IS NETWORK TRAFFIC APPROXIMATED BY STABLE LEVY MOTION OR
FRACTIONAL BROWNIAN MOTION?
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ABSTRACT. Cumulative broadband network traffic is often thought to be well modelled by fractional
Brownian motion. However, some traffic measurements do not show an agreement with the Gaussian
marginal distribution assumption. We show that if connection rates are modest relative to heavy
tailed connection length distribution tails, then stable Lévy motion is a sensible approximation to
cumulative traffic over a time period. If connection rates are large relative to heavy tailed connection
length distribution tails, then FBM is the appropriate approximation. The results are framed as
limit theorems for a sequence of cumulative input processes whose connection rates are varying in
such a way as to remove or induce long range dependence.

1. INTRODUCTION

Recent analysis of broadband measurements shows that the data sets exhibit three characteristic
properties: heavy tails, self-similarity and long range dependence (LRD). Traditional traffic models
using independent inter-arrival times with distribution tails which are exponentially bounded imply
short range dependence in the traffic and hence are not appropriate for describing high-speed net-
work traffic. Empirical evidence on the existence of self-similarity and LRD in traffic measurements
can be found in [24, 9, 11]. A common explanation for observed LRD and self-similarity of network
traffic is heavy tailed transmission times. Sometimes, this is due to file lengths being heavy tailed
[8, 10, 12, 13, 11, 2] and sometimes due to heavy tailed burst lengths, where a burst is a period
where packet arrivals are not separated by more than some threshold value [28].

Analysts are largely in agreement about the self-similar nature of aggregate traffic, at least at
time scales above a certain threshold. Empirical [45, 2] and theoretical [40, 17, 18, 19] evidence
supports the heavy tailed explanation of the self-similarity. However, measurement studies diverge
in their conclusions about the marginal distributions of cumulative traffic. There exists empirical
evidence supporting a heavy tailed assumption backed by theoretical work [15, 23, 32] and also
spirited interest and evidence for Gaussian marginal distributions [25].

The point of this paper is to show that with heavy tailed input times, cumulative traffic at
large time scales can look either heavy tailed or Gaussian depending on whether the rate at which
transmissions are initiated (crudely referred to as the connection rate) is moderate or quite large.

There are two related models which frame this discussion:
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Model (i): the superposition of M ON/OFF sources (see for example [45, 40, 24, 19, 17, 18]),

and

Model (ii): the infinite source Poisson model, sometimes called the M/G /oo input model (see

[19, 31, 1, 26, 21, 20, 37)).

In model (i), traffic is generated by a large number of independent ON/OFF sources such as
workstations in a big computer lab. An ON/OFF source transmits data at a constant rate to
a server if it is ON and remains silent if it is OFF. Every individual ON/OFF source generates
an ON/OFF process consisting of independent alternating ON- and OFF-periods. The lengths of
the ON-periods are identically distributed and so are the lengths of OFF-periods. Support for this
model in the form of statistical analysis of Ethernet Local Area Network traffic of individual sources
was provided in [45]; the conclusions of this study are that the lengths of the ON- and OFF-periods
are heavy tailed and in fact Pareto-like with tail parameter between 1 and 2. In particular, the
lengths of the ON- and OFF-periods have finite means but infinite variances. Further evidence is
in [24] and [10]. The latter authors found evidence of Pareto-like tails in file lengths, transfer times
and idle times in World Wide Web traffic; see also [11].

Model (ii), the infinite source Poisson model, assumes transmission initiations or connections by
sources at times of a rate A Poisson process. The transmission durations are iid random variables
independent of the times of connection initiation. The transmission lengths have finite mean,
infinite variance and heavy tails. During a transmission, a source transmits at unit rate.

For both models, the process we study is A(t), the cumulative input in [0,¢] by all sources.
Because both models assume unit rate transmissions, we may write

A(t):/OtN(s) ds, t>0,

where N(s) is the number of active sources at time s. For large T', we think of (A(T't),t > 0) as the
process on large time scales. Our results for both models show that if the connection rate is allowed
to depend on T in such a way that it has a growth rate in 7' which is moderate (in a manner to be
made precise), then A(T-) looks like an a-stable Lévy motion, while if the connection rate grows
faster than a critical value, A(T-) looks like a fractional Brownian motion.

Section 2 defines the models formally and Section 3 defines slow and fast growth for the connec-
tion rate. Subsequent sections show that for our models, slow growth means that cumulative input
can be approximated by a stable Lévy motion while fast growth means cumulative input should be
approximated by fractional Brownian motion.

2. MODEL FORMULATION

We now define our two related models and give basic discussion.

2.1. The ON/OFF model. Consider first a single ON/OFF source such as a workstation as
described in [18]. During an ON-period, the source generates traffic at a constant rate 1, e.g. 1
byte per time unit. During an OFF-period, the source remains silent; we assign the value 0 to it.
Let Xon, X1, X3,... be iid non-negative random variables representing the lengths of ON-periods
and Yo, Y1, Yo, ... be iid non-negative random variables representing the lengths of OFF-periods.
We also write

Zi=X;+Y, i>0.

The X- and Y-sequences are supposed to be independent. For any distribution function F' we write
F =1 — F for the right tail. By Fi,/F,a we denote the common distribution of ON/OFF-periods.
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In what follows, we assume that
(2.1) Fon(z) =1 %" Lon(z) and Fog(z) =z “fLog(z), >0,

where aon, ao € (1,2) and Loy, Log are slowly varying at infinity. Hence, both distributions
Fon and Fog have finite means pon and pog but their variances are infinite. Notice that the tail
parameters ao, and oo may be different, hence the extremes of the ON- and OFF-periods can
differ significantly. For the purposes of this paper, we always assume that

(2.2) o= Qon < Qoff -

Assuming (2.2) makes the results for Model (i) and Model (ii) almost identical. The case of general
aon and o can be treated in a similar way; see [27].

Consider the renewal sequence generated by the alternating ON- and OFF-periods (cf. [18]).
Renewals happen at the beginnings of the ON-periods, the inter-arrival distribution is Fy, * Fog
and the mean inter-arrival time

p=EZ1 = pion + poft -
In order to make the renewal sequence stationary (see [35, page 224]), a delay random variable Ty
is introduced which is independent of the X;’s and the Y;’s. A stationary version of the renewal
sequence (7},) is then given by

n
(2.3) Ty, To=To+Y Z, n>1.
=1

One way to construct the delay variable Ty (see [18]) is as follows. Let B, x$9 and YO(HO) be
independent random variables, independent of {Yos, (Xy,), (Yn)}, such that B is Bernoulli with

P(B=1) = pion/ss =1~ P(B =0),

and
X
PMQSM}L/?MﬁM:ﬂM%
Hon Jo
1 r__
PYY <) = / Fon(s) ds = F(a).
Hoff Jo
Define

Ty = B(XY + Yor) + (1 - B)Y,.
The renewal sequence (2.3) is then stationary.

The ON/OFF process of one source is now defined as the indicator process

o0
(2.4) Wi =Bl co,(t) + D i murxa) (@), 20,

n=0
The ON/OFF process W is a binary process with Wy = 1 if ¢ is in an ON-period and Wy =0 if ¢ is
in an OFF-period. The stationarity of the renewal sequence (2.3) implies strict stationarity of the
process W with mean

EWt = P(Wt = 1) = MOH/N-
The precise rate of decay for vy (h), the covariance function of the stationary process W, under

the assumptions (2.1) and aon < o is given in [18]. As h — oo,

(2.5) A () ~ ( Han =@V Lon(h) = (const) hF oy (h).

a—1)p?
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The process W exhibits LRD in the sense that
(26) > w (k)] = oo,
k

See [3] for different definitions and discussion of LRD.
Now consider a superposition of M iid ON/OFF sources (Wt(m), m=1,...,M;t > 0) feeding a
server. The number of active sources at time ¢ is

M
N(t) = Nu(t)= > W™, t>o0.
m=1

Note that N(t) is the input rate to the server at time ¢ and can be referred to as the workload
process. Since the sources are iid, (2.5) implies that N exhibits LRD in the spirit of (2.6), since the
stationary version of N satisfies

M
v (h) =) vwe (h) = (const) MhFon ().
=1
The cumulative input of work to the server or total accumulated work by time t is
t
2.7) A(t) = Ani(t) = / N(s)ds, t>0.
0

The behavior of the cumulative input process A(t) for the superposition of a large number of iid
ON/OFF sources has been studied in [45, 40] where it was found that the cumulative input process
(properly normalized) of an increasing number of iid ON/OFF sources converges to fractional
Brownian motion in the sense of convergence of the finite dimensional distributions. Their result
is formulated as a double limit: first, the number M of sources goes to infinity and then the
time-scaling parameter 7' converges to infinity. This order of taking limits is crucial for obtaining
fractional Brownian motion as limit. When limits are taken in reversed order, the limits of the
finite dimensional distributions are those of infinite variance stable Lévy motion. The increment
process of fractional Brownian motion, fractional Gaussian noise, exhibits LRD reflecting the LRD
in the original workload process. This is in contrast to stable Lévy motion, which while self-similar,
has increments which are independent.

In [45, 40] a double limit is involved and the limit regime is sequential. This sequential procedure
is unsatisfactory both theoretically and in practice. (Similar remarks are made in [22].) The limiting
behavior of the cumulative input process depends on the relative sizes of the number of sources
M, the time-scaling parameter 7' and the tail probabilities of the transmission lengths. We study
simultaneous limit regimes, in which both M and T go to infinity at the same time. We assume
that M = My goes to infinity as T' — oco. The ON/OFF models change as T' — oo, and we will
refer to the T'th model. The number of sources M = My plays the role of the connection rate.

2.2. The infinite source Poisson model. Here is the precise formulation of this model.

Let (I'y,—00 < k < o0o) be the points of a rate A homogeneous Poisson process on R, labeled
so that Ty < 0 < T'; and hence {—T,T'1,(T'x+1 — Tk, k # 0)} are iid exponentially distributed
random variables with parameter A. The random measure which counts the points is denoted by
Y ope o €r,, and is a Poisson random measure (PRM) with mean measure AL, where I stands for
Lebesgue measure. We imagine that a communication system has an infinite number of nodes or
sources, and at time I'y, a connection is made and some node begins a transmission at constant
rate to the server. As a normalization, this constant rate is taken to be unity. The lengths of
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transmissions are random variables X;. We assume X,,, X1, X9,... are iid and independent of
(T'x) and
(2.8) P(Xon > z) = Fou(z) =07 %L(z), >0, 1<a<2,

where L is a slowly varying function. Since « € (1,2), the variance of X, is infinite and its mean
lon 18 finite. We will need the quantile function

(2.9) b(t) = (1/Fon) (1), >0,

which is regularly varying with index 1/a. We note that

(2.10) V=Y €ex);

the counting function on R x [0, c0] corresponding to the points {(I'x, Xx)}, is a two dimensional
Poisson process on R x [0, co] with mean measure AL x Fyp; cf. [34].

The first quantity of interest is N(¢), the number of active sources at time ¢, which has repre-
sentation

o0

(211) N(t)=Np(t) = Y Ipe<icriixg = v{(5,9) ERx (0,00] 1 5 <t < s+y}).

k=—o0

The notation N refers to the fact that we will consider a family of Poisson processes indexed by
the scaling parameter T' > 0 such that the intensity A = A(T') goes to infinity as T — oco. Under
this condition, the considered models change when time goes by, and therefore we will refer to the
T'th model. The intensity A = A(T') will be referred to as the connection rate.

The second expression in (2.11) makes it clear that for each ¢, N(t) is a Poisson random variable
with parameter

(2.12) AL x Fon({(s,y) € R X (0,00] : s <t < s+y})

t [o’e] t
_ / / AL(ds) x Fon(dy) = A / Fonlt — 5)ds = A Jion -
=—o00 Jy=t—s —00

During a transmission, the transmitting node is sending data to the server at unit rate. The
total accumulated input in [0,t] for the T'th model is

t
(2.13) At) = Ap(t) = /0 N(s) ds.

Analogous to (2.5), we find that heavy tailed transmission times X induce LRD in N. By means
of a point process argument dating to Cox [7] we can show that

(2.14)  Cov(N(t),N(t +h)) = A / - Fon(v) dv ~ (const) h Fon(h) = (const) b=~ L(h),
h

as h — oo. Once again we see that high variability in transmission times causes LRD in the rate
at which work is offered to the system.
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3. THE CRITICAL INPUT RATE

Recall the measures of dependence given by (2.5) and (2.14). We will find that cumulative
input is well approzimated by stable Lévy motion, a process with independent increments, when the
connection rate is slow, or equivalently when dependence in the T'th model disappears as T' — o0,
while fractional Brownian motion is the appropriate approrimation when the connection rate is fast
or dependence in the T'th model remains strong as T — oo. In what follows, we make precise
what a “fast” or “slow” connection rate means in both the infinite source Poisson model and the
superposition of ON/OFF processes. The definitions for the two models are virtually identical
apart from obvious changes in notation.

3.1. The infinite source Poisson model. Recall that A = A\(T") is the parameter governing the
connection rate in the 7'th model and suppose A = A(T') is a non-decreasing function of 7. We
phrase our condition first in terms of the quantile function b defined in (2.9). The asymptotic
behavior of Ar(-) depends on whether

Slow Growth Condition 1:  lim M =0,
Tooo T
or
T
Fast Growth Condition 2: lim M = 0
T—o0 T

holds. Notice that b(-) is regularly varying with index 1/a.
The next lemma provides an alternate way to express the conditions.

Lemma 1. Assume Foy satisfies (2.8). Consider the stationary version of the input rate Np(-).
1. The slow growth condition 1 is equivalent to any of the two conditions

lim A Fon(T) =0 or limr,e Cov(Ngp(0), Np(T))=0.

T—00

2. The fast growth condition 2 is equivalent to any of the two conditions

lim AT Fou(T) =00 or limp e Cov(Np(0), Ny (T)) = co.

T—o0

Remark. The interpretation of the two conditions in terms of the LRD is nicely observed in [41].

Proof. In the case of Condition 1, there exists a function 0 < ¢(7') — 0 such that Te(T") — oo and
b(AT) = Te(T). Thus

(3.1) AT ~ 1/Fon(Te(T)).

Therefore, Condition 1 implies

(3.2) NT Fon(T) ~ Fon(T) [Fon(Te(T)) —0.
Conversely, if §(T) := AT Fon(T) — 0, then using b (T) ~ 1/F o, (T), we get

b(AT)  b((T)o" (T))
~ — 0,
T b(b(T))
and so Condition 1 and (3.2) are equivalent. Similarly, Condition 2 is the same as

(3.3) AT Fou(T) — oc.
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To get the equivalence in terms of the covariances, use (2.14) and

/00 Fou(s) ds ~ (const) TF o (T),
T

which follows from Karamata’s theorem for regularly varying functions; see [5]. O

We will see that if the rate of increase of A satisfies Condition 1, then A(T') is asymptotically a
stable random variable while in the alternate case, it is asymptotically normal.
For the work in later sections, proofs are expedited by the following fact.

Lemma 2. If Condition 1 holds, then
AT2F on(T)
4 lim —————~
(34) Theo  b(AT)
and if Condition 2 holds, this limit is infinite.

Proof. Assume that Condition 1 holds. As with (3.1), set €(T) = b(AT')/T — 0 so that e(T)T — oc.
Denoting the ratio in (3.4) by r(T'), we see that

Fou(T
T(T) ~ _OH( ) ,
€(T)Fon(Te(T))
and using the Karamata representation of a regularly varying function (see [5]), we obtain

T
(3.5) r(T) ~ [e(T)]lexp{— / L ou) du}

Te(T)

=0,

for some function a(u) — a, as u — oo. Since 1 < a < 2, we may pick ¢ so small that « — ¢ > 1
and since Te(T) — oo, we have for F' sufficiently large, that the right-hand side in (3.5) is bounded
from above by

[e(T)] ™" exp {—(a—16) log(1/e(T))} = [e(T)]*—°
and the right-hand side converges to zero as T' — co. The proot of an infinite limit under Condition
2 is similar. n

3.2. The ON/OFF model. Recall the ON/OFF model from Section 2.1. In analogy with the
infinite source Poisson model, it is possible to introduce a slow and a fast growth condition in terms
of the number M = M(T) of ON/OFF processes. Assume that M = M(T') is some integer-valued
function such that

M(T) is non-decreasing in T' and limy_, oo M(T) = co.

For ease of presentation we usually suppress the dependence of M on T

The role of the Poisson intensity A = A(T') — oo is now played by the number M = M(T) — oo
of the ON/OFF sources. As in the former case we introduce growth conditions on M = M(T).
For the slow growth condition we again use the quantile function b of Fy,, introduced in (2.9). The
asymptotic behavior of the cumulative workload A = A, of M iid sources will depend on whether

Slow Growth Condition 1:  lim b(MT) =0,
T—o00
or
Fast Growth Condition 2: lim M =00

T—oo T
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holds. These conditions are directly comparable to the critical connection rate for the infinite source
Poisson model. For later use, observe that Lemmas 1 and 2 hold provided M is substituted for A.

The next two sections discuss why a-stable Lévy motion is the appropriate limit under slow
growth. We begin by studying this result in the slightly simpler context of the infinite source
Poisson model.

4. a—STABLE APPROXIMATIONS FOR THE INFINITE SOURCE POISSON MODEL UNDER SLOW
GROWTH

In this section we assume Condition 1 holds and show why A is asymptotically an a-stable Lévy
motion.

Recall, for example from [38], that a continuous in probability process (X, 5(t),t > 0) with
stationary, independent increments and cadlag sample paths is called a-stable Lévy motion if
Xoo,p(t) ~ Sa (ot'/®, 8,0). Here S,(c, B, 11) denotes the a-stable distribution which is characterized
by the index of stability a € (0, 2], the scale parameter o > 0, the skewness parameter 5 € [—1, 1]
and the shift parameter y € R. If X ~ S,(0, 3, 1), then its characteristic function is given by

exp{ — 0% |0|* (1 —iBsign(f) tan (ra/2)) + iu@} ifa#1,

Ee 10X — 9
exp{ —olé (1 + i3 —sign(6) In |9|) + iu&} ifa=1.

T
The case o = 2 corresponds to the Gaussian distribution. Notice that X5 , 3 is Brownian motion,
whereas a < 2 implies that X, ;s has infinite variance marginal distributions. In contrast to
Brownian motion which has continuous sample paths with probability 1, infinite variance stable
Lévy motion has discontinuous sample paths with probability 1.

4.1. The main result. The following theorem is our main result under the slow growth condition.

Theorem 1. If Condition 1 holds, then the process (A(Tt),t > 0) describing the total accumulated
input in [0,Tt], t > 0, satisfies the limit relation

Here fﬁ)i denotes convergence of the finite dimensional distributions.

Remark. The convergence can be extended to M; convergence by following the proof in [33].
The papers of Whitt [43, 44, 42] are enlightening. The convergence cannot be extended to J;
convergence in the Skorokhod space . This follows, for example, from [23] who show that a
sequence of processes with a.s. continuous sample paths cannot converge in distribution in (ID, J)
to a process with a.s. discontinuous sample paths. Our favorite reference to weak convergence in
metric spaces is [4].

In the rest of this section we give the proof of Theorem 1.

4.2. The basic decomposition. We start by giving a useful decomposition of the random variable
A(T). In the sequel we frequently suppress the dependence on 7' in the notation of the considered
quantities.
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Let

Ry = {(s5,y):0<s<T,0<vy, s+y<T},
(4.) Ry = {(59):0<s<T, T<s+y},

Ry = {(5,9):8<0,0<s+y<T},

Ry = {(s,9):s<0,T<s+y},

and rewrite (2.13) as
D Xl xper + DT —To)lir, xoers) + Xk + Tr) 1, x,)eRs]
k k k

(4.2) + Z T1(ry,x))€Ra]
k

=: A1+ A+ A3+ Ay.

Recall the definition of the PRM v from (2.10) with mean measure AL X F,,. Note that A4; is a
function of the points of v in region R;, and since the R;’s are disjoint, A;,7 = 1,... ,4, are mutually
independent. Calculations as in (2.12) and use of Karamata’s theorem give that as T' — oo

T
Amy = Ev(Ry) =\ / Fon(T — 8) ds ~ T,
0
T_
(4.3) Amg := Ev(Ry) =\ / Fon(T — 8) ds ~ X pon,

—s+T
Amg := Ev(R3) = / / Fon(dy) ds ~ Apion

=—S

0 [ oo
Amy = Ev(Ry) :)\/ / Fon(dy) ds = )\/ Fon(u)du
s=—00 J —s+T

T
~ATFon(T)/(ae — 1) = 0.

So the mean measure Ev(-) restricted to R; is finite for ¢ = 1,... ,4, which implies that the points
of 1/‘ . can be represented as a Poisson number of iid random vectors:

P;

43 =1 4

v R, Clth,ingr,i) > L= L%
k=1

where P; is a Poisson random variable with mean Am;, which is independent of the iid pairs
(thyis Jk,i)s k> 1, with common distribution

AL(ds) Fon (dy)
Am;

L(ds) Fon (dy) ’

4.4
( ) Ri m; R;

fori=1,... ,4. Notice that the distributions of ((¢x., jx)) are independent of A\, which only enters
into the specification of the mean of P;, 2 = 1,... ,4. This means that for fixed T', we can represent
the A;’s as sums of a Poisson number of iid random variables,

d . d
Al =0 ks Ay E 30 (T — ty0),

(4.5)
Ay 2 Sl (ks +tes), A = kai1 T.
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4.3. Moments of the summands. In what follows, we will need information about the moments
of the summands in (4.5). All the variables are bounded by 7" so all moments exist, but we need
to know the asymptotic form of the moments as T' — oo. For notational ease, we will as before
frequently suppress the dependence on 7' in the notation used, and let (¢;, j;) be random variables
with the same distribution as (¢, jxi), fori =1,... ,4.

(From (4.3) and (4.4), observe that for [ > 1,

Byl — / /T s 1(ds) on(aly) % /S:O /y;s o Fon(dy) ds
(4.6) -1 5:0( / 50 Fon<dy>>ds

For | = 1, since [; yFon(dy) — fon, we have
(4.7) Ej1 — fion -

For | > «, we have, using first a change of variables and then Karamata’s theorem, that

E.71 / / lFon Tdy / / —l-a @
4. d dy ds = .
U8 rFE.T o ' oy YT Il —at )

For later reference we note that (4. 7 and (4.8) imply

Var Jl / / —1— 2
4.9 Ydyds = ——— =:
( ) T2F0n y ay y ( _ )(3 - Oé) U]_
and
3 13
Elj1 — Ej1|? 4( Ej} + (Ej1)
(4.10) lim sup Elj = Bjr " < limsup ( ) = const .

T T3Fon(T) ~ Tooo T3Fou(T)
Similar calculations for T' — 19, give that for [ > 1,

T [eS) S T 00

E(T—tQ)l:/ 0/ ) (T—s)l%‘:‘(dyhi/ / (T = 5)! Fon(dy) ds
5= =T—s s y
1 T

/’LOII =0 =T—s

= ulﬁon (u)du,
Hon

and therefore, for [ > 1, as T' — oo, from Karamata’s theorem

E(T — )" 1 ' [ Fou(T
(4.11) BT —t) N—/ LA
Tl+1F0n (T) Hon Fon (T)
1 /! 1
~— agdy = —— .
Hon Jo pron(l — o+ 1)
This implies that
T—t 1
(4.12) Var(T'—t5) | =: o2
T3Fon(T) Pon (3 — @)
and
E|T —ty — E(T —t2)|?
(4.13) lim sup T=te = B =)l _

T—00 T4Fon (T)
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Finally,
0 T—s 0 T—s
. L(ds d 1
B+t = [ [ e HEIm) L[ ) Ry s,
§=—00 JY=—s5 m3 ,U'OII —00 JY=—=8
and thus
E(j3 + t3)! 1 [ 1=s Fon(Td
(4.14) Bljs+ts) —/ / (y + )t Fon(Tdy)
Tl+1F0n(T) 12 =—5 Fon(T)
1 0
~ / (y+s) ay™ 17 dy ds.
Hon Js=—c0 Jy=
It follows that
t
Lﬂ(ﬁ’ tis / / (y +s) ay_l_”‘ dy ds =: 032,
T Fon /‘l‘OIl —00 =—35
and
El|jz —t3 — E(j3 —t3)2
lim sup 133 3 Us = ts)| < const .
T—00 T4Fon)T)
To compute Jg, observe that
1 1+s
R —— / (y — )%y~ dyds
MOH = Yy=s

1 [t Y
— [ ay ! [ / (y— S)st] dy
,Uon y=0 =0

1 © y
+ — ay ! [/ (y — s)2ds] dy
Hon Jy=1 s=y—1
1 o

o Ly S [ [

1 [ «a + 1] _ 1

pon L33 —a) 3 pon(3 —a)’
4.4. a-stable limits: one dimensional convergence. We are now in position to show that if
Condition 1 holds, then A(T') is asymptotically an a-stable random variable. The plan is to show
A1(T) = A; is asymptotically stable and 4;(T) = 4, i = 2,3,4 are asymptotically negligible. As
before we frequently suppress the dependence on T in the notation.

It is relatively easy to see that

(4.16) Ai/bT) B0, i=23,4.

We restrict ourselves to the case i = 2; a similar argument works for 7 = 3,4. By (4.11), Lemma 2
and Condition 1,

EAy = EP, E(T —t3) = [Amy] E(T — t3) ~ (const) XT?Fou(T) = o(b(AT)) .
Thus it remains to consider A;. Recall the representation of A; given in (4.5). We start with
the following decomposition:
Py
Ay = MponT =Y (k1 — Ejr) + Efy [P — EPy] + [EA; — MponT] = A1y + A1z + Ass.
k=1

(4.15)
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By (4.7), Ej1 ~ pon- Since Pj is Poisson with mean Am; — oo, it satisfies the central limit theorem,
ie.

(4.17) Ama] Y2 [Py — Ama] 5 N(0,1).
We conclude that
(4.18) A1s = Op(]AT]'/?) = op(b(AT)).

By (4.5) and (4.17), A1 is a sum of approximately Amj ~ AT iid summands. Under Condition 1,
b(AT)/T — 0, so that for any z > 0 fixed, we eventually have T' — b(A\T)z > 0. Therefore, from
(4.4)

d Fn d T—b()\T)J: t—s Fn d
ATP(j1 > b(\T) z // 0<s<T Gk ( y) / ds/ on (dy)
0<s+y<T m1 s=0 y=b(AT)z T

y>b(AT )z

B 1 t—b(AT)x
:m—lFon(b()\T):c)(T — b(AT)z) — o /0 Fon(T — s)ds

. . T/b(XT)
~ (1 _ @) AT Fon(b(AT) z) — @ /x AT Fon(b(AT) s) ds

~z %,

Following a standard argument using point processes ([34, Exercise 4.4.2.8, page 222], [31]), we get
for ¢t > 0,

[AT]

(4.19) XD () := AT (Grg — Br) 4 Xo11(t) in D0, 00),
k=1

where the limit is a totally skewed a-stable Lévy random motion. In fact, by independence, we
may couple (4.17) and (4.19) to get joint convergence

(X(T)() /@) 4 (Xa11(-),1) in D[0,00) x R.

Using composition and the continuous mapping theorem, one obtains

P
(4.20) BOT)] A = XD (P/(OT)) = b)Y Gk — Ed) > Xana(1).

i=1

It remains to consider A;3. By (4.6) and Karamata’s theorem,

T s
A1z = Eji EPy — AT pion = A / [/ Yy Fon(dy) _Hon:| ds
0 0

T 00
= —)\/ / y Fon(dy) ds
0 s

(4.21) ~  —(const) NXT?Fon(T) = o(b(AT)).

The last limit relation follows from Lemma 2. Combining the limit relations (4.16), (4.18), (4.20)
and (4.21), we conclude that A(T') has the desired a-stable limit.
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4.5. a—stable limits: finite dimensional convergence. We restrict ourselves to showing the
convergence of the 2-dimensional distributions; the general case is completely analogous. Suppose
t1 < t2. The same arguments as for the one dimensional convergence show that it suffices to
consider the joint convergence of [b(AT)] ™1 (A1 (Tt;) — ATt; pton), i = 1,2. We can write

Ai(Tty) = Ai(Tt) + Z Xil[ry 4+ x,<Tts] T+ Z Xk LTty <Ty+ X <Tta)]
Tt1<Tx<Tts I <Tt

= A (Ttl) + Aoy (T(tg — tl)) + Ago .

Observe that A;(T't;) and Aoy (T'(t2—11)) are independent and that Aoy (T'(t2—11)) 4 A(T (ta—t1))-
Hence the proof of the 2-dimensional distributions follows from the 1-dimensional convergence if

one can show that [b(AT)]~!Ag £ 0. However,

EAy = E (// u V(ds,du)>
0<s<Tt1,Tt1 <s+u<Tts
= A // u ds Fop(du)
0<s<Tt1,Tt1 <s+u<Tts

Tt Tto—s

= )\/ (/ uFon(du)> ds
s=0 u=T"t1—s
— b te=s  F . (Td

= AT%Fou(T) / ( / UM) ds

0 u=t1—s Fon(T)

~ AT2F..(T) [ /Otl a@ ((tl—s)_(a_l)—(tg—s)_(a_1)> ds]

= 0o(b(AT)),

by Lemma 2. This concludes the proof of Theorem 1. O

5. a@—STABLE APPROXIMATIONS FOR THE SUPERPOSITION OF ON/OFF PROCESSES UNDER
SLOW GROWTH

Recall the ON/OFF model from Section 2.1 and the slow and fast growth conditions on M = Mr
from Section 3.2.

5.1. The main result for a := oo, < aug. In this section we show that the cumulative input
process (A(T't),t > 0) as introduced in (2.7) has a limiting a-stable Lévy motion provided the slow
growth Condition 1 holds, i.e. b(MT) = o(T).

The following theorem is our main result on the weak convergence of the process A. To formulate
it, we will need the following notation:

ci= uoﬁ/#H'l/a and o := C;l/a,
where

l—«

(5.1) Co = Fa = a)cos(ra/d)




14 T. MIKOSCH, S. RESNICK, H. ROOTZEN, AND A. STEGEMAN

Theorem 2. If Slow Growth Condition 1 holds then the process (A(Tt),t > 0) describing the
cumulative input in [0,Tt],t > 0, satisfies the limit relation
A(T-) = TMp~ ' pron(:)  sidi
b(MT)

c Xa,a,l(')

where fid>i denotes convergence of the finite dimensional distributions and X, 1 is an a-stable Lévy
motion as described at the beginning of Section 4.

Remarks. 1) Theorems 1 and 2 have some striking similarities. Both results yield a-stable Lévy
motions in the limit under slow growth conditions which are also directly comparable in terms of
the quantile function of Fy;,,. Moreover, the normalizations in both results were defined in a similar
way.
2) As for the infinite source Poisson model, the convergence cannot be extended to functional
convergence in ([0, 00), J1) (although it has been claimed in the literature) since the Ji-limiting
process of a sequence of processes with a.s. continuous sample paths should have a.s. continuous
sample paths. An alternative proof of the impossibility of Ji-convergence, using an extreme value
argument, was given in [39].
3) The case of general agy, aox € (1,2) is treated in [27]. The results are qualitatively the same,
yielding a limiting min(aon, aof)-stable Lévy motion. Moreover, the skewness parameter of the
limit process may vary between —1 and +1, depending on the right tails of Fi, and Fyg.

In the rest of this section we give the proof of our main result. It will be convenient to split the
proof into different parts.

5.2. The basic decomposition. As for the proof of Theorem 1, we give a decomposition of the
cumulative input process. This decomposition is very much in the spirit of Section 4.2. In what
follows, we will adapt the notation of Section 2.1 for the mth source. Whenever we consider only
one source we will suppress the dependence on m in the notation.

Recall the construction of a stationary version of the renewal sequence (T73,) given in (2.3). We

consider the renewal sequence (Ty(Lm)) corresponding to the mth source and define the corresponding
renewal counting process

(Tm) = Z Lio,m (T{™)  with mean pr = Eﬁ(Tm) =T/ u.
n=0

For convenience, we also write

Z(m) — Xz(m) 4 Y;(m)

K3

1>1.
We have the following basic decomposition of A(T') for M iid sources (cf. (2.4)):

?

&

M M M
AT = Y B™min(T, (X)) + 3 S x™M - % max(O,TgZ))_l + Xg';)) — )1y
m=1 m=1 k=1 m=1 T T -
= A1+ Ay + As.

Remark. The above decomposition of A(T') is similar to the infinite source Poisson model; see (4.2).
The crucial difference is that, for every m, the counting process f(Tm) is heavily dependent on the

sequence (X ,gm)) which appears in the random sum representation of As. This fact makes the proof
below more complicated. The basic idea of the proof consists of replacing the counting processes

{gwm) in Ag simultaneously by their identical means pr. After the replacement, the resulting process
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is a sum of iid random variables and so classical limit theory for sums of iid random variables comes
in. The replacement described above is provided by a large deviation result given in the Appendix.

5.3. A; and A3 are asymptotically negligible. We show under the slow growth condition on
M that the terms A; and As vanish in the limit. The case A; is relatively easy.

Lemma 3. As T — oo,

[b(MT)] (4, — EA;) 5 0.
Proof. We have
[B(MT)]"'EA, < M Emin(T, X{9)
Using Karamata’s theorem, we obtain
(5.2) M [b(MT)]™ /0 ' P(XO > z)de < (const) M [b(MT)]™' T?~® Lon(T) — 0.
In the last step we used Lemma 2. U

In the rest of the section we show that Aj is asymptotically negligible. By virtue of the slow growth
condition b(MT) = o(T), we can find a function e — 0 such that

(5.3) b(MT) =o(erT) and 1/log(T) =o(er) asT — oc.
For example, we could let

b(MT)\ /2 1
T ViegT'
Lemma 4. Assume that er satisfies (5.3). Then the relation
M P(|ér — pr| > er pr) =0(1) asT —

holds.

Proof. First we treat the case {7 > (1+er)ur. Since Z; = X;+Y; has a regularly varying right tail
there exist iid mean-zero random variables E; concentrated on [—EZ;,00) and a positive number
xo such that for some 8 > 0

P(Zy —EZ, >z)>P(E;>1z) forx>—-EZ and P(E; >z)=e 5%, 2> 1.
Then a stochastic domination argument shows that with mp = [(1 + er)pr],

Plr>+er)ur) = PTo+Zi+ -+ Zp, <T)

IN

P(Zi+ -+ Zpp —mop <T —mrp)

IN

(
P(Ey + -+ Epyp <T —mrp)
(

P((mrVar(E1)) Y*(By + -+ + Em,) < —ar) =: p(T),
where

ar = (mpVar(E,))~ "2 (mpp —T).
Since pur = T'/u, we have for some |0p| < 1, that

ar ~ (const)
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and hence for all large T'
ar > TS

The classical Cramér result on large deviations for sums of iid random variables with moment
generating function existing in a neighborhood of the origin (see [29, Theorem 3, Chapter VIII])
gives for large T,

p(T) P((mTVar(El))fl/2(E1 4+ 4+ EmT) < _Tl/ﬁ)

IA

< (comst) ®(—T"%) < e_T1/3/4,

where @ is the standard normal distribution function. Finally, since the slow growth condition on
M holds we have using Lemma 1 that

(5.4) M P(ér> (1+er)ur) < Me T4 = o(1).

Next we treat the case {7 < (1 — er)ur. Choose 5, = e,n with er obeying (5.3). Then an
application of Corollary 1 in Appendix A shows that

Pér<(Q—er)pr) = PTo+Z1+-+ Zjg—epyur) > T)

~ P(Zi+ + Zj—eqyur) — (L= er)pr]p > T = [(1 — er)pr]p)
~ ur P(Z > erT) = (const)TP(Z > erT)

~ ((const) (MP(Z > b(MT))) _ oMY,

P(Z > ETT)

due to the function 1/P[Z > z] being regularly varying with index «, and (5.3). (See [34, Propo-
sition 0.8 (iii), page 23].) O

We need another auxiliary result.
Lemma 5. For all § > 0,
M b(MT)]™! EXep Lix,, sopury) = 0 as T — oco.

Proof. Choose e — 0 such that (5.3) holds. Using Karamata’s theorem, we have for large T,

o

MBMD] ! [ P(Xg > [ér — pr] < expr) da
Sb(MT)

o
< M [b(MT)]—l/ P( max X >x> dz
8b(MT) li—pr|<ernr

< (const) 6" % ep — 0.
Choose cr — oo such that b(MT) = o(c; erT). It follows from the proof of Lemma 4 that

(5.5) M P(|ér — pr| > erpr) = o(cp®) -
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Let K > 0 be a constant so large that TX > cpb(MT) for large T. The following bound is
straightforward:

/ P(X¢p >, & — pr| > erpr) dx
Sb(MT)

crb(MT) oo
< [Pl > eun)dot [ P(Xe > ér< (- enur) do
Sb(MT) erb(MT)

TK 0
+ / P(r > (1 +er)pr) do + P(X¢, > 7) do
CTb(MT) TK
= h+DLh+I3+1.
Obviously, by (5.5),
MBMT)] "' = (er — 8) M P(|ér — pr| > erpr) = o(1).

Moreover, by Karamata’s theorem,

-1 [ i >z | dx
MB(MT) "' I, < M[b(MT)] / o 7 (Kdng)w X; > ) d
< (const) M[b(MT)]™" pr /OZ(MT) Fou(z) da
—a Lon(c b(MT)) _ FOH(C b(MT))
~ (eons) & T ) 0 TR ).

Using the right-hand inequality in Proposition 2 in Appendix B, with x = ¢p, t = b(MT') and
e=a—1—4§ > 0 for some small § > 0, gives that there is a fixed £y such that for z > 1 and ¢t > %

Fou(erb(MT))

FonG(MT)) (a=0) e

This shows that M[b(MT)] 11, — 0.
As for the proof of Lemma 4 (see (5.4)) we conclude that

(1+0)

TK
M[b(MT)) ' I3 < Mb(MT)] ™" / e T4 dr = o(1) as T — oo
CTb(MT)
since the small growth condition on M holds. Using Markov’s inequality and [16, Theorem 8.1 in
Chapter I]), we have for € € (0, — 1) and K sufficiently large,

o
MBMT)]| "I, < EXE € /T ) o~ dz = (const) EXg € T~X@7179 = (1),
Combining all the estimates above, we finally proved the statement of the lemma. O

Now we are ready to deal with As.

Lemma 6. As T — oo,

[b(MT)] '[A3 — EAs] 5 0.



18 T. MIKOSCH, S. RESNICK, H. ROOTZEN, AND A. STEGEMAN

Proof. Fix § > 0. Define the iid random variables
gm) (m) (m)
and their truncated versions

S(m) _ g(m)
Ko =X g oy

By virtue of Lemma, 5, it suffices to show that
M ~ ~
BMT) S (X;"w - EXT) £o.
m=1
The variance of the sum on the left-hand side is given by
M[b(MT)]~2Var(Xr) < Mb(MT))2EX%,

and so it suffices to show that the right-hand side converges to zero. Assume ep — 0 satisfies (5.3).
Then we have

~ 8 [b(MT))?
EX} < 8°[b(MT)? P(|¢ér — pr| > erpr) + / P(X¢p >V, [ér — pr| < erpr) d
0

= L1 +1I.
By Lemma 4 we have
M[DB(MT)] I = o(1).
An application of Karamata’s theorem yields that
S [b(MT))?
M[B(MT)| 2, < M[b(MT)]™? / P ( max  X; > \/5> dzx
0 [i—pr|<erpr

2[(MT)]> _

< (comst) Mb(MT)]"2eppiy /0 Fon(\/7) dz

~  (const)epd?> MTF o, (8b(MT)) ~ (const) 62~% e = o(1).
This completes the proof. ]
5.4. a-stable limits: one dimensional convergence. In this section we show that the random
variables Ay = Ay(T) weakly converge to a stable distribution as 7' — oco. This fact and the
results of the previous section, together with a Slutsky argument, prove the convergence of the one

dimensional distributions in Theorem 2.
Introduce the iid mean zero random variables

T = X = rogZi™ = ron X\ — rogVy™ = ron(Xy™ = on) — roa (V™ — pog) .
where
Ton = flofi/ b and  Toff := fon/k -
The tails of the J;’s are regularly varying: as £ — oo

rgnLOIl (‘T)

wa

rog® Log ()
pXoff ’

P(Jy>z) ~ and P(Jy < —x)~
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Write

g

ST,m = Z J]gm) .
k=1

The following decomposition will be useful:

M M o
= (m) (m) .
Ay = mz_:l Stym + roffmg_:ng(Tm) - ’I‘offmzzl Ty l{f(Tm)Zl} =: Aoy + Ago + Ags.

In what follows, we show that As; has an «a-stable limit whereas Ao and As3 are asymptotically
negligible. By Lemma, 3 it follows that [b(MT)]~! EAgz — 0. Following the argument for Theorem
5.3 in Chapter I of [16] or [35, page 47], we obtain

By virtue of Lemma, 2, we have for large T’
M M MT?F o (T)
— E(T,. —T)= ——<FE(Ip1 < _
o) T = 1) = gy B0 Yerzny) < (eonst) =m0,

since T?Fou(T) ~ T?~®L(T), as T — oc. Hence,
M P
[B(MT)] " (Az2 — EAzs) = roglb(MT)] ™" S [(Té{:’n)) —T)— E(Te, —T)] 5 0.
m=1 T

Again using the argument for Theorem 5.3 in Chapter I of [16], we obtain
EA21 =M E&T EJl =0.

In the remainder of this section we prove that Ao has an a-stable limit. In [29, Theorem 8
in Chapter IV] one can find the following necessary and sufficient conditions for the sums of row-
wise iid random variables St,,, m = 1,... ,M, to converge weakly to an a-stable distribution
Sa(co,8,0): as T — oo

(A) M P(Stp > zb(MT)) = c*z~* for all z > 0,
(B) M P(Sp1 < —2b(MT)) -0 for all z > 0,

(C) limlimsup M [b(MT)] *Var(St,1 15y, |<eb(mr)}) = 0.

0 T

See also [31, 34] for point process interpretations of these conditions.
We have Sr1 = SU(T) — S@(T), where

&r ér
SU(T) =ron Y (Xg — pion) and  SE(T) =reg Y (Vi — piot) -
k=1 k=1
Define
n n n
Sp = Z Ik, 57(11) = Ton Z(Xk - ,Ulon) , 57(7,2) = Toff Z(Yk - ,UofT) .
k=1 k=1 k=1

The proof of (A4), (B) and (C) is now presented via a series of lemmas.
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Lemma 7. For all x > 0,

M p(-sW

ur] > zb(MT)) =o(1), asT — oc.

Proof. Let D := Dr be a positive function such that D — 0 and as T' — oo,
(5.7) DM —o0 and DbMT)— .

Introduce the random variables

n
Xk := Xklix, <ppmr) and S = Z(Xk - EX),
k=1
and assume without loss of generality that ron, = 1. We have

p(T) = P(—S"

(> ab(MT)) < P(=8{) ) > sb(MT) — prE(X — X)),

~()
[ur]

Using Karamata’s theorem, we have

NTE(X _)?) Dl Lon(Db(MT)) D Fon(Db(MT))

SO M Toa®MT) " 3 o (oM7)

Using the left-hand inequality of Proposition 2 in Appendix B, with z = 1/D, t = Db(MT) and

e = 2 — «a gives that there is a fixed ¢y such that for z > 1 and ¢ > ¢y the right-hand side of (5.8)
is bounded by

(5.8) ~ (const)

(const) 1
a—1 DM’
which is o(1) by (5.7). So we may bound the probability p(T") for large T' from above by
— [Var(X)pr] /25 _ _sbMT)/2
p(T)< P ( [Var(X)pr] Siur) > aT(:c)) where ar(z) Var (X )pr] /2

Using a non-uniform Berry—Esséen estimate in the central limit theorem (see [30, Theorem 5.16]),
the right-hand side is bounded by

®(ar(z I E|X|3
(5.9) ®(ar (z)) + (const) WP Var (X)2 (1 + ar(@))®

where ® denotes the right tail of the standard normal distribution. Notice that

M Loa(b(MT)) \'/? M Fou(b(MT)) \*
)> = (const) ( —)) .

ar(x) ~ (const) (Dg_a Lon (Db(MT) D? Fou(Db(MT)

As above we apply the left-hand inequality of Proposition 2 in Appendix B, to obtain that for large
T

ar(z) > (const) (o —1) M2,
so the first term in (5.9) decreases at an exponential (in M) rate and, hence, is o(M~1). The second
term behaves asymptotically as
[Db(MT)]>~Lon (Db(MT))
[zb(MT)]3

_3 D3 Fon(Db(MT))
M Fon(b(MT))

(5.10) (const) T ~ (const) z
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Using the left-hand inequality of Proposition 2 in Appendix B, as before, gives that the right-hand
side of (5.10) is bounded from above by

t D
(const) s 5= o(M™).

a—1
This completes the proof. U

Let e — 0 and define the event
(5.11) O1 == {|{7 — pr| < erur}.
Lemma 8. For all x > 0,
M P(|St,1 — Syl > #b(MT), ©1) = 0(1) as T — oc.
Proof. Using [30, Theorem 2.3], we have
P(ISr1 — Spuyg| > zb(MT), O7) < P( max  |S; — Spu > mb(MT))

li—pr|<erur
< (const) P(|S]

| > ob(MT)/2).

€ETUT

Applying the same result, we also see that

P(|Stepur]| > #b(MT)/2) = P(|S\)

lerpT]

=52 | > ab(MT)/2)

ETUT

€TUT leruT]

2
< (coust) ;P (s, =82, > =b(MT) /) ,

where SO and S®@ are independent copies of S() and §®). Using Corollary 1 in Appendix A, we
see that the two probabilities on the right-hand side multiplied by M are asymptotic to

(const) M erpr [[b(MT)]™*Lon (b(MT)) + [b(MT)] = Log(b(MT))]

~ (const) z™%er — 0.
This completes the proof. O
Lemma 9. For all x > 0,
M P(Sj,;) < —zb(MT)) =0(1) asT — oo.
Proof. We have

P(Syuy) < —zb(MT)) < P(=S[}) ) > ab(MT)/2) + P(S2) > ob(MT)/2).

The first probability is o(M ~!) by Lemma 7. The second probability can be treated as follows. Let
d > 0 such that @+ § < aog. Using Markov’s inequality and a bound for the (« + §)th moment of
sums of independent mean-zero random variables (see [29, p. 60]), we obtain

M P(S{), > eb(MT)/2) < (const) Mab(MT)] " BIS{;) [+

Mur E|y|a+6
[b(MT)]OH"s gatd ?

which is o(1) since T'/(b(T))**? is regularly varying with index —§/cv. O

< (const)

In the following lemma we finally conclude that As; converges to an a-stable limit.
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Lemma 10. Let c and o be as in Theorem 2. Then

[B(MT)] " Ag1 % ¢ Xo51(1) as T — oo.
Proof. We prove (A), (B) and (C); see the beginning of this section.
Proof of (A). We have to show that for all z > 0

M P(Sp1 > zb(MT)) = c*z %, asT — oo.

Recall the definition of the event O from (5.11). By virtue of Lemma 4 it suffices to consider the
probability P(St,1 > zb(MT), ©r). For § € (0,1) we have,

P(Sty > zb(MT), ©1) < P(St1 — Stur) > dzb(MT), Or) + P(S[NT] > (1 —6)xb(MT)).
The first probability is o(M~!) by Lemma 8. Using Corollary 1 in Appendix A, we obtain
(5.12) M P(Sjy > (1= 8)zb(MT)) ~rgp " (1—6) %z @,
A lower bound is given by

P(St1 > «b(MT), Or)
> P(ST’l — S[HT] > —dzb(MT), S[MT] > (14 0)zb(MT),O7)

\%

P(S[MT] > (1 + 5)$b(MT)) — P(ST,l — S[NT] < —5$b(MT), ®T) — P(@%)

The second and third probabilities are o(M ') by Lemmas 8 and 4. Then, using Corollary 1 in
Appendix A, gives

(5.13) M P(Sjp > (14 6)zb(MT)) ~rop~" (14 6) 2™,

The proof of (A) is completed by letting § — 0 in (5.12) and (5.13).

Proof of (B). We prove that for all z > 0

M P(ST,l < —.’L‘b(MT)) — 0.
For § € (0,1) we have
P(STJ < —.’L‘b(MT), @T) < P(ST,l — S[IJT] < —(5.'L'b(MT), @T) + P(S[“T] < —(1 — 5)$b(MT)).

The first probability is o(M~!) by Lemma 8 and so is the second one by virtue of Lemma 9. This
completes the proof of (B).

Proof of (C). We show that

M
lim li ———Var(S7,1 —0.
imlimsup oo e Var (ST sr, [<ebu)))

We have

e’[b(MT)]?

[b(MT)]?
Va’r(ST,llﬂST,l\<eb(MT)}) S / P(ST,l > \/E) dx +/ P(ST’l S —\/E) dz.
0 0

In our proof we will only consider the first integral. The second one can be treated analogously.
Obviously,
M M €*[b(MT)]?

€2 [b(MT)]? )
_— P(St1>+z)der < 6+7/ P(Sr1 > Vz) dz
[b(MT)]Q/o S ) [B(MT)? Jeppaarye/m (57 )

= & +p(T,e).
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By virtue of Lemma, 4 it suffices to replace in p(T', €) the event {S71 > /z} with {S71 > /z,Or}.
Combining the upper bound in the proof of (A) with the argument in the proof of Lemma 8, we
obtain the following bound for p(T¢):

M e2[b(MT))?
[b(MT)]? /

[(const) P(|Sierurl > Vv /4) + P(Siup) > \/5/2)] dz .
e[b(MT)]? /M

As in the proof of Lemma 8, we can use a symmetrization inequality and Corollary 1 in Appendix
A to show that the first term is o(1) as T — oo. Another application of Corollary 1 in Appendix
A yields

M [b(MT)]? ) o
W/O P(Sjuy) > Vz/2) dz ~ (const) B(MT) (e“(MT))) Lon (b(MT))
~ (const) €27,
Now let € go to zero to obtain the desired relation (C). .

This finishes the proof that the one dimensional distributions converge to a stable law.

5.5. a-stable limits: finite dimensional convergence. In this section we complete the proof
of Theorem 2 by showing that the finite dimensional distributions of As; = A9 (T) converge to
those of a-stable Lévy motion. We will only show convergence of the 2-dimensional distributions
since the general case is analogous. The following lemma, is the key to this convergence.

Lemma 11. Let by,bs € R, 13 > t1 > 0. Define

HTtq Tty
ZW =t S I and ZP =0 Y I
k=1 k=prs, +1

Then we have as T — oo, for all z >0
M Pz + 282 > sbMmT)) ~ M P(ZP > ab(MT)) + M P(Z? > zb(MT))

ro _
~ f (b7 I, >opt1 + 02 I, 50p(t2 — t1)] 2.

Proof. For ¢ € (0,0.5), we have
Pz > (1 + 6)zb(MT)) P(| 22| < 5ab(MT))
+ P(Z% > (1 + 86)zb(MT)) P(| 25| < szb(MT))

< P2 + 7?) > zb(MT))

2
< N P2 > (1 - 6)zb(MT)) + P(ZY) > 6ab(MT))P(ZY) > Szb(MT)).
i=1
Now the result follows from Corollary 1 in Appendix A by first letting 7' — oo and then § — 0. O

The next lemma establishes convergence of the 2-dimensional finite dimensional distributions of
(A(Tt),t > 0) by virtue of the results in Section 5.3 in combination with a Slutsky argument.
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Lemma 12. Let bi,b € R and to > t1 > 0. Then, as T — oo,

b1A21 (Ttl) + b2(A21 (Ttg) — A21 (Ttl)) ﬁ) b1 C Xa,a,l(tl)

+ b2 (¢ Xap1(t2) — € Xag1(t))-
Proof. Define

€5, €,
Stim = b1 BMT)] L S" I by M)t YT g™,
k=1 k=5 +1

According to Petrov [29, Theorem 8 in Chapter IV], we have to show that as 7' — oo,
(A) M P(ST,l >z) — Ca[b?I[b1>0]t1 + b%I[b2>0] (ta — tl)]a)_a for all z > 0,

(C) hin lim sup M Var(St, 11ysy, <e}) =

0 T-o00

We will only give the proof of (4). The proof of (C) follows in the same way as in the proof of
Lemma 10. Let ey — 0 satisfy (5.3). Since we know from Lemma 4 that as T' — oo,

M P(|éry; — pre;| > erpry;) = o(1), j=1,2,
it suffices to consider in (A) the intersection of the event {St; > z} with
Or = {|éry; — pry;| < erpry;, 5=1,2}
For § € (0,1) we have

&ty Ty
P(ST,1>.’E, @T) < Pl|b ZJk—ZJk > 0z b(MT)/Q, Or
k=1 k=1
T, HTty
+ P | b Z Jp — Z Jg| > 0z b(MT)/2, Op
k=&, +1 k=prs +1

BTty BTty

+P b Y Jetbe Y. Tk > (1- 8z b(MT)
k=1 k:NTt1+1

The first and second probabilities are o(M~!) by Lemma 8. By Lemma 11, M times the third
probability is asymptotic to
BTty KTty —HTty
M p(b1 S Ji>(1-d)z b(MT)) M P(b2 Y > 1-de b(MT))
k=1 k=1

o

ré _
ﬁ (b7 1[5, >0t1 + 09 [, 50) (B2 — 21)]2 7 .

A lower bound for M P(St; > x, Or) can be found in the same way as in the proof of Lemma 10.
This completes the proof. O

We finally established that the finite dimensional distributions of the processes (A(Tt),t > 0)
converge to those of the a-stable Lévy motion. This concludes the proof of Theorem 2.
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6. FBM APPROXIMATIONS FOR THE INFINITE SOURCE POISSON MODEL UNDER FAST GROWTH

The next two sections relate fast connection rates associated with strong correlations of Np(-)
and fractional Brownian motion limits. Section 6 studies the infinite source Poisson model and the
subsequent Section 7 considers the superposition of ON/OFF sources.

Recall that a mean-zero Gaussian process (Bg(t),t > 0) with a.s. continuous sample paths is
called fractional Brownian motion if it has covariance structure

2
Cov(Bg(t),Bu(s)) = UTH (Jt*7 + |s*" — [t — s|*)  for some oy > 0, H € (0,1).

The case H = 1/2 corresponds to Brownian motion and, if H € (1/2,1), the autocovariance
function of the increment process (By(t) — By (t — 1))=1,2,..., so-called fractional Gaussian noise,
satisfies relation (2.6), i.e. it exhibits LRD. If oy = 1 we call By standard fractional Brownian
motion. For more properties of fractional Brownian motion we refer to the monograph [38].

6.1. The main result. The following theorem is our main result under the fast growth condition.

Theorem 3. If Condition 2 holds, then the process (A(T't),t > 0) describing the total accumulated
input in [0,Tt], t > 0, satisfies the limit relation
A(TY) — nl (-
(T) = MionT() 4 o
[AT3Fon(T)o?]'/?

Here % denotes weak convergence in (D[0,00),J1), By is standard fractional Brownian motion,
H = (3—a)/2 and o? is given by (6.6) below.

Remark. Notice that H = (3—a)/2 € (0.5,1). Hence the corresponding fractional Gaussian noise
sequence of By exhibits LRD in the sense of (2.6). This is in contrast to Theorem 1 where the
limiting process, a-stable Lévy motion, has independent increments.

In the rest of this section we provide the proof of Theorem 3. As for Theorem 1, the decomposition
of Section 4.2 will be the key for deriving the Gaussian limit. As in Section 4 we give the proof in
several steps. We use the same notation as in that section.

6.2. FBM limits: one dimensional convergence. We show that when A(T) grows faster, so
that Condition 2 holds and b(AT") /T — oo, (A(T) — AponT')/or(1) is asymptotically normal, where
for £ > 0 we define

(6.1) o7 (t) = MT)(Tt)*Fou(T).

For this, consider the decomposition and representation (4.2) and (4.5), which in particular gives
that

/\,uonT = EA(T) = EA1 + EA2 + EA3 —+ EA4 ,
so that
A(T) = MponT =(A1 — PLEj1) + (A2 — RE(T — j2) + (A3 — P3E(j3 + t3)) + (As — PuT))
+ (P1 — EPl)Ejl + (P2 — EPQ)E(T — ]2) + (P3 — EP3)E(j3 + t3)
+ (P4 — EP4)T.

Here, since P, — EP; = Op(VEP;), i = 1,2,3, by the central limit theorem and the fact that
Var(Py) = E(Py) — 0, it follows from (4.3), (4.7), (4.11) and (4.14), and straightforward calculation
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that
(6.2)  A(T) = AuonT = (A1 — PiEj1) + (A2 — RE(T — j2) + (A3 — P3E(j3 + t3))
+(A4 — P4T)) + op(or(1)),
The first three terms in (6.2) will be shown to be asymptotically normal and the fourth is of smaller
order. We start by considering

P,

4 : :
Ay — PLEji £ (jk1 — Eji)
k=1

where P; is Poisson with mean Am;. To see why A; is asymptotically normal, observe there are
approximately A7 iid summands. We check Lyapunov’s condition ([14, page 286], [36, page 319])
for asymptotic normality of the sums

n

Sn = (k1 — Ejr).

k=1
;From (4.9), (4.10) we have with 0? = a/((2 — )(3 — a)):
Var(Spry) ~ AT T?Fou(T) 03 = 04(1)0?,

[AT]
L8, = " Bljis — Birf® < (const) AT TFou(T).
k=1

Therefore and by (3.3) we have for Lyapunov’s ratio

053(1)LE§)T} -0 asT — oc.

Since Lyapunov’s condition implies asymptotic normality, we get by the invariance principle for
triangular arrays of iid random variables that

Br(-) == 07} (1) Sy > B(-)or  in D[0, o),

where B(-) is a standard Brownian motion. We still have (4.17) at our disposal, so joint convergence
holds:

P,
<BT(-), )\—%) i) (0’13(-), 1) in D[O, OO) x R.
We get after composing, that
(6.3) (Ay — PLEjy) [or(1) % N(0,03)
It follows in a completely analogous way that

(A2 = BE(T — j2))for(1) % N(0,03)

(6.4) (A3 = BBty — j3))Jor(1) % N(0,03).
d

(A4 —P4T)/O’T(1) —

Together, (6.2)—(6.4) show that

[en)

(6.5) (A(T) = MgonT) Jor(1) 5 N(0,02),
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o 2
2-a)B3—0)  poa3-a)
_ 1 o 2
- mb_a*@]-

(6.6) o2 = oltoitol=

6.3. FBM limits: finite dimensional convergence and tightness. For convenience we write
Gr for the quantity in Theorem 3, i.e.
A(Tt) — AponT't

Gr(t) = N T (T)o?] 72

Since
05:(t)/05(1) = (tT)*Fon(tT) /T*Fon (T) — t3~
it follows as in (6.5) that the one dimensional distributions of Gt converge to those of By. Suppose

now that the finite dimensional distributions of G1 were proved to be asymptotically jointly normal.
Let {G(t),t > 0} be a Gaussian process whose finite dimensional distributions match the weak limits

of the finite dimensional distributions of G7(-). We know that for each ¢, Gr(t) 4 a (t). We also
know that for any h > 0

{Gr(t +h) — Gr(h),t > 0} :{/Tt(N(s + Th) — Mon)ds, t > 0}

_{/Tt — Mion)ds,t > 0}

—{Gr(t),t > 0},

since N(-) is stationary. So for each T, {Gr(t),t > 0} has stationary increments and hence so does
{G(t),t > 0}. Therefore

Var(G(t)) =Var(G(t + k) — G(h))
=EG*(t+h) + EG?*(h) — 2EG(h)G(t + h)
so that
Cov(G(h), G(t + 1)) = %(Ecﬁ(t +h) + EG2(R) — Var(G(t)))

and thus the covariance, and hence the finite dimensional distributions of G(-), are determined by

the one dimensional marginal distributions of G(-). This means G(-) ‘B ().

This argument shows it is enough to prove that the finite dimensional distributions of Gr(-) are
asymptotically normal. To show this, it is sufficient to show that the increments of G (-) are jointly
asympotically normal. The proof uses the same methods as for one dimensional convergence and
we hence only give a brief sketch.

Consider e.g. the joint distribution of Gr(u) and Gr(u+v)—Gr(u) for u,v > 0. By decomposing
as in (4.1), both for T replaced by uT and by (u + v)T, and considering all intersections of the
sets in the two decompositions, the problem is reduced to proving asymptotic joint normality of
functions of the Poisson points in a number of disjoint sets. Since the sets are disjoint, and the
functions hence independent, the sets may be considered separately. A typical such set is given by

R={(s,y):0<s<uT,uT —s<y<(u+v)T — s}
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which contributes

P
Au = 0T = Xi) (e, xo)en
k=1
to Gr(u) and

P

i Z Xkli(ry,x4)er]

k=1
to Gr(u + v) — Gr(u), where P is a Poisson random variable with mean Am := AL X Fy,(R).
However, here the upper summation limits P may be replaced by Am using the same method as in
Section 6.2, and asymptotic joint normality with non-random summation limits is straightforward.
It follow that A, and A, are jointly asymptotically normal. Similar arguments for the other sets
complete the proof of finite dimensional convergence of G to By.

To prove tightness of Gt in D[0, K], for K fixed, we rewrite (4.2), with T" replaced by U = uT

(and hence with {A;, P;} defined from U instead of from 7') and 0 <u < K , as

4
(6.7) A(U) = MionU = A(U) — EA(U) = ) _(Ai — EAy),
i=1
with the aim to bound the fourth moments of the increments of Gr. Let ¢ be a generic constant
whose value may change from appearance to appearance. We first show that

(6.8) E(A; — EA)*/o3(1) < cu?.
Now, with notation as in (4.5),
(6.9) Ay —EA =A - PEji + P.Ej) — EP, Ej,
and
P 4
(6.10) E(Ai - PEj))* = E (Z(jk,l - Ej1)>
k=1

4

Py
E(E{ (Z(jm - Ejl)) |P1})

k=1
E(P!(B(j1 — Bj1)*)" + PLB(j1 — Ej1)*)
{EP}(Ej})’ + EP Eji)}.
Recalling (4.3) and that EP; = Amy (cf. also the derivation of (4.9)),
(

IA A

(6.11) EP{(Ej})?[or(1) < {(Ami+1)Eji/o7(1)}
3 1-s
— {(1 + A’r]-nl Z §0n / / 2Fon Udy)d }2.

The left-hand inequality in Proposition 2 in Appendix B, with z =1 Ju,t = U gives that there is
a fixed ug > 0 with Fon(U)/Fon(T) bounded by a constant times (U/T)~* € for ¢ = 2 — « and
U > ug, so that then
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On the other hand, for 0 < U < wuyg,
3% 2
u EOH(U) < _uo g < cu.
T3Fon(T) = T?Fou(T) T
Since the double integral in (6.11) is bounded by a constant by Karamata’s theorem, we obtain
that for the case when Amq > 1,

(6.12) EP2(Ej?)? /0% < cu®.

Similarly, using also (3.3),
5% 5%
U EOH(U) <e _1 U Eon(U) < e,
AT6F o, (T)? ATFon(T) T®F o, (T)
and, still assuming Am; > 1, by (4.7),
(6.14) E((P— EP)Ej) /op = (3(Ep)*+ EP)(Ef)* /ot
U? 9

— < cu”.
TSFon(T)2 —

(6.13) EP\Ejt/oy <c

< c(hm)?/ot <c

Together, (6.9) - (6.14) show that (6.8) holds for Am; > 1.
If instead EP; = Amy < 1 then also EP14 < ¢ and using that 0 < j; < U we obtain
1
_—(g)4 < cu?.
(ATF o (T))?"T
Thus, (6.8) holds also in this case, and thus generally.

Calculations along the same lines give the same bounds as in (6.8) for E(A; — EA;)*/o% for
i =2,...4. Since Ar has stationary increments, it then follows from (6.7) that

E(Gr(t+u) — Gr(t)* = EGr(u)* < cu?,

for 0 <u < K,0 <t+u < K. By [4], Theorem 12.3, {Gr} then is tight in the J; topology on
DJ[0, K]. Since K > 0 is arbitrary and since we already have shown finite dimensional convergence,
this proves Theorem 3.

(6.15) E(A, — EPE(j1))* /o4 < cU*/o% <

7. FBM APPROXIMATIONS FOR THE SUPERPOSITION OF ON/OFF PROCESSES UNDER, FAST
GROWTH

In this section we assume that the fast growth Condition 2 holds. Define
dr := [T%® Lon (T) M)/,
By Lemma 1, Condition 2 is equivalent to o(dy) = T, since
dr

- = [M T Fop(T)]/2.

The sequence (dr) will serve as the normalization in the central limit theorem for the total accu-
mulated input A(T) in [0, 7"]. This is intuitively clear from the fact that A(T) is the sum of the M
iid cumulative workload processes

T
G(Tm)::/ (Wém)—EWu(m))du, m=1,..., M,
0

each of which has variance (cf. [45])

(7.1) Var(Gr) ~ 08 T3 “Lon(T) as T — oo,
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where

o2 2 pog T2 —a)/(a—1)
0 p3 T(4 — a) '
7.1. The main result. Under the fast growth condition, the processes (A(Tt),t > 0) have a
fractional Brownian motion as limit.

Theorem 4. If Condition 2 holds, then the processes (A(Tt),t > 0) describing the cumulative
input in [0,Tt], t > 0, satisfy the limit relation

A(T) = TMp~ pon(-)

(7.2) . 4 5o B() .

Here % denotes weak convergence in (D[0,00),J1) and By is standard fractional Brownian mo-
tion with H = (3 — ) /2.

7.2. Proofs. One dimensional convergence is established in the following lemma.

Lemma 13. For everyt > 0,

M
(7.3) At 3 GEY 4 N(0,03t) £ 60By(t) .
m=1

Proof. In [30, Theorem 4.2] we find the following necessary and sufficient conditions for (7.3): as
T — o0

(A) M P(|Gr¢| > edr) -0 forall e >0,
(B) M d3” Var(Gre LGy, |<r dg]) — 00t°~®  for some 7 > 0,

(C) M d;' E(Gre LGpy|<r dr]) = 0 for some 7 > 0.

(A) and (C) follow from the fact that P(|Gr| > € dr) = 0 for large T, since T' = o(dr) and
|Gr| < T a.s. The proof of (B) follows from the same observation in combination with (7.1). O

Now, it is only a small step to prove convergence of the finite dimensional distributions of A. We
only consider 2-dimensional convergence, since the general case is completely analogous. We have
to show that, for by,by € R and t5 >t > 0,

M
d;l Z [bngle) + bQngg)] —d) blo'()BH(tl) + bQO'()BH(tQ) .
m=1
Again using [30, Theorem 4.2], one has to show the statements corresponding to (4)—(C) above.
The proofs of (4) and (C) follow in the same way as in Lemma 13. For (B) we have to show that
for t1 <tg,as T — o0

2
(7.4) Md;2 Cov(Gry,, GTt,) — % [t%H + t%H — (tg — t1)2H] = Cov(ooBpg(t1),00Bg(t2)) -
But this follows from
1
COV(GTtl,GTtQ) = 2 [Var(GTtl) + Var(GTtZ) — Var(GTt2 — GTtl)] ,

the fact that G has stationary increments and (7.1). Therefore, the finite dimensional distributions
of A converge to those of fractional Brownian motion.
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It remains to show that the family of stochastic processes in (7.2) is tight in (D[0, K], J;) for any
fixed K > 0. We will show that for small w > 0 and T' > T*

M
Blaz" Y G

m=1

2

< (const) u!™®

bl

for some small € > 0. Then Theorem 12.3 in Billingsley [4] gives the result.
According to (7.1) we have for T large enough

M 2 2
-1 (m)|? _ M o _  EGE, o BEGT,
Blart 3 G| = g B = qamaroty <298 o'
m=1

By (7.1) we know that the function EG2 is regularly varying with index 3 — a. Using the left-hand
inequality of Proposition 2 in Appendix B, with z = 1/u, ¢ = T'u and some small £ > 0 such that
3 —a — 2e > 1, gives that there is a fixed tg such that for u < 1 and Tu > tg

EG?%, 1

3—a—c¢
EG:. " 1-¢ “ '
For T'u < ty we have for large enough T’
EG%, < (Tu)?

T3=2Lon(T) — T3 *Loyu(T)
o T
— T3-2L(T)
_ T1-(3—a—¢) tl—a u1+€

Lon(T) °

< t(lfe ulte .

Since 3 — a — e > 1+ ¢ we have for T large enough and u <1

M
2
E‘d;l D Ggy\ < max(202/(1 — €), %) ul** .
m=1

This completes the proof.

A. LARGE DEVIATIONS OF HEAVY-TAILED SUMS

We present a large deviation result which is frequently used in the proof of Theorem 2. Let
(Zk,k > 1) be iid random variables with distribution F' such that

(A.1) F(z) =2 *Li(z), x>0, forsomea;>0and L slowly varying,

and denote by
Sn=2Z1++2Z,, n2>1,

the corresponding partial sums. Define
po(z) = 22 / u® dF (u) .
lu|<z

The following large deviation result was proved in [6].
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Proposition 1. Let 3, — oo such that S, /0, Zo. Suppose By, C [Bn,00). If the condition

(A.2) lim sup ‘n po(z) In(nF(z))| =0
n—,oo .’L‘EBn
holds then
P
(A.3) lim sup M — 1‘ =0.
n—o0 Z‘EBn nF(:L‘)
Remark. Writing M,, = max,—; .., Z; for the partial maxima of the Z-sequence, we see that

we can replace nF(z) in (A.3) by P(M, > z). This means that the large deviation {S, > z} is
essentially due to the event {M,, > z}.
A consequence is the following result.

Corollary 1. In addition to (A.1) assume that EZ =0 and
F(—z) =z *Ly(z), >0, forsomeaz> a1, ag € (1,2) and Ly slowly varying.
Then (A.3) holds with By, = aphy, and By, = [Br,0) where (hy) is any sequence with hy, 1 oo and
(an) satisfies nF(ay) ~ 1.
Proof. Since (a;;1S,) weakly converges to an a;-stable distribution relation 3, 1S, £ 0 is immedi-
ate. Moreover, by Karamata’s theorem
pa(z) < (const) P(|Z] > z), >0,
and so (A.2) is satisfied since
n p2(z) In(n P(Z > B,)) < (const) n P(|Z| > B,) In(n P(|Z| > 3,)) — 0.
This concludes the proof. O

B. BOUNDS FOR REGULARLY VARYING FUNCTIONS

Let U(z) be a regularly varying function with index p € R, i.e. for z > 0
Ul(tx)

oo U(H)

The following result can be found in Resnick [34], Proposition 0.8 (ii).
Proposition 2. Take € > 0. Then there is a fized ty such that for x > 1 and t >ty
U(tx)
U(t)
These bounds are called the Potter bounds in [5].

p

(1—¢) 2P < < (1+e) zPte.
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