NAKAYAMA AUTOMORPHISMS OF FINITE PROJECTIVE
HOPF ALGEBRAS

LARS KADISON AND A.A. STOLIN

1. INTRODUCTION

The circle of ideas relating Frobenius algebras to Hopf algebras began with the
example by Berkson [4] of the restricted universal enveloping algebra of a finite
dimensional restricted Lie algebra. Together with the well-known Frobenius algebra
examples of finite group algebras, this made a strong case for conjecturing that
finite dimensional Hopf algebras are Frobenius, something which was established
as a corollary of the work of Larson and Sweedler in [20]. Pareigis extended the
theory in [20] to a finite projective Hopf algebra H over a commutative ring k in
[30, 32]. His main result is that if k& has trivial Picard group, then H is still a
Frobenius algebra [30]. However, in general H is a somewhat modified Frobenius
algebra depending on the element P in the Picard group of k represented by the
dual of the space of integrals in the dual Hopf algebra H* [32].

Schneider [37] made the first remarkable application of the Frobenius theory of
a Hopf algebra to establishing a nice and important formula; namely, Radford’s
formula for the fourth power of the antipode S (Eq. 38) [33]. The authors inde-
pendently used another Frobenius approach to proving the Radford formula for
FH-algebras, or Hopf algebras over rings which are Frobenius algebras, in [12].
The idea in [12] and more clearly in the present paper is the following conceptu-
ally. First, from a complete set of Frobenius data called a Frobenius system for a
Hopf algebra we obtain another Frobenius system by applying the antipodal anti-
automorphism. Second, we obtain two Nakayama automorphisms with formulas
involving S*? acted on from the right and left, respectively, by the left modular
function for H. Third, the Kasch-Pareigis principle that any two Frobenius systems
are unique up to an invertible element, which we call the derivative, leads after a
computation to the modular function for H*, b € H as derivative. Finally, since the
two Nakayama automorphisms are related by an inner automorphism determined
by b, we easily derive the Radford formula for S*. In principle, this technique might
produce nice formulas or new proofs wherever one deals with examples of Frobenius
algebras or extensions.

The aim of this paper is to give explicit reasons why a finite projective Hopf
algebra H over a commutative ring k is very close to being a FH-algebra, a principle
first formulated by Pareigis [31]. Our main example of this principle is to make
a Frobenius proof of Radford’s formula work for a general finite projective Hopf
algebra H. The first part of our paper is organized as follows. In the first two
sections, we review a chapter in the unpublished lecture notes of Pareigis [32],
specializing to a theory of P-Frobenius algebras with Frobenius homomorphism,
dual bases and Nakayama automorphisms, which we call here a Frobenius system for
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H. To this we add the conceptually useful comparison theorem and transformation
theorem for P-Frobenius algebras. In Section 3 we follow [32] by showing that H
is a P-Frobenius algebra with left integral-like Frobenius homomorphism 1 and
dual bases determined by a left norm N. We emphasize that H has a Nakayama
automorphism, as Pareigis has shown. In Section 4, we meet the problem that the
space of integrals in H* is not freely generated by a left norm, by defining a modular
function as the Nakayama automorphism composed with the counit, a formula from
the authors’ [12]: the usual definition of modular function depends on the norm
element being a free generator of the space of integrals, which is just not the case
for general H. In Section 5, we extend the validity of the Fischman-Montgomery-
Schneider formula [28, 8] to include the Nakayama automorphism v of H. Then we
transform the P-Frobenius system of Pareigis by the antipode S and prove that the
derivative is proportional to the distinguished group-like b € H. We finally apply
the comparison theorem and obtain a clear proof of Radford’s formula for S$* in
the general case. Using these formulas we extend results in [33, 8, 12] to the result
(Corollary 5.5) that 2V = §4N = Idg for a finite projective Hopf algebra H, where
N is the least common multiple of the local ranks of H.

Oberst and Schneider showed in [28] that finite projective Hopf subalgebras are
Frobenius extensions of the second kind defined by Nakayama-Tsuzuku [26] if the
overalgebra is cocommutative and the subalgebra is a k-direct summand. These
conditions were required because Nichols and Zoeller had not yet proved that a
finite dimensional Hopf algebra is free over a Hopf subalgebra [27]. By localization-
type arguments, the Nichols-Zoeller theorem can be extended to showing that finite
projective Hopf subalgebras form a free extension if & is a local ring, and a projective
extension in general: see Schneider [36] and the authors’ [12]. One of the objectives
of this paper is to show that the most general case of a finite projective Hopf
subalgebra pair K C H is a Frobenius extension of a third kind, depending not only
on a relative Nakayama automorphism but also on the two Picard group elements
of k represented by the space of integrals of K* and H*. It is implicit in the
literature on Frobenius extensions and Frobenius algebras [15, 23, 29] that the
induced representation theory of a subalgebra pair H D K is substantially simplified
once they are classified as a Frobenius extension of any kind. For example, Kasch
[15] proves that a Frobenius extension of a self-injective ring is self-injective. In
this respect, the only difference between Frobenius extensions of the first kind
and Frobenius extensions of the second and third kinds is that the functors of co-
induction and induction are naturally equivalent for the first kind and this differs
only by a Morita auto-equivalence of the module category Mg for the second and
third kinds (cf. Section 6).

The rest of the paper is organized as follows. In Section 6, we show that a
finite projective Hopf algebra H is separable precisely when the counit of its norm
is invertible in some generalized sense for modules. We show that H is moreover
strongly separable if H is involutive and separable. In Section 7, we show that a
finite projective Hopf subalgebra pair forms a Frobenius extension of a third kind,
a notion due to Morita [23], [24] and Pareigis [32]. In Section 7, we return to the
idea that a finite projective Hopf subalgebra H is close to being an FH-algebra by
proving that H is a Hopf subalgebra of an FH-algebra in two ways. First, we prove
that Drinfeld’s quantum double D(H) is an FH-algebra. Second, we find a ring
extension k C K such that Pic(K) = 0: therefore the FH-algebra H ® K is a flat
extension of H.
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2. P-FROBENIUS ALGEBRAS

In this section we sketch a theory of P-Frobenius algebras based on Pareigis’s P-
Frobenius extensions [32, unpublished], which generalized P-Frobenius algebras and
B-Frobenius extensions at once. This generality will not be central to this paper,
but we will need all the results below on P-Frobenius algebras in the later sections
(except Proposition 2.2). All the results in this section save Theorems 2.7, 2.8,
Proposition 2.2, and Lemma 2.9 are based on [32].

Let k be a commutative ring throughout this paper. A tensor ® without sub-
script will means ®j, as will a homomorphism group Hom = Homy. The k-dual
of a k-module V' is denoted by V*. If A is a k-algebra, its V-dual Hom(A,V)
has a standard A-bimodule structure given by (bfc)(a) := f(cab) for every f €
Hom(A,V),a,b,c € A.

Let P be an invertible k-module throughout, i.e. P is finite projective of constant
rank 1 [38]. The functor represented by P ® — is a Morita auto-equivalence of the
category of k-modules, denoted by My, and P represents an isomorphism class in
the Picard group Pic(k) of k [1, 38]. Let @ be its inverse as an element of Pic(k), so
Q =2 P*, and both PR Q =k and Q ® P = k are given by canonical isomorphisms
¢1 and ¢, respectively, which we choose so that associativity holds

(1) (ap)d' = a(pd')

for every p € P and ¢,q' € @, and a corresponding associativity equation on
P ® Q ® P [1], where the values of these isomorphisms are denoted simply by
p®q+— pgand ¢ ®p +— gp. Since ¢o o ¢7' is an automorphism of k, we have
X,7 € k such that xy = 1; and

bpg = 7qp
(2) ap = Xpq
for every p € P, g € Q.
Definition 2.1. A k-algebra A is said to be a P-Frobenius algebra if
1. A is finite projective as a k-module;

2. Ax = Homk(A,P)A.

If P = P' then a P-Frobenius algebra is also P'-Frobenius. In particular, if
P = k, then a P-Frobenius algebra is an ordinary Frobenius algebra. The following
converse statement is false: if a P-Frobenius algebra is also P’-Frobenius, then
P = P'. This may be somewhat surprising if one recalls that the corresponding
statement is true for S-Frobenius extensions [26]. A counterexample is based on
the Steinitz isomorphism theorem for ideals in a Dedekind domain R [21]:

Proposition 2.2. Suppose R is a Dedekind domain and I is a non-principal ideal
in R such that I = I~'. Let A := M>(R). Then

(3) AHOmR(A,I) =~ AA.

Proof. Let F denote the field of fraction of R, and e;; the matrix units in A. We
first note that Homg (A, I) = M, (1), since

flenn) f(er2)
fr ( fle21) fle22) )
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is a left A-isomorphism if we define the left A-module structure on M»(I) by X-B :=
BX! for every B € Mx(I), X € A.

By the Steinitz isomorphism theorem, I & I 2 R @ R as R-modules determined
by a matrix C € M3(F) as (z y) = (z y)Ct. Then the mapping X ~ (CX)! for
every X € My(I) determines an R-isomorphism ¥ : Ms(I) — A. But for every
Y € A we have

(Y -X)=(CXY) =Y X'C! = Y¥(X)
whence ¥ is a left A-module isomorphism as desired. O

A is of course a well-known example of a Frobenius algebra over R. That it is
also an I-Frobenius algebra where I 2 R follows directly from Theorem 2.4 below.
R is for example realized by the ring of integers of an algebraic number field with
two element ideal class group.

Recall that an algebra A is QF (quasi-Frobenius) in the sense of Miiller [25], if A
is finite projective as a k-module, and A 4 is isomorphic to a direct summand of the
direct sum of n copies of A%, for n > 1. Also recall that a QF ring A is Artinian
and injective as a right or left module over itself [18]. It follows straightaway from
Definition 2.1 that:

Proposition 2.3. A P-Frobenius algebra A is a QF algebra. A is a QF ring if k
itself is a QF ring.
Proof. If P@® N = k", then
A4 @ Homy(A,N) = nA*
It is shown in [25] that a QF extension of a QF ring is a QF ring. O

However, P-Frobenius algebras are much closer to being Frobenius algebras than
QF algebras as we shall see below.
Theorem 2.4. The following conditions on a k-algebra A are equivalent:

1. A is a P-Frobenius algebra;

2. Ay is finite projective and a4 A =2 4Homy (A, P);

3. there are ¢ € Homy(A,P), z1,... ,Zn,Y1,---,Yn € A and q1,-.. ,¢, € Q
such that

(4) Z¢(aﬂfi)qwi =a

or

(5) inqz'd)(yia) =a

for everya € A. (¢ is referred to as a Frobenius homomorphism and {z;},{q¢:}, {v:}
as dual bases for ¢.)

Proof. (1 = 2.) We compute using the Hom-tensor relation:
AHomy (A, P) Homy (Homy (A, P)a,P)

AHOmk(A* R P, P)
AHomk(A*,k) = AA,

1

1%

since P is an invertible module.
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(2 = 3.) Given ¥ : 44 5 4Homy(A,P) and ¢ := ¥(1,), then ¥(a) = ag for
every a € A. Then 4A®Q = 4A* viaa® g — agq. If {y; € A}, {fi € A*} isa
finite projective base for Ay, one finds z;; € A, g;; € () such that Zj zij0; = [i-
Setting y;; := y; for each ¢ and j, we have for every a € 4,

Z fi(a)yi
D (@) @)y = Y azi;)giiyis-

2 1,5

S
I

We merely reindex to get Equation 4. Equation 5 follows from a computation
showing ¥ (3", ziq;¢(ysa))(x) = ¥(a)(x) for z,a € A, which is similar to [8, 1.3].
(3 = 1.) Suppose > igi(¢y;) = Ida. Then A is finite projective. Define
U : Ay — Homg(A,P)a by ¥(a) := ¢a for every a € A. Then ¥ is epi since for
every f € Homy(A,P) we have (3. f(xi)qiyi)(a) = f(a) for every a € A. Since
¥ : A — Homy(A,P) = A*®P is an epimorphism between finite projective modules
of the same local rank, (i.e. P-rank for every prime ideal P in k), ¥ is bijective
[38, 30].
A similar argument shows that we may establish Condition 2 from Equation 4.
O

Throughout this section, we continue our use of the notation ¢ and z;,q;,y;
for the Frobenius homomophism and dual base of a P-Frobenius algebra A. The
automorphism on A in the next result measures the deviation of ¢ from satisfying
the trace condition ¢(ab) = ¢(ba) for every a,b € A.

Corollary 2.5. In a P-Frobenius algebra A there is an algebra automorphism v :
A — A given by

(6) a¢ = ¢v(a)
for every a € A. (Call v the Nakayama automorphism.)

Proof. In the proof of the last theorem we established 3 = 1 by showing a — ¢a, for
every a € A, is an isomorphism. As we noted, we may equally well establish 3 = 2
in this proof by showing that a — a¢ is an isomorphism 44 = 4Homy (A, P). Since
a¢ € Homy (A, P) for each a € A, it follows that there is a unique a’ € A such that
ad = ¢a’. One defines v(a) = a’ and easily checks that v is an automorphism. O

We fix the data (¢, z;, ¢;, y;, V) for the rest of this section and refer to this as the
Frobenius system of A in this paper.

Proposition 2.6. Given a P-Frobenius algebra A, the dual base tensor ), x; ®
q; ® y; satisfies Va € A:

1 Y,a2, 0 ¢; ®y; = >, T ® ¢; ® y;a, and
2. 3, 7a®¢GOY; =, % Qq Qv(a)y;.
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Proof. We give only the proof of the second equation, the first being similar. By
Equations 5, 1, 6 and 4, we compute:

Dra®a®y = Y z;q6(ywia) © ¢ @y
i i
= ) 7 ®4q; ® d(y;zia)gy;
i

= Z z; ® q; ® $(v(a)y;Ti)qiyi

ZYJ
Yz ey O
i

We next prove that P-Frobenius systems for A are unique up to an invertible
element in A, which we call the comparison theorem.

Theorem 2.7. Suppose (¢,z;,qi,y:) and (¢',2%,q5,y;) are two P-Frobenius sys-
tems for a P-Frobenius algebra A. Then there is d € A° such that

(7) ¢ = ¢d

and

(8) Z$;®Q§®y§=zmi®q1'®d_lyi-
J i

If v,V are the Nakayama automorphisms of ¢ and ¢', then Va € A,
9) v'(a) = d 'v(a)d.

Proof. Since ¢ and ¢' freely generate Homy (A, P) as right A-modules, Equation 7
is clear with d an invertible in A.
To verify Equation 8, we note that

(10) inqiqﬁd(d*lyia) =a

for every a € A. There is an isomorphism
A®Q®A=Endk(A)

given by a ® ¢ ® b — agq¢'b, for every a,b € A,q € @, since A ® A* = Endy(A)
and Q ® A = A*. Equation 8 follows from the injectivity of this mapping and
Equation 10.

We note that for every z,a € A

(11) ¢'(za) = ¢'(V'(a)z) & ¢(dza) = ¢(v(a)dz) = $(dv'(a)z)
the last equation implying that for all a € A,
v(a)d = dv'(a)

which is equivalent to Equation 9. O

We also need to know the effect of an algebra anti-automorphism on a Frobenius
system, as given in the following transformation theorem.
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Theorem 2.8. Let A be a P-Frobenius algebra with Frobenius system (P, x;, ¢;, yi, V).
If a is a k-algebra anti-automorphism of A, then

(12) (a¢, xa(yi), g, a(zi), @ovVoa)
s another Frobenius system for A, where & and U denote the inverses of a and v,
and ap = ¢ o qa.

Proof. We compute using the identity a(ab) = a(b)a(a) for all a,b € A:
a=>Y mgd(yia) =Y x(ad)(@(a)a(y:)gzi,
and by applying @ to both sides we obtain

a(a) = Zx(a¢)(6(a)a(yi))qﬁ(wi)-

It follows from Theorem 2.4 that a¢ is a Frobenius homomorphism with dual bases

{xa(y:)}, {g:}, {a(zi)}
We compute the Nakayama automorphism 7 for a¢ in terms of a and v: for all
a,be A,

¢(a(a)a(b)) = (ag)(ba) = (ad)(n(a)b) = ¢(a(b)an(a)) = ¢((van)(a)a(b))
by applying Equation 6 twice. Since ¢ freely generates A*, it follows that voaon =
a, whence

(13) n=aovoa. [
We will need the following lemma in our last section.

Lemma 2.9. If A is a P-Frobenius algebra and B is a Q-Frobenius algebra, then
the tensor product algebra A ® B is a P ® QQ-Frobenius algebra.

Proof. First, C := A ® B is finite projective as a k-module. Secondly,
cC= 4A® B = sHom(A,P) ® gHom(B, Q) = cHom(C,P ® Q),
since A, B, P and () are finite projective k-modules. O

3. FINITE PROJECTIVE HOPF ALGEBRAS ARE P-FROBENIUS ALGEBRAS

Let H be a Hopf algebra over a commutative ring k which is finite projective
as a k-module. A “Hopf algebra” refers to such a finite projective Hopf algebra for
the rest of this paper, unless otherwise stated. In this section, we review the results
of Pareigis on the Hopf module structure on the dual Hopf algebra H* and the
P-Frobenius structure on H [30, 32]. For the convenience of the reader we offer
complete proofs for results in the unpublished [32].

For the Hopf algebra H we denote its comultiplication by A : H - H ® H,
its counit by €, and its antipode by S. The values of A are denoted by A(x) =
> x1®mo. If M is a right comodule over H the values of its coaction on an element
m € M is denoted by Y mo®my. The dual of H is itself a Hopf algebra H* where
its multiplication is the convolution product (dual to A), comultiplication is the
dual of multiplication on H, the counit is 1 € H = H** (z — evaluation at z). We
also denote its antipode by S where the context is clear.

Proposition 3.1. If H is a Hopf algebra, then H* is right Hopf module.
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Sketch of Proof. The proof in [30] notes that the natural left H*-module structure
on the dual algebra H* induces a comodule structure mapping x : H* - H* ® H,
determined by

(14) gh="> hog(h)

for every g,h € H*.

The right H-module structure on H* is given by (h* - h)(z) = h*(xS(h)) for
every z,h € H and h* € H*. A long computation in [30] shows this compatible
with the H*-comodule structure in the sense of Hopf modules. O

Proposition 3.2. FEvery right Hopf module M over o Hopf algebra H is isomorphic

to the trivial Hopf module, M = P(M) ® H, where
PM)={meM|x(m)=m®&1lg}

is a k-direct summand of M and x : M — M ® H denotes the right H-comodule

structure mapping.

Sketch of Proof in [30]. One shows that the map M — M given by m + Y S(mg)my
is a k-linear projection onto P(M). Then the mapping 8 : M — P(M)® H
given by B(m) = Y moS(m1) ® me has inverse given by the Hopf module map
a: P(M)® H — M given by a(m ® h) = mh. O

Corollary 3.3. The k-module P(H*) associated to o Hopf algebra H by Proposi-
tions 3.1 and 3.2 is an invertible k-direct summand in H*.

Proof. Since P(H*)® H = H* and H, H* have the same local ranks, it follows that
the finite projective k-module P(H*) has constant rank 1. Then P(H*)Q P(H*)* =
k and P(H*) is invertible [38]. O

We note that P(H*) is the space of left integrals | Ie{* in H*:
(15) P(H") ={f € H"|gf = 9(1)f}
which follows from Equation 14 since } , fo ® f1 = f ® 1.
Proposition 3.4. The antipode S of a Hopf algebra H is bijective.

Sketch of Proof in [30]. Assuming that S(xz) = 0, one then notes that multiplica-
tion from the right by z on P(H*) ® H is zero by the existence of the (H-module)
isomorphism « : P(H*)® H — H* in Proposition 3.2. If k is field P(H*) = k and it
is clear that z is then zero. The general case follows from a localization argument.
Surjectivity for S is apparent if k is a field, and the general case follows again from
a localization argument. O

Denote the composition-inverse of S by S.
Theorem 3.5 (Pareigis). If H is a Hopf algebra and
P:=P(H")",
then H is a P-Frobenius algebra.

Proof. We set ® : P(H*)®@ H = H* f ®x — f -z, where we note that the right
H-module structure is related to the standard left H-module structure on H* via
a twist by S: for every g € H*,z,y €

(9-2)(y) = g9(yS(z)) = (S(z)g)(y)-
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Let @ := P(H*), which is canonically isomorphic to the dual of P, and satisfies
P®Q = k by Corollary 3.3.

Define ¥' : H — Homy(H, P) as the composite of the right H-module isomor-
phisms

H—PoQ®H™3 PwH* — Homy(H,P).
It is easy to check that

(16) V'(2)(y)(q) = (¢ ® z)(y) = q(yS(x))

forall z,y € H and ¢ € Q.
B Now let ¥ := ¥’ 0 S. ¥ is a Frobenius isomorphism g H = gHomy(H,P), since
S is an anti-automorphism of H and

U(zy) = ¥'(S(y)S(2)) = T(y) - S(z) = 2¥(y). O

Corollary 3.6. The Frobenius homomorphism v : H — P defined by the theorem
satisfies for every a € H

(17) D a ®@¢(az) = 1®¢(a)

Proof. We note that the Frobenius homomorphism v := ¥(1) = ¥'(1) satisfies by
Equation 16, for every ¢ € P(H*),a € H,

Y(a)(q) = q(a),

and
q(a)ly = Z a1q(az)

since ¢ € |, fp-
Since P = @Q* and H is finite projective over k, we canonically identify H ® P =2
Homy (Q, H), and compute Vg € Q,a € H

(Z a1 ®1(a1))(q) = 2011/1(‘12)(@ = ZGIQ(G2) =1nq(a) = (1® ¢(a))(q)

whence Equation 17. O

If [, IE{* = k, we see from the theorem and the corollary that H is an ordinary
Frobenius algebra with Frobenius homomorphism a left integral in H*: this is called
an FH-algebra [31, 12]. Conversely, we have the following result, which does not
seem to be explicitly noted in earlier literature.

Proposition 3.7. If H is a Frobenius algebra and Hopf algebra, then H is an
FH-algebra.

Proof. We use the fact that the k-submodule of integrals of an augmented Frobenius
algebra is free of rank 1 (cf. Lemma 4.3, [30, Theorem 3] or [12, Prop. 3.1]). Then

I} IL; = k. Tt follows from Pareigis’s Theorem that the dual Hopf algebra H* is a
Frobenius algebra. Whence f IZ{* = k and H is an FH-algebra. O

Next we obtain as in [32] a left norm for the Frobenius homomorphism ) : H — P
and study its properties. Since z — z% is an isomorphism g H — gHom(H,P) and
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Hom(H,P) ® Q = H* affords a canonical identification, it follows that there are
elements N; € H, q; € @ such that the counit of H,

(18) er— Y Ny ® ;.

Call N := ). N;®gq; in H®Q the left norm of ¢, and note that >, 1¥(aN;)g; = €(a)
for every a € H. In the natural left H-module g H ® () we have

(19) aN = €(a)N,

since both aN and €(a) N map to €(a)e under the composite isomorphism, H ® @ 3
Hom, (H,P) ® Q 3 given by a ® q — aiq.
For all p € P, we note that
¢
(20) > Nigip) € / ,
P H
since this follows by applying Equation 19 to p.

Theorem 3.8 (Pareigis). If H is a Hopf algebra with Frobenius homomorphism 1
given above and left norm Y, N; ® q;, then the dual bases for 1 is given by

(21) {Ni2}, {@:}, {S(Ni)}

Proof. We compute as in [32, Lemma 3.16], using Equation 17 at first and Equa-
tion 19 next (for every a € A):

Z $(aNi2)q:iS(Nir)

> a1Nia(1(asNig)q:)S(Nin)
> arp(asNi)g;
= > are(an)p(Ni)gi = ae(1) = a.
It follows from Theorem 2.4 that {N;s}, {g:}, {S(N:i1)} are dual bases for ¢p. O

4. PINNING DOWN THE MODULAR FUNCTIONS

This and the remaining sections are essentially new. In this section we give a
definition of modular function in Equation 25 based on [12], and find two formulas,
Eqs.26 and 28 which will be used later. The rest of this section is somewhat
technical and might be browsed on a first reading.

It follows from appying S to the equation in the last proof, and setting a = 1,
that

(22) > (@as) = Ny =1,

(2

where 1g; € H* is the mapping a — t(a)g; for each i and a € H. Of course
1 € H* =2 H is the counit of H*. It follows from Equations 18 and 22 that the
antipode on the dual Hopf algebra H* is given by

(23) S(9) = Ni(g(ai)2) (%gi),
since one computes that > g15(g2) = g(1)e for every g € H*.
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Proposition 4.1. H is a Hopf algebra and P-Frobenius algebra if and only if H*
is a Hopf algebra and P*-Frobenius algebra.

Proof. Let @Q = P*. Tt suffices to show the forward implication. Let p; € P be such
that ). ¢ipi = 1. Then Equation 23 implies that

(24) (N: ® g, (¥4i)2, pir S(¥ai)1)
is a Q-Frobenius system for H*, where we identify H ® = Hom(H*,Q) via the
obvious isomorphism. O

We next define a left modular function for a Hopf algebra H. We continue the
notation established in the previous section.

Definition 4.2. Define the left modular function, or left distinguished group-like

element, m : H — k by

(25) m:=eov

where v is the Nakayama automorphism of H relative to ¢ (cf. Corollary 2.5).
First note that m does not depend on the choice of Nakayama automorphism,

since €(dv(a)d~') = €(v(a)) for every a € A. Next note that m is an algebra

homomorphism (an augmentation in fact), and therefore a group-like element in

the dual Hopf algebra H*. With respect to the natural right H-module Hg &, Q,

we note that for all a € H,

(26) Na = Nm(a),

since Na is mapped into ), N;ay ® q; = Y, Njyv(a) ® g;, then into e(v(a))e =
m(a)e, under the canonical isomorphism H ® @ = H*.

Let A be an algebra with augmentation €, 4 M4 an A-bimodule and define the
k-module of left integrals in M as fjf;[ := {z € M|az = €¢(a)z}. For a Hopf algebra
and P-Frobenius algebra H we consider the natural H-bimodule gHy ® @ in the
lemma below.

Lemma 4.3. Given Hopf algebra H and Frobenius homomorphism 1, flf,@Q 18

a sub-bimodule freely generated by the left norm N = > . N; ® ¢; and a k-direct
summand of H ® Q.

Proof. N is left integral by Equation 19. We recall the isomorphism H ® @ 3
Hom(H,P) ® Q = H* given by a ® ¢ — (ayp)q. Given T = 3. T; ® ¢} € f;i,@Q,
denote ¢(T) := Y, (T;)q; € k, and note that, for all z € H,

Z Y(aTy)q; = e(x)p(T) = Z¢($Ni)Qi¢(T)-
Whence
(27) T = ¢(T)N.

Thus, N generates fIt;,@Q and the mapping of H ® Q — fé@@ given by z ® q —
¥(x)gN is a k-linear projection.
If X\ € k such that AN = 0, then

0= Zzp(Nz-)qz-A =e(1)A= ),

so N freely generates [ If@Q. O
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We similarly define right integrals in a bimodule over an augmented algebra,
and prove a right-handed version of the lemma. It follows from Lemma 4.3 that
T := 3, S(N;) ® ¢; is a right integral that freely generates f;;r@@ since €0 S = €

and S is an anti-automorphism of H. By Theorem 3.8, we compute

T= Y 9SN)Np)a:SNa) @ g = Y $(SN))aS(Nu)e(Nio) ® g

1,3,(N3)

T(3 a0 (5V)),

whence

(28) > Y (S(N) = 1.

It follows that 7 is a right norm in the sense that Y, ¢;4)S(N;) =e.

Lemma 4.4. ¢ and ¢ o S are left and right norms in the natural H-bimodule
H* @ P = Homy (H, P).

Proof. Proposition 4.1 shows that N € H ® @ is a Frobenius homomorphism for
the dual Hopf algebra H*. The concepts of left and right norm relative to N make
sense in the H*-bimodule H* ® (). But Equation 22 implies that ¢ € Hom(H, P) =
H*®P is a left norm for N. Similarly, >, S(N;) ® ¢; is a Frobenius homomorphism
H* = Q by applying the anti-automorphism S as in Theorem 2.8, and Sv is a
right norm. O

One easily checks that ), S(IV;) ® g; is a right norm in H ® Q for ¢ o S. Since
H* is a Q-Frobenius algebra, it has a Nakayama automorphism »*, which we make
formal use of below.

Definition 4.5. Let b € H, where H is canonically identified with H**, be the left
modular function defined by

(29) b=nov*

where 7 is the counit of H* defined by n(f) = f(1) for every f € H*.
It follows from Equation 26 and Lemma 4.4 that for every f € H*,

(30) vf =9 fb),

where ¢ € H* ® P has the natural H*-bimodule structure.

5. AN APPLICATION TO RADFORD’S FORMULA

We now compute a formula for the Nakayama automorphism of ¢y : H — P in
terms of the square of the antipode and m. The notation ¢ — a := ) ai1g(a2)
and @ — g := > g(a1)az denotes the usual left and right module actions of the
convolution algebra H* on H = H**.

Theorem 5.1. The Nakayama automorphism v for 1 : H — P is given by
(31) v(a) =5 (m — a) =m — 5 (a)
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Proof. The rightmost equation follows from noting that m is a group-like element
in H*, whence mo S =m~" and mo S? =m: ie., S? and S fix m.

The leftmost equation is computed below and follows [32, Satz 3.17] until 32: for
every a € H,

SPw(a) = (D ¥(Nia)g:S(Na))
= ) S(Na)p(Niza)gi
= ) S(Nia)Niarh(Nisaz)g;
(32) = Y ap(Niaz)g;
> arm(az)(Ni)gi

by Equations 6, 17, 26 and 18, respectively. [l

Since H has Frobenius system (¢, N2, q;, S(Ni1), v), it follows from Theo-
rem 2.8 that we obtain another Frobenius system by applying the algebra (and
coalgebra) anti-automorphism S:

Proposition 5.2. A Hopf algebra H with left norm N has Frobenius system
(33) (§¢; XNila qi, S(Ni2)7 Oé)
where S1 satisfies a “right integral-like equation,”

(34) (SP)(@) @ 1u =D _(SP)(1) ® 2
and the Nokayama automorphism,

(35) a(z) = S%(z) =m

for every x € H.

Proof. The dual bases 33 follows directly from Theorems 2.8 and 3.8. Equation 34
follows from Equation 17 since S is a coalgebra anti-automorphism.

To compute the Nakayama automorphism we first need to find the inverse of
Equation 31: for all a € H,

(36) v(a) = S*(m™ = a) =m™' = 5%(a).
Next we apply Equation 13 where S is the anti-automorphism:
a(z) = (SowoS)(z)
= S(m' = S(2)
= SO S(@)m™(S(21)))
= S%(z) — m,
since m o S = m~! and S? is an algebra and coalgebra automorphism. O

By the comparison theorem, we know that the two Frobenius homomorphisms
and S1) are related by an invertible element d called the derivative: St = ¢d. The
next proposition shows that d is proportional to the left distinguished group-like
element b of H*.
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Proposition 5.3. If vy is a Frobenius homomorphism for the Hopf algebra H, then
(37) oS =Pb

Proof. We first show that b is a right integral in the H*-bimodule H* ® P. Recall
that H* ® P is canonically identified with Homy (H,P) Let f € H*, then

Wb f = [ (fo )b = [W((Fb)(®))]b = (¥b) f(1)
since A(b) =b®b.
Since 1) 0 S is a right norm it follows that there is A € k such that 1) o S = A(1)b).
But comparing Equation 28 to the application below of Equation 19:

3wV = xe®e(D) = x,

shows that A = v (cf. Eq. 2). O

Theorem 5.4. If H is a Hopf algebra with left distinguished group-like elements
be H and m € H*, then for every a € H,

(38) S*(a) =b"'(m — a = m™)b.

Proof. On the one hand, the Nakayama automorphism « : H — H for the Frobenius
homomorphism S is by Proposition 5.2 given by

a(a) = S%*(a) — m = S%*(a — m)

for every @ € H. On the other hand, the Nakayama automorphism v of H for the
Frobenius homomorphism 3 € H* is by Theorem 5.1

v(a) = gz(m —a)=m— gz(a),
for every a € H. By Proposition 5.3, 1) 0 S = b, so by the comparison theorem
a(a) = b v(a)b

for every a € H.
Substituting the first two equations in the third yields,

S%(a) = b5 (m — a)b = m™?

which is equivalent to Equation 38 since S? fixes b and m, and for every group-like
a € H, we have m — (aza~!) = a(m — z)a™!. O

In [12] it was proven that a group-like element g in a finite projective Hopf
algebra has finite order dividing the least common multiple N of the local ranks
of H. Since m and b are group-like elements, it follows from the general Radford
formula and Equation 31 that the antipode S and the Nakayama automorphism
v : H — H have finite order dividing 4N and 2N respectively.

Corollary 5.5. Let H be a finite projective Hopf algebra over a ring k. Then
S4N = VZN = IdH

Waterhouse sketches a different method of how to extend the Radford formula
to a finite projective Hopf algebra and show that S has finite order [39]. As noted
before, Schneider has established Radford’s formula by different Frobenius methods
for k = field [37]. Radford’s formula is generalized to double Frobenius algebras
over fields by Koppinen [17].
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6. WHEN HOPF ALGEBRAS ARE SEPARABLE

In this section we give a criterion in terms of the left norm N for when a finite
projective Hopf algebra H is separable. We first need a proposition closely related
to some results on when Frobenius algebras/extensions/bimodules are separable
[10, 7, 11]. Let k be a commutative ground ring.

Proposition 6.1. Suppose A is a P-Frobenius algebra with system (¥, z;,q;,y;)-
Then A is k-separable if and only if there is d € P @ A such that

> migidy; = 1a.
i

Proof. The forward implication is proven by first letting > ;05 ® b; be the separa-
bility element for A. Next set d := 3", 1(a;) ® bj € P ® H. Then

Z-’Ez’(b’dyz sz‘h a] ]yz—zzxz% yza] b —Zajb =14.
i

The reverse 1mphcat10n is proven by noting that e := ), x; ® ¢;dy; is a sep-
arability element for A. By hypothesis, u(e) = 1 where y : A® A — A is the
multiplication mapping. e is in the center (A ® A)“ of the natural A-bimodule
A ® A as a consequence of Proposition 2.6. O

Next, let P be an invertible k-module with inverse (). We shall say that ¢ € Q
is Morita-invertible if there is p € P := @Q* such that gp = 1. Note that a left
inverse in this sense may differ from a right inverse by a unit x in &, since gp = xpg.
More generally, we say that ) . ¢; ® a; € Q ® A is Morita-invertible where A is a
k-algebra if there is ), p; ® b; € P ® A such that }, ; ¢ipja;b; = 14. The next
theorem generalizes results in [28, 2].

Theorem 6.2. Suppose H is a finite projective Hopf algebra with P-Frobenius ho-
momorphism v satisfying Equation 17 and left norm N =Y, N; ® q;. Then H is
k-separable if and only if 3, €(N;)q; is Morita-invertible.

Proof. We make use of the dual bases {Ni2}, {g:}, {S(Ni1)} given by Theorem 3.8.
If H is k-separable, then by the proposition above thereis d := ). jpi®a; € PeH
such that

> NipgidS(Ni) = 1m.
ia(Ni)

Applying € we obtain
> e(e(Nia) Nio)gipje(as) = Y e(Ni)gs Y _ pje(a;) = 1y,
i i

whence » . €(N;)g; is Morita-invertible.
Conversely, if ¢ := ), €(IV;)q; is Morita-invertible with inverse p € P such that

qp = 1, then we let d := p ® 1. Note that
> NiegidS(Nu) = Y e(Ni)giplu = 1m,
i

whence H is k-separable by Proposition 6.1. O



16 LARS KADISON AND A.A. STOLIN

Next we study when separable Hopf algebras are strongly separable. Recall
that an algebra A is strongly separable [14, 9, Kanzaki, Hattori] if there is e :=
2% ®w;j € A® A such that p(e) = ), zjw; = 14 and for every a € A, we have
2 zia®w; =3,z ®aw;. We will call such an e € A® A a Kanzaki separability
element: one may prove that its transpose ), w; ® z; is an ordinary separability
idempotent [9, 13]. For example, if k is an algebraically closed field of characteristic
p, then A is strongly separable if it is semisimple and none of its simple modules
have dimension over k divisible by p. We first need a proposition which generalizes
part of [13, Prop. 4.1].

Proposition 6.3. Suppose A is a P-Frobenius algebra with system (¢, x;,q;,y;)
such that

(39) u = Z g Q YiT;
i

is Morita-invertible. Then A is strongly separable.

Proof. Suppose Zj pj ®aj € P® A satisfies Zw ¢ip;yiria; = 1a. From this and
Proposition 2.6, we easily see that e := ). y; ® w;iq;p;a; is a Kanzaki separability
element. m

Setting v~ := " ;Pj ® aj, we can apply Proposition 2.6 to obtain a formula for
the Nakayama automorphism:

(40) v(a) = uau?',

where we make use of the usual Morita mapping Q ® P — k.
Recall that a Hopf algebra H is involutive if S2 = Idyg. The next theorem
contains a result of Larson [19] as a special case.

Theorem 6.4. Suppose H is a finite projective, separable, involutive Hopf algebra.
Then H is strongly separable.

Proof. If (1, Ni2, gi, S(Ni1)) is the P-Frobenius system for H given by Theorem 3.8,
we note here that S = S, so that the u-element of Proposition 6.3,

w = Z G ® Z S(Ni1)Nip = Z gi€(N;) ® 1

(N:)
is Morita-invertible by Theorem 6.2. O

It follows from a result of Etingof and Gelaki [6] that a separable and coseparable
Hopf algebra is automatically involutive, so long as 2 € k is not a zero-divisor [13].

7. HOPF SUBALGEBRAS

Throughout this section, &k is a commutative ring and we consider a finite pro-
jective Hopf algebra H with Hopf subalgebra K which is also finite projective as
a k-module. We will show that the functors of induction and co-induction from
the category Mg of K-modules to My are naturally isomorphic up to a Morita
auto-equivalence of Mg determined by a relative Nakayama automorphism and a
relative Picard group element. This section generalizes results in [29, 28, 36, 12].

Let R be an arbitrary ring, 8 : R — R a ring automorphism, and Mg a module
over R. The f-twisted module My is defined by m - r := mf(r), clearly another
R-module. If § is an inner automorphism, is easy to check that Mpr = Mg. We
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also note that M @r Rg = Mga. It is not hard to see from this that the bimodule
rRp induces a Morita auto-equivalence of Mg via tensoring.

Lemma 7.1. If A is a P-Frobenius k-algebra with Frobenius homomorphism ¢ and
corresponding Nakayama automorphism v, then we have the following bimodule
isomorphisms:

(41) AAp = AHOm(A,P)U = ,,—1H0m(A,P)

Proof. Since a¢p = ¢v(a) in A* for every a € A, it follows that the Frobenius
isomorphisms a — a¢ and a — ¢a induce the first and second isomorphisms above
(between A and Hom(A, P)). O

As a straightforward extension of Definition 2.1, we define P-Frobenius extension
A/S, where P is an invertible S-bimodule (and — ®s P defines a Morita auto-
equivalence of Mg [1]).

Definition 7.2. Suppose S is a subring of ring A and P is an invertible S-bimodule.
We say A is a P-Frobenius extension of S, or A/S is a Frobenius extension of the
third kind, if

1. Ag is a finite projective module;

2. sA4 = sHomg(Ag,Ps)a

A P-Frobenius extension has a symmetric definition, a Frobenius system like in
Section 2, a Nakayama automorphism defined on the centralizer subalgebra Cs(A)
of A [32], and a comparison theorem, which we will not need here. As a straight-
forward consequence of a theorem by Morita [23, 24], we state without proof (cf.

[8]):

Theorem 7.3. A is P-Frobenius extension of S if and only if there is a natural
isomorphism of right A-modules,

(42) MRs A Homs(As, M ®g Ps)
for every module M € Mgs.

This equivalent condition for a P-Frobenius extension states in other words that
the functors of induction and co-induction from Mg into M 4 form a commutative
triangle with the Morita auto-equivalence of Mg induced by — ®g P.

Suppose a Frobenius algebra pair forms a projective ring extension such that
the Nakayama automorphism of the overalgebra preserves the subalgebra. We now
obtain a theorem that states that such a pair forms a certain P-Frobenius extension.

Theorem 7.4. Suppose A is a P-Frobenius algebra, B is a P'-Frobenius algebra,
and B is subalgebra of A such that Ap is a finite projective module, and a Nokayama
automorphism va of A sends B into B: va(B) = B. Let vg denote a Nakayama
automorphism of B. Then A is a W -Frobenius extension of B, where

(43) W=3B®Q ®P,
Q' = P'* and 0 is the relative Nakayama automorphism given by

(44) B=vgo VZl.
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~

Proof. Since Ap is assumed finite projective, we need only show that pA4 =
pHomp(Agp, Wg). We compute using the hom-tensor adjointness relation and two
applications of Lemma 7.1:

BAs4 = yleom(A,P)A
>~ Homg(A ®p Bugl,k)A®P
= V;1H0mB(AB,B§)A ®P
S Homg (A, ,sBE @ Q')A @ P
= pHomp(Ag, ,,,-1Be®Q ®P)s U

Let K C H be a pair of finite projective Hopf k-algebras where K is a Hopf
subalgebra of H (i.e., A(K) C K ® K and S(K) = K) in the next corollary. Let
P(K)*, P(H)* be the k-module of integrals ff(, fé, respectively, vy, vk be the
respective Nakayama automorphisms and mpg, mg be the respective left modular
functions.

Corollary 7.5. If K C H is a finite projective Hopf subalgebra pair, then H/K is
a P-Frobenius extension where

(45) P=3K®P(K)"®P(H)
and
(46) B=vkovy.

Proof. The natural module Hg is finite projective as a corollary of the Nichols-
Zoeller Freeness theorem [12, Prop. 5.3] (or adapt [36, Cor. 2.5(2)]). Furthermore,
the Nakayama automorphism v (a) = mE' — SF2(a) for every a € H by Equa-

tion 31, whence vy (K) = K. Thus the hypotheses of Theorem 7.4 are satisfied. O

It follows from the formulas for vy and vk in Equation 31 that for every z € K,

B(z) = mr =5 (myz — %))

(47) = (mxk *m;ll) -z

(cf. [8]).

Kasch makes a study in [15] of the relative homological algebra of Frobenius
extensions. One can extend the results of Kasch to a Frobenius extension A/S
of the third kind by taking into account some Morita theory. For example, one
may show by these means that under the (rather common) additional assumption
that S is S-bimodule isomorphic to a direct summand in A, the flat dimension of
any S-module is equal to both the flat dimension of its induced A-module and of
its co-induced A-module. In extension of [15], Pareigis [31] studies a cohomology
theory for FH-algebras, showing that these have a complete cohomology with cup
product, a generalized Tate duality under a certain cocommutativity condition, and
a generalized Hochschild-Serre spectral sequence.

8. EMBEDDING H INTO AN FH-ALGEBRA

In this section we show that a finite projective Hopf algebra H is a Hopf sub-
algebra of an FH-algebra in two ways. We first show that H is a Hopf subalgebra
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of D(H). We let k be a commutative ring. The quantum double D(H) of a fi-
nite dimensional Hopf algebra, due to Drinfel’d [5], is readily extended to a finite
projective Hopf algebra H over k: at the level of coalgebras it is given by

D(H) := H*“°P @ H,

where H* °°P is the co-opposite of H*, the coproduct being A°P. The multiplication
on D(H) is described in two equivalent ways as follows [22, Lemma 10.3.11]. In
terms of the notation gz replacing g ® x for every g € H*,z € H, both H and
H*°°P are subalgebras of D(H), and for each g € H* and = € H,

(48) g = Z(xlgsflm)wz = 292(57191 -z~ g3).

The algebra D(H) is a Hopf algebra with antipode S'(gz) := SzS~1g, the proof of
this proceeding as in [16].

Theorem 8.1. If H is a finite projective Hopf algebra, then D(H) is an FH-
algebra.

Proof. Tt is enough to show that fé(H)* = k. Asanalgebra, D(H)* = H°°’QH*, the
tensor product algebra of H* and the opposite algebra of H. Now H is P-Frobenius
algebra if and only if H°P is, since they have the same Frobenius system with a
change of order in the dual base. By Proposition 4.1, H* is a P*-Frobenius algebra.
It follows from Lemma 2.9 that D(H)* is a Frobenius algebra, since P ® P* = k.
Now the k-space of integrals of an augmented Frobenius algebra is free of rank one,
which proves our theorem. O

Next we show that H has a ring extension to an FH-algebra H ®; K. This will
follow right away from the construction of a ring extension ¥ C K where K has
trivial Picard group. We continue with k£ as a commutative ring, and let M be the
set of all maximal ideals in k. Choose finite subsets M, C M, a € I such that
UaerMy = M and the subsets M, are linearly ordered with respect to inclusion:
in other words, for any two indices «, 8 € I either My, C Mg or Mg C M.

Let mq,,... ,mq, be all the elements of M,, i.e. maximal ideals in k. Then the
set

Ka:kmal @...@kman

is a semilocal ring and has trivial Picard group: Pic(K,) = 0. For any pair
M, C Mg, we have the canonical projection s : Kg = K, and we may consider
the inverse limit ring

(49) K := liin(Ka,ﬂ'a,g).

Furthermore, for any a € I we have the canonical homomorphism f, : £ - K,,
which is the direct sum of the corresponding localization homomorphisms. The
following diagram is clearly commutative:

k

I fo
v hN

Tapg

Kg

(From universality we obtain a homomorphism f : k — K.

Ko

Lemma 8.2. f is a monomorphism.
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Proof. Let f,, be the localization homomorphism f,;, : k¥ = k. Then it follows

easily that ker f = N,,ep ker f,,, = 0. O
Now let 7, : K — K, be the canonical epi. Since the diagram
K
3 Ta
vd he
Kg TeR K,
is commutative, the following diagram is commutative as well:
Pic(K)
Pic(mg) Pic(ma)
Pic(Ks) Pictngs) Pic(K,)

Again from universality we obtain a homomorphism
®: Pic(K) — lim(Pic(Ky), Pic(mag))
—
Theorem 8.3. ® is injective.

Proof. We need the following result proved in [3]:

Theorem 8.4. Suppose I is some linearly ordered set and for each ordered o, 3 €
I, A, is a commutative ring and there is an epimorphism 1op such that the re-
striction to the group of units Yap : U(Ag) — U(Ay) is a surjection. If

A= lgn(Aaﬂpaﬂ)a
then the induced map
Pic(A) — lim(Pic(Ay), Pic(¥ap))
—
18 injective.
The hypotheses of this proposition are fulfilled by the mappings w5 : Kg = K,
whence ® is injective. O

The next corollary follows from recalling that Pic(K,) = 0.

Corollary 8.5. Given a commutative ring k and K defined in Equation 49, k C K
is a ring extension with Pic(K) = 0.
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