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Abstract

A numerical experiment by means a Monte Carlo method with many par-
ticle system and without discretisation in time is used for the investigation
of the evolution of a rarefied gas in a slab with initial distribution function
having singular components and for non-uniform boundary conditions. A
short description for the method and the algorithm is given. The qualitative
dependence of the solution on the initial data and boundary conditions is
discussed.

1 Introduction

Consider a rarefied gas in a slab with diffuse reflection on boundary planes that
are kept at different temperatures 17, T». Starting from a plane symmetric
non-equilibrium initial state and under the influence of the combination of
the initial disturbance and the disturbance from the walls the gas begins to
evolve in time. The mathematical description of the problem is given by the
Boltzmann equation with reflection boundary conditions. One suspects by
physical reasons that with time tending to infinity the distribution of particles
in the gas should tend to a stationary state corresponding to a given mean



density and the temperatures on the walls. From the mathematical point of
view this question is not trivial.

The asymptotics of initial boundary value problems for the Boltzmann
equation and the stability of the stationary solutions for small temperature
changes on the boundary when solutions are close to a global equilibrium were
investigated in detail in: [19], [4], [20].

The existence of a stationary solution to the Boltzmann equation for large
difference between wall temperatures 77, T5 is proved only in a weak Li sense
[3]. There are at present no uniqueness results and no rigorous mathematical
results proving the stability of stationary solutions in the case when a station-
ary solution is strongly non-equilibrium. The lack of such rigorous stability
results for the Boltzmann equation makes it interesting to investigate such an
evolution and the stability of stationary solutions in a numerical experiment.

A systematical study of the development of the strongly non-equilibrium
distributions based on BGK equations was made by the group of Y. Sone in
Kyoto [1], [2]. The essential result of these papers is not only the description
of the evolution of macro parameters: density, velocity, temperature. There
are also detailed results on the development of the distribution function which
as it is shown there has due to boundary conditions an interesting structure,
including jumps in velocity variables.

There are few numerical results for the Boltzmann equation where a de-
tailed analysis of the development of the distribution function is given. It is
because of relatively strong requirements to computer memory and compu-
tational resources to reproduce details of such a multidimensional evolution
problem for the full Boltzmann equation.

The objective of the present paper is to investigate by means of numerical
experiments the character of relaxation of a rarefied gas for a family of space
inhomogeneous problems having a non-equilibrium stationary states. In other
words the paper concerns a natural from the physical point of view question
how the stabilisation of different non-equilibrium initial states to a nonuniform
stationary state depends on the geometrical structure of initial data and on
boundary conditions. We are essentially concerned with a detailed analysis
of the evolution of the distribution function. Boundary conditions are of
diffuse reflection type with non-uniform temperature at the boundary. This
guarantees that the stationary solution is thermodynamically non-equilibrium.

We use in the present work a Monte Carlo method by A. Khissamutdinov
called in his publications Continuous Time Monte Carlo (CTMC) method
and a code written by him and L. Sidorenko in Novosibirsk. The Continuous
Time Monte Carlo methods are based on a special Markov process. They were
introduced in [6]-[9] and developed further in [11]-[14] and [15]. Physically a
system of moderately large number N of particles is modelled.

Mathematically CTMC methods belong to Monte Carlo methods for com-
putation of iterations of linear operators [14], [7], [5]. By means of these
methods linear master equations for the many particles system are solved.



When ns — oo where n is the mean initial number of particles one believes
that the solution of the master equation also gives a solution to a smeared
in space Boltzmann equation. Rigorous proofs for this fact exist in some
particular situations, but not in full generality.

Different algorithms for realisation of CTMC methods are described and
investigated in [16], [12], [11],[15]. Three different models for interaction be-
tween particles were introduced in [9],[8], [6], impoved in [13] and are used in
these algorithms. In particular a space-inhomogeneous variant [16], [12], of
the null-collision technique [17], [18] is used here.

Well known direct simulation Monte Carlo (DSMC) methods can be inter-
preted as approximations to CTMC methods because as it was shown in [11],
[9], [5], DSMC methods can be deduced from CTMC methods by discretising
the time variable and splitting the master equation into collisionless and space
homogeneous relaxation steps.

In more details the method and the algorithm are described in Section 2.

The evolution of several types of initial states is investigated. These are:

1) A jump of density for two Maxwellian initial distributions with the same
temperature.

2) In all space points a sum of a Maxwellian distribution with a delta
function with velocity V, directed along the planes. Qualitatively different
effects are observed for different velocities V.

3) The same distribution as before but with delta function added only in
a thin sub-domain of slab shape between planes.

These initial data are used for different, but quite small Knudsen numbers
Kn = 0.1, Kn = 0.2 and different temperatures on the boundary, which
correspond to different stationary solutions.

The main observation we have made based on numerical results is that
after a few mean collision times and independently of the initial data the dis-
tribution function loses initial individual structure and becomes smooth and
Maxwellian-like. After this it takes a longer time for through a diffusion like
process to get to the stationary state. We make a remark that we investigate
this dynamics in the case when the stationary state is space nonuniform and
non-equilibrium.

It gives a numerical evidence to the property which is not mathematically
proved that an arbitrary initial distribution function of a rarefied gas relaxates
after several mean collisionless times to a smoother local ”equilibrium” which
then much longer goes to a stable stationary distribution.



2 Continuous time Monte Carlo methods
and the algorithm used in the modelling.

2.1

We give here a short description of the method and the algorithm based on
ideas and constructions from [9], [15], [14]. The motion of a rarefied gas in
the slab is modelled by a system of a moderately large number of particles
in a parallelepiped V' with the boundary surface S consisting of sides S1-Sg.
Sides S1, Sy are orthogonal to z -axis. Other sides S3 - Sg are orthogonal to
the z and y axises. Later we omit the domain of integration in integrals.

We use the following notations and assumptions:

V=VUS,G=V xR3G=V x RS

N, 1< N < x is the number of particles in V, fixed in the problem;

(r',v%), i = 1,...N, are coordinates and velocities of the particles, z* =
(r', v");

R=(r,..rV); V= (0v},..0"N), X = (R,V), X = (R, V) = (z},...,z2") ;

I'(z' — z) is a density of probability for a particle with phase coordinates
z' to change its coordinates to z when the particle reaches the boundary S;

the initial state of the gas in the slab we are interested in is uniform with
respect to z and y coordinates. This lets us model the flow in the slab by the
flow in the parallelepiped V with periodical boundary conditions on sides S3
- S6;

on sides S1, Sy we use the diffuse reflection conditions corresponding to
temperatures Ty, Tp on Si, So. T'(z' — z) = Tgipp(v' — v)d(r —7'). On
sides S3 - Sg periodical boundary conditions with respect to space variables
are used. In the case when initial data are uniform with respect to z and y it
gives a natural normalisation of mass and useful modelling of the volume of
collision for the flow in the slab;

w ("t vt — vt vt|rt, 7™) is a given differential frequency of elastic scat-
tering of a pair (I, m) of particles with indexes I, m.

w (2!, 2™) = wiy (X) = /w(l)('vl,' ot — o ot P d vt d o™

is the integral frequency for the pair (I,m). We suppose that scattering is
isotropic with respect to the center of mass;

w(X) = E(l,m) win (X) is the total frequency of interactions of N particles;

Po = { X1}, is a Markov process with states in (G)V;

pt(X) is a phase density of the gas at the time ¢ and po(X) = p(X)|i=0 is
a given initial phase density such that such that it is a product of one particle
densities; po(X) = Hfil ,ugl) (z%); ugl)(wl) = [ pu(X)dz?...dz";

f(t,z!) =N - u,gl) (z!) is considered when N — oo as a good approxima-
tion for the solution to the smeared with respect to space coordinates Boltz-



mann equation corresponding to the scattering model given by w(® ("v!,! vt —

ot vt|rt, rm);

@, M(-) and Var(-) denote the stochastic trajectory, the mean value and
the dispersion for the process Py;

E(z|t*) is a given measurable function on G with ¢* being a parameter
which is a fixed time instant here 0 < t* < oo.

The functional J;» = [ f(t*,2)E(z|t*)dz represents physical variables we
are going to compute.

2.2

Taking into account that the initial data are taken uniform with respect to
Tz, Ty the process P is a process with jumps with respect to the velocities and
continuous with respect to the space coordinate r, of particles. Jumps take
place instantly and are of two types:

a) the change of velocities of particle colliding in the volume

b) the change of velocity of the particle colliding with S; or Ss.

Between collisions particles are moving along straight lines. The velocities
are continuous from right with respect to the time variable. The initial state
Po given by ,u(()l)(a:) is considered as a state after a jump.

Let X; be a state of the process at time ¢t and ts. = t5.(t) and tey = teg ()
be dependent on ¢ random times of the next jump. Namely t;, > t is the
minimal time of the next collision between two particles and te; > t is the
minimal time when a particle reaches the boundary S. The time #'(t) of the
next jump is distributed as min{ts.,tex}. The modelling of these random
times is described in detail in [10]-[12],[14]-[16] .

We give here the master equation for the process Py:

9 ) + (0, Vrpm(X) + (X)) = [$7w] (1) @)
where

N .

¥V, V() = 30, V) (2.2
=1
(5] () = / (R, &) x S(V = V,R)d'V (2.3)
N
SV —-V,R)= Z w (‘! o™ = ot ™ |rt ™) H S(v* —" ') (2.4)
(Lm) i=1, i£l,m

The discussed above initial and boundary conditions should be used to-
gether with this equation.



A random trajectory of the process Py can be written down as @ =
(to, Xto)s (t1, X4y ), ---s (£, Ap;) namely in the form of the trajectory of a Markov
chain. Here each state with 7 > 1 is a state after the corresponding jump.
For brevity we write @ = (¢, Xp), (t1, X1), ..., (¢, ;)

With the constructed Markov chain the following “imitational” estimator
for the functional J3+ of the process will be used:

0o(@) = EN(t*, Xp), (2.5)

where EN(t, &) = SN £(zi|b).

The algorithm of modelling consists of the following steps.

1. Modelling the initial velocities and the coordinates of N particles. For
each particle we choose coordinates randomly with density corresponding
to the initial density profile we want to reproduce. After that for each
particle an initial velocity corresponding to a given initial distribution
with respect to velocities is generated. In our case it is typically a
linear combination of Maxwellian distributions and delta functions. We
start at time ¢ = 0 and follow the jumps of the system corresponding
to collisions of particles with each other and with the boundary and
stop the modelling at time ¢t = T which we are interested in. We keep
for each particle the time and the coordinate of its last collision with
the boundary or with another particle. It lets us to avoid numerous
recalculation of the coordinates of the particles.

2. Simulation for the time of collision with the density W exp(W (¢t — t')).
The constant frequency W here is an appropriate upper bound for the
frequency of binary collisions of particles with each other in the vol-
ume. We use in the present paper an estimate in the form W =
(WM N1 Ny) /2 with WO = 2max |v|og, Niayr = Ny + 3/ Nay, where
Ny = max{N;} and is the maximal mean number of particles that can
collide with a given one in its interaction volume. The interaction vol-
ume is taken enough small - 1/5-th of the mean free path along the
coordinate across the slab times a unit area in the orthogonal plane.

3. We compare the time ¢’ of collision in the volume with the minimal over
all particles time #, for crossing the boundary. If t' > #, we calculate
for the particle closest to the boundary the coordinate and the time
when it reaches the boundary and according to the diffuse reflection
model compute the random velocity after collision. After that the new
minimal time #; for reaching the boundary is recalculated.

4. If the time t' of collision in the volume is smaller then ¢, we modell the
collision between two molecules. It consists of several steps.

(a) We choose first a uniformly distributed random number of a molecule
and a random number of the second molecule.



(b) We check if they are at the preliminarily declared small distance
p in z that lets them collide. If it is the case, a vector uniformly
distributed on a unit sphere is chosen and new velocities for these
two particles are calculated according to the hard sphere model.

(c) If a chosen partner is able to collide with the chosen particle we
choose one more random number of the partner and repeat the pro-
cedure. This algorithm for modelling a collision is repeated up to the
step when the number of already checked potential partners reaches
an upper bound (N — 1) /Nis. Then we call the collision “fictions”
and do not change velocities of particles at the time instance t'.

5. After a change of the velocity of at least one particle the minimal time
tp is recalculated.

6. The modelling continues up to the time 7. When the minimal time
of the next collision in the volume or with the boundary reaches T all
coordinates of the particles at time T are calculated and the input of
particles to the distribution function and to macro parameters - density,
temperature, velocity are calculated.

7. The same algorithm is repeated enough many times to collect a large
statistics that lets us get an approximation of mean parameters and the
distribution function with small dispersion.

3 Results and discussion

We describe in this section results of the numerical experiments. Several fam-
ilies of essentially different initial data and boundary conditions were investi-
gated. The coordinate orthogonal to planes is denoted by z, one coordinate
parallel to planes is denoted by z. The length unit is equal to mean free path
in the volume. It takes only several mean free times between collisions to
reach a distribution close to local Maxwellian out of the Knudsen layer.
Results on the classical problem with initial data when the gas has Maxwellian
distribution with zero mean velocity and constant temperature equal to one.
In two halfs of the slab density has two different constant values. The interac-
tion of smeared shock waves and expansion waves from this initial jump and
from the walls having different temperatures is observed during several mean
free times. After that distribution function of the gas becomes smooth and
Maxwellian-like a slow process of energy exchange between the gas and the
walls turns the gas to the stationary state. Corresponding stationary profiles
of density and temperature are almost linear in our case with relatively small
Knudsen number Kn = 0.1. These results are shown in Fig.1 - Fig.2.
Mathematical reasons from the analysis of the stationary Boltzmann equa-
tion [3] show that the concentration of particles having velocities almost par-
allel to the boundary planes of the slab is dangerous for regular behaviour of



the stationary solution. It means that the relaxation to a stationary state for
distributions having such concentrations of particles can be much slower than
those that do not include such singular parts. We investigated two different
situations when the initial distribution has constant density but the distri-
bution with respect to velocities is very non-equilibrium. It includes here a
singular component consisting of molecules with velocities parallel to the slab.
In one case the initial distribution in the whole slab is a sum of a Maxwellian
distribution with temperature 1 and a delta function corresponding to parti-
cles with velocity 0.0, 0.5, 3.0. In another case this beam - like monochromatic
component is present only in a part of the slab: in a relatively thin slab the
center or close to one of the boundaries.

In these cases several interesting effects were observed. The interaction
of the cold monochromatic beam of fast or slow molecules with the smoother
part of the distribution with finite temperature depends on the velocity of the
beam and its location with respect to the boundary.

One typical case is when the velocity of the beam is high, larger than 2.
During the time of several mean free times between collisions fast particles
from the beam are attracting particles around it. The flow directed to the
center of the slab from the neighbourhood of the beam is clearly visible. The
density drops around the beam and by this way a kind of ejection effect is
observed at the first stage of the evolution of this type of flow. At the same
time the temperature in the beam and around it increases because the kinetic
energy of the beam passes through collisions with thermalised particles to the
kinetic energy of chaotic motion. Despite of that the temperature has a small
local minimum at the center of the beam even after several mean collision
times. This ejection effect and the effect of smearing of the beam depends
strongly on parameters of the beam. If the velocity of particles in the beam is
large enough V,, > 1.5, the thermalisation of particles hard spheres is fast. The
delta function component in the distribution function disappears after a very
short time less than mean free time between collisions. The z - component
of velocity is directed to the center of the beam and is equal to zero on the
boundaries. The x- velocity has a maximum at the center of the beam. These
results are shown for different times in Fig.7 - Fig.9, Fig.12, Fig.13.

If the velocity of particles in the beam is small V,, < 1 the thermalisation
of hard spheres is relatively slow, because the cross section is proportional to
the relative velocity. The delta function from the initial distribution is present
after several mean free times between collisions. The profiles of macroscopic
parameters evolve also in a different way here. The behaviour of temperature
has a qualitatively another character. In contrast to the previous case tem-
perature attains in the beam a global minimum which is still present in time
t = 4 and has no other local minima. The density has the behaviour similar
to one for a fast beam, but with an additional local minimum in the center
of the beam and a zone of low density almost approaching zero around the
beam generating a specific non-monotone profile of the density.



The z - component of velocity is directed to the center of the beam and is
equal to zero on the boundaries. The x- component of velocity has the only
maximum at the center of the beam. These results are shown in Fig.3 - Fig.6,
Fig.10, Fig.11.

Conclusions.

The main result of the present paper is that for a wide class of non-equilibrium
initial data with and for non-uniform boundary conditions it is shown that it
takes only several mean free times for the distribution function of the gas to
become rather smooth and to lose its individual properties including possible
singular behaviour at the beginning.

Another result is a useful testing of the continuous time Monte Carlo
method in quite different situations. In particular it is shown that valid com-
putations for the evolution of the distribution function of a rarefied gas can be
done for large intervals in time and for strongly nonequilibrium initial data.
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Figure 1: Development of the initial state which is a maxwellian distribution with
densities in two halfs of the slab corresponding to 14 and 6 particles on the mean
free path. 7} =2, T, = 0.5, Time t =1, Kn = 0.1.
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Figure 2: Development of the initial state which is a maxwellian distribution with
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free path. 7} =2, T, = 0.5, Time t =8, Kn = 0.1.
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Figure 7: Development of the initial state which is a Maxwellian distribution for
0<z<4,6< 2z <10 and is mixture of 10% of Maxwellian distribution and 90% of
particles with velocity V, =3, V, = 0.0, V, = 0.0 for 4 < 2 <6. Ty = 3, T; = 0.5,
Timet =1, Kn =0.1.
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Figure 8: Development of the initial state which is a Maxwellian distribution for
0<z<4,6< z< 10 and is mixture of 10% of Maxwellian distribution and 90% of
particles with velocity V, =3, V, = 0.0, V, = 0.0 for 4 < 2 <6. Ty = 3, T; = 0.5,
Time t = 1, Kn = 0.1. Units with respect to the maximum of the distribution
function. 18
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Figure 9: Development of the initial state which is a Maxwellian distribution for
0<z<4,6< z< 10 and is mixture of 10% of Maxwellian distribution and 90% of
particles with velocity V, =3, V, = 0.0, V, = 0.0 for 4 < 2 <6. Ty = 3, T; = 0.5,
Time t =8, Kn =0.1.
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Figure 10: Development of the initial state which is a Maxwellian distribution for
2 < z < 10, and is mixture of 10% of Maxwellian distribution and 90% of particles
with velocity V, = 0.5, V,, = 0.0, V, = 0.0 for 0 < 2 < 2. T} = 3, T = 0.5, Time
t=2, Kn=0.1.
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Figure 11: Development of the initial state which is a Maxwellian distribution for
2 < z < 10, and is mixture of 10% of Maxwellian distribution and 90% of particles
with velocity V, = 0.5, V,, = 0.0, V, = 0.0 for 0 < 2 < 2. T} = 3, T = 0.5, Time
t=28, Kn=0.1.
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Figure 12: Development of the initial state which is a Maxwellian distribution for
2 < z < 10, and is mixture of 10% of Maxwellian distribution and 90% of particles
with velocity V, = 3.0, V,, = 0.0, V, = 0.0 for 0 < 2 < 2. T} = 3, T = 0.5, Time
t=2, Kn=0.1.
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Figure 13: Development of the initial state which is a Maxwellian distribution for
2 < z < 10, and is mixture of 10% of Maxwellian distribution and 90% of particles
with velocity V, = 3.0, V,, = 0.0, V, = 0.0 for 0 < 2 < 2. T} = 3, T = 0.5, Time
t=28, Kn=0.1.

23



