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Abstract. Consider the sequences {X;}{", and {¥;}7_; of independent random vari-
ables, which take values in a finite alphabet, and assume that the variables X1, Xo,...
and Y1,Ys,... follow the distributions x4 and v, respectively. Two variables X; and Y;
are said to match if X; = Y;. Let the number of matching subsequences of length k
between the two sequences, when r, 0 < r < k, mismatches are allowed, be denoted by
w.

In this paper we use Stein’s method to bound the total variation distance between the
distribution of W and a suitably chosen compound Poisson distribution. To derive rates
of convergence, the case where E[W] stays bounded away from infinity, and the case
where E[W] — oo as m,n — oo, have to be treated separately. Under the assumption
that Inn/In(mn) — p € (0,1), we give conditions on the rate at which k¥ — oo, and on
the distributions 1 and v, for which the variation distance tends to zero.
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1 Introduction

Assume that {X;}[?; and {Y;}}_, are sequences of independent random variables taking
values in a finite alphabet A. Let {X;} and {Y}} follow the distributions x and v,
respectively, and let

p=P(X;=Y)) =) P(X;=Y;=a)
acA

be the probability of a 'match’ between X; and Y}, 4,5 > 1. In this paper we will
study the distribution of the number of 'nearly matching’ consecutive subsequences of
a certain length between {X;}]”; and {Y;}7_;, where 'nearly matching’ means that a
number of mismatches is allowed.

Fix k and r, where 1 < k < min{m,n}, and 0 <r < k, and let

k-1
L = W) YXipu=Yju}=k—r}h (1.1)
=0

Then I;; = 1 when there are exactly k — r matches and r mismatches between the
subsequences X;,...,X; 51 and Y},...,Y; x_1. To avoid edge effects, we treat the



sequences as ’circles’, and let X,,,+; and X_,,1; be identified with X;, and similarly let
Y,y and Y, ; be identified with Y}, where 1 <4 < m, 1 < 5 < n. The number of
matching subsequences of length k with » mismatches can then be written as

W = Z I;;, (1.2)

(i,j)er

where I' = {(i,7) : 1 <i<m,1 < j<n}.

There is an extensive literature on various sequence matching problems. This is
motivated for instance by the interest in molecular biology to compare DNA, RNA or
protein sequences with the purpose of finding similarities which cannot be explained by
chance. A variable which has received particular attention is the length of the longest
matching subsequence with at most 7 mismatches, r > 0, between {X;}]*; and {Y;}]_;:
M = max{k : Zf:_ol Xt = Y4} > k —r, for some 4,j}. Analogues of the strong
law of large numbers for M are given in Arratia and Waterman (1985, 1989).

Since W is a sum of indicators it might seem reasonable to approximate W by a
Poisson variable, if p is small. However, since there is a strong dependence between
indicators for overlapping subsequences, the matching subsequences tend to occur in
clumps. In particular, if I;; = 1 then the probability is high that also I;_;; ; = 1
or I;1; 41 = 1, 1 < k, especially if r > 0. Therefore 'usual’ Poisson approximation
to the total number of matching subsequences, W defined in (1.2), fails. However,
under suitable conditions Poisson approximation of the number of clumps, W* say,
appropriately defined, has proved successful.

In e.g. Arratia, Gordon and Waterman (1986) and Karlin and Ost (1988), Bonferroni
inequalities are used to show that W* is asymptotically Poisson distributed. In more
recent papers, the Stein-Chen method is used to derive rates of convergence for the
approximations. Some examples are Arratia, Goldstein and Gordon (1989), Arratia,
Gordon and Waterman (1990), Neuhauser (1996), Novak (1994, 1995), and Dembo,
Karlin and Zeitouni (1994). The conditions in these references are somewhat different
(for instance, whether y # v and r > 0 are allowed), and some of them will be further
discussed below Theorem 3.3.

The length of the longest matching subsequence, M, is related to the number of
clumps, W) = W*, by P(M < k) = P(W} = 0), and hence distributional results for
W* carry over to M. In many of the above references, the main purpose is to find the
distribution of M, and then Poisson approximation to the number of clumps is suitable
to use. However, if the interest is in the total number of matching subsequences, W,
then the clumping has to be taken into account in the approximating distribution, and a
compound Poisson distribution is then a natural candidate. Stein’s method is developed
also for compound Poisson approximation, as is described in Section 2. In the present
paper this method is used to approximate W by a compound Poisson variable.

2 Compound Poisson approximation by Stein’s method

Let W =} cr Xqo, where I' is a finite family of indices, and the X, take values in N;
in our case, the X,’s are indicator variables. Here, we consider the compound Poisson
approximation of W by means of Stein’s method. Let CP (A), where A = >".., &\,
with &; the unit mass at the point 4, denote the compound Poisson distribution defined



CP(A) =L (Z zN) =L (zNj V) : (2.3)

i>1
where (Nj, i > 1) are independent with £L(N;) = Po ();), and L(N) = Po (D ,5; A;) and
Vi, i =1,2,..., are independent of each other and of N, with P(V; = j) = A\;/ > .51 Nie
Letting ga be the solution of the Stein equation B
> ixig(i +14) —jg(j) = 1{j € A} — CP (A){4},
i>1

j >0, it follows that

dry(L(W),CP(A)) = Sup. |P(W € A) — CP (A){A}|
= sup |E Ei/\igA(W +1i) —Wga(W)|]|. (2.4)
ACZ+ i>1

Roos (1994a, 1994b) showed that it is often possible to find £y and &1 such that

E > iXg(W+i) —Wg(W)|| < eolgl+e1lAg], (2:5)
i>1

for all bounded g : N — R, where |g| = sup;>[g(j)| and [Ag| = sup,>;|g(j +1) —
g(7)|, and the quantities \; are appropriately defined; and if (2.5) is satisfied, then

drv(L(W),CP(A)) < eoHo(A) +e1Hi(A), (2.6)

from (2.4), where Ho(A) = supycz+ |ga] and Hi(A) = supscz+ |Aga|. In the ’local
version’ of Stein’s method for compound Poisson approximation, which is stated in
Theorem 2.1 below, the index set I' must be partitioned for each @ € T: T' = {a} U
2 UT% UT?, where

'y ={B eI\ {a}: Ig is 'very strongly’ dependent on I},
Iy ={B e\ {a}: Igis 'very weakly’ dependent on I},

and

% =T\ {{a} UT2 UT?}.
With U, = Zﬁergs Ig, Zo = In+Uy, Xo = Zﬁerg Ig, Yo = Zﬁergw I3, the following
theorem holds.

Theorem 2.1 (Theorem 2 in Roos (1994a)). Using the notation introduced above,
(2.5) holds if

1

Ai = =Y BllI[Za=1)), i>1, (2.7)
L a€l’

[TZs|+1

e0 = >, Y E|E[II[Za=1i]|(Is: B €TY)] — BllaI[Zs = ]|,

acl’ =1
and &1 = Y E[lLE[la+Us+ Xo] + E[loX].

a€el



A ’coupling version’ of the above theorem can be found in Roos (1994b).
Note that letting I'2* = (0, Ay = A and \; = 0, ¢ > 2, the above reduces to the
Poisson case:

dryv(L(W),Po())) < eoHo(A) +e1Hi(N),

in which case there exist good bounds on Hy(\) and H;(\), given respectively by
min(1, A"*/2) and A"}(1—e~*). Bounds on Hy(A) and H;(A) as sharp as these cannot be
found in the compound Poisson case for general A. The difficulties in deriving bounds in
the compound Poisson approximation case are thoroughly discussed in Barbour (1997).
In Barbour, Chen and Loh (1992) the following bound is given:

HO(A)aHl(A) < min (17 %) €xp {Z AZ} ) (28)

valid for any A = Y 7°, X\;d;. Because of the exponential term, (2.8) is unsatisfactory
when .o A is large. If id; N\ 0 or (3,513 N) 1D ;5 4(i — 1)A; < 1/2, considerably
better bounds are given in Barbour, Chen and Loh (1992) and Barbour and Xia (1999),
respectively. In the current problem, unfortunately neither of these conditions are sat-
isfied in general, so the only available bound on Hy(A) and H;(A) is that given in (2.8).
However, Barbour and Utev (1998, 1999) developed an alternative way to handle the
case when ) .., A; is large. First we introduce the notation Q = >, Aj, p; = Ai/Q,
= > ;1 10 and the first moment my = Y., ip;. The following result follows from
Barbour and Utev (1999), where explicit expressions are given for all involved constants
(in Theorems 1.10 and TV and Equations (1.24)—(1.28)).

Theorem 2.2 Assume that (2.5) is satisfied for some nonnegative integer valued ran-
dom variable W. Then there ezist Sj(p) < oo, 1 =0,1,2, and 3/4 < T(p) < 1, such
that

£0S0(H) n 151 ()
QL/2 9)

if A =)",5, N\id; satisfies the conditions

drv(L(W),CP(A)) < + P(W < T(p)Qm1)Sa(p),

() 2i>1 pirh < 0o for some ro > 1,
(i) p is aperiodic (u{lZ} <1 for alll > 2),

(iii) Q> m

The expressions for S;(p) and T'(u) are rather involved; hence Theorem 2.2 is most
applicable for asymptotic results in the case where E[W] tends to infinity. In that case
the following proposition can be useful, where the dependence on n is explicit in the
indices.

Proposition 2.3 Assume that, for each n, (2.5) is satisfied for some nonnegative inte-
ger valued random wvariable W,,. Then there exist S; < oo, 1 =0,1,2, and 3/4 < T < 1,
which are independent of n (but depend on {p, }n>1), such that

drv (L(W,),CP (Ay,)) < €0nS0 | €1n51

>~ Q1/2 Qn + P(Wn S TQnmln])SQa
n

if the sequence (A,, n > 1) satisfies the conditions
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(4) SUPp>1 Zizl Uin’ré < oo for some rg > 1,

(i3) there exists a non-negative measure v on N, such that the greatest common divisor
of {j : vj > 0} equals 1, and such that p, > v; for all i and n,

(iii) infy>1 Qn > (2(1 = T)) L.

Proof. Using the notation of Barbour and Utev (1999), let

= pi, myy = (i — 1) (i — j+ D, m*ZSUP{(j_4),} :

i>1 i>1 gzl

) _ o #(r) R . (r)
=D dpr' and () = min{_inf p”(0), inf p(6)/2, 1),

i>1 (<bs
where
. 1 - .
pg )(9) =1- S ZTZM cos(26) and pg )( =1- er i cos(26),
k>1 HETT 55T z>1

and n! =1ifn <0. T(w) and Si(p), I = 0,1,2, in Theorem 2.2 involve specific values
of ¢ and r, such that

0 < (¢ <mand (< +/2ma/ma, (2.9)

and 1 < r < rp is small enough that

m 2m *(7 *
—ty > 5 and w1 p Q) <ma(1 = O(Q)/2), (2.10)
my 3my

and so that s = v/r2 — 1 satisfies

+my /2
5 < S min 1,i,M . (2.11)
9 M m3

Furthermore, some of the moments m; and my; are involved in Si(p), 1 =0,1,2, in

such a way that to prove this proposition, we must show the following:
(a) mjn, mj], and M., are uniformly bounded above in n, and mjn, M, > 1,
(b) w, is aperiodic for all n,
(c) there exist fixed choices of ¢ and r such that (2.9)—(2.11) are valid for all n.

(a) By the definitions, mpn, M., > 1 for all n. To get upper bounds on mj,, My,
and m,, we start by noting that by condition (i), there exists S < oo such that
SUpP,>1 dois1 umTé < S for some 1 > 1. This implies that for each j, mj, and m;),, are
uniformly bounded in n from above, since there exists c; such that il < 1"6 for i > ¢;j,
and hence

<m]n—zzﬂm<zz Min + Z 7"0/1'171<Z7/J+S<OO

1>1 1=cj+1



Furthermore, y;, < S/r§, and hence

Mg\ 1/ i 5 v
. < S8 ——
((3—4)!) ;TBJ!
»
§1/3 /(@) A\

(2.12)

; 1/(2j Z o ’
j(27’(’) /(24) et 6
by Stirling’s formula. Now, for some 7"51 <b<1l,0<c< o0 andi>cj,

NG
(”ﬂ) < et < b,

1

and hence

Z:Z—O < ZTZ- ]z sz < ( = (1—6)‘1) (c5),

ro —
i<cj 0 >0 0

since rg > 1. Thus (2.12) is bounded by 4Se(rq(rg — 1)~! + (1 — b)~1)c, for all n and j,
so that sup,,~; M, < 00.
(b) The aperiodic assumption () of Theorem 2.2 is expressed as follows in Assumption
A in Barbour and Utev (1999): For any 0 < ¢ < =, p*(J(¢) > 0.

To show that Assumption A holds for every n, we note that

pln =1- Zum cos(i0) Z,um (1 — cos(i0)) > Zy, (1 — cos(i8)), (2.13)

1>1 i>1 i>1

for alln > 1. Now, 1—cos(z0) > 0 for all 8, and 1—cos(i#) can be 0 only if § = 27p/q, for
some p,q € ZT, and 1 < p < g/2. Then those i for which cos(if) = 1 are i = ¢, 2q, 3¢, . . .,
which have ged g > 2. By condition (i), the ged for those ¢ with v; > 0 is 1, and so fol-
lows that there exists j # ¢,2¢, 3g, . . ., for which v;(1 —cos(j6)) > 0. Hence ), v;(1—
cos(if)) > 0 for all 0 < # < 7, and then by continuity infe<g<n > ;51 v45(1 —cos(i0)) > 0,

which together with (2.13), show that inf,<g<y o2 (8) > 0. Similarly inf <<y pS (6) is

bounded away from 0 uniformly in n, and hence Assumption A is satisfied for all n.

(c) By (a) it follows that there exists a single choice of ¢ which satisfies (2.9) for all n.
If mgg — mj, and p;(”)(g) — p;;(”(g) uniformly in n as r N\, 1, then there exists also
a single choice of r, such that (2.10) and (2.11) are satisfied for all n, since there exists
¢ > 0 such that pz(l)(f ) > ¢ for all n, by the proof of (b). What remains of the proof of
(c) is thus to verify the uniform convergence.

The function f(r) = 7%, i > 1 is convex, thus (r* —1)/(r — 1) < dr*/dr, so that

Imi) —mgnl = Yt = 1) in
i>1
< (r=1)) I gy,

i>1



(r)

and it follows from condition (i) that m,

— Mmj, as r \ 1, uniformly in n. Further-
more,

,r,Z

P2 0) = PO = |3 (55— = Dptn cos()|
i>1 >1 Fkn

< DD ka(r' — ) pin cos(i6)|
i>1 k>1

< 2 Z Zrk(r - 1)Ti7k71(i - k),ufkn/'tin
i>1 k<i

< 2) (r—1r' (i — D,
i>1

and again uniform convergence follows from condition (7). Using similar arguments for
pgn) (0), it follows that pfl(r)(f) — pz(l)(C) as r \ 1, uniformly in n. ]
3 Main results

Before we state the results, some notation need to be introduced. In the case where
{X;}i*, and {Y;};, have unequal distributions over the alphabet A, let

pa = P(X; = a), Vo = P(YJ = a), (pv)* = rfeaj((/‘al/a)’

1=1,...,m,5=1,...,n,
quk = Z ﬂ§/2+1V§/25 Qvk = Z N§/2V§/2+la and Quvk = Z(Naya)(k+1)/2-
a€A acA acA

Recall that p = P(X; =Yj), for any i, j, so that p = Y, 4 ftaVa- Furthermore, if £ > 2
is even, then g, can be interpreted as the probability for a chain of k equalities starting
and ending in sequence {X;}, for instance

que =P(X1=Y1=Xo=Yo=---=Xp)p =Yy = Xpo11)

Similarly g, is the probability for a chain of k£ equalities starting and ending in sequence
{Y;}, and if k > 1 is odd then g, is the probability for a chain of k equalities, if we
start in {X;} and end in {Y}}, or vice versa.

When the sequences {X;}:", and {Y;}!"; have the same distribution, we use the
notation in Novak (1995), and let

pa=P(Xi=a)=P(Yj=a) and g =) pi'
acA

where gy = g1 = qui if k is even, and g = g,k if k is odd.

To prove the results below, Stein’s method as described in the previous section will
be used. In particular, Theorem 2.1 will be used both to derive bounds and to define
the parameters A\;, [ > 1, in the approximating compound Poisson distributions. Recall
that A\, [ > 1, defined as in (2.7), depends on how the index set I' is partitioned. We
choose

Iij = {(@,5) e T\{(4,4)}: —k <i—i =37 —j <k}



the choice of Fé’j and I'V’" can be found in Section 4, to which the proofs of the main
theorems are deferred. Note that in our case Zi; = Ijj + 3 ;11 erve, I;j have the same
ij

distribution for all (¢, ) € T', so that

EW
N= %P(Zn =1|I;; =1), (3.14)

where W is defined in (1.2), and

Bl ) = () (1=

For r = 0, the parameters are

mnp*ti=1(1 - p)?, I=1,...,k—1,
No= mn((2k — 1 — 2)p*H1(1 —p)2 + 2811 —p)) /I, 1=k,...,2k -2,
mnp®t=2/(2k — 1), l=2k—1.

When r > 0 and k is at all large, there are many combinations of matches and mis-
matches for which Z;; = [, and a formula for the general case seems hard to find.
However, given r and k, the parameters can be calculated by computor.

The following lemma is the first step towards bounds on the total variation distance
between the distribution of W and a compound Poisson distribution with the above
parameters, and is proved in Subsection 4.1 by means of Theorem 2.1.

Lemma 3.1 Let W and A;, I > 1, be defined by (1.2) and (3.14), respectively. For any
bounded function g: N — R,

EWg(W)—> Ing(W +D]| < |Agle,
1>1

where
k 2
e = mn <T> {p2<k*7>6k(m +n) + 4k Qo_r) + 2mkqhy " + 2nkq’;;"} , (3.15)
with gz = @2 = g2 if p = v, and
2k—=r) (uv)*5=) otherwise. '

In the case where u = v is the uniform distribution,

2
e = mn(f) |A| 278k (m + n). (3.17)

A bound with somewhat better constants is given in (4.34), in the proof of this lemma.

The following result is valid for any m,n,k and r, and follows immediately from
(2.6), (2.8), and Lemma 3.1. However, because of the exponential term it is useful only
when the total number of clumps ) ); is small.



Theorem 3.2 Let W, A = >, N0, and € be defined by (1.2), (3.14) and (3.15), re-
spectively. Then

dry(L(W),CP(A)) < (IA%I)exp Z’\l €.
>1

If £ and r are kept fixed while m and n tend to infinity, then the total variation
distance obviously tends to infinity. The asymptotics considered here is when k, m and
n tend to infinity at suitable rates, while r is fixed. To emphasise the dependence on m
and n, we will henceforth use the subscript ,,, when it seems necessary. The first part
of the theorem below follows directly from Theorem 3.2, while the second is proved by
means of Lemma 3.1 and Proposition 2.3 in Section 4.2.

Theorem 3.3 Let Wy, and Ay = Y Mimn01 be defined by (1.2) and (3.14), respec-
tively. If kp,y is chosen such that:

(i) E[Wpny] stays bounded away from oo as m,n — oo, then

drv (LWn), CP (Amn)) = O(mnk%‘#(mqﬁgnT+nq’;5"“+kmncz2(km_r>))

< O (k2 o+ ) e ).
(i) E[Wpnn] = o0 as m,n — oo, then
r+1

k _ _
dTV(‘C(Wmn)a Cp (Amn)) = 0 <pk;nnnT (mql,jgm "+ nqlljgm "+ kanQ(kmn—'r))>

k:ntbl *(kmn—T)
< 0 m et () )

where Qo(k,,,—r) 15 defined in (3.16), qu2 = quv2 = g2 if the sequences have equal distri-
butions. In case of uniform distribution,

O (mnkZ+1(m +n)|A|72*=")) | in case (i),
dry (L(Wimn), CP (An)) = " | )
O (kL (m +n)| A=) in case (ii).
We will now consider the asymptotic behaviour of the bounds above when
kmn = |blogy s, mn + crlogy p,(log, , mn) +dJ, (3.18)

where |-] denotes the greatest integer function, and b,c,d € R. The choices of b and ¢
determine the limit of E[Wp,,]:

0, ifb>1, orb=1,c>1,
EWmn] = { pt(1—p)7/(p'r), ifb=c=1,
o0 ifb=1landc<1, or0<b< 1.

Thus, by choosing b = ¢ =1 and d = log, /,{(1 — p)"/(p"Ar!)} we get E[Wp] = A.
With k&, as in (3.18), it follows that for any 0 < z < 1

ghmn=1 _ O((mn)blogl/P ?(Inmn)°" logy 7). (3.19)



Using this expression for £ = gu2,qu2,¢2,p and (uv)* yields the order of the bounds
on dry(L(Wn),CP (A, )) given in Theorem 3.3. In particular, if X;, Xo,... and
Y1, Y5, ... are uniformly distributed, then

0" =5 = Qogery =p**") and log,,,p?* ") = —2(k —r),
so that
dTV(L(Wmn)a CP (Amn)) =

O((m + n)(In mn) 21 (1= (mn)1=28) " if E[W,] — C, C >0,

O((m + n)(Inmn)™1=¢" (mn)~?), if E[Wp,] — oo.

To make the bounds in Theorem 3.3, with k,,,, as in (3.18), approach zero as m,n —
0o, we need some conditions on g2, g2, g,2, and on the relative growth rates of m and n.
Conditions for convergence in the case where Inn/In(mn) — p € (0, 1) are summarised
in the following corollary. Note that p =1/2 if m = n.

Corollary 3.4 Let kyy, be given by (3.18), and assume that Inn/In(mn) — p € (0,1)
as m,n — co. Then

drv(LWmn),CP (Amn)) — 0 as m,n — oo,

under the following conditions:

Case 1: EWpp] - C,C >0, (b>1orb=1,c>1):
conditions: logy /p qu2 < (p — 2)b~! and logy /p qu2 < —(p+ Db, (3.20)
Case 2: ElWp,] w00 (b=1andc<1, or0<b<1):
conditions: logy /p qu2 < (p— Dbt —1 and logy/p a2 < —pb~t —1. (3.21)

In particular, for uniform distribution, m = n and kp,y, chosen so that E[W,,] stays
bounded away from 0 and infinity,

drv (L(Wmn), CP (Apn)) = O(n~'lnn).

Proof. Using Theorem 3.3, (3.19) and that m ~ (mn)'=? and n ~ (mn)” yields the
following bounds.
Case 1:

dry (LWimn), CP (Amn)) = O((Inn) 7GFe1081/5 Gu2) (2= ptblog1/, 4u2) /p
_|_(1n n)1+’r(2+clog1/p Qu2)n(p+1+blog1/p q,,Z)/p)

+(Inp) 2t Hrelogy (), (140 logy /, (10)") /Y

Since logl/p(;w)* < logy/, p = —1, the last term in this bound tends to zero.
Case 2:

dry (C(Wmn), O (An)) = Ot #0081/ 0t 1)/ (1 )+ 108, 2 1)
(P08 1 G2+ D) (1 g+ er(l0g / qu2+1))

(In )" 2 rer (1081 () 1), blogy /(1) +1)/py |
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Remark 3.1. e In case of equal distributions and p = 1/2, (3.20) is satisfied since
then gu2 = gy = g2, min{p—2, —(p+1)}b~' = —3/(2b) > —3/2, and by Lemma 4.1
(#1), logy /p g2 < log p3/?2 = —3/2.

e In case of uniform distribution, log; /p 92 =log1 p? = —2, so the bounds tends to
zero for any p in case 1.

e To achieve convergence to zero in the above corollary, a necessary condition is
that b > 1/2. This condition is also sufficient for uniform distribution, if p = 1/2.
O

With k chosen so that the expected number of clumps of matching subsequences,
E[W},], stays bounded away from 0 and infinity, and Inn/In(mn) — p € (0,1), con-
ditions for convergence of the total variation distance between the distribution of the
number of clumps of matches to a Poisson variable can be found in Arratia, Gordon and
Waterman (1990) and in Neuhauser (1996). Using the notation 6, = —log,/, P(Y2 =
X1|X1 =Y) and 0, = —log, /,, P(Xy = Y1|X1 = Y1), then if r = 0, the conditions
for convergence in Case 2 of Corollary 3.4 equals p € (1 — 6,,0;), which coincides with
the condition for convergence in Arratia, Gordon and Waterman (1990). In Neuhauser
(1996) it is shown that convergence to a Poisson limit can be achieved under the some-
what weaker condition
H(y,v) H(y, p)

<p<l-— ,
Inl/p p Inl/p

where H(y,a) = > .47 In(va/aq) is the relative entropy, and + is defined by v, =

UaVa/p. Tt seems plausible that the same technique could be used here to widen the

possible ranges for g,2 and g,2.

Furthermore, in Neuhauser (1996) approximation by a compound Poisson distribu-

H(r, H{(vy,p1)
111(17/1;) 1n¥/l;; <p<l
In the case of no mismatches, r = 0, and m = n (p = 1/2), and equal distributions,

the order of the bounds for Poisson approximation for the number of clumps given in Ar-
ratia, Gordon and Waterman (1990), Neuhauser (1996) and Novak (1994) is O(n~! Inn),
which is the same as the order achieved here for compound Poisson approximation of
the total number of matches. In the case of mismatches, Novak (1995) presents bounds
of order O(1/Inn). Here we have proved that under the same conditions the order is
O(n~'Inn) for compound Poisson approximation, as for no mismatches.

tion is considered under the condition that 0 < p < or1—

3.1 At most r mismatches, and the longest matching subsequence

All the above results concern approximation of the number of matching subsequences
of length k& when ezactly r mismatches are allowed. Maybe the case where at most r
mismatches are allowed is more useful, and we conclude this section with some results

in this case. Let
wo= > I
(,5)€l

where I~Z~j =1if Zf:_ol H{Xiyt = Yju} > k—r, and let A be defined by means of the
same partitioning of I' as before.

Corollary 3.5 Let W and A be defined as above.

11



o If (f) is replaced by (kjr) in (3.15) and (3.17), then Lemma 3.1 remains true.

e The bounds given in Theorem 3.2 and Theorem 3.3, and the conditions for con-

vergence in Corollary 3.4, remain true for dry(L(W),CP (A)).

Proof. To adapt the proof of Lemma 3.1 to the present situation, only minor changes
are necessary. The equality corresponding to (4.26) here looks like

k k
T T (t) (t’)

S Bhdgl = Y YN Pl =1, =)
(¢,5")€ry (i ,j')€TH t=0 /=0 ct=1 cpy=1

1 =1,2,3, where ¢; and ¢}, are configurations consisting of ¢ and ¢’ mismatches, respec-
tively. If y = v, then P(I,, = ].,Iiljlcltl = 1) < gy(p—p) for all 0 < 2, < 7, since g < gp
if @ > b, and hence, for T'%!,

S ELLy <Y Q2(kr)§<]:>i:(f;)

(¢,5")€rs} (4! ,5') €Tl =0
k+4r\2
< ¥ aw())
(i’,j')el“g}

The corresponding bounds involving Iy, (i',5') € T%, I = 2,3, and for y # v are
changed similarly, and hence Lemma 3.1 holds with (kjr) instead of (’:)

Since r is constant, the change of the bound in Lemma 3.1 does not affect the
magnitude of order of the bounds, so that the rest of the results for exactly » mismatches
hold true. [

Finally, fix » > 0 and let

t—1
M = max{t: HUXipt =Y} >t—rforsomel<i<m,1<j<n},
+ i+
=0

be the length of the longest matching subsequence with at most r mismatches. Then
P(M < k) = P(W®) = 0), where W*) = W, and the above error bounds hold also for

IP(M < k) —exp{— X, A"}.

4 Proofs

4.1 Proof of Lemma 3.1
In order to use Theorem 2.1 to prove Lemma 3.1, we must partition I' = {(i,7) : 1 <
i <m,1 <j<n} in a suitable way. For each (3,j) € T, let

Iy ={(5) e T\{(i,7)} : —k <i—i'=j—j <k},

Iy =A{(,4") € T\{(3,5) UT}} ¢ i =] <2k — Loor |j —j'| <2k — 1},

12



and
F;’]’-" = {(i',j’) el:|i —i'| >2k—1and |j —j'| > 2k —1}.

Then I' = T UTY, UT% U {i, 5}, and by this partition of I' we have that the {Iyr,
(#',j') € T}}} are independent of both I;; and the {Iyn, (i",5") € T}7}, so that g in
Theorem 2.1 equals zero. We need a finer division of F?j:

LY ={(,5") €Ty li—i'| <k, |j — §'| <kyi—d' #j—j'},
Iy =A{(",4") € T4 < i —i'| <k, 15 — 5'| > k},
Ly = {04 €Ty : [i = ' > K, j — 5’| <k},

and
Y =T\ UL D) = {(',4) € Tl « i — 'L, 15 — 4" > k).
Let | - | denote the number of elements in a set. Then
T3 = 2(k—1),
LYl = (4k—3)(m+n)— (4k —3)* — [T}| -1
Tyl = (2k—1)>—2(k—1)— 1 =4k" — 6k +2,
5| = (n—(2k—1))(2k - 1),
T = (m— (2k—1))(2k - 1),
D% = 2(k—1)(m+n—6k+4). (4.22)

Note that I;; are equally distributed for all (i, j) € I'; since we treat the sequences
as circles this is true also for U;;, X;; and I;; X;;. Hence, by Theorem 2.1,

E[Wg(W) = Ig(W +1)]
>1

< |Ag|lmn (E[I4)E[Is + Us + Xo] + E[laX4]) 5 (4.23)

where « is an arbitrary index in I'.
It follows immediately that

B[l +Us + Xo] = (14|09 +[Ta)E[L], (4.24)
and in order to bound E[I,X,], we write
4
El.X, = >, > E [T, 1y ).
I=1 (& j')ery

The indicators I;;; with (i, ') € T'% are independent of I,, and hence

> Elladyp] = E[LPITY (4.25)
(¢',5")€Ts?

Before turning to E[I,I;;/], where (i',5') € T%, 1 = 1,2,3, we collect some simple
inequalities in a lemma. Some of these inequalities, and parts of the argument below can
be found elsewhere, see e.g. Arratia, Gordon and Waterman (1990) and Novak (1995).
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Lemma 4.1

Equal distributions: (i) If s € {1,2,...}, then p® < gs.
(i) If s,t € {1,2,...}, then qsq; < qs+ti-
(iii) If s € {2,3,...}, then g, < pst1)/2,

Unequal distributions: (iv) p? < g2 and p? < quo.

Proof. (i) Let Z be a random variable which assumes the value p, with probability
pa- Then it follows from Jensen’s inequality that

= () =ElzP <EZ]=Y 5" = q.

a€A ac€A

(i) Now, let Z assume the value pit* with probability p,, and let f(z) = z%/(s+%).
Then, again by Jensen’s inequality,
as = Y (0™ Cp, = BIf(2)] < J(BZ) = (3 pit )0 = 5T,
acA acA
and similarly ¢; < qz{l_(f +t), from which the inequality follows.
(793) Since (s +1)/2 > 1 the following inequality holds:

pet2 = (3 " p2)eH2 5 N " petl = g,
acA a€A
(iv) Follows in a similar way as (4). ]
Note that if I, = 1, and a = (11) say, then X;» = Y;» for exactly k—r of the indices
(", ") € {(s,s) : s =1,...,k}, while r are mismatches, X;» # Y;». These mismatches
can occur at ( ) dlﬂerent r-subsets of the index pairs, and we number the configurations
of matches and mismatches from 1 to ( ) Let I, denote an indicator which equals one

if the particular configuration ¢, ¢ = 1,..., (r), of matches and mismatches take place.
Let Ly, d =1,..., (f), be the corresponding indicators pertaining to Iy ;. Then

&) ()
Z EllIiy] = Y. Y. P(lac=1Iyj0 =1). (4.26)

(i',5") €Ty (¢,5')erdt c=1c'=1

First we will consider P(I,. = 1,Iyj:¢ = 1) in the case where the sequences are equally
distributed. The 2(k — r) equalities constitute 1,2,..., or 2(k — r) ’chains’, depending
on where the mismatches occur. This is illustrated by an example.

Example 4.1. Let k =3,7r = 1,4 =i and j' = j+ 1. In the figures below, which show
two possibilities when I;; = 1 and I = 1, the bars correspond to equalities.

e First we let X; #Y; and X; 19 # Yjy3.
Xi  Xiqn Xipo

NN
Yi Y Y Yjis

Here X; = Y11 = X;11 = Y10 = X9, and the equalities constitute one chain.

14



e Next, we let X; 0 # Y0 and X; #Y; 4

Xi X Xito

| N\ AN
Vi Yin Yo Y

In this case Y; = X;, Y11 = X;41 = Yj;2 and X;9 = Yj 3, so that there are
three chains of equalities.

O

So, all in all there are 2(k — r) equalities which are split into at most 2(k — r) chains.
Assume that there are s chains, where 1 < s < 2(k—r), in the configurations c and ¢, and
that the number of equalities in the chains are n;, i = 1,...,s, where .7, n; = 2(k—r).
Then

P(Iac = ]_’Iz'ljlcl = ]_) S qnlqn2 I qns
<

dni+na+--+ns
9 (k—r)> (427)

where the second inequality follows by Lemma 4.1 (7).

We now turn to the case of unequal distributions. As before there are 2(k — r)
equalities which split into chains. Assume s of these chains start and end in sequence
{X;}, and let my, ..., ms be the number of equalities these chains involve. Furthermore,
assume ¢ of the chains start and end in sequence {Y}}, with n,...,n; equalities each.
Finally, assume that u of the chains start in {X;} and end in {Y;}, or the other way
around, with oq,...,0, equalities each. Then

P(Iy =1, Lijig = 1) < Qumi """ QumsQuny * " QungQuuor * " " Quuoy - (4.28)

To bound the right-hand side of this inequality, recall that (uv)* = maxeea{pava} so
that

Gy = Y (1ava) ™ pia < () ™1,
acA
and analogously, qyn; < (,lu/)*"i/ 2. Furthermore,
Qo = D (1) @7 < () S ()P < (),
acA acA

by using Cauchy-Schwarz inequality in the last step. Since mq + -+ ms+ny + -+ +
ng+o1+---+o0, =2(k—r), we get
Ploe = LLiye =1) < (uv)"®="), (4.29)
by (4.28). Combining (4.26), (4.27), (4.29) and letting Qo(x_r) = go(k—r) in case of equal
distributions, and Qo) = (uv)** ") otherwise, yields
B\ 2
S Bl < Y () Quir). (4:30)

(z”,j’)el‘g}
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Next, we show that
P(loe =1, Iypo =1) < g5,

if (i', ') € T%, in the case where the sequences are equally distributed. If I, = Iy = 1,
then there are 2(k — r) equalities which split into chains, and (4.27) is valid also in this
case. However, here we can do a little better by using the knowledge that the 2(k — r)
equalities constitute chains with either one or two equalities in each chain, depending
on where the mismatches occur. This is because |j — j'| > k, and is illustrated by the
following example.

Example 4.2. Let k = 3, r = 1,4 = 4 and j/ = j + k, and let the mismatches be
X; #Y; and X;19 # Yji440. Then we have the situation illustrated by the figure

below.
Y; Yirn Yo
| |
X; Xit1 Xigo
| \
Yivs  Yira  Yjus
O

Hence, the 2(k — r) equalities split into s chains, where k —r < s < 2(k —r). Let
the number of equalities in the chains be n;, ¢ = 1,...,s, where n; = 1 or 2, and
i in; = 2(k —r). A chain with n; equalities has probability g,,. Since there must
be an even number of n; which equals 1, and ¢ = p? < g, by Lemma 4.1 (4), it follows
that

P(Iac = 1aIi’j’c’ = 1) < 4n.19ns " * " qn, < ql2c—r, (4'31)
if (4, 5') € T?2. By symmetry, (4.31) holds also for (i, ;') € T'%3.

In the case of unequal distributions, the bounds for (/,5') € T'%2 and (¢, j') € %
are somewhat different. As in the case of equal distributions, the 2(k — r) equalities
split into chains with either one or two equalities in each chain. If (i'j') € T'%2 the chains
with two equalities will consist of one variable from sequence {X;} and two from {Y}},
and vice verse if (i'') € T?. Using Lemma 4.1 (iv), we then get

k—r : -1 21 b2
g5, if(i'y") ey,
PIy,=1ILis,=1) < ve oo 4.32
( ac y Ll g’ ) { qﬁQT’ if (1/‘7/) c Fg;’, ( )
so that
k 2
> Bl < () {Irt2lg; ™+ IT221aks7 } (4.33)

(#,5")erg?urg?

where g2 = qu2 = g2 if p = v, by (4.26), (4.31), and (4.32).
From the definition of I,, given in (1.1), it follows that

sy < (ot

r
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which together with (4.23), (4.24), (4.25), (4.30) and (4.33) gives

k 2
EIWg(W) — 3 g +1)]| < gl )
>1

{4+ 02+ T8+ D5 )PP D2 Qagomry + (T2 + T221gf5 7 - (4:34)
Using (4.22) proves Lemma 3.1.

4.2 Proof of Theorem 3.3

Theorem 3.3 concerns the asymptotic behaviour of the total variation bounds as m,n —
00. The dependence on m, n is not explicitly written out here, but note that k, W, A, py,
Q, Z,, all depend on m, n.

(7) If E[W] stays bounded away from oo, then this is true also for ), \;, and the bound
in Theorem 3.2 is of order O(e). Since g2, g2 > p® by Lemma 4.1 (iv), Theorem 3.3
(7) follows immediately.

(ii) To prove Theorem 3.3 (i), we will use Proposition 2.3, and first we will show that
E[W] — oo implies Q =), \; = oo.

Let the pair of subsequences of length k£ which start in a be referred to as the a-
sequence. If there is a match in each end of the a-sequence, and r+1 mismatches directly
to the left and to the right of the a-sequence, then every (i'j')-sequence, (i'j') € T'%%,
will have at least 7 4+ 1 mismatches. Thus I = 0 for (i'j') € T'%’ in that case, and we
get

P(Zo=1|I4=1)
(*3")
(5)

> C, (4.35)

> P(Z,=1|1,=1,a match in each end of the a-sequence)

—r)(k—r—1)
k(k—1)

> @-ppeen

for some C' > 0 which is independent of k£ (and hence of m and n). It follows that

Q = EW]Y %P(Za =I|I, =1)
>1
> E[W]C, (4.36)

and hence 2 and E[W] are of the same order. Then, if the conditions of Proposition 2.3
are satisfied,

dpy (L(W),CP(A)) < O (% +P(W < TE[W])>
k’r+1

by (3.15) and (4.36).
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To show that condition (i) in Proposition 2.3 is satisfied, we need an upper bound
on

E[W]

wo= o PZa=1la=1) < P(Za =1l =1)/C. (4.37)

Assume that I, = 1 and [ > r, and that the r mismatches in the a-sequence all lie in
the beginning and/or in the end of the a-sequence. Then the probability of Z, = is
less than p'~1~" since it is enough with [ — 1 — r new matches for a clump of size I to
occur. For all other configurations of matches and mismatches in the a-sequence, the
probability of Z, = given that I, = 1 is smaller. Hence

P(Zy =1l =1) < min{l,p'"1"},

independently of &, and it follows that condition (7) of Proposition 2.3 is satisfied since
for any z such that 1 < z < 1/p,

Y Aw < > Amin{1,p = 0(1),
1>1 1>1
by (4.37).
By (4.35) and since E[W] > Q,
EW|P(Zy=1]1,=1)

= > .
yis Q >C>0

Thus condition (ii) in Proposition 2.3 is satisfied, with 1 = C and v; = 0, j > 2.
Furthermore, condition (i) is satisfied for large m and n since €2 tends to infinity.

All that remains of the proof of Theorem 3.3 is to bound P(W < TE[W]), which is
easily done by means of Chebyshev’s inequality:

P(W <TEW]) = P(EW]-W > E[W]|(1-1T))

< P((W — E[W))? > EW]*(1-1T)%
E[W?] — E[W)?

< .

= EWPR(1-T)?

Recall the definitions of Y;;, X;;, and U;; given above Theorem 2.1, and note that
Z(i’,j’)#(i,j) Iz'ljl =W — Iz'j = }/'ij + X'ij + U'LJ Thus

EW? = E[ ) +E[Y Y Lyl

(i,5)er (4,9)€r (¢,5")#(4,5)
= EW]+ Y E[;(Yi; + Xy + Uyj)]
(1,9)er

= EW]+mn [T ELP+ Y. Elalj]
(',4")€THUTYS

E[W] + E[W)? + 4mn(m + n)kE[1,)

E[W](Q1 + 4(m + n)k) + E[W]?,
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where the inequality follows since [T2%| < mn, [T% UT?| < 4(m +n)k by (4.22). Hence

E[W?] — E[W)? <« EWIQA +4(m +n)k)

EWPQ-T)? =  EBWPQ1-T)
< ofmtnk)
EW]
which is of smaller order than /€2, and the proof of Theorem 3.3 is concluded. ]
Acknowledgement

The author wishes to thank A. D. Barbour for suggesting the problem and for valuable
discussions.

References

ARRATIA, R., GOLDSTEIN, L. AND GORDON, L. (1989). Two moments suffice for
Poisson approximations: The Chen-Stein method. Ann. Probab. 17, 9-25.

ARRATIA, R., GORDON, L. AND WATERMAN, M. S. (1986). An extreme value theory
for sequence matching. Ann. Statist. 14, 971-993.

ARRATIA, R., GORDON, L. AND WATERMAN, M. S. (1990). The Erdés-Rényi law in
distribution, for coin tossing and sequence matching. Ann. Statist. 18, 539-570.

ARRATIA, R. AND WATERMAN, M. S. (1985). Critical phenomena in sequence match-
ing. Ann. Probab. 13, 1236-1249.

ARRATIA, R. AND WATERMAN, M. S. (1989). The Erdés-Rényi strong law for pattern
matching with a given proportion of mismatches. Ann. Probab. 17, 1152-1169.

BARBOUR, A.D. (1997). Stein’s method. Encyclopaedia of Statistical Sciences, Up-
date, Vol. 1, (Eds. S. Kotz, C. B. Read and D. L. Banks), Wiley, New York,
513-521.

BARBOUR, A.D., CHEN, L.H.Y. AND LoH, W.-L. (1992). Compound Poisson ap-
proximation for nonnegative random variables via Stein’s method. Ann. Probab.
20, 1843-1866.

BARBOUR, A.D. AND UTEV, S. (1998). Solving the Stein Equation in compound
Poisson approximation. Adv. in Appl. Probab. 30, 449-475.

BARBOUR, A.D. AND UTEv, S. (1999). Compound Poisson approximation in total
variation. Stochastic Process. Appl., (to appear).

BARBOUR, A.D. AND X1A A. (1999). Random perturbations. (Preprint)

DEMBO, A., KARLIN, S. AND ZEITOUNI, O. (1994). Limit distribution of maximal
non-aligned two-sequence segmental score. Ann. Probab. 22, 2022-2039.

KARLIN, S. OsT, F. (1988) Maximal length of common words among random letter
sequences. Ann. Probab. 16, 535-563.

19



NEUHAUSER, C. (1996). A phase transition for the distribution of matching blocks.
Combin. Probab. Comput. 5, 139-159.

NovAk, S. Y. (1994). Poisson approximation for the number of long match patterns
in random sequences. Theory Probab. Appl. 39, 593-603.

NovAK, S. Y. (1995). Long match patterns in random sequences. Siberian Adv. Math.
5, 128 140.

Roos, M. (1994a). Stein’s method for compound Poisson approximation: the local
approach. Ann. Appl. Probab., 4, 1177-1187.

Roos, M. (1994b). Stein-Chen method for compound Poisson approximation: the

coupling approach. Probab. Theory and Math. Stat., Proceedings of the Sixth
Vilnius Conference, 645-660.

20



