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Abstract

This paper considers the stationary linear, space-dependent Boltzmann
equation in the case of an interior source term together with an absorp-
tion term and general boundary reflections. First, mild L'-solutions are
constructed as limits of iterate functions. Then boundedness of all higher
velocity moments are obtained in two physically interesting cases.

1 Introduction

The linear Boltzmann equation is frequently used for mathematical modelling
in physics, (e.g. for discribing the neutron distribution in reactor physics, cf.

[1]-[4])-

One fundamental question concerns the large time behavior of the function f(x, v, t),
representing the distribution of particles; in particular, the problem of conver-
gence to a stationary equilibrium solution, when time goes to infinity. In our
earlier papers [5]-[8] we have studied such convergence to equilibrium for the
space-dependent linear Boltzmann equation with general boundary conditions
and general initial data, under the assumption of existence of a corresponding
stationary solution. For the proofs we use iterate functions, defined by an expo-
nential form of the equation together with the boundary conditions, and we also
use a general relative entropy functional for the quotient of the time dependent
and the stationary solutions.

Then a fundamental question in kinetics concerns the existence and uniqueness
of stationary solutions to the space-dependent transport equation, with general



collision mechanism (including the case of inverse power forces), together with
general boundary conditions, (including the periodic, specular and diffuse cases).
We will study this problem in the angular cut-off case, using our earlier methods
with iterate functions F™(x,v), (representing the distribution of particles having
undergone at most n collisions, inside the body or at the boundary).

This will be done in the case of an interior source term aG(x,v), where a > 0 is
a constant and G is a given function, together with an absorption term aF'(x, v)
and general boundary reflections, (see Section 3). We will also (in Section 4)
prove boundedness of all higher velocity moments for our solution F(x,v) =
lim,, ,o F"(x, V), both in the specular and the diffuse boundary case, using our
earlier estimation for the velocities in a binary collision. Finally, we study the
problem of existence in a more general case (Section 5).

2 Preliminaries

We consider the stationary transport equation for a distribution function F'(x,v),
depending on a space variable x = (x1,%2,23) in a bounded convex body D
with (piecewise) C'-boundary I' = 0D, and depending on a velocity variable
v = (vi,v9,v3) € V = R®. The stationary linear Boltzmann equation in the
case of given interior source aG(x,v), where o > 0 is a constant and G > 0 is
a given (measurable) function, together with an absorption term «F(x,v), is in
the strong form

aF(x,v) + vV F(x,v) = aG(x,v) + (QF)(x, V). (2.1)
The collision term can be written
@F)v) = [[ Vv ) = Vv P, v)] - BO. v - v dbCav.,
Ve
(2.2)

where Y > 0 is a known distribution function, and B > 0 is given by the collision
process. Here v, v, are the velocities before and v', v/ the velocities after a binary
collision, and Q = {(0,{) : 0 <0 < 0,0 < ¢ < 27} is the impact plane. In the
angular cut-off case with 6 < 5 the gain and the loss term can be separated

(QF)(x,v) = / K(x,v' = v)F(x,v)dv' — L(x,v)F(x, V), (2.3)
v
where L is the collision frequency

L(x,v) = //VQ B(0,w)Y (x,v,)d0d¢dv,,w = |v — v,|. (2.4)



In the case of nonabsorbing body we have

L(x,v) = / K(x,v = v")dv". (2.5)
v
One physically interesting case is that with inverse k-th power collision forces
k—5
B(6,w) =b(0)w", v=1—, (2.6)

with hard forces for £ > 5, maxwellian for k£ = 5, and soft forces for 3 < k£ < 5.
The equation (2.1) is supplemented with (general) boundary conditions

v

F_(x,v)=(1-0) R(x,Vv — v)F,(x,V)dv, (2.7)

v nv|

where (3 is a constant, 0 < 3 < 1. The function R > 0 satisfies
/ R(x,v — v)dv =1, (2.8)
1%

and n = n(x) is the unit outward normal at x € I". The functions F_ and
F| represent the ingoing and outgoing trace functions corresponding to F'. Fur-
thermore, in the specular reflection case, the function R is represented by Dirac
measure R(x,v — v) = 0(v — v + 2n(nv)), and in the diffuse reflection case
R(x,v — v) = |nv|W(x,v) with some given function W > 0 (e.g. maxwellian
function).

Now using differentiation along the characteristics, the equation (2.1) can for-
mally be written

%(F(x +tv,v)) =aG(x+tv,v) +
+ / Kx+tv,vV' 5> v)F(x+tv,v)dv — [a + L(x + tv,v)|F(x + tv,v).
v
(2.9)
Let

ty = tp(x,v) = inf {r:x—7v ¢ D}
TER+

and x, = x,(x,Vv) = x —t,v. Here t;, represents the time for a particle going with
velocity v from the boundary point x, = x — ¢, v to the point x.

Then we have the following mild form of the stationary linear Boltzmann equation

F(x,v)=F_(xp,V) + /0 b[(QF)(X —7v,v)+aG(x — 7v,v)|dr (2.10)



and the exponential form
tp
F(x,v) =F (xp,v)e" Jo* (ot Lx—sv,v))ds 4
ty
0

+ / K(x—1v,v. = v)F(x — 7v,Vv')dv']dr.
v

3 Construction of stationary solutions

We intend to construct mild L!-solutions to our problem as limits of iterate func-
tions F™, when n — oco. Let first F'(x,v) = 0 for all x,v € R*. Then define,
for given function F™~! the next iterate F™, first at the ingoing boundary (us-
ing the appropriate boundary condition), and then inside D and at the outgoing
boundary (using the exponential form of the equation);

F*(x,v)=(1-0) /V %R(x,\? — v)F ! (x, v)dv, (3.1)

nv<0,xel=0D,veV =R

F”(X, V) = Ff(x — tpV, V)e_ fotb(a-i-L(x—sv,v))ds +
ty
+/ e Jo (et Lo svvds [0 G(x — Tv, V) +
0
+/ K(x—7v,v' = v)F" ' (x — 7v,v')dv']dr, (3.2)
v
x € D\T_(v),veV =R

Let also F™(x,v) =0 for x € R® \ D.

Now we get a monotonicity lemma, which is essential in the following, and which
can be proved by induction.

Lemma 3.1 F"(x,v) > F""!(x,v),x€ D,ve V,neN.

Using differentiation along the characteristics, we get by (3.2) that
d n n
a(F (x+tv,v)) =a[G(x+tv,v) — F*'(x +tv,v)| +

(3.3)
+ / Kx+tv,v = v)F" Yx +tv,v)dv' — L(x + tv,v)F"(x + tv, V).
14



Then integrating (3.3), it follows by Green’s formula that

a// F™(x, v)dxdv—i—// Fl(x,v)nv|dvdl' =
DV rv

= a//DV G(x,v)dxdv + //FV F"(x,v)|nv|dvdl + (3.4)
+ //DV L(x, v)[F" }(x,v) — F"(x, v)]dxdv,

where by (2.8) and (3.1)

// Fr(x, v)|nv|dvdl = (1 — §) // Frlxv)lavldvdl  (3.5)
v v
Now by Lemma 3.1 it follows that
a// F™(x, V)dxdv—i-ﬁ// F(x,v)nv|dvdl < a// G(x,v)dxdv
DV v DV
(3.6)
So, if G € L'(D x V), then we have for all @ > 0 that

//DV F'(x,v)dxdv < //DV G(x,v)dxdv < co. (3.7)

Then Levi’s theorem gives existence of a mild L'-solution F(x,v) = lim,,_,o, F"(x,V)
to the stationary linear Boltzmann equation (2.1) with (2.3), (2.7), and F' = F, 4
satisfies for all @ > 0,0 < # < 1, the inequality

a//DV F(x, v)dxdv+ﬂ//rv F.(x,v)nv|dvdl <

< a// G(x,v)dxdv.
DV

Furthermore, if L(x, v)F(x,v) € L'(DxV), then we get equality in (3.8) together
with uniqueness in the relevant function space, cf. [6] and also [3].

(3.8)

So, for instance, if 3 =6 -a,a > 0,6 > 0, then

//DVF(x,v)dxdv+5//FVF+(X,V)\nvldvdF://Dva(x,v)dxdv. (3.9)

In summary, we have the following existence theorem for solutions to our station-
ary linear Boltzmann equation with general boundary reflections.

Theorem 3.2 Assume that K, L and R are nonnegative, measurable functions,
such that (2.5) and (2.8) hold, and L(x,v) € L. (D x V). Let a > 0 and

loc

0 < B <1 be constants, and G(x,v) € L'(D x V) with [[ Gdxdv > 0.

5



a) Then there exists a mild L'-solution F(x,v) to the problem (2.1)-(2.4) with
(2.7). This solution, depending on o and (3, satisfies the inequality (3.8).

b) Moreover, if L(x,v)F(x,v) € L'(D x V), then the trace of the solution F
satisfies the boundary condition (2.7) for a.e. (x,v) € I'x V. Furthermore,
mass conservation, giving equality in (3.8), holds, together with uniqueness
in the relevant L'-space.

Remark: For the case @« = 0,3 = 0, we have in an earlier paper obtained
uniqueness of mild L!-solutions to the stationary linear Boltzmann equation,
using a general entropy functional cf. [8].

4 On higher velocity moments

In this section we will prove boundedness of all higher velocity moments for our
stationary solution (cf. Section 3), both for hard and soft collision forces in the
case of inverse k-th power potentials. For that we will use our earlier results, cf.
[5], giving an estimate for the velocities in a binary collision

(L+@)?)72 = 1+ <
< Crwcos (1 + v, )™ Lo D(1 4 %)% — (4.1)
— Cowcos? O(1 + 1)2)07_1

with positive constants C7,Cy > 0 for all o > 0.

To get higher moments estimates, we first multiply the equation (3.3) for the
interate F™ by (1 + v?)?/? and integrate, using Green’s formula,

a// (1+ v?)°2F™(x, v)dxdv + // (1+v%)2F(x,v)|nv|dvdl =

DV v

= Oz// (14 v»)72G(x, v)dxdv + // (1 +v?)72F"(x,v)|nv|dvdl
DV

//DVV[K x, v = v)(1 + 0?72 F (%, v') —

— K(x,v = v')(1 + 0?72 F"(x, v)|dxdvdv'.
(4.2)

Using the collision estimate (4.1) together with the assumption on inverse power
forces (2.6) and some elementary estimate, cf. [5], w = |[v —v,|, -1 <y <1,

—w"t < (140, =27 (1402

6



we find that the interior colision term in (4.2) is bounded from above by

+ Cy // (1+02)0_+;L1F”(X, v)dxdv +
DV

+ C; (1+ )T F™(x,v)dxdv —
DV

- (1+ ’UQ)%‘ZFTL(X, v)dxdv
DV

with positive constants Cy, Cy,Cy > 0. Here we have assumed that the function
Y in (2.2) satisfies

/ (14 0, )+m3520) s (Y (x, v2))dv. < oo, | inf (VY (x,v.))dv. > 0. (4.3)
1% xeD VXED

To handle the ingoing boundary term, I, (o), in (4.2), we specialize in two phys-
ically interesting cases:

a) “Non-heating boundary” (e.g. specular reflection):
R(x,v —v)=0 for |v|> V| (4.4)

Here we find that

I, (o) < (1—=p) //Fv(l +v?)72F(x, v)|nv|dvdT.

b) Diffuse reflection boundary:

R(x,Vv — v) = |nv|W(x, V). (4.5)

Here we get

I (0) < (1—=0)Cw, // Ff(x, v)|nv|dvdl’
v
with a constant

Cweo = /V(l + 0372 sup(W (x, v))dv < co. (4.6)

’ x€el

Then, the higher moment estimations follow in both the boundary cases, respec-
tively



a) “non-heating boundary”:

a// (1+v2)”/2F"(x,v)dxdv+ﬂ// (1 +v%)°2F(x,v)|nv|dvdl
DV v

+ Co // (1+ vz)%lF”(x, v)dxdv < a// (1 +v2)°2G(x, v)dxdv +
DV DV

+C //Dv(l +?)

b) diffuse boundary:

. F*(x,v)dxdv + C, // 1+ UQ)%Fn(X, v)dxdv,
fol%
(4.7)

a// (1 4+ v?)72F™(x, v)dxdv + // (1+v%)°2F(x,v)|nv|dvdl +

DV v

+C, // (1+ ’UQ)%‘ZFn(X, v)dxdv < a// (1+ 1)2)‘7/2(}(3(, v)dxdv +
DV DV

+C // (1+0%) 73 F*(x, v)dxdv + Cy // (1+22)7 F(x,v)dxdv +
Dv DV

+(1=B)Cwa // F7(x,v)|nv]dvdT,
IN%

(4.8)
where by (3.6)

ﬁ//w F7(x,v)|nv|dvdl < a//DV G(x, v)dxdv.

Letting n — oo and using that F"(x,v)  F(x,Vv), then the estimates (4.7)
and (4.8) hold also for F(x,v). Now by (3.8), the moment for o = 0, i.e.,
the mass [ [ Fdxdv, is bounded. So, successively, by (4.7), (4.8), we get
boundedness of all higher velocity moments, o > 0, for both soft and hard
collision forces, —1 < v < 1, i.e., =3 < k < o0, and for both “non-heating”
and diffuse boundaries.

Theorem 4.1 Assume that the collision function B(0,w) is given for inverse
k-th power forces by equation (2.6) with 3 < k < oo, i.e., —1 < v < 1, and
suppose that the function Y (x,v,) satisfies (4.8). Let the boundary relation (3.7)

be given by a “non-heating” boundary (4.4), (e.g. specular reflection), or by

diffuse reflections (4.5) with (4.6).

Then the higher velocity moments belonging to the mild solution F' in Theorem
3.2, are all bounded,

// (14 v?)?2F(x,v)dxdv < oo;
DV

8



ie., forallo >0, a>00< <1, and =1 < v < 1, if (1 +0?)72G(x,v) €
LYD x V).

5 A more general case

In this section we will shortly handle a little more general case, assuming also a
boundary source term (3S,(x,v) with a given function S, > 0 together with the
interior source ap(G(x,v), and with interior and boundary absorption coefficients
a,€e and 3 > 0.
Then define iterate functions, cf. (3.1), (3.2), by

F'(x,v) = (Sp(x,v) + (1 — ﬂ)/ %R(x,\? — v)F!H(x, v)dv, (5.1)

v Inv

and

Fn(xa V) =F" (Xb; V)e_ fgb [at+(1+e)L(x—sv,v)]ds +

b
+ / e fs [a—|—(1+e)L(xfsv,v)]ds[QOG(X — TV, V) + (52)
0

+ / K(x—7v,v' = v)F" Y (x — 7v,v')dVv']dr
14

with constants «, ag, Gy, € > 0, 0 < 5 < 1. Here we also get a useful monotonicity
lemma:
F"(x,v) > F"Y(x,v),xe D,veV,neN,

Then differentiating (5.2) along the characteristics, and integrating with Green’s
formula, it follows, as in Section 3, that

a// F™(x,v)dxdv + ﬂ// F (%, v)|nv|dvdl +

Dy v

+ e// L(x,v)F"(x,Vv)dxdv = «a // G(x,Vv)dxdv +
DV

Dv
+ 5o // Sp(x, v)|nv|dvdl — // L(x,v)[F" — F" |dxdv
v DV
- // [F? — F? ']|nv|dvdl.
v

So, Levi’s theorem gives (for a > 0) existence of L!-solutions
F(x,v) = lim F"(x,v),

n—oo

where F' depends on «, «y, 3, By, € and G, Sy.

Using the technique from Section 4, we can also get analogous results for higher
velocity moments, cf. Theorem 4.1.



Remark: One remaining problem concerns the question: what happens when
the coeflicients «, ag, 3, 5y and € go to zero? We hope to come back to this
question in a forthcoming paper.
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