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ABSTRACT. We study the spatial discretization for the numerical solution of a model prob-
lem for the neutron transport equation in an infinite cylindrical media. Based on using an
interpolation technique in the discontinuous Galerkin finite element procedure, and regulariz-
ing properties of the solution operator, we derive an optimal error estimate in Ly—norm for
the scalar flux. This result, combined with a duality argument and previously known semidis-
crete error estimates for the velocity discretizations, gives globally optimal error bounds for the
critical eigenvalue.

1. Introduction. We consider a fully discrete scheme for the numerical solution of the
stationary, isotropic, one-velocity neutron transport equation in an infinite cylindrical do-
main in R® with a polygonal cross section 2. The cylindrical symmetry reduces the problem
to R? by projecting along the axis of the cylinder. Thus we study the neutron transport
equation in a bounded polygonal domain Q C R? with the velocity space being the unit disc
D c R2.

We analyze the discontinuous Galerkin finite element method, with piecewise linear trial
functions, for the space discretization, by means of a quasiuniform triangulation of the space
domain 2 with the mesh size h. In order to obtain sharp error bounds, we use a K-method
of interpolation based on a splitting with respect to the maximal available regularity of the
partial derivatives of the exact solution. For this method we give an Ly error estimate for
the scalar flux of order h'=¢, ¢ > 0 small, resulting a globally optimal error bound for the
largest (critical) eigenvalue of order h®—¢.
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In approximating the hyperbolic problems with the discontinuous Galerkin an Ly-error
estimate of the form

e = enllzy) < B2l @ € H(S),
) ()

is optimal, where H*(Q2), s > 0 is the usual Sobolev space containing all functions with
s derivatives in Ly and for non-integer s, H*(2) is defined by the interpolation, see [7].
Since for the neutron transport equation the exact scalar flux is at most in H3/27¢(Q) see
[5], therefore the convergence rate O(h'~¢) is sharp. The usual way of deriving convergence
rates for functions of fractional regularity is through embeddings between Sobolev and Besov
spaces. However, the embeddings (Sobolev-Besov-Sobolev) cause twice O(h=%), § ~ ¢,
(e small), factor affecting the convergence rate, see [3]. Further, as an ingredience of an
approximation procedure, the emdedding process is too technical. To avoid these undesired
features, the present study is based on K-method of interpolation.

The most related studies of this type (same geometry) can be found in [3], [5] and [6].
In [5], L error estimates are proved for both semidiscrete and fully discrete problems. In
[6] the semidiscrete problem is studied in the L;-norm, which is the most relevant norm
from a physical point of view, since the scalar flux represents a particle density. Also,
because of the limited regularity of the exact solution, error estimates in the L; norm for
eigenfunctions yields the sharpest error bound for the eigenvalues. However, in [3] (as in the
present studies), i.e., for the spatial discretization based on the finite element method, the
L- norm is more suitable, since in estimations in L, the duality concept can be used more
efficiently giving the sharpest error estimate for the critical eigenvalue (even in here in the
weaker norm Lj). This improves the convergence rate for the eigenvalue more than three
times (O(h®~°)) as that we obtained for the pointwise scalar flux (O(h!=¢)). Therefore,
despite the desirability of studying both spatial and angular discretizations, combined, in
the same underlying function space; there are significant advantages in considering different
norms.

Some relevant classical approaches are, e.g., the discrete ordinates studies in [12] for
the angular discretizations, the finite element studies in [9] for the spatial discretizations,
and finally a Ritz-Galerkin approach in [8] for both angular and spatial discretizations in
a general setting. Some recent numerical approximations for the transport equation by
discontinuous finite elements can be found, e.g., in [1], and [2]. For mathematical analysis
and theory of the neutron transport we refer to [11].

An outline of this paper is as follows: In Section 2 we introduce the model problem,
drive the governing integral equation and recall some previous estimates for the angular
discretizations which are relevant to our purpose. In Section 3 we give error estimates for
the space discretization and prove the main result: Theorem 3.1. Our concluding Section
4 is devoted to a discussion on duality approach for the eigenvalue estimates and some
compatibility conditions between the number of odrinates and the spatial mesh size in a
fully discretized scheme.

Throughout this paper C' will denote a positive constant not necessarily the same at
each occurrence and independent of all the parameters involved, unless otherwise explicitly
stated.

2. Model problems.

2.1. The continuous model problem. We consider a problem of mono-energetic trans-
port of neutrons in an infinite cylindrical media 0 C R3, with the isotropic source and
scattering. We assume that the cross-section Q of the cylinder Q is a bounded convex polyg-
onal domain in R? with the boundary I'. Assuming also that the source term f is constant
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along the axial direction of the cylinder we may project the equation, see [5], on the cross
section () to obtain

f- Vau(e, 1) + u(e, 1) = A /D w(z,n)(1— [P dn + f(z), (2.4) €Q x D,

u(z,p) =0, for(z,p) €T, xD,

(2.1)

where, y-V, = Zle ui(0/0x;), A is a real parameter, u(x, ) is the density of neutrons at
the point z € Q moving in the direction 4 € D = { € R? : |u| < 1} (the projection of the
unit sphere), and ', is the inflow boundary of (2 with respect to p defined by

(2.2) I,—={zel:p-n(z) <0},

where n(z) is the outward unit normal to T" at z € T'. Let us also introduce the scalar flux
U defined by

(2.3) Uz) = /D w(z, 1) (1 = )" 2dp,

Now consider the following hyperbolic partial differential equation: given g € Ly(Q2),1 <
p < 00, find w(z,u) such that for u € D\ {0},

(2.4) p-Vuot+tw=g in Q, w=0 onT

wo

the solution of this problem is given by

d(z,p)/|pl
(2.5) w(a,) = Tugla) = [ e~g(z — sp)ds,

where T), is the solution operator and d(z, p) is the distance from z € € to the inflow
boundary in the direction —p :

d(z, ) = inf{s > 0: (z — sp/|p|) ¢ Q}.

Let g = AU + f, then using equations (2.4) and (2.5) our model problem (2.1) has a solution
of the form

(2.6) w(z, ) =Tu(NU + f)(z),  (z,p) € 2 x D,
consequently we have the following integral equation, for the scalar flux U:
(2.7) (I-XTWU=TY,

where
Tg(a) = [ Tata)(1 = luf") 2

T is an integral operator with weakly singular kernel i.e. T : Ly(9) = W, (Q),1 < p < oo,
see [5, Lemma 1.1], specially T : L,(2) = L,(Q2),1 < p < o0, is compact. Thus (2.7) is a
Fredholm integral equation of the second kind, hence if \=! ¢ o(T'), where o is the spectrum
of the operator T, then there is a unique U € L,(Q2),1 < p < 00, satisfying (2.7).
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Remark 2.1. We know that the scalar flux U, no matter how smooth the given data f is, has
a limited regularity, in fact we have U € H3/27¢(Q);0 < € << 1, see the splitting argument
below. Moreover the solution operator 7}, is more regularizing in the streamline direction
(direction of u) in the sense that, for the angular flux u(z, ), we have more derivatives in
one direction than the others and hence the partial derivatives of the angular flux « do not
have the same regularity, (for the scalarf flux U this phenomena is integrated away ). There
are also singularities arising from the closeness of the directions of the velocity variable u to
the directions of the sides of the polygonal domain Q2. Therefore we shall split the velocity
directions into the so called “good ones” and “bad ones”. We split the less regular partial
derivative of the angular flux, loosely speaking, in such a way that in the final step the terms
are balanced in the sense that each split part contributes to the same order of convergence.
For further studies of such singularities see [13].

2.2 The semidiscrete model problem. We introduce the semidiscrete analogue of the
model problem (2.7): given a function f, find u,(z, u) such that
(2.8) un(@,p) = Ty(AUn + f)(2),  (2,4) € Q2% D,

where U, is the quadrature approximation of the scalar flux U constructed as in [5], i.e.

Un(z) = Z Un (T, p)wy, = /Du(x"u)(l _ |M|2)_1/2 dp,

pREA

with A = {u!, 2, ..., u"} being a discrete set of quadrature points p € D, i = 1,...,n, with
the corresponding positive weights w,,u € A. We have n = M N, where M is the number
of, equidistributed, discrete points on the unit circle and N is the number of Gauss points
on [0, 1], chosen according to a special quadrature structure. Multiplying (2.8) by w, and
summing over A we obtain the following semidiscrete analogue of (2.7): find U, such that

(2.9) (I =AT)Up =Tof,  with Tpg(z) = w,Tug(x).
KEA
Then for the semidiscrete error U — U,, we have the following estimates:

Proposition 2.1. Assume that A\™' ¢ o(T). For each € > 0 there is a constant C such
that, for sufficiently large N and M,

1 1
(2.11) T = To)AU + Iy < Cn 2N + fll -

The estimate (2.10) is the main result of [6] and (2.11) is given in Lemma 4.3 of [5].

3. The discontinuous Galerkin and fully discrete problem. We shall denote by
{Cr} a family of quasiuniform triangulation C, = { K} of Q indexed by the parameter h, the
maximum diameter of triangles K € C,. We introduce the finite element space:

Vi = {v € La(Q) : v|g is linear, K € Cp}

and define a discrete solution operator T : Ly(€2) — Vj approximating T}, by the following
discontinuous Galerkin finite element method for (2.4):

(3.1) Z [(/,L -Vul +ul v + / [uPoy |- fz|da] = / gudz, Vv € Ly(Q2),
KeCy OK= Q
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where

(u,v)K=/ uvdz, OK~ ={x € 0K : p-n(x) <0},
K

[v] = vy —v_, vy (z) = lim v(z +sp), =€ IK,
s—0+
f = n(x) is the outward unit normal to K at z € 0K and u” =0 on r,.

Now, let us formulate the following fully discrete analogue of (2.6): given f find u” (-, u) €
V), such that

(32) Wh(om) =TIOUR+S),  weA,

where U" is a totally discretized approximation of the scalar flux U, i.e.

Uh = Z ult (-, p)wp,.
REA

Equation (3.2) yields to the problem of finding U € V}, such that

(3.3) (I-XT)HUR=TPf,  with T}=> Thw,.
REA

For A1 ¢ o(T) and max(h, 1/n) sufficiently small, (3.3) has a unique solution U" € V},; see
[4, section 5]. Our main concern is the estimates of the error in the scalar flux for the fully
discrete problem (3.3) i.e. U — U. The parameters h and n will be related according to the
following compatibility conditions:

(3.4) h'(n) ~vn=vVMN, and M~ N.

Optimal semidiscrete error estimates, (according to Proposition 2.1), and sharper estimates
for the fully discrete eigenvalues, require a slight modification of the second relation in (3.4)
which, does not effect the results in here (see also Remark 4.1).

We shall use the following notation: for s > 0, || - ||, will denote the norm in the sobolev
space H*(f2) and |- |, the corresponding seminorm of highest order derivatives. For non-
integer s, these norms are defined by interpolation, see [7]. For s = 0 we omit the index 0
and let || - || denote the L2(R2) norm. Now let R := I, x I, be an axi-parallel rectangular
domain containing  and the union of supports of all functions under consideration. For
r,s > 0, we shall use the space H™*(R) with the norm

1/2
oo = [ [ loCallry doat [ ot iy de]

D) £l

and the corresponding semi-norm obtained by replacing the norm || - || ;. by the semi-norm
| - |g¢- Since all fuctions are vanishing outside R, thus we may in the norms [[v[], ; and |v|
replace both I, and I, by R, see Lions and Magenes [10] for the details.

We shall also use the following splitting of A in two sets:

7,87

1
Js={p € A:6=min(|sin(p,dy)|) > & ~ i k=1,2,.., R},
Js={neA:p¢ J},

where d;,’s are the sides of ) and P, is the number of sides of 2. Our main result is:
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Theorem 3.1. Assume (3.4) and that \™' ¢ o(T). Let U and U" satisfy (2.7) and (3.3)
respectively. Then there is a constant C such that for sufficiently small h (large n) and for
g € H3*=¢(q),

IU = Ul < Ch'=<|1og hllgl rsr2-< ()

where g = AU + f and € > 0 is small.

Remark 3.1. Note that by the trace Theorem, see [7], for a Lipschitz domain Q, g € H*(Q),
implies that g € H*~1/2(T'), where I' = 99, s > 1/2. For the polygonal domain Q and with
s = 3/2 — ¢, as in Theorem 3.1 above, we get the right regularity at the boundary. The
crucial part that remains is to make sharp approximations so that, due to this regularity at
the boundary, the estimates give optimal convergence rate.

In the proof of Theorem 3.1 we use the following two results:

Proposition 3.1. [Stability]; cf.[5]: For g € L2(Q) we have

. 1/2
(3.5) - Tl + Tl + ([ @osPlu-ldo) ™ < Cllgl

Proposition 3.2. [Convergence]; cf. [5]. Given g € La(f2), there is a unique u”(-, ) =
T"}gh(-)he Vi satisfying (3.1). Moreover, there is a constant C independent of g, u, h and
such that

(3.6) (T, — T]glll < Ch=' 2| Tygl,,  s=1,2,
IT2glll < Cligll,
(3.8) > wull(T — Tl < Chljgll,
neEJs

where Js is defined above and

1/2
(3.9) lolll = |0l + 23l - Vol + 3 / |[v]|2|u-ﬁ|ds] :
K K 0K
o]l = (v,0)3>.

Recall that | - |, is the seminorm with the corresponding mazimal number of derivatives.

S
We prove theorem 3.1 using the following Lemma based on the above splitting:
Lemma 3.1. There is a constant C such that for g € H3/2=%(Q),

> wulTuglys—. < Cl10g8lllgllgs/o—e -
rEJ;

We postpone the proof of Lemma 3.1 and first show that Theorem 3.1 follows from that.
Proof of Theorem 3.1. We have using (2.7) and (3.3) that

(U — UMT = TMYU + f) + XTHU — UP),

ie.,
(I = XT}(U — U = (T = T) AU + f) + (T, = TPYAU + f) := e, + €.
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According to a stability estimate, see [5.,Theorem 5.1], if A=! ¢ o(T'), then for sufficiently
large n, (I — ATH)~! : Ly(Q) — L2(Q) exists and is uniformly bounded. Thus we have

(3.10) 1U = Unll < Cx (lleall + llenll) -

Using Proposition 3.1, an interpolation in (3.6) together with (3.8) and Lemma 3.1 we get

(3.11) lepll =N(Tn =TPgll =11 { D + D | wulTu = TPl
rEJs  peJj
< Z wpl[(Ty — T‘f)gH + Z wpl|(Ty — T:)Q”
pEJs REJ}
<Chl|gll + Ch'~¢ Z wu|Tug|3/275
HEJ

<Ch*=*[10g 4|9l gs/2-< (qr)-

Thus (2.11), (3.4) and the relation logd ~ log h give the desired result. B
Lemma 3.1 follows combining the following two results:

Lemma 3.2. There is a constant C' such that for g € H*(Q2) and p € Jj,

C
(3.12) ”Tug”S,o < 571/2”9”H"'(Q)’

|

C
||Tﬂg||a7ﬂ S |'u|s_1/2 ’ (

(3.13)

1/2 ||g| Hs(Q)»

min, | sin (g, di)|)
witha+ 8 =s<2and g <1.
Lemma 3.3. There is a constant C such that for g € H?(Q),s = 3/2 — e, we have

c 1

3.14 T.9 <—-
( ) ” 132 ”0’3 |/l'|

He(Q)"

)|||g|

miny, | sin(u, dy,

Proof of Lemma 3.1. By lemma 3.3 we have the estimate for (3.13) when £ is beyond 1,
actually when 8 < s = 3/2 — e. Now since we have

> =€ (S (W 2
|| ming | sin(g, di)| | 4] |sm | =6;

HEJ 5
2
0(/ d—a) ~ C (|logd]),
5 0

the proof follows from Lemmas 3.2 and 3.3. B

1%

Below in the proofs for Lemmas 3.2 and 3.3 we shall carry out the basic estimates and
leave the task of after-hand arithmetics to interested reader. See also [7] and [13].

Proof of Lemma 3.2. By an orthogonal coordinate transformation we may assume that
= (11,0), |u| = r and let v = (0, v2) with |v| = 1 be perpendicular to u. Recall that

d(:ﬂ,u)/T s ad v - fL 8d
(3.15) T,9(z) = /0 e *g(x — sp)ds, 3 = r'u = and o
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see [5]. For a sufficiently regular function ¢ we have

316 (o) = ima%l(w(w)) — L Vo) = 1 (%«p(w)) .

Assume for a moment that g and consequently T),g are regular enough, then by the definition
of T,,g and using (3.16) repeatedly, with ¢ = T, g, we get

d 11d 1 (¥ 9
3.17 — (Tug(x —e T +—/ e —g(x — sp)ds
B1) M) = oot @)+ o [ e e -
1 o /d/r ;.
=—e “Tg(Z) + e *——g(z — su)ds,
¢ @ ; 5z, 9@ — sw)ds
where Z = (z — d%) € I'. Squaring (3.17) and integrating over €, since dzs = Iul "o, de =
dxy dzo, we find that
9 ) d/r
Iyl < ( [ Serg@n+ [ / 202 2asd
81'1
diam( 1 )
<S[ s [1at M do + cival < Sl e
Thus
0 C
(3.18) ||6—$1(Tu9)|| < 7z ll9llm @)
Similarly
0? 1 02
3.19 = (Tug(2))| = — | = (Tug(2))|,
(3.19) 5 T @) = 5l 5 (Tuo @)
and

9* T —d/r (= —d/r6 = 4/ —s 0
5 T0(@) = =< 79(a) + 2" g(a) + [ et o(o - s

Thus by repeatedly using of (3.19) we have

(3.20) Iaa—ﬁ(Tug( o)l < : e~ 7|g(z)| + 6_‘”T| ~9(2)|

d/r 52
T / — spa))dsl.

Squaring (3.20) and integrating over 2, using the same technique as above we find that

0? c
(3:21) ”a_x%(T“g)” < mHg“Hz(Q)-

Now since s = 3/2 — ¢, (3.12) is a result of interpolating between (3.18)and(3.21).
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As for the derivative with respect to x2 we have by (3.15) that

62 S (Tg) = 5 (Tug) = g(2)

d/r b
+ /0 e_sag(x — sp)ds.

Thus, using dzs = (u - 71) /|| do once again, we get

d ven 2 d/r o
—(T 2< (0 /efzd/r 2(z)| —— da:—}—// e 25(=g)%dsdz
I3 @)l < < P@IR et [ [T e )
diamQ 1 a2
<c( [ re sy [ 1gP1 2 u-aldo + 9l
0 r r p-n

C diamQ 1 2d ) )
<ot ([ leran) [lgPar+civil
minyg |p - 7| \ Jo T T

C

r ming | sin(u, dg,

IN

2
This implies that

(3.23) 12 @l < -1 ¢

Oz /2 (miny, | sin(, di )|)

1/2 ||g||H1(Q)

Moreover since 52 5 8
1
|m(Tug($))| = m|$(@7’ug($))|,

differentiating %(Tug(x) = ula;:l(Tug(x)) in (3.17) with respect to v we get

o Tua@) == " g(a)

>

V-

)+ e g@) + e 2 g(a))

3>

d/r B 2
+ / ¢~ gy 0l = 50)d,

Q=

so that using (3.16),

82
63&'1 (9.’52

n

V-n 1 —d/r 6 —
| 20 e o)

(Tug(@)] < e "lg(@)]

9 v, [T 0?
—d/r|_Y = —s _
g @)+ [ e el — s

This gives that

& (19l < ¢ gl
dx10zy M T r (ming | sin(p, dk)|)1/2 H2(Q)"

(3.24) |

Now interpolating between (3.18), (3.21), (3.23) and (3.24) gives (3.13) and completes the
proof of Lemma 3.2. B
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Proof of Lemma 3.3. Recall that by (3.22) we have

d/r
o Tug@) = ¢ g(@)ilan) + [ e Lol = su)ds i= Flau) + G,
where R
Ye2) =

Evidently, for g € H4(Q)) we have G € H91(Q),q = 1,2. Then by interpolation for g €
H*(Q),1< s <2, Ge H*1(Q). It remains to show that F € H*1(Q). We split the
piecewise constant function ¢ to a continuous part 1; and a remaining part 1, see (3.25)
below, so that

P(@2) = P1(2) + a(22).
Observe that ¥ (x) = 1 (x2) has a well-defined (nonoverlaping) domain of definition:

Dy :={z3: (z1,72) €', },

we extend 1) by zero outside of Dy and define

Y(x), for z €T, ie for x5 € Dy,
P(z2) =
0, for z9 € R \ Dw.

Thus we have split F' as

F(z,p) = e™"g(@)1h1(z2) + e~ g(2)1h2(22) := 1 + 2,

where ¢ is continuous and differentiable except at a finite number of points, while o
contains jump discontinuities. Below we construct a suitable function 9 :

Let B denote the projection of I, on z3, then B C R is bounded and since Q is convex
we have that for a fixed u,

B= @ Proj,S;= |J L

S;cly S;cTy

We change notation 22 — £ and assume, without loss of generality that the I;’s are ordered
in a sense that: & € I; and & € I with ¢ < k imply & < &. Moreover we assume
that the first interval is [; and the last interval is Ip;, 1 and &; is the left end point of
I; and &y, is the right end point of Ip;, 1. Now we fix a small b > 0 , such that for
w € Js, |I;| > 3b, Vj=1,2,.., M, — 1. Observe that for S; C T, [Proj,S;| may be very
small. This can happen when either we have a very small side or an arbitrary side has an
arbitrary small angle with . The recent case is included in Js and is treated separately. In
the first case we can, either, have a jump over the smaller side to the adjacent sides, or choose

. . . . I; Proja, S;
a smaller b in the construction of ¢,. For a usual choice of b we have sin6; = L] [Proje, S

BRI
and since for u € Jj, sinf; > 6, we get
1| = |Projz, Sj| = 4]S;]-

Thus for u € Jj, we choose b such that Vj, 6|S;| > 3b, hence

1
b< =4 min (|S;]).
3 S;CTy
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Note that ) Leos(wd)  Lsin(ui) 1
v-no _ lcos(v,n) _ lsin(p,n) 1 .
pen Pla2) = rcos(u,n)  rcos(u,n) T tan(p, 7).
Now we define
(3.25)
'Oa fS& and £Z£M07
(& =) + W& + )T — (&b 1€~ & + ),
£J_bS§S€J+b7 j:2)"'aMO_]-a
P1(€) = (& +b)T(E - &), & <E< &+ b,
F0(Em, =) (Em, — ), &, —b<§ <&m,,
L p(8), else,
this implies that
rOa fggl and 625M07
2%[@[}]]; £j_bS§S£j+b7 ]:277M0_1J

Pi€) =< (& +b)T, L <ELS&G+D,

— 30, =), Em, —b<E< &,

\ O, else.

Here M, = P, + 1, where P, is the number of sides of {2 included in I'; and for j =
2,..., Mo — 1, [¢]; is the gap [¢(&; +b)T — ¥(&; — b)~]. Now differentiating ¢; yields

S = e (@) 1+ e S (gl (e) + (@) 5 (v (22)
= Xl(.’l)’,ﬂ) + XQ('T; ,U/) + X3(.’L’, :U/)a
and hence
0
(3.26) 12

3
<l :
03 'L ; Il .7||L2(Q)

Below we estimate each norm in the right hand side of (3.26) separately:

~

v-n

all e = [ " g @0 o) () da

pen
diam® . .
—221/r 2oy 2oy Vo |l

SCLA ‘ @{ég@wma%4g—mr@]

sin?(u,) (GO
W/O pe i day /R 9> (©)¥i(€) dé
C
= 7 ming | sin(u, di)|

%W&MMQW
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Now using the trace estimate we obtain
1
<C ,
IX1ll ooy < Y/ ming |sin(p,dk)|”g“H1(Q)

where Cy = C(supgcr i1 (€))/2 ~ C'supgcp [1(€)]- Without loss of generality, we may
extend g to R? so that v- Vg = 0 in R? \ Q. Now with a similar argument as above we find
that

(3.27)

—od/rs O
el = | &7 (Gra(@) wr(e2))* da < G5 [ Vgl da < Cillglcey
and hence

(3.28) X2l 100y < Collgllan -

As for the last norm we have

Il oy = ( [ & a2 @) e} d

diam® B 9 |IUTAL|
2z /7 2 v 2
SCVO el day [ e @P L e

diamQ
/0 %em/rdwl] /Fg2(€) %(%(5))]2 dg

<c

C
< g (g, 1) oo

1<j<M,
Once again using the trace estimate we get
(3.29) IxslLoe0) < Cb‘l(mfxI[¢]jl)llgllm<m-
Hence (3.26)-(3.29) imply that

dp1 1 1 .
(3.30) ”axz“fclz‘gg'%@)l <1+ NETTAET dk)|)+bs1;p|[wm] s

Further recall that

P2 (IIJ,/J/) = eid/Tg(i‘)w?(x?)a
and by the construction of 1)y, the function 1, has a small support, |suppts| < 2bM,. An
application of the trace estimate, as before, easily yields to

(3.31) 21l (@) < COMo glelgltbz(f)lllgllm(m-

Recall that, we need to show that F € H*~1(2), 1 < s < 2, to this approach set Ay = Lo(1),
define the function space A; by the following implicit relation: for a sufficiently smooth
function f defined in €, let

of
1£1Lay = 52 lzage)
and introduce the K —functional:

3.32 K({t,F)= inf (¢t .

(3:32) tF) = _inf (tlieills, +lealla,)
Now the following interpolation result completes the proof of Lemma 3.3. See also embedding
theorems in [7]. B
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Lemma 3.4. For g€ HY(Q), p€ J, |ul =r and 0 < £ € 1/2 we have

C

, B, /5 . o(K(t, F)) <
(3 33) 1/2 5,2( ( ) )) =7 mink |Sin(u,dk)|||g||H1(Q)7

where ®, , is the K-functional defined by

00 1/q
Bao®) = ([T@roord) T 1<asw 0<p<t

Proof. It suffices to prove that
c

r miny, | sin(u, dy,

(3.34) ||F||B;/2,co(9) < ] ||!I||H1(Q)>

where B;/ »%(Q) is the usual Besov space, see [3] (B;/ %% is continuously embedded in H*
for all 0 < s < 1/2). To prove (3.34) is equivalent to showing that

c
3.35 supt 2K, F) < ———
(3:35) t>€ t.F) < r miny | sin(y, di,)|

”g”Hl(Q)‘

We concentrate on (3.35) and first consider the simple case, i.e., ¢t large such hat
> rmin| cos(s, )| ~ rmin|sin(s, i),
where ny, is the outward unit normal to the k-th side Sy of Q and p € Jj is fixed. Then for

the partition ¢; = 0 and 9> = ¥ we have using the same techniques as in the estimations
of [|xill (o) ’s that

vV-n
K(t,F)* ~ |lp2l%, = lle="g(z)—
A2 BN L)

L g 2ey (2o Il
<C e dry [ g°(§) - d¢
0 R pm-n |l

diam 1 .
<C / Ze 2T dgy / g2 (€) d¢
0 r R
C

~ rming |p- fig

2
I

1
- A

2
lgllz,ry < )|||9||i11(9)a

r miny, | sin(u, dg

and thus

(3.36) t 12K, F) < ©

= 7 miny | sin(p, di)| ol -

Let now t < r miny, | sin(y, dy)| then with ¢; constructed as in (3.25) and ¢, = ¢ — ¢
we have using (3.30)-(3.32) that

(3.37)
K(t, F) < (tllolla + lle2llpy0))

< C{t sup [ | (1

||9||H1(Q)-

1
+ - -
\/r miny, | sin(g, di)|

1
) + Zsup\[dz]ﬂ +2bMosup|z/;2|} X
J
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Now let us use b? = ¢, since sup |12| ~ sup|¥|, sup|¢1| < sup|¥| and also for the jumps
[¢]; at the points &;, j = 1,2,..., Mo, sup; |[¢];| < 2sup |¢], hence (3.37) can be rewritten
as

1
/7 ming, [sin(y, dy)|

K(t,F) < Ct"/*sup || lt” <1+ ) +1+4M | (9]l 1)

or equivalently as

t1/2

t_l/zK(t,F) < C'sup [¢] (2 +1+4Mo> ||g||H1(Q),

\/r miny, |sin(p, di,)]|

$1/2

where we have used the fact that £ = '/2. Further since < 1, hence

" miny, | sin(ude)|
(3.38) 72K (t, F) < C(4Mo + 3)(sup [¢])l|g| i1 0-

Now using the fact that ¢ = ﬁ . Sin(i 7y @ combination of (3.36)-(3.38) complete the proof
of Lemma 3.5. B

4. Eigenvalue estimates. Below we shall see by means of a weak norm estimate of
the scalar flux that the largest eigenvalue A= of the transport operator T', (which makes
(I — AT)~1! singular), can be found more accurately than the pointwise scalar flux. Observe
that the kernel of the integral operator 7' is symmetric and positive, see the representation
of T in [4]; (1.9). Hence T is self-adjoint (on L5(2)), and thus has only real eigenvalues.
Furthermore, by the Krien-Rutman theory, its largest eigenvalue is positive and simple. In
this part we have the following result:

Proposition 4.1. Let k, k, and k! be the largest eigenvalues of the operators T, T, and
Th, respectively. Then for any ¢ > 0 and 1 > 0 there are constants C = C(e1,k) and
C(Q) = Cle, k, Q) such that for sufficiently large N and M (even) and sufficiently small h,
we have

1 1
(4.1) |k — Kon| SC(W‘FW) )
h 1 1 3—¢
(42) |I"\3 - ﬁnl <C (m + M2—c1 + C(Q)h ,

where @) is an arbitrary quadrature set.

These estimates follow from the semidiscrete and fully dscrete results of [6] and [3],

respectively. The assumption on the number of angular quadrature points M (even), makes
the quadrature set A symmetric, so that, u € A implies that —u € A. Then it follows that
T, is self-adjoint (see e. g. [4] Lemma 2.1) and thus its eigenvalues are real, which is crucial
in the proof of (4.1).
Remark 4.1. Similar results hold for a two-dimensional problem with the cylindrical do-
main € replaced by Q C R? and the velocity space D replaced by S = {u € R? : |u| = 1}.
Then, using a quadrature rule with N discrete points on a quadrature set () C S, and by
the duality argument for spatial discretization, it is possible to show that for the largest
eigenvalue Ky, of the corresponding semidiscrete operator Ty, there exists an eigenvalue
k., for the fully discrete operator T2 such that

(4.3) kv — k| < C(Q)R**.
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However if we use the discrete ordinates method, with N uniformly distributed points on
the unit circle S, then the results in [3] give that

(4.4) lkn — k| < Ch' =,

Now we may assume that k is the largest eigenvalue for the operator T in the two-dimensional
case, then recalling Theorem 5.1 in [4]; we have

(4.5) lk—kn| <CN72H 0<h<1.
Combining (4.3) and (4.5) we obtain

(4.6) Ik — kly| < ON=2+0 1 C(QR*,
while (4.4) together with (4.5) yields to

(4.7) |k — k% < CN2H0 L O hl=.

Similarly, for our case in here, i.e. the case of infinite cylindrical domains, we have using
Theorem 3.1 that

(4.8) |kn — K1 < CRYF,

here K, and k! are the largest eigenvalues of T}, and T)* respectively, n is the number of
discrete points on the unit disc and the constant C' is independent of the quadrature set.
Combination of (4.1) and (4.8) gives

(4.9) |k — Kl < C (% + ﬁ + hl_s) .

Comparing (4.6) with (4.7) and (4.2) with (4.9), we find that, if the quadrature set Q@ C D
is properly chosen, so that C(Q) does not cause a decay on efficiency of the scheme, then in
order to obtain sharper fully discrete eigenvalue estimates, in both, two-dimensions and the
case of cylindrical domains, a change of the compatibility concept; i.e. the condition h ~ %,
is necessary.

The optimal relations h = h(N), as well as M = M(N), in the above estimates should
be chosen in such a way that the contributions of the spatial and angular errors, to the
global error, be of the same order of magnitude. Omitting logarithms and both & and 6
powers of h, M and N, respectively, we conclude that for the two-dimensional problem, with
N uniformly distributed quadrature points on the unit circle, if we use the duality, then
as the spatial mesh size, the choice of h ~ N—2/3 is optimal, while without the duality
argument h ~ N2 is required. Similarly, in the case of the infinite cylindrical domains,
with the duality argument h ~ N~%/3 ~ M~2/3 is optimal whereas the corresponding
condition without using the duality is h ~ N—* ~ M 2. Note specially that M ~ N? and
the convergence rates, for the eigenvalues, are substantially improved. We point out that
for the second condition in (3.4), i.e., N ~ M a replacement of the form M ~ N2 will not
cause any serious restrictions in the proofs, since then, e.g., in the proof of (3.8) the use
of \/LA—/I ~ h® with h ~ n~'/2 implies that ﬁ ~ h*/3 < h'/2 (h < 1), further recalling
(4.2), h ~ N=%3 ~ M—2/3 gives ﬁ ~ h3/%* < A2 which in both cases our original
estimates will be preserved. In conclusion: in connection with the duality concept, the
compatibility conditions of the form h ~ n~1/2, n = MN and M ~ N2(ie., h ~ N73/2),
containing both dual cases, are in “good agreement” with the theory and in comparison
with an optimal choice of the form h ~ N~* in (5.13), we would only need h ~ N=3/2 (with
M ~ N?2).
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