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Abstract

The paper introduces an estimator of the coupling coefficient in the
Ising lattice, which is based on counting transitions, and suitable for
lattices with missing data. A central limit result is proved for the case
of no missing data. The performance of the estimator is studied by
means of Bernoulli-thinned simulated Ising lattices.

1 Introduction

The Ising model goes back all the way to 1925 [9]. It is a model for ferro-
magnetism in statistical mechanics, which have found numerous applications
in image processing. Each vertex of a lattice (or tree) is supposed to contain
an atom, the state of which can be in either of the two spin orientations —
or +. The material is said to be magnetised if a large majority of atoms
have the same spin. At high temperatures there are approximately as many
atoms with positive as with negative spin. The atoms change spin in a
random manner, but in such a way that the approximate equality of the
number of atoms with negative and positive spin is kept. Nearby atoms,
however, tend to be oriented in the same direction. This is referred to as
clustering. The tendency to cluster becomes stronger when the temperature
is lowered and when it falls below a critical value suddenly a gross majority
of atoms have identical spins and spontaneous magnetisation occurs. The
interested reader is referred to Georgii [6] and /or Liggett [11] for more details
on this interesting phenomenon, referred to as phase transition.

The Ising model is a Markov random field, and as such it is one of the
most well-known. See, e g, Kinderman & Snell [10] and Guyon [8].
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The inverse of the temperature will in this paper be referred to as the cou-
pling coefficient. Sometimes people refer to it as the coefficient of clustering.
A high value of the coupling coefficient corresponds to a low temperature,
and clustering of atoms with identical spins.

In this paper, we introduce an estimator of the coupling (or clustering)
coefficient, which is based on counting transitions. A main reason for its
introduction is that it can be effectively calculated also for Ising lattices
that are only partially known. A drawback is that it becomes more and
more biased as the coupling coefficient increases towards the critical value.

The paper is organised as follows: First, we lay down our notations and
terminology in Section 1.1. Then, in Section 2, the Ising model is described
first as a Gibbs distribution (Section 2.1.1) and then as a Markov random
field (Section 2.1.2). This section moreover contains a description of the
maximum likelihood (Section 2.2.1), the pseudo-likelihood (Section 2.2.2)
and a method of moments estimator (Section 2.2.3) of the coupling coeffi-
cient. The latter two estimators cannot without a lot of ‘pain’ be adapted
to the case when the Ising lattice is only partially known.

In Section 3 we introduce our new estimator. We first discuss the case of
a general Markov random field (Section 3.1). We then specialise to the Ising
case in Section 3.2. This section splits into two parts—one (Section 3.2.1)
that treats the case when the Ising lattice is completely known and one
(Section 3.2.3) that treats the case when the lattice is only partially known.
In Section 3.2.2 we prove a central limit result valid in the case when the
lattice is completely known.

We use a standard Markov chain Monte Carlo technique to simulate Ising
lattices and to obtain realisations of estimated Ising distributions. See Sec-
tion 4. Section 5 describes how we did restorations of thinned Ising lattices.
In the two following sections we describe our obtained simulations results—
in Section 6.1 we treat the completely known case and in Section 6.2, we
discuss the results obtained for partially known lattices. Finally, in Section 7
we discuss the pros and cons of the restoration technique of this paper.

1.1 Notations and terminology

We deal only with the Ising model on a finite rectangular part of Z2? (Z
denotes the integers), to be denoted R = {1,...,r} x {1,...,c}, although
much of what is said below do extend to any finite number of dimensions (and
also to Ising models on a large class of bipartite lattices). The members of
R are called sites or pizels. Any element x = (z(; ;), (4,j) € R) € {—1,1}%
is referred to as a configuration, image or lattice. An Ising lattice is a
realisation of the Ising model. Notice that z(; ;) € {—1,1} for all (i, j) € R.
Occasionally we will have to deal with z; ;) for which (i,5) € Z* \ R. Our
convention in all such cases is z(; j) = 0.

A configuration x € {—1,1}% may be partially known only, in which



case there is a (sometimes implicit) partition of R into two subsets A, B,
say, and we write x = xaxp. Here x4 = (z(; ), (i,5) € A) and similarly for
XB.-

The probability of x € {—1,1}%, to be denoted p(x) will be written as
follows in terms of its energy ¥(x):

p(x) = = exp (— 0 (x))

Z

(Typically, the energy of a configuration may range from —oo to +o0, and
configurations with low energy are the more likely ones.) The normalising
constant Z is referred to as the partition function. Clearly the energy func-
tion ¥ defines a unique probability measure p on {—1,1}%, while ¥ is given
from p only modulo some additive constant. Notice that it is generally im-
possible to calculate the partition function Z by pure enumeration because
of the very high cardinality of {—1,1}% also for moderate values of r, c.

2 Background

2.1 Ising model

Below we will describe two illuminating ways of defining the Ising model.

2.1.1 Viewed as a Gibbs distribution

Let e(x) = ep(x) + ey(x), where ep(x) denotes the number of horizontal
pairs of sites (4,7) and (4,5 +1) such that z(; j) = 7(; j+1) and e,(x) similarly
denotes the number of vertical site pairs (7, j) and (i+1,7) such that z(; j) =
T(i41,5)- Moreover, let d(x) = dj(x)+dy(x), where dj(x) denotes the number
of horizontal site pairs (4, ) and (4, j+1) such that z(; ;) # z(; j1+1) and dy (x)
similarly denotes the number of vertical site pairs (4,5) and (i + 1,7) such
that x(i,j) 75 'T(H—l,j)'

The Ising model on R is the probability measure which is defined by the
energy function

T(x) = 28d(x), x€{-1,1}%

Another energy function that defines the Ising model is
U(x) = fd(x) — e(x)), x € {-1,1}F

since d(x) + e(x) = 2rc — (r + ¢) does not depend on the particular config-
uration x.

The parameter 3 is be referred to as the coupling coefficient. It is a
measure of the strength of the spatial dependence. Nearby sites tend to
have the same value if § is positive, while, if 8 is negative, adjacent sites
tend to have opposite values. In the former case observations tend to form



clusters, the size of which depends on the magnitude of 8. In the latter case
one may observe local checkerboard patterns in the configurations. Notice
also that the case 8 = 0 corresponds to independence between sites.

This heuristic description of the behaviour of the Ising model breaks
down if 3 is too big (above a critical value ;) or too low (below —fg,).
The phenomenon is often referred to as a phase transition, although this
terminology is strict only in the case of Markov random field models on
infinite lattices or trees. Phase transitions occur in many Markov random
fields and the Ising model on Z?2 is one of the few for which the critical value
is fully known. The calculation is due to Onsager [13], who showed that
Be = %log(l + v/2) & 0.441. For more facts, refer, e g, to Georgii [6].

2.1.2 Viewed as a Markov random field

For A C R, write
0A ={(i,j) € Z*\ A:3(k,l) € Asuch that |i — K|+ |j — | =1}

This set contains the neighbours of A. The neighbours of a singleton A =
{(i,7)} will be denoted 8(4, j). Notice that 8A C Z? \ A. Thus there may
very well be neighbours of a set A that does not belong to R.

The Markov property says that

p(xalxp\a) = p(xalxaa)

It is easy to see that this is satisfied by the Ising model as defined in the
above section. In particular, we get for any singleton A = {(¢,7)} that

8(%.7) = {(Z - 1aj)7 (27.7 + 1)3 (7’ + 1aj)a (27.7 - 1)}
and
P(2i,5)[Xo(i,5)) =

&P, (®(i=1,5) T2 (5,5 41) T2 (i41,5) T2 (i,j-1))

eB@1,)FT (41T 41,) T -1) e B@-1,) (41 FEG41,5) T2, -1)
Recall our convention, which applies here and throughout, that z(; ;) = 0 if
(i,7) € Z°\ R.

Thus the conditional probability distribution for z(; ;) given xp(; j) de-
pends only on the sum s(; jy = T(; 1) + T(ij11) + Ty1) + Taj-1)

eP.5)56.5)

 eP8Gd) 4 e P8Gd)

P(@5)l%ag,)

Suppressing the dependence on the site, we may write this in the following

way
eﬂms

p(zls) = s + ¢ Ps
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for z € {—1,1} and s € {—4,—-2,0,2,4}.
Below, we will refer to the Ising model with coupling coefficient 3 as the
Ising()-distribution.

2.2 Statistics

Here we mention a few alternatives to our estimator (which will be discussed
in Section 3 below) of the coupling coefficient. In all cases except, perhaps,
the first, we see no straightforward way to implementation in a missing data
situation. Our review is not meant to be exhaustive.

2.2.1 The maximum likelihood estimator of §

Below, we apply to the Ising model a well-known method for Monte Carlo
estimation of the maximum likelihood estimate. The log likelihood for g,
given the observation x, is

L(Bx) = B(e(x) — d(x)) —log Z(5)

Clearly,
Z(B) =Y _exp (Blely) — d(y)))
y

This can be rewritten

Z(B) = Z(n)Enexp (8 —n)(e(y) — d(y)))

where E, denotes expectation w r t the Ising(n)-distribution. Hence, max-
imising the log likelihood is equivalent to maximising

Ble(x) — d(x)) — log Eyexp (8 —n)(e(y) — d(y)))

for a fixed value of .

The idea now is to guess a value 1 which hopefully is near the true max-
imum likelihood estimate BML and then approximate the expectation to the
right using a suitable Markov chain Monte Carlo method. The drawback
is that this can become extremely time consuming, since very large Monte
Carlo sample sizes may be needed. For details on a reasonable implementa-
tion method, see Geyer & Thompson [7].

2.2.2 The pseudo-likelihood estimator of 3

Besag [3] introduced the following alternative to the likelihood, which has
become known as the pseudo-likelihood,

B (5,5)5(i.5)
e
PL(8x) = []

%))

eP3G.0) 4 e P8Gd)



The product is over all interior sites (i e, sites with all neighbours in R).
The log pseudo-likelihood,

PLBIX) = Y (B0 — log (769 + e )
(&.4)
is concave, thus has a unique maximum, to be referred to as the pseudo-
likelihood estimate of 8 and written BpL. It is a consistent estimator of 3,
see Geman & Graffigne [5].
Notice that the terms with s(; ;) = 0 do not contribute to the argument of

the maximum. We split the log pseudo-likelihood into four terms, depending
on the value of s(; ;). Thus, for s = —4,-2,2,4, write

Ts = - > )
s Z',j:S(i,j):s

where ng is the total number of terms in the sum. (The sum is over all
interior sites (4,j) such that s;; ;) = s.) Finally, maximising the pseudo-
likelihood is equivalent to maximising

Z (Sﬁns-'fs —nglog (eﬂs + e*ﬁs))
s#£0

2.2.3 A method of moments estimator of §

Sherman & Seymore [15] introduced a method of moments estimator of g,
which is closely related to Besag’s pseudo-likelihood estimator. By solving

ebs
p(1ls) = pr; e e #0
for 8, we get
1 p(1]s)
- — 4,-2,2,4
IB 23 ng(_1|s)7 S ? 7 7

Sherman & Seymore [15] used this relation to define the following four
method of moments estimators of 3:

5 1 p(1]s)
=—1 =-4-2214
/6MMS 25 0og ﬁ(-l'S)’ S ) ) 4y
where o
(1]s) = {(4,7) E sz(i,j) = 1,835 = s}
{(i,5) € R: 54,5 = s}
and

p(=1[s) =1 —p(1]s)



(|A| denotes the cardinality of A). They further studied the mean of these
four estimators:

N 1 N
Bum = 1 ZﬁMMS
S
Now, notice that
Zs = p(lls) — p(=1[s)

from which

~ 1. 14,
= —1
P, = - log -— Z.

follows. The reader now easily shows that the term
s$PnsTs — nglog (665 + 6765)

in the log pseudo-likelihood is maximised by BMMS- Thus the pseudo-likeli-
hood estimator Gpr, is a weighted mean of Sherman & Seymore’s four method
of moments estimators By, -

3 A canonical minimum energy estimator

3.1 The general Markov random field case

In the Ising model that we study in this paper, there are nearest neighbour
interactions in the horizontal and vertical directions only. (This holds true
also for many more general Markov random fields.) We therefore write the
energy function as follows:

U(x) = Wi(x) + Up(x) + Ty (x)

where

x) = Y iz
(i:7)

while

Z Pn(z ,J+1))
(4.4)

and, similarly,

Z % (3,5) % z—|—1,j))

Convention: The value of a function is zero if an argument vanishes. Notice
that the densities v, and 1, coincide in the isotropic case.
Next, notice that

v, ( + \I’h z Z 'sz + @bh( ‘x(z,]—l—l)))



The idea now, is to think of each sum

> Wilzi,5) +¥n(.5) T5+1)))

J

as the negative of the log-likelihood (i e, canonical energy) of a homogeneous
Markov chain with transition matrix P, = (pp(z,y)) and invariant distri-
bution 7 satisfying P, = w. A simple argument then shows that this sum
can be written

D (=logm(z(i ) +log m(2(ij41)) — log P (T (i) T(ij1))
7

By identification of terms, we see that

Yi(z) = —logw(x)

and
Yn(z,y) = log7(y) — log pa(z,y)

An analogous argument for the vertical direction yields

Yy (z,y) = log w(y) — log py(,y)

where also the p,’s form a transition matrix P, = (py(z,y)). Notice that
P, and P, must have the same invariant distribution n. Notice also that
15, ¥y, and 1, are defined modulo additive constants. In the isotropic case,
P, =P,.

We use formal maximum likelihood technique to estimate the horizontal
and vertical transition matrices. In the case of a complete observation, the
maximum likelihood estimate of py(z,y) is

fh(x,y)
fh(xa )

where f(z,y) denotes the number of transitions from state z into state y
in the horizontal direction, and f4(z,-) = 3-, fn(x,y) is the total number of
jumps out of state x. Notice here that each row (x(i,j), 1 < j < ¢) contains
the same amount of information. That is why we sum over all rows above.
We finally get the following estimate of vy:

ﬁh(xa y) =

Pn(z,y) = log 7 (y) — log pn(x,y)

where 7, is the invariant distribution corresponding to the estimated tran-
sition matrix P, = (pp(z,y)).
Similarly,

A _ fo(z,9)
pv(w,y) B fv(ma')




where f,(z,y) denotes the number of transitions from state z into state y
in the vertical direction, and fy(z,-) = 3, fu(%,y) is the total number of
jumps out of state x. Moreover, 1), is estimated by

-~

Py (z,y) = log 7y (y) — log py(,y)

where 7, is the invariant distribution corresponding to the transition matrix
Py = (pv(z,9))-

Notice that, this approach gives us two estimates #;, and 7, of the in-
variant distribution 7. Practise has shown that they are not very different.
Each is used to calculate an estimate of ¥;. As our final estimate of ;, we
use the mean of these two estimators.

In the isotropic case, we write f(z,y) = fy(z,y) + fr(z,y) and estimate
the common transition probability p(z,y) = pn(z,y) = py(z,y) by means of

ﬁ(mﬂy): f(a:’_)

where again f(z,-) = 3, f(z,y). We then proceed as above. Notice that in
this case we have just one estimate of the invariant distribution.

In the case of a non-complete observation, we express the ‘likelihood’ as
a function of data. However, typically there is no closed form solution. This
calls for a numerical maximisation. There is moreover no guarantee that
the likelihood is concave. That is to say, there may be many local maxima.
In order to find the best (or one which is nearly as good) we have used
simulated annealing [2].

We refer to these kind of estimators as canonical minimum energy esti-
mators, since they are formed by writing the energy in a canonical way and
then finding the function that minimises the energy. This may be done para-
metrically in the Ising model (as in this paper) as well as non-parametrically
in general Markov random field models [12].

3.2 The Ising model

Let us now see what the above yields for the isotropic Ising model. The only
reasonable parametrisation of the transition matrices is the following

_p _|1=p p
m=r="" "]

with invariant distribution
_ 1 1
T=[3; 3]
since the two states —1 and 1 are completely symmetric in the Ising model.
This yields an energy function specified by means of

¥i(—=1) = i(1) = log 2



and
Pn(=1,-1) = op(1,1) = —log2—log(l—-p)
"ph(_lal) = wh(la_l) = —log2—logp
Under isotropocy, ¥, = 1. It is convenient to write 1; as a vector and

and v, as matrices. We then get (using the fact that these densities are
defined modulo additive constants)

Py =[0 0]
and -
0 log —*
= P p
"ph % llog 1?%1, 0 ]

showing that

Hence,

which clearly holds true if, and only if,

1

P=1iew

One may look upon these two latter formulae as a reparametrization of
the Ising model. While the coupling coefficient § measures the amount of
dependence between adjacent sites, the transition probability p is a mea-
sure of the willingness to change state. Configurations with d(x) small are
favoured if 8 > 0. Now (8 > 0 holds true, if, and only if, p < % in which case
the tendency to change state is low in the process, hence clustering occurs.
Similarly, if 8 < 0 configurations with d(x) large are favoured. Also, 8 < 0
if, and only if, p > %, in which case the process has a high tendency to
change state, hence local checkerboard patterns will be seen. Finally, p = %
if, and only if, the sites act independently.

Notice also that the critical transition probabilities (that corresponds to

Bc) are
V2

and

2
1—p.= % ~ 0.7071

Our motivation for this reparametrization of the Ising model is of course
that p has a natural (canonical minimum energy) estimator to be discussed
next.
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3.2.1 Case of complete observation

In the case of an observation without missing data, the maximum likelihood
technique described above yields

dx) _ dx)
e(x)+d(x) 2rc—(r+c)

p=

showing that the canonical minimum energy estimator of 3 is

3.2.2 Asymptotics

Pickard [14] proved under the torus convention, a law of large numbers
and a central limit theorem for the nearest neighbour sample correlation
S = Q/2rc, where

Q= e(x) —d(x)

The central limit result is of the form
V2re (S — B') B N (0, B")

The constants B’ and B” are difficult to explain. We therefore refer the
reader to [14]. Notice now, that

=1-2p

showing that we may transform Pickard’s two limit assertions into a law of
large numbers and a central limit theorem for p. Using well-known facts for
the logarithm, we may further prove a law of large numbers

R 1. 1+ B
= Zlog -2
B=bo=3zlei—5

and a central limit result of the form
Vare (B— ) B N(0,1/2B")

(for details on how to do the latter derivation, refer, e g, to [1, p 422]). Notice
also that there are restrictions on the relative rates at which r,¢ — oo [14].

Thus, our canonical minimum energy estimator do converge to some
value . It is quite clear that Gy # [ (unless § = 0). We will see below
(Table 1) that the difference between §y (or rather the mean of our estimate
B) and the true value 8 can be quite big.

11



3.2.3 Case of missing data

The idea behind the canonical minimum energy estimator is to study tran-
sitions in the horizontal and the vertical directions, using the simplifying
(and not correct) Markov chain assumption. Thus, for each row 7 and each
column j, we write down a likelihood Lj and Lf, resp, thinking as if the row
(or column) is a finite realization of a Markov chain with transition matrix

P:[l—p p]
p 1-p

having invariant distribution

]

Notice that the likelihoods are functions of one parameter p, only. Nearby
rows (columns) are clearly not independent. Still, they contain precisely
the same amount of information, so one reasonable way of weighting them
together is to multiply the likelihoods, thus obtaining

L(p) =[] Li(p) x [[ E5(p)

N[ —
N[

m=|

In the case when all realizations are complete (treated above in Section 3.2.1)
this yields (as noted) the estimator

. dx)
P et o)

of p, from which our estimator 3 = (1/2)log(e(x)/d(x)) of the coupling
coefficient 8 may be derived.

In the case of non-complete observations, there is no closed form solution
to the problem of maximising L(p), so the natural thing to do is to resort
to numerical methods. However, in theory the likelihood L(p) need not be
concave. (For an example, see [2].) Thus there may be more than one local
maximum. Therefore we employed simulating annealing [2] to find a value
pPsa of p near the global maximum. Starting with that value, we then ran a
standard numerical maximisation algorithm to find the local maximum that
is closest to psa. We also started from some randomly chosen values of p.
We did not find a case with more than one local maximum, so employing
simulated annealing in this one-parameter case seems to be to over-do it.
The found value is, at least a good approximation of the canonical minimum
energy estimate p of p. Finally, the canonical minimum energy estimator of
the coupling coeflicient 3 is given by means of

~ 1. 1—9p
B=;log P
2 P

12



Figure 1: An Ising simulation with coupling coefficient § = 0.20. The
canonical minimum energy estimator of the coupling coefficient is 8 = 0.2138

4 Simulations

All simulations of the Ising model employed the Gibbs sampler [4], which
updates one site at a time (see also [8, p 211]). An iteration consists of one
sweep through all sites. The site visiting scheme was randomly permuted
before each new sweep began. All simulated configurations has r = ¢ = 50,
which means that they contain 2500 pixels. For an example, see Fig 1.

5 Restorations

In our restoration experiments R is partitioned into a known region A and
an unknown region B of sites. The problem is to find the configuration Xp
making the conditional probability p(xp|x4) maximal. For the Ising model,
this is equivalent to maximising

e—Qﬂd(xAxB)

holding x4 fixed. If 8 > 0, the maximum clearly occurs when d(x4xp) is
minimal. It is interesting to note that we do not need to know the true value
of the coupling coefficient. It is enough to know whether it is positive or
negative.

The unknown region B was randomly selected using an independent
thinning mechanism conditioned on the total number of remaining sites.

We used ordinary simulated annealing to find a sub-configuration xp
with d(x4xp) minimal or near

c/i\A = mind(x4xp)
xB

For a description of simulated annealing for the Gibbs sampler dynamic,
see [8, p 213]. We used an exponential cooling schedule of the form

Ty =Ty x 278k g =0,1,... ks

13



true I} Bvm
B T S T S

0.05 | 0.0483 0.01507 | 0.0479 0.01522
0.10 | 0.1021 0.01413 | 0.1003 0.01401
0.15 | 0.1591 0.01495 | 0.1516 0.01497
0.20 | 0.2172 0.01692 | 0.2006 0.01637
0.25 | 0.2874 0.01919 | 0.2520 0.01504
0.30 | 0.3621 0.01939 | 0.2982 0.01431

Table 1: A comparison between the canonical minimum energy estimator
B and Sherman & Seymore’s [15] method of moments estimator Briu for
different values of the true coupling coefficient #. The number of consecutive
sweeps used to calculate T and s is in each case n = 100 (Z and s denote
the sample mean and standard deviation, resp)

where T}, denotes the temperature of sweep (or iteration) number k, Ty the
initial temperature, ki/, the number of sweeps needed to half the tempera-
ture and k; the total number of sweeps. Most restorations used the schedule
defined by Tp = 4, k12 = 25 and ks = 200.

6 Results

6.1 Completely known Ising lattices

Although the main idea of this paper is to present an estimator of the
coupling coefficient specially design to deal with partially observed configu-
rations, it is of course of great interest to see how this estimator works for
complete observations.

Table 1 shows the results of comparisons between the canonical min-
imum energy estimator 3 and Sherman & Seymore’s [15] method of mo-
ments estimator BMM for a couple of simulations using the Gibbs sampler
with random sweep as described above. As can be seen in the table, the
canonical minimum energy estimator B works well when the dependence is
not too strong. For stronger dependence 3 is severely biased. The reason
for this bias when the coupling coefficient is large, is of course that two-
dimensional effects become more prominent. When [ is too close to the
critical value (3., the amount of clustering is larger than the one-dimensional
theory predicts. Thus, d(x) is smaller and e(x) is larger than predicted by
the one-dimensional theory (which lie behind the canonical minimum energy
estimator), making 3 = (1/2) log e(x)/d(x) positively biased.
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Figure 2: Upper left: 40% thinned Ising lattice; upper right: mean lattice;
second row left and right: restoration and marginal mode plot, resp; third
row: two conditional simulations in the estimated model (3 = 0.182)
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Figure 3: Upper left: 80% thinned Ising lattice; upper right: mean lattice;
second row left and right: restoration and marginal mode plot, resp; third
row: two conditional simulations in the estimated model (8 = 0.305)
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Figure 4: Upper left: 90% thinned Ising lattice; upper right: mean lattice;
second row left and right: restoration and marginal mode plot, resp; third
row: two conditional simulations in the estimated model (8 = 0.187)
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amount of observations of 3 calculated
thinning in thinned configuration T s 2s//n
40% 0.214 0.152 0.215 0.200 0.211 | 0.1984 | 0.0266 | 0.0238
80% 0.324 0.216 0.145 0.085 0.295
0.091 0.184 0.079 0.226 0.249 | 0.1894 | 0.0880 | 0.0556
90% 0.177 0.185 0.459 0.233 0.259 | 0.2626 | 0.1149 | 0.1028

Table 2: Calculation of B for three different amounts of thinning of the Ising
lattice in Fig 1 with true § = 0.20 (the estimate based on the complete
configuration is B = 0.2138; T and s denote the sample mean and standard
deviation, resp, and s/y/n the standard error)

6.2 Partially known Ising lattices

Figures 2, 3 and 4 show the results of three thinning experiments. We
randomly discarded 40%, then yet another 40% and then further 10% of the
2500 pixels of the Ising lattice in Fig 1 with true coupling coefficient § = 0.20.
The thinned configurations are shown in the upper left positions of the three
figures. The removed data are marked grey. The canonical minimum energy
estimator of the coupling coefficient is for the three thinned configurations
ﬁ = 0.182, ﬁ = 0.305 and ﬁ = 0.187, resp. In the upper right positions
are marginal conditional mean lattices, each obtained by running a long
conditional simulation given the known sub-configuration in the estimated
model. The results of one restoration (using simulated annealing typically
with Tp = 4, k1/3 = 25 and ks = 200) are shown underneath to the left and
to its right is a simulated conditional marginal mode lattice shown. These
mode plots come from the same run as the mean plots on the first row.
In the third row are two conditional simulations from the estimated model
shown.

The mean lattice gives quite a good insight into the true configuration in
the two first cases, in which the amount of thinning is not too big (i e, 90%).
In all three cases the mode lattice is a valuable supplement, but notice that
its quality depends very much on the outcome of the estimation of 4. This
remark is of course also valid for the mean plots. Notice also that the mode
lattice is a much more realistic restoration than the true maximal aposteriori
prediction to its left. The conditional simulations in the last row does not
help much in understanding the true configuration. Instead they could be
looked upon as ‘alternative realities’.

Table 2 shows the result of calculating 3 for independent 40%, 80% and
90% thinnings of the Ising lattice in Fig 1. Notice that the sample standard
deviation s increases with the amount of thinning. This experiment strongly
supports the statements o4 < og and o4 < 09, while it does not give
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true | ‘true’ observations of g calculated

]
)

I} Jé] in thinned configuration

2s/\/n

0.15 | 0.1673 | 0.194 0.083 0.213 0.180 0.307

0.189 0.259 0.122 0.105 0.275 | 0.1927 | 0.0742 | 0.0469

0.20 | 0.2202 | 0.232 0.211 0.228 0.377 0.306

0.360 0.306 0.129 0.289 0.160 | 0.2598 | 0.0817 | 0.0517

0.25 | 0.3064 | 0.266 0.329 0.266 0.325 0.305
0.395 0.299 0.269 0.197 0.315

0.332 0.324 0.387 0.289 0.402 | 0.3133 | 0.0545 | 0.0282

Table 3: Calculation of B for three different values of the true 8 and 80%
thinning (the ‘true’ 3 is the value calculated in the complete configuration;
Z and s denote the sample mean and standard deviation, resp, and s/v/n

the standard error)

any conclusive evidence as to weather g < og or not. Here, for p =
A4,.8,.9, 012, denotes the variance of any of the independent and identically

distributed measurements of 5 for a p-thinning of the configuration in Fig 1.
The standard variance ratio test, based on the normal assumption, rejects
strongly the two null hypotheses Hy : 04 = 0.3 and Hy : 0.4 = 0.9 in favour
of the ordered alternatives K7 : 04 < 0g and Ky : 04 < 09. The one-
sided p-values are 0.017 and 0.0076, resp. The one-sided p-value of the null
hypothesis Hs : 0§ = o9 is 0.232. Notice also that the estimate based
on the complete configuration, B = 0.2138, in all three cases is within two
standard errors from its ‘estimate’ Z.

Table 3 shows the result of calculating B for independent 80% thinnings
of three Ising lattices with true g8 = 0.15, § = 0.20 and § = 0.25. One
would expect that the sample standard deviation s should decrease as the
true B increases, since larger values of 8 typically give larger clusters. The
data displayed does not support this or any alternative to this belief. The
standard variance ratio test, based on the normal assumption, do not reject
any of the three null hypotheses Hy : 0,15 = 099, Hy : 099 = 095 and Hj :
0.15 = 025 (here 0% denotes the variance of any of the 10 independent and
identically distributed observations of B in the first case with true g = 0.15,
etc). Notice also that the estimate based on the complete configuration in
all three cases is within two standard errors from its ‘estimate’ T.

7 Discussion

We have seen above that the canonical minimum energy estimator B of 4 can
be severely biased. One way to overcome this is to estimate the difference
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between EB and the true value 8 for various values of 8. Table 1 is an
embryo to this function for the case of 50 x 50 configurations. It is of course
also possible (and probably better) to invoke such a procedure directly into
the estimation process, using, e g, a Newton-Raphson like algorithm.

Our main purpose, however, with this research is not to introduce a new
estimator of the coupling coefficient § in the Ising model. Rather it is to find
new methods for doing restorations of partially observed discrete geological
configurations. The method of this paper consists of the following three
steps:

1. predict the value of the statistic d(x);
2. use the prediction to estimate the model; and
3. find the most likely configuration in the estimated model.

We have seen that the method of this paper for doing step 2 is (sometimes
severely) biased. Also step 3 is biased, since the most likely configurations
are the ones with d(x) minimal (as long as § > 0 which is the case treated
in this paper) (see Section 5). This difficulty can however be overcome as
we did above, by also calculating the marginal mode of repeated simulations
of the estimated model. Notice also that the bias of step 3 adds to the bias
of step 2.

In a follow up to this paper we will study step 1 more thoroughly. One
reason for doing so is that it is possible to make restorations without invoking
steps 2 and 3, by employing the fact that

POl =) = [y =

One difficulty with this approach is to sample from the uniform probability
distribution p(x|d(x)).

Acknowledgements

I like to thank Olle Haggstrom, Olle Nerman and Geoff Nicholls for stimu-
lating conversations regarding the topic of this paper.

References

[1] Agresti, A. (1990): Categorical Data Analysis. New York. Wiley.

[2] A.Baran & S. Baran (1997): An application of simulated annealing to
ML-estimation of a partially observed Markov chain. Report. Centre for
Applied Mathematics and Statistics. Chalmers & Goéteborg University,
Sweden.

20



3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Besag (1974): Spatial interaction and the statistical analysis of lattice
systems (with discussion). J. Roy. Statist. Soc. Ser. B, 36, 192-236.

D. Geman & S. Geman (1984): Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of images. IEEE Trans. PAMI 6,
721-741.

S. Geman & C. Graffigne (1986): Markov random field image models
and their applications to compute vision. In Proceedings of the Int.
Congress of Mathematicians. Berkeley.

Georgii, H.-O. (1988): Gibbs measures and phase transitions. Walter de
Gruyter.

C. J. Geyer & E. A. Thompson (1992): Constrained Monte Carlo max-
imum likelihood for dependent data (with discussion). J. Roy. Statist.
Soc. Ser. B, 54, 657-699.

X. Guyon (1995): Random Fields on a Network. Springer-Verlag.

E. Ising (1925): Beitrag zur Theorie des Ferromagnetismus. Zeitschrift
Physik, 31, 253-258.

R. Kinderman & J. L. Suell (1980): Markov Random Fields and their
Applications. American mathematical Society, Providence, Rhode Is-
land.

T. M. Liggett (1985): Interacting particle systems. Springer-Verlag.

T. Norberg, L. Rosén, A. Baran & S. Baran (1998): On modelling dis-
crete geological structures as Markov random fields. Preliminary report
of work in progress.

L. Onsager (1944): Crystal statistics: A two-dimensional model with
order-disorder transition. Phys. Rev., 65, 117-149.

D. K. Pickard (1976): Asymptotic inference for the Ising lattice. J.
Appl. Prob., 13, 486-497.

M. Sherman & L. Seymore (1994): Method of moments and method of
moments-type estimators in image processing and statistical mechan-
ics models. Technical report no 93-26. Department of Statistics. The
University of Georgia.

21



