness when different control parameters are used [24, 7].” On
the same note, there are some implicit assumptions that uniqueness holds
in [24]. For example, it is said that “The nondimensionalized momentum
flux M/pv? is a function of the parameters Relequivalent to our K] and 77,
which is not necessarily true in case of nonuniqueness since the same value
of K and T can give two different values of M and hence we cannot speak
of a function in the normal single-valued sense.

To the author’s knowledge only one uniqueness result has been proven
for conically self-similar free-vortex solutions, and it is a result in [22] which
tells us that not only is such a solution real analytic outside the origin, but
it is also uniquely determined by the radial velocity, the polar derivative of
the circulation and the radial friction at the symmetry axis. This result is
needed to justify mathematically the numerical method used in [16, 17] but
it is of little use for control purposes, since we would clearly prefer to control
the flow on the bounding surface.

To highlight the nontrivial nature of uniqueness considerations, a few
words should be said about Serrin’s problem. In this case we satisfy the
no-slip condition at the bounding walls, but have a singularity along the
symmetry axis. Serrin [15] described his solution (for which the bounding
cone was a plane, i.e. ., = 90°) by the circulation at the symmetry axis and
a parameter related to the force driving the fluid at the symmetry axis. For
these parameters Serrin failed to prove uniqueness, and mentioned this as
the major mathematical problem left open for his problem. However, more
than 15 years later Goldshtik & Shtern [7] were able to establish numerically
that at least in some part of the parameter space the solution to Serrin’s
problem was indeed nonunique.

The uniqueness theorem provides us with a set of parameters, which we
can use to control conically self-similar solutions uniquely. A major draw-
back of using the radial velocity is that it vanishes when the no-slip condition
applies. This is clearly not the case for the surface pressure or the radial
tangential stress, which are still finite even though the values may change.
Primarily for this reason we will use the asymptotic analysis developed by
Shtern & Hussain [16, 17] to derive a relation which for given values of 6,
and K determines the surface pressure or the the radial tangential stress at



the surface in terms of #;. In addition we will derive a converse relation,
which gives 0, provided that the values of 6., K and either of the surface
pressure or the radial tangential stress at the surface are known. In order
to obtain reasonable accuracy for these formulae at moderate values of K /v
an alternative and more accurate asymptotic analysis will be developed and
used to obtain second order correction terms to these formulae. Fortunately,
both these formulae can still be given explicitly. Numerical calculations were
used to confirm that for all but very large values of 6, the presented formulae
are accurate even for moderate values of K/v.

In the next section we will formulate our problem mathematically, and
state our uniqueness theorem. In Section 3 we will first show that in the case
when 6, < 0, K and T are given, there may exist more than one solution,
and we will explain this behaviour from a physical perspective. Secondly, we
will use asymptotic analysis to derive formulae relating 6, to 6., to K and to
either of the surface pressure or the radial tangential stress at the surface.
The final section will be devoted to the proof of the uniqueness theorem.

2 Formulation of the problem

The conically self-similar solutions to the Navier—Stokes equations is a class
of nonlinear exact solutions to the Navier—-Stokes equations, which retains
both convective and diffusive terms. These solutions are defined in a conical
domain 0 < € < 6., r > 0. In the origin the solutions are always singular,
but if 8. # 180° we may choose the boundary conditions so that there are no
other singularities. The name conically self-similar solutions comes from the
fact that the solutions are such that any quotient of two velocity components
depends only on the polar angle of a properly aligned spherical coordinate
system. The main physical idea behind these solutions is to seek solutions
to the Navier—Stokes equations which are characterised by a streamfunction
as well as by a circulation function, i.e. to seek solutions on the form:

v (x) _ v (=) _ vl (z)
YR=TTR 0 YT TReng’ " Rsing’
(1)
pviq ()
P~Poo="pg U =vRy(z), =z=cosb,

where (R, 6, ¢) are spherical co-ordinates, (ug, ug,uy) the corresponding ve-
locity components, p the pressure, po, the atmospheric pressure and ¥ a
streamfunction. We have also let a prime denote differentiation with re-
spect to x.

When (1) is substituted into the Navier—Stokes equations we obtain after
some manipulations the following system of ODEs [15, 17]:

(1—$2)¢’+2m¢—%1p2 = F, 2)
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(1—w2) F" = oIT (3)
(1-2)1" = yr'. (4)

2.1 Boundary conditions

In this article we are only interested in classical solutions to (2)-(4), i.e.
solutions such that ¢ € C* ((z,,1))UC ([z¢,1]) , F € C3 ((z¢,1))UC! ([z, 1])
and I' € C? ((z,,1)) U C ([w¢, 1]) which satisfy the boundary conditions at
z. (= cosf.) and 1 which we are now about to specify.

The boundary conditions we use in this paper are obtained if we assume
that we do not have any flow sources on the axis, except at the origin, which
implies that

P(1) =4 (1) =0. (5)

For the radial velocity to be bounded outside a neighbourhood of the origin
we require that

!

P (w)‘<oo. (6)

For F' we specify the boundary conditions

lim
r—1~

/!

F(1)=F (1)=0. (7)

The first of these conditions follows from (5), (6) and (2), but the second
one requires in addition that

. 2 " i
lim (1-2%) 9" (2) =0, ®)
which physically means that there is no line force acting along x = 1.

We furthermore assume that the swirling flow is driven by a constant
circulation along some fixed conical streamsurface £ = z. which implies
that

Y (zc) =0, T(z;)=T,. (9)

Since the system of equations (2)-(4) is symmetric with respect to the sign
of T', the sign is immaterial, and we will henceforth assume that I'; > 0.
The physical circulation K is related to ', by K = 27vI'¢, and henceforth
we will use I'. when discussing the circulation on the surface.

In addition we must somehow specify the intensity of the axial flow, and
for the purposes of this paper it must be done in such a way that the solution
to the problem is unique. In a series of articles [16, 17] Shtern & Hussain
have showed that this condition is not fulfilled for the total axial flow force
J,. Instead we will consider three other alternative conditions. The first
condition is to specify the radial velocity distribution at the streamsurface,
which obviously must be of the form 1/r to be compatible with conical
self-similarity. In terms of the parameters of the problem this condition



is equivalent to prescribing ¥’ (z.). The second condition is to specify the
surface radial tangential stress per unit length of the symmetry axis, which
also must be of the form 1/r to be compatible with conical self-similarity.
This is equivalent to specifying " (z.) as is seen from the formula

"

2m
/ —Trg7 8in O cos Odp = 27w, (1 - xz) Y (ze) prPrt (10)
0
which was derived in [7]. The third alternative was to specify the pressure

at the bounding streamsurface. This must be of the form 1/72, and is given
by (see e.g. [17])

2z1p — oF — 42 P —
R i i pewo el (1)
Hence, using the boundary conditions we have that ¢ (z.) = —z.) (z.).

Consequently, if we specify 1" (z.) we specify both the pressure at the sur-
face and the surface radial tangential stress. To obtain the parameter used
by Yih et al. [24] we follow them and Serrin [15] and integrate (3) three
times. After the enforcement of the conditions (7) this yields

x 2 2 2
Fo)=—(-2? [ %—m/:%—T;C 1-2)?, (12)

where T is an arbitrary parameter, which can be used to specify the strength
of the axial flow.

3 Results and Discussion

We begin by presenting the fundamental result on which the control theory
in this paper is based

Theorem 1 Suppose that x. € (—1,1) then a conically self-similar free-
vortex solution to the Navier—Stokes equations is uniquely determined by .,
T, and either of (a) ¥ (z.), (b) ¥ (z.) or in case z. >0 (c) T.

Remark : The theorem does not necessarily hold in the case when . = —1.

The proof of this theorem is fairly long and technical and will accordingly
be deferred until the next section.

The importance of Theorem 1 is that once we have found values of z., I,
and one of ¥ (z.), ¢ (z.) and T (if z, > 0), which give us a desirable flow,
then we can be sure that within the class of conically self-similar free-vortex
solutions there is no other, less desirable, solution with the same values of
these parameters. For deterministic control, this is a necessary condition we
must impose on any control parameters we would like to use, and Theorem
1 thus shows that this criterion is satisfied when ¢’ (z.), ¥ (z.) and, if



z. > 0, T are used as control parameters alongside of z, and T';, which is
not the case for, for example, J,. It is noteworthy that for the non-swirling
solutions we have uniqueness for J, as well, whereas as the swirl increases
uniqueness fails for J,, but not for the parameters considered Theorem 1.

From a mathematical perspective, uniqueness is a necessary, but not a
sufficient condition for a practical control theory. Specifically, the question of
continuous dependence of parameters is important, yet still left open. The
real analyticity of the solutions can perhaps be used to provide a partial
answer, but the question is more complex since it is possible that a small
change in the parameters may cause solution non-existence. However, in the
parameter ranges studied in this paper, the numerical calculations performed
do not hint at any discontinuities.

In the next subsection we will see that when z. < 0 then there may
exist more than one conically self-similar free-vortex solution with the same
values of z. , I'. and T'. In the second subsection we will derive formulae
for the two-cell flow solutions, which for given values of z, and T’ allow
us to calculate the angle of the separating cone for the two-cell solutions,
s (= cos ;) in terms of 4" (x.) and vice-versa.

3.1 Nonuniqueness for the 7T-problem when z, < 0.

When z, < 0 the proof of Theorem 1(c) fails in only one step. Clearly, the
failure could be due to a weakness of the method of proof, and uniqueness
could still hold. To get some indication of the validity of this hypothesis we
would like to make some numerical experiments. To perform such experi-
ments, we must have some feeling for what kind of nonuniqueness we could
possibly expect, and it seems that the most likely nonuniqueness is probably
that for the same combination of values of z. < 0, I'; and T there are two
two-cell flow solutions with different values of ;. To begin our search, we
chose z, = —1/ V2 and T', = 30, and various values of x5, and used a numer-
ical algorithm, which is an obvious modification of the one described in [17,
p. 33] to solve our system numerically. For each value of x5 we calculated
the corresponding value of T', and the results are shown in figure 2(a). From
this figure it looks like 7' is monotone function of zs and hence for each
value of T' there corresponds exactly one value of zs. This clearly does not
prove uniqueness, since we have confined our comparisons to a limited set
of functions, but the evidence certainly does not suggest nonuniqueness.
However, to dismiss our failure to prove uniqueness in this case as a
mathematical whim is highly premature, as becomes evident when we repeat
the above procedure for the case ., = —0.15 and I'. = 30. As seen from
figure 2(b), T is no longer a monotone function of x5, and there are several
values of T' for which at least two different solutions exist. For example, in
the case when T' = 0.014 we have one solution with z; ~ 0.915 and one with
zs ~ 0.355. These solutions are presented in figure 3, and were calculated
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Figure 2: The variation of T as a function of 2, when T', = 30 and (a) z. = —1//2
and (b) z. = —0.15.

using the algorithm presented in [16, 17] with the tentative values given
in table 1. A natural question to ask is precisely for what values of the
parameters nonuniqueness occurs, but since it has no real bearing on the
control issues which make up the main theme of this article we refrain from
discussing it, lest this digression should be too long.

zs ~ 0.355 s ~ 0.915

P (1) 10.1979067790 55.4283048307

F (1) | —97.1263271411 | —4393.10503451

I' (1) —3.97582349423 || —80.8505960463

Table 1: The tentative values to be used in the numerical method in [16, 17]
to calculate two different solutions for the case when z. = —0.15, I’ = 30 and
T = 0.014. (The system is very sensitive to these values, and therefore many
decimal places are needed to obtain reasonable precision for the solutions. However,
it is not claimed that these values give the smallest error obtainable with this
number of significant figures.)

These somewhat surprising results for the 1" problem call for a physical
explanation, but first we must understand the physical meaning of 7. In
order to achieve this we may use the formula for the pressure
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Figure 3: Two different numerical solutions which exist for ., = —0.15, T', = 30
and T = 0.014. The solid lines show the solution with z; ~ 0.915 and the dashed
lines show the solution with z, ~ 0.355.

to derive the following formula [21]

1 F' () 2

T= 1o = s (4(e) +9 (@) - (14)

Hence T is directly related to the pressure and the radial velocity at the
conical streamsurface. For the special case when . = 0 it is clear that when
(9) is inserted into the first expression in (13) we find that ¢ (0) = 0 and
thus T is completely determined by the radial velocity distribution on the
planar streamsurface.

As the opening angle of the annular jet in a two-cell flow decreases, i.e.
as xs increases, we know from [17] that, at least asymptotically for large T,
the magnitude of the radial velocity at the bounding streamsurface x = z.
increases, and hence since v, = —v1) /T, " (z.) increases with increasing .

On the other hand, the asymptotic value of the pressure at the bound-
ing streamsurface can be obtained from the asymptotic solutions found by
Shtern & Hussain [17]. (We present the formulae here since there are a couple
of errors in the corresponding formulae in [17], as is seen by the fact that for
the displayed formulae there neither of the equalities ¢; (z5) = g2 (z5) = —¢s0
hold, as was claimed. [These errors as well as the one mentioned later have
been acknowledged by Prof. Shtern in private communication. - This bit in
the square brackets is not intended for publication.])

2 _ _
z (.Ts LEC) T [2IL‘5 21 + .Ts) ch] Te + 0<I‘g) , for J,‘CS.’I)SJ:S
(1 +zs) (1 —zc)” (1 — 22)
. (15)
_r2 (x5 — zc)” + O(PQ) for z;<z<1
C(1+m)(1_$6)2(1_$§) cl s >4
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Hence we have that

d z I
dzs (@) = (14 )2 (1 — )

; (16)

Consequently, ¢ (z.) increases with increasing z; when z, > 0, and it de-
creases with increasing z; when x. < 0. To summarize, we have shown, at
least asymptotically when I'; goes to infinity, that when z. > 0, ¢ (z.) and
@b' (z¢) both increase as z; increases, whereas when z, < 0 they move in
opposite directions as z; changes. This allows us to conclude that T is a
monotone (decreasing) function of zs when z. > 0, but we cannot draw any
such conclusion when z. < 0.

To conclude this section we will say a few words about the numerical
algorithm presented in [24]. In this algorithm one starts with 'y = T',
and essentially one then iteratively calculates Fi, 11, Iy, F5 etc. from the
formulae (3),(2) and (4). In practice the method seems to converge for the
values of z., I'. and T for which a solution exists. (Yih et al. claimed to
have proved convergence when z, > 0, but in [21] it was argued that the
proof is not complete.) Here it is of interest to study the performance of this
algorithm in a case when the solution is not unique. To this end, this method
was implemented for the case mentioned above when z, = —0.15, I'. = 30
and T = 0.014, and it was found that this method seemed to converge
towards the solution with x; = 0.355. Hence, to detect nonuniqueness with
this numerical method one would have to run the algorithm with several
different starting functions I'g. This once again shows the danger of drawing
conclusions about uniqueness exclusively from numerical simulations.

3.2 Asymptotic relations between 1" (z.) and z, for given
values of I'. and z..

In this subsection we assume that I'. and z. are arbitrary but fixed. For
any value of 1 () (recall that this value can be obtained either from the
tangential radial stress or if 2, # 0 from the surface pressure), Theorem 1
tells us that there is at most one conically self-similar free-vortex solution.
If a solution exists for a given value of 9" (z.), Yih et al. [24] established
that it must be of one of the three types mentioned in the introduction.
Consequently, to each of the values of 9" (z.) which gives a two-cell solu-
tion there corresponds a unique value of x;. In control terms this can be
expressed as follows: Suppose that we for given values of z, and I', want to
obtain a particular value of z, and that we have found a value of 1" (z¢)
which gives us this optimal value, then we can be sure that it does not cor-
respond to any other solutions. However, at this point it should be stressed
that we cannot say that this is the only optimal value, since we have not
proved that a conically self-similar solution is uniquely determined by z., I'.
and zs. (Most of the numerical computations in this paper are calculated
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by a method of Shtern & Hussain [17] for which these values are given and
tentative values at z are adjusted to satisfy the boundary conditions at z.
and 1. In the event that uniqueness does not hold in this case the numerical
results below will only be representative for solutions approaching Shtern &
Hussain’s asymptotic solution.)

For any given values of I'., x, and wu (z.) for which a two-cell solution
exists, we can in principle calculate z; numerically. If conversely, I'., z.
and z, are given we can find at least one value of 9" (z.), which will give
such a solution. However, as I, increases the equations become increasingly
singular, and thus we would like to have asymptotic formulae which express
the relation between these quantities in the high-T'. limit. Fortunately, such
formulae can be obtained from the asymptotic analysis of Shtern & Hussain
[17], by substituting their asymptotic expression for F' into (11) to obtain

W (@) = ¢ (z)™ +0(T2) (17)

" al 7 (25 — )
v S T e e o) (19)

Suppose that 9" (z.) ~ 9" (z.)*'. We can then expect z*, obtained by
inverting the formula for ¢” (:vc)al, to yield reasonable approximations for
s in terms of ¢ (z.). Indeed, by simple algebra we have

. xcrz - (1= xc)Q (1+z) ¢” (zc) .

xS 2 ”
T2+ (1—2)" (1+ ) 9" ()

(19)

2 we have that both the nominator

Since q (z,) = —zctp" (z.) and q o< v~

and the denominator in (19) are proportional to »~2. Consequently, the
predicted value of x5 does not depend on v as long as v is small enough
to secure the validity of the asymptotic approximation. Hence this formula
exhibits Reynolds number invariance for large Reynolds numbers.

To study the speed of convergence towards these asymptotic formulae
numerical computations were performed for several values of s and I'., and
some of these results are presented in figure 4. From this figure we see
that even when I', = 300 the approximations differ from the true values by
more than 15%, and thus it is evident that in this case much higher values
of I'. than 300 are needed to obtain reasonable accuracy for the asymptotic
formulae. Yet when I', = 300, z. = —0.15 and z; is not too small, say larger
than 0.3, the conically self-similar solutions are close to the asymptotic ones
for most of the domain [z, 1]. Specifically, I is very close to the asymptotic
function

(20)

r— r., forz,<z<x;
0, forz; <z<1

which makes numerical computations rather difficult for larger values of ...
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¥ (zo)!
r?

Figure 4: A comparison between (a) and (b) z* and their respective true

values given by (a) % and (b) zs. In (a) the solid line shows %;)al and the

dashed lines represents the, numerically computed, true values of ¥ 1“(296 2 In (b) the

solid line shows a line through the origin with slope 1, i.e. an ideal prédiction curve,
and the dashed lines show the values of z} obtained for the numerically computed
values of ¢ (z.). In all numerical computations z. = —0.15 and T', = 150 (dashed
curves) or I'. = 300 (dot-dashed curves).

In order to derive more accurate formulae, we must understand where
the discrepancies in figure 4 arise. HEssentially, Shtern & Hussain’s asymp-
totic analysis starts by assuming that T' is given by the asymptotic function
above. This function is then used to calculate F', to which we can add an
arbitrary term of the form C (1 — z)? for any C. This term gives rise to a
corresponding arbitrary term for 4" (z.) given by —2C/ (1 + x.), and hence
the determination of this value is very important for the present analysis.
No matter how C is chosen though, F' is given by second degree polynomials
in each of the domains [z.,z;] and [zs,1]. In order to obtain the solutions
of highest order in I'. Shtern & Hussain now removed the linear terms in
(2) and calculated  from F' by simple algebraic operations, and they then
chose C in such a way that the boundary condition % (z.) = 0 could be
satisfied. It seems that the lack of accuracy of this choice is the main cause
of the shortcomings of the formulae we presented above.

As a consequence of their choice of C', Shtern & Hussain could not sat-
isfy the condition 1 (z5) = 0, even though it was assumed to hold in the
beginning of the analysis. This and other shortcomings were then remedied
by using inner solutions around x; and z.. However, the inner solutions
in [17] are not directly applicable in our case since they assume that F is
constant in the boundary layer around x = z., which yields no correction
to F' (z,) or 9" (zc).

Instead of introducing more complex inner solutions, a different approach

14



will be used to obtain formulae valid in the entire domain. To this end, we
will assume that I' is given by the asymptotic function above, but apart
from that no other assumption will be made, and all boundary conditions
will be satisfied. Just like in Shtern & Hussain’s analysis we find that F' is
given by second order polynomials in each of the domains [z., z;] and [z, 1],
both of which have an arbitrary term C (1 — z)? where for convenience we
define C' in such a way that for C = 0 we obtain the same functions that
Shtern & Hussain used. For given values of z., I'. and x5, our problem is
now to find a C such that both of the boundary value problems

(

(1= %) 1 + 2091 — 52 = 1
Fi=T2{~ (@ —z)p1 (2) + C (1 - 2)°

2z, — (1 +z5)ze — (1 + 75 — 22.)
2 (1 + xs) (1 — J,‘C)2
\ @bl (IEC) =0, "/)1 (175) =0.

( / 1
(1 - %) o + 2090 — 03 = Fo

— T, 2
| B=T2(1-2) {_2(1 E36:1:2) (1 )— v C} "

\ Yo (z5) =0, t2(1)=0.

have bounded solutions, i.e. we have an eigenvalue problem. It can be
seen that there exists some C* such that the second of the boundary value
problems can be solved for any C' < C*. This follows from the fact that it is
solved by a Squire-Potsch solution (see e.g. [13] or [21]). Hence, we must only
solve the first eigenvalue problem. In fact we can find an exact solution to the
first problem as well, but this solution is given by a complicated expression
involving hypergeometric functions (see e.g. [23] or [12]) and hence C will
be defined implicitly in terms of these functions. This, however, offers little
insight into the problem, and numerically it is not easier to calculate the
hypergeometric functions than to solve our original system. An alternative
approach is to make the substitution ¢ = —2 (1 — 2?) U’ /U which yields

p1(z) =

2(1—2z?) 2(1+x)

U, (23)

with the boundary conditions U (z.) = U’ (z,) = 0, and the additional
condition that U # 0 for z € [z, xs]. This is a Sturm-Liouville problem
and hence we know that there exists an increasing sequence of non-negative
eigenvalues, C;, i=0,1,2,... such that for C = C; (23) has an eigenfunction
with i zeros in [z, zs]. The solution we are after is clearly the one with no ze-
ros, which corresponds to the lowest eigenvalue C' = Cjy. For Sturm-Liouville

15



problems there are several algorithms to facilitate numerical computation of
the eigenvalues and eigenfunctions. Consequently, we can for given values of
T, z. and =, compute a correction term to 9" (z.)*', which would greatly
improve the accuracy of this estimate. However, with no analytical expres-
sion at hand we are at a loss in trying to invert the formula to obtain a more
accurate formula for z% in terms of I';, z. and e (z¢).

We may easily obtain an upper bound for Cy. To do this notice that
if a bounded function U satisfies the boundary conditions then elementary
calculus tells us that U must change sign somewhere strictly between
and z,. Hence (23) implies that at this point either U = 0 or w = 0 where

_ ¢ (z-z)m(z)
v = i 20w 29

However, we have required that U # 0 and thus there must be a point
strictly between x. and z; where w = 0. It is easily seen that this requires
that 0 < C < CT where

t_ (375 — -'EC)2
201 —22) (1 —z,)*

(25)

Since the zeros of w are zeros of a second degree polynomial, it is easily seen
by studying the signs of w at z. and z, that it must have precisely one first
order zero, z; in the domain [z, zs]. Hence we want to solve

U' +T?w(z)U =0, (26)

in [z, zs] where w has a first order zero at x = x4, and is non-zero elsewhere.
This problem is known as a second order ordinary differential equation with
a (first-order) turning (transition) point.

Fortunately, the asymptotic solution for this problem is well known (see
e.g. [1, p-451]) and is given by

2 2
U% (z) = adi (_rgg (m)) + bBi (—rgg (x)) (27)
where Ai and Bi are the Airy functions of the first and second kind respec-

tively and & satisfies \
dé\*
§<%> —w(z) . (28)

A straightforward calculation yields the following expression for &

2
.2
305 w(2)2 dz]® , forze <z <am.

¢ () =

Wl

~[BEwEie]’ fora<a<a,.
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Let & = £ (z.) and & = € (z5). The function
V (€) = adi (—1‘? g) +bBi (—I‘c% g) (30)

has an infinite number of positive zeros, and hence, since &, > 0, it will have
zeros for 0 < ¢ < ¢, when I, is large enough unless we make sure that

2
—T¥ > m (31)

holds for all values of I'., where a; denotes the first zero of V.

However, if we satisfy (31) there must be a negative £* such that & < &*
for all values of I'.. Consequently, the asymptotic formulae for the Airy
functions (see e.g. [1]) yield that

Bi' (-1“555)
Az"(——f‘cggs) =0 (exp <2 (=€)

Hence, the condition U’ (z,) = 0 implies that % =0 (exp (—2 (—{s)% I‘C)).
However, for negative z, Ai(z) and Bi (z) are of the same order of magni-
tude, and hence the condition U’ (z.) = 0 is asymptotically satisfied if

[M[°H)

rc)) . (32)

2 .
Péée=—a (33)

where o ~ —1.01879297 is the first zero of A .
To calculate ¢, we make a change of variables in (29) to obtain

2
3 1 1 3
b= |5 @ =20 [ wiee+ @ —zdniay]” . (34)
Suppose that limp,_, z; = =* # z.. In this case (34) implies that £, — £* #
_2
0, but according to (33) & = O (Fc 3) which is a contradiction. We have
thus established that limr, _, ¢ = z.. To obtain an asymptotic expression

for zi, we now make asymptotic expansions in T'c ? of z; and C:
_2
zy = Tet+xple?® +--- (35)
_2
C = Co+CiI'c3+--- (36)

where the dots denote terms of higher order. First, recall that z; was the
zero of w in [z, z5] which is clearly determined by C. By substituting (36)
into w () = 0 and identifying terms we obtain the relations

Co = 0 (37)
Ci (1 —z.)?

= A% (38)

Tt1
! p1(zc)
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If we use (38) and Taylor’s formula we obtain the following asymptotic
formula

w(wc—i-(wt—wc)y):ﬁfc%(l—y)ﬁ—O(Fc%) o (39)

After an additional application of Taylor’s formula and integration this yields

¢f = 2%215(;16)_(13”_6:;;01 (1 +0 (rc §)> . (40)

Finally, when this is compared with (33) we obtain the following condition
for C;

G = 2 (o)) (M) 3 o

(l—xc)2
25 (-01) (@, — o) (1420 B
B (1—xc)2< 1+ zg ) ' (42)

For our purposes, i.e. calculation of 9 (z.), knowledge of C; suffices,
but it should be remarked that a somewhat more careful analysis is needed
to obtain the eigenfunction U with such accuracy that we obtain a good
approximation for ). However, if this is done this solution together with
the Squire-Potsch solution in [z4,1] yields an asymptotic solution which
contains both the inner solutions and the outer solutions of the asymptotic
analysis in [17]. The inner solutions are a bit different, however, since our
analysis allows F' to vary in the boundary layers, which is not allowed in
Shtern & Hussain’s analysis. Finally, it should be remarked that neither
of the two approaches take into account any effects of the variations of the
circulation near x = x;.

We now have the following refined asymptotic approximation for " (zc)

- 7 (e 25 (—on) (14 20)%)
L (e K Ee w

f(z,a) = T+ azs . (44)

In fact, the formula (43) can be inverted explicitly. To that end, let
z=(1—-2)*(1+2z)9¢" (z.) and let f~' (z,a) denote inverse function of
f (z,a) with respect to . We then have that

o= chPg - f_l (2,a)
O TZ+ [l (z0)

(45)
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3" ()72

Figure 5: A comparison between *—%— (the solid lines) and true values of ¥ F(f e)
(the dashed lines) obtained numerically. In all numerical computations z. = —0.15,

in (a) ', = 150 and in (b) ', = 300.

but using Cardano’s formula we can calculate f ! (z,a) explicitly to obtain
TN N
-1 Y B Z_% _
7 (z,a0) = 3+<2 27+D> +<2 o7 D) (46)

where )
22 a3z\?
D=|——— ] 4
(4 27 ) (47)

(There are two other inverse formulae, but these are complex and hence of
no interest here.)

In figures 5 and 6, the corrected asymptotic formulae (43) and (45) are
compared with numerically obtained true values. These figures show that
unless ¢ is small then the refined asymptotic formulae are accurate within
a few per cent even for I'; = 150. This is clearly a significant improvement
compared to the situation presented in figure 4. Nevertheless, it is still true
that for sufficiently large I'. the highest order formulae, which were presented
in the beginning of this subsection, are still valid, as is the conclusion of the
Reynolds number invariance of z* and z! for sufficiently large Reynolds
numbers.

When z; is small the refined asymptotic formulae are no longer as accu-
rate, but this is due to the fact that I' is no longer close to the asymptotic
function as we have assumed it to be. This, however, means that the system
is fairly simple to solve numerically, so we may obtain relations between
zs and 1" (z.) that way. Indeed, it seems to be a general fact that the
refined asymptotic formulae are accurate whenever numerical solutions are
not readily available. Hence, if the approaches are combined we can for any
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Figure 6: A comparison between z! (the solid lines) calculated from numerically
obtained values of 1) (z.) and the ideal curve given by a straight line through the
origin with slope 1 (the dashed lines). In all numerical computations z. = —0.15,
in (a) I, = 150 and in (b) I, = 300.

I'c and z. obtain the relations between z,; and zp" (z.), which are accurate
to within a few per cent. Hence, we can with reasonable accuracy determine
the angle of the separating cone in a two-cell flow solution, exclusively from
knowledge of the flow at the bounding streamsurface. This means that we
have solved our control problem.

Before concluding this section it should be said that we could equally
well have derived formulae relating ¥’ (z.) and z; to one another. Indeed,
from the calculations above we easily find that

du- S (e ()

which we can easily invert. This is exactly the same solution as the one
obtained in [17](except for a slight inaccuracy in their formula), but with
the additional bonus that we have shown that their1 constant 1.2836 obtained
numerically, is nothing but an approximation of 23 (—a’l), which shows the
mathematical origin of the constant.

There is, however, an important difference between the formulae ob-
tained when using ¢’ (z.) and those obtained using ¥ (z.), namely that in
the former case the asymptotically leading terms come from the boundary
layer around & = x. whereas in the latter case they come from the outer
solution. Hence we can expect that formulae using 1 (z.) are more sensitive
to exact nature of the boundary layer.
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4 Proof of Theorem 1

This section will be entirely devoted to proving Theorem 1, and we will
begin by stating some known auxiliary results.
4.1 Some auxiliary results
The auxiliary function F' in (3) was originally introduced by Goldshtik [6].
It was integrated once by Sozou [19] to yield

(1-2?) F' +22F —2F =T? + K , (49)

where K is a constant. From the conditions (5) and (7) we have that

lim (1-42)F =K. (50)

z—1~

If K is positive there must be a positive number € such that in some neigh-
bourhood of z = 1 we have that

€

F 51
> 1= (51)
which contradicts the condition F’ (1) = 0. If K is negative, an analogous
argument holds, and hence K = 0, which shows that in this case we may
replace (3) with

(1-22) F' +22F —2F =T?. (52)

The major technical tool needed to prove Theorem 1 is the following
result proved in [22]

Theorem 2 (Real Analyticity)

For any solution to (2),(4) and (52) with z. # —1 such that 1 € C* ([z,1]),
F € C?([z¢,1]) and T € C?[(z.,1]), and which satisfies the boundary condi-
tions (5)-(9), there exists a domain 2 C C which contains [z.,1) as well as
a ball B (1,r) for some r > 0, such that 1, F and I" in fact belong to A (Q).
Here A (®) denotes the class of analytic (holomorphic) functions in ®, and
B (a,r) is the disc in the complex plane with centre at a and radius r.

In addition we will on some occasions use the simple observation that
since 1) is real analytic and satisfies (5) and (6) we may integrate (4) to
obtain

T (z) =T (z.)exp ( F ) dz) . (53)

ze 1 — 22

From this it is evident that I is monotonous in [z., 1] and thus if T (z,) =
T, > 0 and T'(1) = 0 it is clear that T is negative in [z, 1] and hence that
I is positive in [z, 1].
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4.2 The proof of the theorem

To begin with, let us transform our equations to the form used by for example
Serrin [15] and Yih et al. [24]. To this end let us make the substitutions

@) =g 2@ = G —-FHF@ . oY
to obtain the system
! 2 _ E 2 G (z)
Fort = (3) Goap (59)
(1-2%)G" + 226 —26 = —20%, (56)
Q' 1219 = 0. (57)

We remark that f is real analytic, because of (5)-(6) and the real analyticity
of 1. The equation (56) can be integrated to obtain

m—l—T(l—x)Q . (58)

If a solution to (55)-(57) satisfies the boundary conditions

T 2 1 2
G =202 [ e [ L
ve (1 12) ,

f(IEC) = 07 (59)
Tim |f ()] < oo, lim |(1-2)f (2) <oo, (60)
Q) = 1, Q1) =0. (61)

then the boundary conditions for our original problem (5)-(9) are satisfied.
Furthermore, we must transform our additional conditions to this form. In
case (a) we specified ¢’ (z.), but the definition of f tells us that once z. is
fixed this is equivalent to specifying f (z.). However, from (55) it follows
that if in addition I'; is given, this in turn implies that we have fixed G (z.)
in case (a). In case (b) where we fix 9" (z.) we must proceed differently.
Now we differentiate (2) to obtain

(1 - m2) W A2 -y =F | (62)

Thus, if we fix 9" (z.) and z. we have also fixed F' (z.), which means that
if, in addition, we are given the value of T, we have specified G (z.). (It is
not true that we have fixed f" (z.) though.) For the case (c) we specify T in
(58), which can be interpreted as a boundary condition, by differentiating
this equation twice to obtain

" Q2
G (2) = 2T — 27—

z  $0?
+4/ —dt 63
ze (1—12)2 (63)
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which implies that G" (z.) (= 2T — 2/ (1 — z2)) is fixed if T and = is. From
(56) we find that this in turn implies that the quantity z.G (o) — G (me) is
given.

Proof of Theorem 1

To prove Theorem 1 we will assume that there are two conically self-
similar free-vortex solutions having the same values of z., I', and either (a)
G (z.) or (b) G’ (z.) or (c¢) T, and form their differences. We will then show
that the difference of the two Q’s must have an infinite number of zeros in
the compact interval [z., 1], and hence that the set of zeros must have a limit
point. However, Theorem 2 tells us that a conically self-similar free-vortex
solution to the Navier-Stokes equations is real analytic, and consequently
the difference of two such solutions is also real analytic. Therefore the
uniqueness theorem for real analytic functions implies that the two 2’s must
me the same, which in turn implies that the two G’s and the two f’s must
coincide.

To begin our analysis, let us fix the values of z., I'; and (a) G (z.) or
(b) G’ (z.) or (c) T and assume that we have two solutions (f,G1,:) and
(f2,G2,9s) to our problem. Let us define

F=fi—fo, G=G1—Ga, W= -0y, T=T1-T, (64

where T7 and T, are the values of T' of the two different solutions, which
are the same in case (c) but not necessarily in the other two cases. These
quantities clearly satisfy

, r.\> ¢
F F=|—=w) —= 65
+ D F=(3) g (63
_ e [T+ Q)W
G = 2(1—2) /x T
1 (Ql + QQ) W 2
2 = —dt 1-
+ x/w G T (66)
W' (it )W + (2 +0Q5) F =0 (67)
as well as the boundary conditions
Flze) = 0 (68)
W(z.) = W(1)=0 (69)
G = g@=o0. (70)
In addition to these boundary conditions we have that
G(z.) = 0, for case (a), (71)
G (z) = 0, for case (b), (72)
G (z.) = 0, for case (c). (73)
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For case (c) we could equivalently have expressed this as
xcgl (zc) = G (xc) (74)

and for case (a) we could equivalently have used the condition

/

F (2)=0. (75)

Now let Z (W) denote the number of zeros of W in the open interval
(¢, 1), and let us analogously define Z (G) and Z (F). The key element of
this proof is the establishment of the following proposition.

Proposition 1 For cases (a) and (b), and if z. > 0 for case (c) as well,
Z (W) cannot be finite.

Let us for a moment assume that this proposition has been proven. This
implies that the set of zeros for W must have a limit point in [z.,1]. Let A
denote the (thus non-empty) set of limit points of this set. Trivially A must
be closed in [z, 1]. On the other hand, Theorem 2 establishes that both
Q2 and Q2 and hence W are real analytic in [z.,1]. Since a real analytic
function is given by its Taylor series the function is either identically zero on
the component or there exists a punctured neighbourhood around each zero
where the function is non-zero. Thus every point ¢ € A is in the interior
of A and hence A is open. Since [z, 1] is connected and A is nonempty we
must thus have that A = [z, 1], which is equivalent to saying that W = 0.

If W = 0 it immediately follows from (66) and (71)-(73) that G = 0.
When this is substituted into (65) we obtain

F@yexn ([ KACERAO) at)=C. (76)

However, the condition F (z.) = 0 requires that C' = 0 and thus that F =
0. This concludes the proof of the theorem, provided that we can prove
Proposition 1. qed

The basic idea in the proof of Proposition 1 is to assume that Z (W) = n,
where n is an arbitrary non-negative integer, and then to use properties of
our system to show that this implies that Z (W) > n + 1, which establishes
the proposition by contradiction. However, zeros of even multiplicity where
W does not change sign will cause difficulties for our argument, and therefore
we will only consider zeros of odd multiplicity where W does change sign. We
will denote the number of zeros of odd multiplicity of W in the open interval
(¢, 1) by Oz (W), and the same notation will be used for other functions
than W. Of course Z (W) > Oz (W) and thus proving that Oz (W) cannot
be finite establishes the same conclusion for Z (W).

The tool we will use most frequently is a simple fact in calculus, which
is often termed Rolle’s theorem, and which tells us that if a continuously
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differentiable function h is zero at two points a and b (the multiplicity of the
zeros is immaterial) then either its derivative changes sign at some zero of
odd multiplicity, strictly between a and b, or h = 0. If the second alternative
would hold anywhere in our subsequent argument we could immediately
conclude that the concerned function would be identically zero, by invoking
the uniqueness theorem for real analytic functions. This would immediately
establish our theorem, and therefore for reasons of brevity this possibility
will not be mentioned when Rolle’s theorem is invoked below.

It turns out that one of the most difficult tasks of the proof is to get a
lower bound of Oz (W) in terms of Oz (G). To accomplish this we introduce
the auxiliary function

g
H=—" 77
(1— x)2 (77)
which is similar to the one used by Yih et al.[24]. However, we will only be
concerned with its derivative
, (1—-2)G +2

= 1=2)G +26 (78)

(1—2)

In fact we can now prove the following lemma.

Lemma 1 If F, G and W satisfy (65)-(70) and H is as in (78) we have
the following inequalities

0z(G)>0z(F)>0z(W) >0z (H) (79)

Proof The inequalities will be proved one at a time.

1. Since F(z.) = 0 we have that F has at least Oz (F) + 1 zeros in
[zc,1). Hence to prove the first inequality in Lemma 1 it suffices to
prove that G changes sign at least once strictly between adjacent zeros
of F. Suppose to the contrary that there are two points x; and z9
such that F (z1) = F (z2) = 0, and such that G > 0 in (z1,z9) with
equality at, at most, a finite number of points. (If G < 0 we may of
course interchange the role of the two solutions making it up.) If we
now apply a Riccati transform to f; = U;/U; and to fo = U,/Us in
(64) the equation (55) becomes

" Fg G (z
S e o
" z Go (z
s < e
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where U, (1) = 0 for i = 1,2. Since both f; and f, are real ana-
lytic, and hence non-singular, U; (z) # 0 for ¢ = 1,2 and z € [z1, 1].
Therefore by Sturm’s second comparison theorem, see for example [8,
p- 229], we have that

U, U
f1——1>—2

~F b (52)

when z € (z1,1]. This contradicts the assumption that F (z2) =
fi(xz2) — fo(z2) = 0. Hence G must change sign between adjacent
zeros of F, and thus we have that

02(G) 2 Z(F) 2 Oz (F) (83)
which establishes the first inequality in Lemma 1.

. Since W (z.) = W (1) = 0, Rolle’s theorem implies that

07 (W) >0,W)+1. (84)

At zeros of multiplicity one of W' equation (67) becomes
W' =— (2, +0,) F. (85)

In the last paragraph of the previous subsection we showed that Qll <0
and €, < 0 in [z, 1]. Hence the coefficient in front of F in (85) is pos-
itive at every single zero of W', and hence F has the same sign as w'.
More generally, at zeros of odd multiplicity p of W' we have that W'
has a zero of even multiplicity p — 1 at that point. Equation (67) and
the above remark that the coefficient in front of F is positive together
imply that F has a zero of even multiplicity p—1 at that point. There-
fore F and W' do not change sign at zeros of odd multiplicity of W',
and hence we may take a sufficiently small punctured neighbourhood
around each of these zeros in which F has constant sign, which is the
same as that of W in that neighbourhood. Now, from elementary
calculus we know that W" (and hence F) must have different signs
in sufficiently small punctured neighbourhoods around adjacent zeros
of odd multiplicity of W'. Consequently, F must change sign at some
point in between adjacent zeros of odd multiplicity of W', and hence

Oz (F)

v

0z (W) 1 (86)
> Oz (W) , (87)

which establishes the second inequality in Lemma 1.
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3.

qed

If we use (66) we can obtain the following expression for H

T+ Q)W

o= [T
v o _"“’W / ' (Qh*:glwdtjw (88)
and hence we have for '
H (z) = 2%1{(@ (89)
K(z) — /:%dt. (90)

Since the coefficient in front of K in (89) is positive for all z € (—1,1),
we have that

Oz (K) =0z (H). (91)
Furthermore, K (1) = 0 and thus by Rolle’s theorem
07 (K') > 07 (K). (92)
However, we have that
, 014+ Q
K (z)= - Sut )W (93)
(1+z)

where the coefficient in front of W is negative in all of [z, 1). Conse-
quently,

0z (W) = 0 (K') (94)
> Oz (K) (95)
= 07 (#) , (96)

which concludes the proof of the lemma.

We now have the tools we need to prove Proposition 1.
Proof of Proposition 1
Assume that

Oz (W) =n (97)

where n is an arbitrary positive integer. We will now establish that

0y (H) >n+1. (98)
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From the first two inequalities in Lemma 1 we obtain that
0z(G)>0z(F)>n (99)

and in a right neighbourhood of each zero of odd multiplicity of G, G and
G have the same sign, which is the opposite of the sign they have at the
adjacent zeros of odd multiplicity of G. Hence, (78) implies that H changes
sign at least once between adjacent zeros of odd multiplicity of G. This
establishes that

Oz (H)=n-1, (100)

and thus we must find two more zeros. To this end let z; and z, denote
the left- and the rightmost of the zeros of odd multiplicity of G in the open
interval (z.,1). Remember that the zeros found so far are located strictly
between x; and z,. Our next task will be to prove that #H' has at least n
zeros of odd multiplicity in the semi-open interval (z;, 1).

If we do not have equality in both of the first two inequalities in Lemma,
1 we know that G has at least n + 1 zeros of odd multiplicity in (z, 1),
and consequently H has at least n zeros of odd multiplicity in the open
interval (z;,1). Therefore, we may assume that equality holds in two first
inequalities in Lemma 1, i.e. that

0(G)=0z(F)=n. (101)

Let g denote the sign of W in a right neighbourhood of z.. From the proof
of the second inequality in Lemma 1 we find that for this inequality to be an
equality it is required that in a sufficiently small punctured neighbourhood of
the leftmost zero of odd multiplicity of W' we must have that sign (F) = —q.
Furthermore, the proof of the second inequality in Lemma 1 also tells us that
equality can only occur if F has constant sign to the left of the leftmost zero
of odd multiplicity of W'. This in turn implies that sign (F) = —q in a right
neighbourhood of z.. Together with Sturm’s second comparison theorem
this implies that sign (G) = —¢q in a right neighbourhood of z.. Thus (101)
tell us that sign (G (z)) = (—=1)"' ¢ for all z € (z,,1). Hence

() = (-1)""q (102)

7

stgn (7—[

for z in some right neighbourhood of z,, since G and G' have the same sign
in a sufficiently small right neighbourhood of a zero of odd multiplicity of

g.

On the other hand, successive applications of 'Hospital’s rule yield

(1-2)G +26

lim = i 1
S @) = Im (103)
_ ¢ 6(1) : (104)



From (3) we find that

R R

However, from the discussion in the last paragraph of the previous subsection
we know that Q1 > 0 and Q9 > 0 which implies that the sign of (%) — (03)
is the same as the sign of W. Furthermore, both (Q2) — (Q2%) and W are
zero at 1, and hence

sign | (92) (2) = () (0)] = —sign (9% (x) ~ 95 (2) = ~sign OW (@)
(106)
in some left neighbourhood of 1. However, by definition we have that

(=1)"q. (107)

in this neighbourhood. To summarize, for z in some left neighbourhood of
1 we have that
(=) (108)

sign (?—[’ (a:)) = sign (g
— _sign [(Q%) (z) — () (x)] (109)
= sign (W (z)) (110)
= (-1)"¢q (111)
A comparison between (102) and (111) tells us that A changes sign
somewhere between x, and 1. Hence we have our additional zero, and we

have proved that H has at least n zeros of odd multiplicity in the open
interval (z;,1).

sign (W (z))

n

So far our analysis has been the same for all three of our cases, but now
will use different methods to establish that for each of the three cases there
is a zero of odd multiplicity of H in the open interval (e, ). We will
establish this for the three cases one at a time.

1. Case (a). We now know that G (z.) = G (z;) = 0, and that G does
not change sign in (z.,z;) (though we cannot rule out the possibility
of there being zeros of even multiplicity in the interval). Hence since
G is real analytic elementary calculus tells us that G' has different
signs in a right neighbourhood ofz,. and in a left neighbourhood of z;.
Furthermore, the multiplicity of a zero of G' at z. or z; is one order
lower than the corresponding multiplicity of the zeros of G at these
points. Hence (78) implies that 7 has the same sign as G in these
neighbourhoods. Thus if  belongs to a right neighbourhood of z. and
y to a left neighbourhood of z; we have that

! !

sign (7-{ (w)) = sign (Q’ (:v)) (112)
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= —sign (¢ (v)) (113)
= —sign (’H' (y)) . (114)

Consequently, 7 changes sign in (¢, ;). This concludes our task in
case (a).

. Case (b). We now know that G’ (z.) = G (x;) = 0. If in addition,
G (z.) = 0 then we can apply the argument in Case (a), so we may
assume that G (z.) # 0. Hence, sign (7—[’ (xc)) = sign (G (z¢)). In
addition, we know that the sign of G remains unchanged until z;.
Furthermore, in a left neighbourhood of z; we know that the sign of
G is the opposite to that of G. Since the multiplicity of a zero of G at
x; is one order lower than the corresponding multiplicity of the zero of
G at this point, it is clear from (78) that % has the same sign as G in
this neighbourhood. Let therefore y be a point in a left neighbourhood
of x;, we then have

sign (7—[’ (zc)) = sign (G (z.)) (115)
= sign (G (y)) (116)

= —sign (g' (y)) (117)

(118)

7

= —sign (7—[ (y)) . 118

Consequently, H must change sign in the interval (z., ;) in this case
as well.

. Case (c). In this case we will use the fact that

2.G (zc) = G (x) (119)

If . = 0 then this implies that G (z,) = 0 which means that for this
value of z., Case (c) coincides with the already treated Case (a). Let
us therefore assume that z, > 0, and substitution (119) into (78) in
order to show that in this case

, (1+2.)G (z) _

H (z.) = 10—z (120)

If G = 0 we have Case (b) above, and we may therefore assume that
this is not the case. Hence we have that

sign (”H’ (:vc)) = sign (g' (a:c)) . (121)

By an argument entirely analogous to that in the previous two cases
we find that for y in a left neighbourhood of z;

sign (7-[’ (y)) = sign (g' (y)) . (122)
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Now since z, > 0, (119) implies that

(2e)) = sign (G (zc)) - (123)

stgn (g’
Therefore, since G (z;) = 0 to be zero, the sign of G in a left neigh-

bourhood of z; must be the opposite of that of G (z.) and consequently
to that of G (z.). This implies that for y in a left neighbourhood of z;

sign (7-[’ (xc)) = sign (g’ (:vc)) (124)
= sign (G (z.)) (125)
= sign (G (y)) (126)
= —sign (¢ (v)) (127)
= —sign (7—[, (y)) , (128)

which proves that 7 must have a zero in (z., z;). (Note that if . < 0
then the second and all subsequent inequalities above are inverted and
hence we cannot establish that  must have a zero of odd multiplicity
in (x.,2;). This is the only step of the proof which fails in this case.)

We have thus established that for all our three cases H has at least one zero
of odd multiplicity in (z,z;), in addition to the at least n such zeros we
had already shown that it had in the disjoint interval (z;,1). To summarize
we proved that

Oz (H)>n+1. (129)

However, if we use the third inequality in Lemma, 1 this tells us that
Oz (W) >0z (H) >n+1 (130)

which clearly contradicts (97) for any finite n. This concludes the proof of
the proposition for n > 1.

When n = 0 is almost the same. Indeed, in this case we know that
sign (W) = q in the entire interval (z., 1) except at a finite number of points
where W have zeros of even multiplicity. By exactly the same argument as
for n > 1 we have that for z in some left neighbourhood of 1 we have that

(a:)) = sign(g (a:)) (131)

! n

sign (H

= —sign [(Q%)’ (z) — (Q%), (:L‘)] (132)

= sign (W (z)) (133)

= (-1)"q. (134)

In addition, we know that W must have at least one zero, and just like
above we know that either 7 = —q in a punctured neighbourhood of this
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point or F must have a zero. In the latter case G must have a zero in [z, 1]
and in the former case either F has constant sign throughout the interval,
or G has a zero. If G has a zero, x; the same arguments as for n > 1 may be
used for each of the cases (a)-(c) to assure that H has a zero in (z.,;).On
the other hand, if F has constant sign, then for 4 in a right neighbourhood
of . we must have that sign (F (y)) = —¢, and hence by Sturm’s second
comparison theorem it follows that sign(G (y)) = —¢q. In Case (b), this
immediately implies that

sign (7—[’ (y)) =—q. (135)
For Cases (a) and (c) the same conclusion holds, since in both cases G and G’
have the same sign in a right neighbourhood of z.. For Case (a) this is due
to the fact that z. is a zero of G and that any continuously differentiable
function has the same sign as its derivative in a sufficiently small right
neighbourhood of a zero. For Case (c) this is a direct consequence of (119)
when z. > 0, and when z. = 0 Cases (¢) and (a) coincide.

Hence, we have shown that either G and hence # has a zero in (z,1)
or both of (134) and (135) must hold. From this it is evident that % must
have at least one zero in (z.,1). Now the final inequality of Lemma 1 implies
that Oz (W) > 1. This concludes the proof of the proposition.

qed

5 Conclusion

The uniqueness result proved in this article tells us that within the class of
conically self-similar free-vortex solutions a solution is uniquely determined
by the opening angle of the bounding conical streamsurface, as well as the
circulation and the radial velocity thereon. It is also shown that instead of
the radial velocity we may take the surface radial tangential stress or the
surface pressure as a parameter. These combinations of parameters can thus
be used to control a conically self-similar free-vortex solution in terms of its
properties at the bounding streamsurface only. Specifically, it is possible to
control the opening angle of the separating cone in a two-cell flow in terms
of these parameters.

In this paper, explicit formulae have been derived in the high I'.-limit,
which interrelate the opening angle of the separating cone in a two-cell flow
and either of the surface radial tangential stress or the surface pressure for
given values of the opening angle of the bounding streamsurface and the
circulation thereon. One striking feature of these formulae is that they
show that the value of the opening angle of the separating cone in a two-
cell flow is independent of the value of the viscosity when it is low enough,
i.e. we have Reynolds number invariance for high Reynolds numbers. Some
numerical checks have been performed, which show that whereas the lowest
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order formulae required high values of I'; to reach the asymptotic regime,
the refined versions of the formulae are valid to within a few per cent even
for moderate values of T'...

The uniqueness question for the problem of Yih et al. [24] has been re-
solved with surprising results. For flows within a cone (z. > 0) a uniqueness
result is proven, which assures that no more than one solution can occur.
For external flows (z. < 0) this situation is different. Indeed, a specific
case has been found numerically where at least two solutions exist. This
striking property has been given a physical explanation based on a recent
deciphering of the exact physical meaning of the problem itself.
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