Thesis for the Degree of Licentiate of Engineering

Geometric Modelling of Form
and Positional Errors of Mechanical Parts

Henrik Johansson

Department of Mathematics

Chalmers University of Technology and Goteborg University
SE-41296 Goteborg, Sweden
Goteborg, September 1999



Geometric Modelling of Form and Positional Errors of Mechanical Parts
HENRIK JOHANSSON

© HENRIK JOHANSSON, 1999.

ISSN 0347-2809/NO 1999-36

Department of Mathematics

Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 1000

This work was supported by the Vehicular Research Programme
at the Swedish National Board for Industrial and Technical Development
(Programradet f6r fordonsforskning, NUTEK) under grant 8531P-95-8870.

Matematiskt centrum
Goteborg 1999



Abstract

In manufacturing engineering, geometric quality assurance is carried out through
dimensional inspection. A common way of inspecting mechanical parts is to take
a set of discrete measurements on the surface of a manufactured part with a co-
ordinate measurement machine (CMM). This report deals with geometrical issues
related to dimensional inspection.

First, we describe how to recover the position of a mechanical part by analysing
a set of discrete measurements. This method, known as the rigid best fit, can be
used to remove a systematic error in the measurements that is due to incorrect
positioning of a part.

Second, we study a special case of the rigid best fit problem, where the lo-
calisation algorithm is applied to the datum system of a part. A datum system
defines a local coordinate system of a part. This report contributes to the sta-
bility analysis of datum systems in new ways of measuring and presenting both
qualitative and quantitative information about the stability of a datum system.
The stability information is suitable for visualisation in a computer-aided design
(CAD) environment.

Third, we generalise the rigid best fit problem. The generalised model con-
siders not only the information about part location but also the geometric form
error inherent in a discrete set of CMM measurements of a mechanical part. The
report is concerned with the special case when the part under consideration can
be described by a curve. The restriction to curves is motivated by the possibility
of applying the method to cross-sections of three-dimensional objects. The gen-
eralised localisation algorithm, the flexible best fit, creates a mathematical model
of the form error that can be visualised in a CAD environment in parallel to the
nominal CAD-model. The flexible best fit algorithm is useful in studying form
errors of prototype parts. This report also demonstrates the performance of the
flexible best fit in a case study with cross-sections taken from an automotive roof
with CMM data from a corresponding prototype part.

The problems are approached from a practical, numerical viewpoint and algo-
rithms and numerical examples are presented whenever possible.

Keywords: geometric modelling, datum system, least squares, quality assur-
ance, rigid body motion, best fit, coordinate metrology, deformable models

AMS 1991 subject classification: 65D10 (65D17, 41A63)
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Chapter 1

Introduction

Geometric quality assurance is an essential part of the manufacturing process of
mechanical parts. The geometric dimensions of the parts need to be checked for
conformance to their specifications.

1.1 Historical Background

The geometric specifications consist of fourteen different types of tolerance spec-
ifications (ISO 1101, 1993). Until the breakthrough of the coordinate measuring
machines (CMM), it was common to check conformance to the geometric speci-
fication using hard gauges. The appearance of CMMs enabled for inspection of
general, sculptured surfaces by sampling discrete points on a part’s surface. The
new way of inspecting mechanical parts eliminates the time consuming and very
expensive use and manufacture of high precision hard gauges, specific to any tol-
eranced geometric feature of a part. Moreover, the CMM inspection methodology,
also known as soft gauging, allows for automation of the inspection operations. In
short, the appearance of CMMs meant a revolution in dimensional metrology.
Despite the potential offered by CMMs, there still seems to be some work to
do in connecting the discrete coordinate measurements from the CMM with the
tolerance specifications in determining the geometric quality of a mechanical part.
Many of the problems that appeared in the early days of the CMMs have started to
be overcome, whereas others are yet to be dealt with. The problem of relating the
CMM data and the geometrical tolerances is due to that the tolerancing method-
ology was developed well before CMMs came into use. Hence, they implicitly
assume that hard gauges are used for the inspection (Dowling et al., 1997).

1.2 Localisation by Fixture

Before starting to evaluate the geometric dimensions of a part, the part has to
be localised; i.e. we have to find the position of the part. The part’s position is
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Inspection Methods

Fixed Coordinate Best Fit of
System Reference Frame
Use Fixed Project
Targets  Measurements
(1) (ii) Rigid Best Fit Flexible Best Fit

Separation of Form

Fit Reference Frame Fit Reference Frame and Position Error

to all Measurements to Datum System v)
(iii) (iv)

Figure 1.1: The tree illustrates different approaches to coordinate inspection.

defined by the location of the datum! system of the part. The datum system is
defined by a set of datum features. A datum feature can, for instance, be a plain
surface or a hole, see Figures 3.1-3.3. The datum features are important since they
uniquely define a local coordinate system of the part. In the sequel, we also use the
term locating feature to mean datum feature. A well-defined datum system can
be mathematically decomposed into its datum points and corresponding guiding
directions. Each and one of the six datum points is associated with a guiding
direction. For example, if the datum feature is a plain surface, then the guiding
direction of the datum feature is the principal normal of the surface. A hole, on the
other hand, is mathematically described by a datum point defining the centre of
the hole in addition to the two guiding directions that span the tangent plane of the
hole. Since the hole restricts two degrees of freedom, it is said to have multiplicity
two. There are also datum features with multiplicity three. The number of datum
points for a well-defined datum system, counted with multiplicity, is six. The
concept of a datum system is explained more carefully in Chapter 3.

In the trivial case the workpiece is put to rest on a fixture with known position
that supports the part in its datum points. The inspection points are sampled
with a CMM and the form error is evaluated by (i) taking the difference between
the sampled measurements and their corresponding target points in the nominal
model. Alternatively, if the target points are unknown we can (ii) project the
sampled measurements in the nominal model, see Figure 1.1.

The drawback of this approach is that it requires a high precision fixture to be

l“datum. A point, line or surface to which dimensions are referred on engineering drawings
and from which measurements are taken in machining or other engineering operations.” from
Chambers Science and Technology Dictionary, W & R Chambers Ltd., Edinburgh, 1988.
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manufactured for each type of part subject to inspection. Thus, we have faced the
same problem as manufacturing engineers had before the CMMs, i.e. the problem
of having to waste time and money to prepare high precision tools just to be able
to find out about the dimensions of the part. In this case, we have to prepare high
accuracy fixtures, whereas before the CMMSs the manufacturing engineers needed
to prepare hard gauges.

1.3 Virtual Localisation

A great save in time and money is achieved by using the CMM measurements
not only to evaluate the dimensions of the part but also to localise the part. By
localisation we mean the process of locating the nominal object in the position
where the (squared) sum of distances from the coordinate measurements to their
target points in the nominal model take on its minimum. If the squared sum is
minimised then we speak of a least squares minimisation. This process is also
termed rigid best fit or simply best fit. The distance between the measurements
and their target points are denoted residuals in the sequel.

The residuals of the best fit can be interpreted as the geometric deviation
and compared with the geometric specification to check for conformance. This is
method (iii) in the tree shown in Figure 1.1. The problem can be formulated as
a least squares problem, which is subject to analysis in Chapter 2. One has to
be careful when choosing inspection points since the solution of the least squares
problem is sensitive to their distribution and, of course, the number of them.

An underlying assumption of method (iii) that we make in Chapter 2 is that
the form errors are normally distributed and independent, a condition very rarely
satisfied in reality where we usually have systematic form errors. For example, if
a part deviates at a certain point the part is likely to deviate in a similar way in a
close neighbourhood to the point. Put differently, there are spatial dependencies
between measurements that are close in a geodetic sense. However, the assumption
about normality and independence are likely to be correct for the part of the error
that is due to measurement noise. On the other hand, the measurement noise is
probably orders of magnitude smaller than the geometric deviations.

Method (iv) is a natural compromise of methods (ii) and (iii) where we inspect
the part as usual, with the difference that the datum points are inspected as
well. Secondly, we use the measurements of the datum points to find the rigid
body transform that takes the workpiece from its position in the real world to
the position of the nominal model in the CAD-environment. The rigid transform
is again interpreted as the positional error. Thirdly, we evaluate the shape error
by projecting the measurements in the surface of the nominal part as in method
two. This method has the advantage of allowing for positional error without
imposing any restrictions of the inspection points in terms of uniformness and so
forth, since the inspection points are not involved in the least squares minimisation.
Moreover, the six degrees of freedom of the rigid body transform is only determined
by measurements of the datum points. In effect, this means that the system is
not over-determined and hence no assumptions of independence and normality
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has to be made since the residual of the non-linear least squares problem will be
zero. On the other hand, the rigid body transform will be completely determined
by the measurements of the datum points and hence errors purely related to the
measurement process will be directly forwarded to the solution of the least squares
problem. A slight enhancement of method (iv) to handle this problem would be
to take several measurements of every datum point. Possible differences between
measurements of the same point will then only reflect measurement noise, which
can be assumed independent and normally distributed. Methods (iii) and (iv),
also known as the rigid best fit, is the subject of Chapter 2 where we review a
model for representing the position of a part and present algorithms with which
it can be computed.

1.4 Form Error Modelling

The rigid best fit only allows for a rigid alignment of the nominal model to CMM
data. To this end, we introduce another method in Chapter 4 that goes one step
further and allows the model to be deformed. We call this method flexible best fit
as opposed to the rigid best fit. Using this technique we can create a global model
of the form error as well as the positional error, discard the measurements and then
use this mathematical model of the geometric deviations to check for conformance
to the geometric specifications. By applying conditions on the estimated form
error, we can separate the form error from the positional error. This idea is
represented by leaf (v) in the tree of Figure 1.1 and is developed in Chapter 4.
However, due to the complexity of the method it is only applied to composite
curves, which can be thought of as cross-sections of true three-dimensional objects.

The method applies to the early phases in the development of a new product.
More specifically, it can be applied in the prototype phase in order to visualise
the form error in an appealing way. The cause of the form error can then easily
be pinpointed and correct adjustments made to e.g. a die used in a stamping
operation to form a sheet metal part.

1.5 The Importance of Robust Datum Systems

The local coordinate system of a part as well as most of its geometric specifications
is determined relative to the part’s datum system. Moreover, during the inspection
and many manufacturing operations involving the part, it is positioned by fixtures
that support the object in its datum points. These facts reflect the importance
of the datum system. Chapter 3 presents an application of the least squares rigid
best fit method from Chapter 2 to datum system analysis.

The datum system is chosen at an early stage of the design process. A tool
of the type presented in Chapter 3 is easy to use and provides the manufacturing
engineer with graphical information about the quality of the datum system. Such
a tool makes it possible to pinpoint deficiencies of a datum system early and can
prevent problems to come up later in the manufacturing process that might arise
if parts with faulty datum systems reach the production phase.



Chapter 2

Rigid Best Fit of Sculptured
Curves and Surfaces

In this chapter, we try to solve the problem of finding the rigid body transforma-
tion of a discrete data set that best fits a curve or surface in some norm. Our
aim is to find and remove the inherent rigid body transform of the data set and
then interpret the residuals of the data as geometric defects. This problem arises
naturally in quality assurance of mechanical parts in which case the discrete data
set is produced by a coordinate measuring machine (CMM). The ideas presented
are inspired by Johansson (1998) but here developed in some more detail.

2.1 Related Work

The excellent survey by Dowling et al. (1997) gives an account of current ap-
proaches to geometric feature inspection. They have reviewed work from several
engineering fields and describe orthogonal least squares and part localisation as
well as statistical analysis. A recent article by Rivest (1998) provides statistical
analysis of an algorithm for localisation of prismatic parts. Through a linearisa-
tion of the used model, he derives statistical tests for geometric quality assurance
based on the residual characteristics.

Apart from researchers in the statistical community, researchers from numer-
ical analysis have paid attention to the localisation problem. One of the earlier
publications worth mentioning is due to Hanson and Norris (1981), who use the
singular value decomposition (SVD) to solve the localisation problem. They give
an explicit, direct solution to the problem of matching two point clouds. The rigid
transform is obtained through an application of the SVD. Zwick (1997) gives a
short but complete overview of current research from numerical analysis.

As a representative from mechanical engineering we have chosen to put forward
Yau (1997), who provides a best fit algorithm and a method for sensitivity analysis
of the estimated parameters.
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2.2 Formulating the Least Squares Problem

Consider a parameterised regular surface ¢ : D = M C R3, where D is a closed,
bounded and connected subset of R?, in the simplest case D = {(u,v) € R?:0 <
u,v < 1}, the unit square. We require the surface to have continuously varying
curvature, i.e. ¢ € C%(D). We assume M to be our nominal CAD-model from
which we manufacture a workpiece P. The physical object P is allowed to differ
from M to some extent. The allowed difference is defined by the geometrical tol-
erances with which the model M is associated. In order to estimate the geometric
quality of P relative to M we take measurements p; € R j=1,...,nof P
by, e.g. a coordinate measurement machine (CMM). The problem at hand is to
compare the discrete measurements {pj };L:l with the corresponding target points
in the nominal model M. The target points are not known in advance but are
found through least distance projection of the coordinate measurements on the
nominal model. By the least distance projection of a point p € R? we mean the
point in the object M that is closest to p. We also sometimes speak of the closest
point to p. The problem of finding the least distance projection is denoted the
least distance problem by Helfrich and Zwick (1996).

The measurements are contaminated by errors from three sources; (i) mea-
surement noise € from the CMM, (ii) shape errors « from the physical object P,
and (iii) the localisation error R(x) that we want to estimate, i.e. the rigid body
transform.

2.2.1 A Statistical Model

Let u; = [u; v;]" € D denote the surface parameter of the closest point to p; in
Mforall j =1,... ,n. The measurements {pj 7=1 can be thought of as satisfying
pJZR(j)C(U])—FE]—F’YJ, j:]-:"'7n7
where €; € R? represents the measurement error and v; € IR? the form error at
the point of P corresponding to c(u;). Here, R(Z) is a rigid body transform as
defined in Appendix C. The rigid body transform has parameters & = [£7 &"]”
and act on a space point p € R? like R(Z)p = £ + R(®)p, where R(@) is a 3 x 3
rotation matrix parameterised by the rotation vector @ € R® and £ € R® is a
translation vector. Furthermore, we define R(Z) = R(x)™*, i.e. & are the rigid
body transformation parameters that correspond to the inverse! of the rigid body
transformation R(z), hence R(Z)p = R(w)~'(p — t). Here, the entities without
the tilde correspond to the inverse of same entities with a tilde and vice versa.
See Appendix C for the details. We define the transformed nominal model by

In this setting, the independent variables u; are unknown but can be recovered
by least distance projection of the transformed points R(m)pj on M or, equiva-
lently, by least distance projection of the measurements p; on Mg (Z). We discuss

IThe reason for using the inverse is that we, in the formulation of the least squares problem
that solves for @, want to let the rigid body transform R(z) act on the measurements p, instead
of the model M in order to simplify the derivation of the derivatives we need for the numerical
solution.
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Model M Physical objec%
_-><""X\)@

; CMM Probe
'>'<
c X
\\\X---_x’—
Measurements {p, }?:1 Best-fit of measurements to M

P X

X

X X
X pj
X
T
X Xpy .

Figure 2.1: Conceptual example of a best fit of CMM measurements {pj 71 from
a physical object P to its model M.

issues related to projections in Section 2.3. In this chapter, we assume that the
sum of the measurement errors €; and the form errors -y, are independent and nor-
mally distributed with mean zero, i.e. € + v ~ N,(0,X), where ¢ = [e] --- e}]7,
v =[] --- v5]" and X is a block diagonal matrix with the 3 x 3 matrices
Cov(e; +7v,) = 0'J2-I along the diagonal. Here and in the sequel, all vectors are
row vectors and are denoted by bold, lower-case letters. Similarly, matrices are
denoted by bold, capital letters like, for example, the identity matrix I that we
just introduced. Moreover, the transpose of a vector or a matrix is denoted by 7,
i.e. the transpose of a vector y is y”.

The assumption that the form errors «; are independent is, of course, not
valid generally. On the contrary, the dependence of the form error of two discrete
measurements is likely to be strong, in particular if they are close to each other.
This is because the form error is in general a systematic error that is due to the
connectedness of the part. Nevertheless, the least squares method we are about
to formulate is often used without caring for this incorrect assumption. However,
Chapter 4 introduces a geometric model where the independence assumption is
dropped.
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2.2.2 Stating the Problem

In order to formulate the least squares problem we denote the jth residual by
rj(z,u) = c(u) — R(x)p; and its squared norm by ¢;(x,u) = wj|r;(z,u)[*/2,
where w; = UJTZ. Then we can define the target function of the rigid best fit
problem as f(x,u) = Z?:l @j(x,u;), where @ = [uy --- u,]". The least squares
problem then reads as follows.

Let {p;}7_; be a set of discrete coordinate measurements of the workpiece
P manufactured from the nominal model M. We are interested in finding the
parameters x of the rigid body transform that best fits the measurements {p;}7_,
to the model M. The rigid body transformation parameters are given by the
solution to the optimisation problem

i u 2.1
wrrel}élsf(w,u(w)) (2.1)

where
uj(x) = argrrlei%wj(m,u), ji=1...,n. (2.2)

The least distance problem (2.2) can be interpreted as requiring the measurement
target point c(u;(z)) to be the point on the nominal model closest to the trans-
formed measurement R(x)p;. If the target points are fixed, i.e. if the points c(u;)
that correspond to the transformed measurements p; are known in advance for
all j = 1,...,n, then the problem (2.1) can be solved with the singular value
decomposition (SVD) as suggested by Hanson and Norris (1981). This is because
the rigid body transformation is nothing but a special type of affine transform,
which can be recovered by the SVD. Anyway, in the current situation we cannot
neglect the presence of the least distance problem (2.2), since the target points are
assumed unknown. Because of the geometric interpretation of (2.1)—(2.2), prob-
lems of this type are often denoted orthogonal least squares in numerical analysis
literature and orthogonal distance regression in the statistics community.

Ideally, we would like to use Newton’s method for the solution of (2.1)-(2.2)
since Newton’s method is known to converge at a quadratic rate. However, New-
ton’s method requires knowledge of the second derivatives. In the forthcoming sec-
tion, we show that the second derivatives are available and thus Newton’s method
is the solution method of choice.

2.2.3 Alternative Formulations

Of course, (2.1) and (2.2) can be incorporated into one optimisation problem
where minimisation is carried out for both  and @ simultaneously, but such a
formulation gives rise to a larger optimisation problem. In particular, the Hessian
of the problem will be of order 6 + n, giving rise to a large, sparse problem that
grows linearly with the number of measurements n. Indeed, the problem will be
very sparse since the last n equations corresponding to the reparameterisation are
completely independent from each other and hence we gain in efficiency by solving
these separately.
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In Section 2.4.1 we incorporate the least distance problem (2.2) into the target
function (2.1). We recover the optimal rigid body transform through a nested
algorithm. Each evaluation of the target function requires the computation of the
least distance projection of the transformed measurements on the nominal model

M.

2.3 The Least Distance Problem

This section describes how to solve the subproblem (2.2) for fixed  and j. In
other words, we describe how the closest point c(u}) in the nominal model M can
be found given a measurement p; and the fixed rigid body transformation param-
eters z. The point ¢(u}) on the nominal model M is denoted the least distance
projection of R(x) on the nominal model M. The least distance projection of a
transformed point R(x)p; is given by the optimisation problem

- . . 2.
1rtne1lr:1)cpj(alr;,uj), (2.3)
that gives the parameter u} of the closest point c(u}) to R(z)p;. We assume that
u; belongs to the interior of D for all j =1,... ,n.

2.3.1 Local Existence on Surfaces

A necessary condition for u} to be a local minimiser of (2.3) in the interior
of D is that the first order condition ¢j.(®,uj) = w;rir;. = 0 is satisfied.
Please observe that we denote the derivative by adding “,u” to the subscript,
i.e. Orj/Ou = r;,. See Appendix A for the definitions of the derivatives. Since
Tju = [Pju Tj] spans the tangent plane at ¢(uj}) the first order condition means
that r; L 7, and r; L 7r;,. In other words, the residual is orthogonal to the
tangent plane at c(u;‘) and hence is collinear with the principal normal at c(u;‘-),
i.e. ;|| nj, where n; = ¢, X ¢, /|cy X ¢,|. We have left out the parameter u} for
simplicity of notation.

A sufficient, second order condition for u} to be a local minimiser of (2.3) in
the interior of D is that ¢; yu (2, u;‘) =wj (r]T-,urj,u + r;rj,uu) is positive definite.
Please note that ;.. is a three-dimensional matrix and the last product has to
be interpreted using tensor multiplication. Recalling that 7;(x,u}) is collinear

j
with n; then the residual can be written as r;(z,u}) = p;n; where p; = rin;.

J
Using the new notation, the second order condition is expressed more clearly as

2 T T T
* |Cu| cuc‘U N;Cyu T Cyy

. r.ur) = w; + p; J J
Soj,uu( ’ ]) J ([cgcu |Cv|2 Pj ngcvu n]T'va

o a2 wivenen oo

where E, F' and G are the coefficients of the first fundamental form and e, f and
g are the coefficients of the second fundamental form of M at ¢(u}), all of them
in local coordinates, see do Carmo (1976, p. 155).
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Figure 2.2: This illustrates the osculating circle at ¢(u) = p(0) of the curve c.

Imagine now that the least distance projection ¢(u}) with principal normal n;
of a point R(x)p; is known. We are interested in the points for which the least
distance projection of c(u}) + p;n; exists locally, p; € R .

The roots of det(IN + p;Q) = 0 are p; ; = —1/k;, i = 1,2, where k; and &, are
the principal curvatures of M at c(u}) (see Farin, 1997, p. 354). The roots p;1
and p; o are known to be real and they divide the real line R into three intervals.
If c(u}) is a umbilical point, i.e. if k1 = k2, then one interval is empty. It is
obvious that ¢;uu(x,u}) is well-defined when p; = 0 since N = rgr,, is trivially
positive definite. Thus, we conclude from continuity that N + p;Q is positive
definite whenever p; belongs to the interval containing the origin.

More precisely, assume without loss of generality that the roots are sorted so
that p;j1 < pj,2. This implies that k1 < k2. Form the intervals Ry = (—00, pj,1),
Ry = (pj1,pj2) and Ry = (pj2,00). Then, the least distance projection exists
locally whenever p; belongs to the interval containing the origin, i.e. whenever
pj € Ri such that 0 € R; for i = 0,1 or 2.

2.3.2 Local Existence on Curves

Because of the great importance of least distance projections we also supply a
more intuitive derivation of a local existence condition for the special case when
M is a curve. In this case, the parameter u; is a scalar and we write u; instead.

A first order necessary condition for u} to be a local minimiser of (2.3) in the

J
interior of D is that ¢;.(x,u}) =0, i.e. that ;. (x,u]) =w; rfr;, = wjrfc, =
0. A geometric interpretation of this result is that the residual r; is orthogonal to
the curve tangent ¢, (u}) of the closest point ¢(u}) to R(z)p;. The second order

sufficient condition for u} to minimise (2.3) in the interior of D is that

i@, uf) = wj(Jeu(W))]” + 7@, u5) " ewu(u])) >0, (2.5)

which is satisfied whenever R(x)p; is within the centre of the osculating circle
corresponding to ¢(u}), the projection of R(x)p;, see Figure 2.2.
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In order to show this let p; = ¢(u) for some fixed w € I and let n be the
normal of ¢(u). The normal n can be written in terms of the derivatives of ¢ as

c cTcuuc e cTcuuC
_ uu |c 2 Cu uu [en |2 Cu
n = Tens T (2.6)
|cuu - |c Tea 2 cul \/|Cuu|2 Cuu|g

using basic differential geometry, see for instance Farin (1997). From the same
reference we have that the curvature can be written as

2 _ lew X euul® _ 1 (|c = (Cucuu)2)
leul® et |cul?

2.7)

By identifying the similarities between (2.6) and (2.7) we can simplify (2.6) to

1 ClCyy
= =70 — . 2.8

Imagine now that we let a point p move along the normal n of p, as p(v) = p,+vn.
We want to investigate for which values of v the projection p, is well-defined, i.e.
at what point p(v) that @, (0,u) = w(|ey|* + 77 cyy), where 7 = ¢(u) — p(v),
ceases to be strictly positive. Inserting r = p, — p(v) = —vn and (2.8) in (2.5)
gives

1 v c’c
E‘Puu(oa“) = leu]” —vey,n = |eu|* — chu|2c£“ (Cuu = |Zur2u cu)
v (cZeyy)?
= |(‘:u|2 — W(lcuuF - ﬁ) = |Cu|2(]— — 'Z)I"\'/);
u U

which is strictly positive for v < ™', where k™" is the radius of curvature at p, =
c(u). In Figure 2.2, it is seen that the condition can be interpreted geometrically
in terms of the osculating circle.

2.3.3 Global Conditions for Curves and Surfaces

The requirement that ,,,, is positive definite is a local condition for the projection
to exist uniquely. For a global uniqueness condition for the projection we must
consider the possibility that some other point on the model M apart from our
original point p, = c(u) can be the projection of the point p(v) even though
the local existence conditions are satisfied. As always, global conditions are more
difficult to deal with. However, intuitively the condition is clear. Figure 2.3 shows
the regions for which a projection is well-defined for an example curve.

2.3.4 Computing the Least Distance Projection

Having argued for the existence and uniqueness of the least distance projection of

a measurement on the model M it is time to illustrate how it can be computed.
For a set of measurement data {p;}7_; we want to find the corresponding pro-

jections in the model M. The projection of a transformed measurement R(m)pj is
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C

critical region - .
critical region

Figure 2.3: The figure illustrates the critical regions for a plane curve. Points in
the critical regions do not have well-defined projections on the curve e.

described by the surface/curve parameter uj. Formally, we can write this projec-
tion as uj =c™' o B, R(z) p;, where B, denotes the non-linear least distance
projection taking space points to their closest point in the object M. The param-
eter uj is found by solving the non-linear least squares problem

min o; (2, u)

for fixed . It can be done iteratively by Newton’s method. If u(® is an initial
approximation to u; then Newton’s method generates a sequence

u;l-f-l) = u;l) - ‘pjyuu(wa ug‘l))il(pj,u(wa 'u’;'l))y 1=0,1,...

that converges quadratically to the true solution wj. Algorithm 2.1 gives a sys-
tematic description of how the least distance projection can be computed.

Algorithm 2.1 Algorithm for the least distance projection of a point onto the
nominal model M. Formally we denote this non-linear projection procedure of a
transformed space point R(z)p; by uj = ¢! o B R(z)p;.

Input: Parameterised description ¢ of nominal model M, rigid body transforma-
tion parameter £ and measurement to project p;-
Initialise u{” and relErrTol
relErr <= relErrTol + 1
<0
while not 0 < relErr < relErrTol do
u§l+1) = u;l) - @j,uu(maug'l))_l(pj,u(maug'l))

relErr < (p; (z,ul) - goj(:c,u(-l+1)))/(|g0j(w,u§-l+l))| + relErr)

J J
l<l+1
end while
ul &< u(-l)
J 3
Output: Parameter of least distance projection uj.




2.4. THE DERIVATIVES OF THE LEAST SQUARES PROBLEM 13

2.4 The Derivatives of the Least Squares Problem

In order to solve the least squares problem (2.1)—(2.2) it is convenient to have access
to the derivatives of the problem. It turns out that the least distance problem (2.2)
can be incorporated into the target function (2.1) and analytic expressions for both
the first and second derivatives are available.

2.4.1 Including the Least Distance Problem

In this section, we use the implicit function theorem to incorporate the least
distance problem (2.2) in the target function (2.1). For information about the
implicit function theorem we refer to Rudin (1976, p. 223). A necessary condi-
tion for (2.2) to be minimised in the interior of D for fixed x = x* is that its
derivative vanish at the solution u} for all j = 1,... ,n. Hence, it must be that
pju(@*,uj) =0forall j =1,... n. By the implicit function theorem there exists,
if det(pjuu(x*,u})) # 0, a continuously differentiable function u; = w;(z) such
that ¢; w(z,u;(x)) = 0 in a neighbourhood of *. The condition det(y; wwu) # 0
is met if ¢; satisfies the second order sufficient condition for u} to be a minimiser
of (2.2), namely that (2.4) is positive definite.

Because of the above, the derivative of y; (,u;(x)) with respect to @ is also
Zero, i.e.

0pju(a,ui(x))”
oz

= Yjzu T Pjuuttje =0

by the chain rule. See Appendix A for the definitions of the derivative operators.

From this we see that wjz = —¢j 4., @jau. This is well-defined if our as-
sumption that ¢;.u(z,u;) is invertible holds. The discussion in Section 2.3.1
describes conditions for cpj,uu(w*,u;-‘) to be positive definite which implies that it
is invertible. By continuity it is invertible in a neighbourhood of thereof as well.

Having established the existence of u; = u;(x) that solves (2.2) we can define
@ =[uy -+ u,]” = @(x) and restrict the target function f to f(z) = f(x, @ (x)).
In this way, we can incorporate the least distance problem (2.2) in the target
function (2.1). Hence, the least squares problem (2.1)—(2.2) simplifies to

min f(z). (2.9)

Please note that the implicit function theorem only guarantees the existence of
the parameter function @ = @(x). We do not have it in explicit form.

In order to find the solution z* of (2.9) we can use Newton’s method, which
requires the first and second derivatives of the objective function f,i.e. the gradient
g and the Hessian H.
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2.4.2 The Gradient

In this section, we calculate the analytic gradient g of f.

g(z)" = 81;5) = 8f(wa’:(w)) = fo + falia

n n
= E Pie T Pjullje = E Pie — PjuljuuPizu
i=1

Jj=1

The transpose on the gradient is due to our definition of multivariate derivative
(see Appendix A). The multivariate derivative of a scalar is defined to be a row
vector whereas the gradient is supposed to be a column vector. The first order local
condition for u;(x) to solve (2.2) in the interior of D says that ¢; . (2, u;(x)) = 0.
Hence, the gradient reduces to

9(2) =3 ¢ia(2,u;(2)" = fa (@, u(@))".

So what is fz? Taking a closer look at the jth term ¢; 5 of the sum f; we omit
the index j to clarify the notation, keeping in mind that we are working with the
jth term of the sum that constitute the gradient. Thus, @, = wr"r,, where ry =
— 2 (R(z)p). From (C.2) in Appendix C we have that .= (R(z)p) = [I —[R(w)p]]
so the full gradient consequently sums up to

glz) = ij L (2.10)
j=1

where we have left out the parameters (z,u;(x)) to simplify the notation. Recall
that rj» = —[I — [R(w)p,]]. Here we have introduced the cross product matriz
of a vector @ € R? that is denoted by [a], see Appendix C for its definition.

2.4.3 The Hessian

Continuing with the Hessian H we have that

_0*f(x) _ dg(x) _ fa(z,a(x)”
H(z) = ox? = dx ox

= fmm + fﬁmﬁm

n n
= Z Pjea T Pjuacljz = Z Pjaz — PiuaPjuubieu- (2.11)
j=1 7j=1
Ignoring the index j for a moment, we compute

Pare = WTpTe + 7 Tps), (2.12)

where the last term is not well-defined since it is a product of a three-dimensional
matrix and a vector. The dealing with three-dimensional matrices usually means
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that we have to switch to tensor notation. In this case, however, the difficulty can
be overcome by a little trick. First, we change variables from x to & in the factor
T2 that is affected by the derivative. Second, we move the derivative operator
out. Finally, we apply a result from Appendix C. In detail,

2 2
(W (@) =

e <7°T (c(u) - R(ﬁ:)p))

P i) = — [0 0
=55 (" R@)P) = [o [r][R(w)pH[R(w)p][r]]’

where we have used equation (C.3).
In order to calculate the second term of the Hessian ¢u.¢5., ¢zu We take a
closer look at the mixed derivative @qq-

T T
s (@ (@) = Sz = XIS ot ) wrles, (219
where 74, = 0, due to the absence of mixed terms in . This is where we benefit
from letting the rigid body transformation R(x) act on the measurement p instead
of the model ¢ in the definition of the residual r, see Section 2.2.2.
All the terms of the Hessian are now calculated, all there is to do is to put the
results of (2.12) and (2.13) in (2.11) to get

n

H(z) =) wj(r}aTjc+TiTjae — T}oCulf)jmuCuliz) (2.14)
p
n n
=Y wi(rf (I — chp) auCu)Tia + T Tjax) = 3 Wi(T o TiTje +TiTj0a),
j=1 j=1

where Tj(x) = I — cu(u;(T))"0juu(®,uj(x)) cu(u;j(x)). To summarise we
have derived an explicit expression for the second order Taylor expansion of the
objective function f around . We have

flx + Az) = ¢®(Az) = f(z) + Az"g(x) + %AQ:TH(:E)A:E, (2.15)

with g asin (2.10) and H as in (2.14).

2.5 Sensitivity Analysis

An important question that often arises in optimisation is how much the optimum
changes when the objective function changes. In particular we are interested in
how much the optimal solution to the rigid best fit problem changes when the
measurements are perturbed.

Assume we are given a data set {p,}7_; of a workpiece P manufactured from
the nominal model M. The target function of the rigid best fit problem is given
in (2.9) and its optimal solution is denoted by x*. We are interested in how much
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the solution changes when the measurements p; are perturbed to p; = p; +¢;s;,
|sjl=1,7=1,...,n,ie wewant to know the solution to the following, perturbed
problem.

Given a set of measurements {p,}7_; a set of perturbation directions {s;}7_;
and a vector of perturbation scalars € = [g; --- €,]7, find the rigid body trans-
formation parameters x that minimises

Iin f(,e).

The target function f is defined as in Section 2.2.2 with the difference that we
have here added the perturbation parameter €. A first order local condition for
x to be a minimiser of the above is that the gradient g vanishes at the solution,
i.e. g(x*,€) = 0. According to the implicit function theorem a continuously differ-
entiable function & = x(e) that depends on the perturbation parameter e exists
if det(g,(x*,0)) # 0, where x* is the solution to the unperturbed problem when
e = 0. Please note that g, is the Hessian to the problem derived in Section 2.4.3
and denoted by H(x,e) where we have added an argument for the perturbation
€. The determinant of the Hessian is, of course, non-zero since we assume the
solution x* to the unperturbed problem to exist.

In a neighbourhood of (x*, 0) for which g(z*,0) = 0 it must be that g(x(e),e) =
0 and hence

6 —
%(9(-’13(6),5)) =Hz.+9.=0 =>z.=—H 195.

For the special case € = 0 we have z.(0) = —H (z*,0)"'g.(x*,0). The change of
the optimal solution due to the measurement perturbations is thus given to first
order by z(e) — z* = z.(0) e + o(|e|1) = —H 'g.e.

In computing g, we recall from (2.10) that g(z) = 3°7_, w; r] ,r; from which
we see that

— T T T T
ge = [Tl,wrlqsl + Tl,s1wT1 T rn,a:rnﬁn + Tn,snmrn]

where the jth perturbed residual is defined as r;(z,u;,¢;) = c(u;) — R(z)(p; +
€;8;). The derivative of the unindexed residual with respect to the perturbation
parameter ¢ is easily seen to be

e = gr(w,u,e) = %(c(u,) - (t+R(w)(p+ 68))) = —R(w)s.

Oe
It is also known that r, = —[I — [R(w)(p + €s)]] from which we see that
Ty R(w) [ Rw)
Tale = {(R(w)(p +E:;)SX (R(w)s)] = [R(w)(‘;) i s)] +o((le] + |=[)1).

(2.16)

We see also that 7., = [0 [R(w)s]] that gives
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Together with (2.16) the derivative g, is seen to be (to first order)

. R(w)s1 R(w)s,
9e = | Riw)paxarieix(Rwor) - R@)poxasomx(ren | Ws  (217)

where W is a diagonal matrix with the weights along the diagonal, i.e. W is
defined as W = diag(fwy --- wp]). Assume now that the perturbations e are
independent and normally distributed with mean zero, i.e. that € ~ N, (0,X;),
where 3. = W', Furthermore, assume that the measurements are perturbed in
the normal direction of the measurement projection, i.e. let s; = m;. Finally we
assume, for simplicity, that the solution to the unperturbed problem is zero, i.e.
z* = 0. In this case, equation (2.17) becomes g,.(0,€) = AW, where

n N,
P XNy pnxnn

A= (2.18)

denotes the sensitivity matriz. Please note that r; x n; = 0 since r; is collinear
with the normal direction.

Neglecting higher order terms we assume that the rigid body transformation
parameters are approximately given by

z(e) = —H 'AWe. (2.19)

Given that the perturbation parameters are distributed as assumed above, the
mean is zero, i.e.

Hee) = Efx(e)] = E[-H 'AWe] = ~H 'AWE[e] = 0.

More interestingly, the covariance can be computed explicitly by

Dae) = E[(x(e) = Ba(e) (@(€) = Ha(e))”] = E[z(e)z(e)’]
=EH 'AWee"WA"H | = H'AW E[ee"|WA"H"'
=H 'AWX WATH '=H 'AWA"H
The variance of the estimated rigid body transformation parameters reveals infor-

mation about the precision of the estimates. The sensitivity analysis is included
because of its importance but is not used in the rest of this chapter.

2.6 Solving the Problem

The solution of the optimisation problem (2.9) can be found by starting with an
initial iterate £ and then solving a sequence of problems

min ¢ (Az), k=0,1,... (2.20)

where ¢ = q(”(k)) as defined in (2.15). The old solution x® is updated with the
step given by the solution Az™ to (2.20) at the kth step according to x*+? =
x® + Az®. The sequence {x* };>o converges quadratically to the solution a*
as long as the Hessian H is positive definite. For more on numerical solution
methods see e.g. Fletcher (1987).
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2.6.1 Algorithm

Algorithm 2.2 describes in pseudo-code how an implementation of a solution
method for the rigid best fit problem could be carried out.

Algorithm 2.2 The algorithm for finding the best rigid fit of a model to mea-
surement_data.
Input: Parameterised description ¢ of nominal model M, coordinate measure-
ments {p;}7_, and corresponding weights {w;}7_;.
Initialise relErrTol
relErr <= relErrTol + 1
20 <0
k<0
while not 0 < relErr < relErrTol do
ugk) <c'o B, R(w(’“))pj, j=1,...,n [x see Algorithm 2.1 %/
Az®) < argminag ¢F)(Ax) /* Newton’s method: Solve H(x™)Az® =
—g(@™)) */
kD) = p+1) L Ag)
relErr < (f(x®) — f(@®*+V)) /(| f(*+V)| + relErrTol)
k<k+1
end while
x* <z
Output: Rigid body transformation parameters x*.

The quadratic convergence of the algorithm is confirmed by numerical exper-
iments using Newton’s method. Please observe that the algorithm is nested with
the least distance projection of the measurements as the inner loop. The least dis-
tance problem is described in Section 2.3 and a scheme for computing it is given
in Algorithm 2.1.

2.7 Examples of Rigid Best Fit

In this section, we give some graphical examples of the use of the least squares
rigid best fit algorithm.

2.7.1 Ideal Fitting

As nominal model we have chosen the surface shown in Figure 2.4. The surface
is given a datum system and some inspection points. Recall that the concept of a
datum system is discussed in Section 1.2 and in Section 3.1.

Figure 2.5 illustrates what happens if we simulate measurements from a dislo-
cated copy of the surface and use Algorithm 2.2 to recover the rigid body transform
hidden in the data. The leftmost picture shows the surface in nominal position.
In order to distinguish the nominal position of the surface from the dislocated one
we chosen to illustrate the surface in nominal position as transparent as opposed
to the dislocated surface that is non-transparent.
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Datum Points (3—-2-1) Inspection Points ~ Datum and Inspection Points

A7
R
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Figure 2.4: The model surface used to illustrate the rigid best fit. The leftmost
picture shows the surface and the chosen datum system. In the middle the inspec-
tions points are visible. The union of the two point sets is shown to the right.

True Dislocation Fit to All Points Fit to Datum Points

Figure 2.5: The leftmost figure shows the nominal surface as being transparent
and the dislocated surface as being non-transparent. The middle picture shows
the estimated dislocation from a rigid best fit to all measurements. The rightmost
figure shows the rigid best fit to the datum points.

True Dislocation Fit to All Points Fit to Datum Points

Figure 2.6: The same kind of figure as Figure 2.5 with the difference that we have
added normally distributed noise to the simulated measurements.
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The middle picture shows the result when we use both the “measurements”
from the datum points as well as the inspection points to fit the surface. As
seen, the estimated dislocation is close to the true one. This procedure, when all
measurements are used for the estimation is discussed in Section 1.3. The method
is also represented by leaf (iii) in Figure 1.1.

The rightmost picture of Figure 2.5 shows the result of a rigid best fit using the
datum system only. This is maybe the most useful method in practice since the
geometric specifications of a workpiece are usually defined relative to the datum
why we want to know the deviation in the inspection points relative to the datum.
There is a paragraph in Section 1.3 about this method as well which is represented
in Figure 1.1 by leaf (iv).

As seen from Figure 2.5, the estimate when all points are used is the same as
the estimate using only datum points. This is expected and due to the absence of
noise that allows a perfect fit.

2.7.2 Fitting in Presence of Noise

In practice, workpieces are not ideal and measurements are polluted by noise.
To this end we have made another example similar to the one presented in Sec-
tion 2.7.1 but here we have also added normally distributed noise to the surface
samples in addition to the rigid body movement. The measurements are perturbed
in the normal direction of the nominal surface before the dislocation is applied to
the sampled points.

The simulated dislocation is shown to the left in Figure 2.6 and the estimated
dislocation using both the inspection points and the datum points in the middle.
The result of a fit using only the datum points is seen to the right. In comparison
to the true dislocation the dislocation estimated from the datum points is very
different. This is due to the added noise that perturbs the estimate. When all
points are used in the fit, the least squares method manages to find a proper
estimate of the dislocation due to the many points used, which is why the estimated
dislocation using all points that is shown in the middle of Figure 2.6 is very similar
to the true one. A way of improving the fit when only datum points are used is
to take repeated measurements of the datum points.

2.8 Minimisation in [ by Weighted Least Squares

The described least squares problem that gives the [2-solution to the localisation
problem can be used to approximate the [P-solution of the problem by solving a
series of weighted least squares problems, recomputing the weights at each inter-
mediate step.

Consider the problem

n
i . |P
i, 2 Iri
j=1
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whose solution we want to approximate by solving a series of the problem

n

; (k) 2

wnel}l{lﬁ P wj |’l"]| ’
each time with different weights. The solution obtained for the kth weight set
{w{”}7_, is denoted by ™®. By choosing the sequence of weight sets in a clever
way the solution sequence ), k = 0,1,... can be made to converge to the [P
solution, 1 < p < oo, see Bjorck (1996, p. 172). The two most interesting cases
are p = 1 and p = co. The former because its solutions tend to be more robust
against outliers and the latter one since it agrees well with the tolerancing standard.
Neither of these can be solved exactly by the iteratively reweighted least squares

method but we can achieve a good approximation.

2.8.1 The l! Case

In the I' case Gill et al. (1981) discuss a linear problem and they suggest the

use of an initial weight set w{” = n=" for all j = 1,...,n and to update them

successively by letting w;-’““) = |r;(@™)|~'. The method is experienced to be
unstable for the non-linear least squares problem considered in this chapter. How-
ever, its performance may be slightly improved if we update the weights according
to wi* = (]r;(®™)] + 100e)~" where ¢ is the machine precision of the used
computer. Figure 2.7 shows the rigid best fit of a curve to a set of simulated mea-
surements indicated by x in the figure. The solution is computed using a weight

set as above and should approximate the true I!-solution.

2.8.2 The [* Problem

The [* problem is harder to solve than the ! problem. Gill et al. (1981) suggest
it the to be solved using a weight sequence w{"*" = S~'|r;(z™)|*w}"’, where S =
>y (™) [Pwi®. This weight sequence might work well for linear problems
but certainly not for this non-linear problem where it turns out to be unstable.
However, if the weight sequence is modified to wj**" = §=*|r;(x®)|w]" instead,
with an obvious modification to S, the method is seen to approach the [*° solution,
however slowly. An example of the [* solution to a rigid curve fitting problem is
shown in Figure 2.9. For comparison the [? solution to the same problem is shown

in Figure 2.8.

2.9 Conclusion

We have reviewed a method for localisation of workpieces from a set of discrete
coordinate measurements of a mechanical part. Furthermore, we have presented
a fully practical algorithm based on the least squares approach that can be used
to compute the best fit. Some examples using an implementation of the algorithm
in MATLAB confirms the practicality of the algorithm. In addition, we have



22 CHAPTER 2. RIGID BEST FIT OF SCULPTURED SURFACES

Rigid best-fit in 11

Nominal Position
——  Rigid Best-Fit
Measurements

Figure 2.7: The I! solution of the rigid best fit problem.

Rigid best-fit in 12

Nominal Position
—— Rigid Best-Fit
x Measurements

Figure 2.8: The [2 solution of the rigid best fit problem.

Rigid best-fit in linf

Nominal Position
——  Rigid Best-Fit
x Measurements

Figure 2.9: The [* solution of the rigid best fit problem.
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demonstrated how a sequence of iteratively reweighted least squares problems can
be used to approximate the I' or I* solution to the best fit problem.

Remember that we assumed the nominal model M to have continuously vary-
ing curvature. In fact, it is sufficient to require the surface of the part to have
continuously varying curvature in a neighbourhood of the least distance projection
of the measurements.

We remark, though, that the starting value of the rigid best fit algorithm
must be close to the true solution for the suggested algorithm to be applicable.
For an industrial strength implementation of the algorithm, methods for rough
localisation should be added to make it more robust. This initial value can be
found by, for instance, the SVD algorithm by Hanson and Norris (1981).



Chapter 3

Datum System Analysis

A method for analysing robustness of datum systems is presented. For a defini-
tion of datum systems see Sections 1.2 and 3.1. The method is based on a least
squares problem that can be used to find a rigid body movement in a set of co-
ordinate measurements of a mechanical part. The main tool of the derivation is
a linearisation of the rotation and the geometry, where the former approximation
effectively means that the parts are assumed to be prismatic and the latter that
the rotational part of the rigid body transform is assumed to be small. The linear
convergence of the approximation to the true solution is confirmed by a numerical
experiment. Some examples are provided.

3.1 Introduction

A datum system is a set of points and associated guiding directions defined for
each part in a mechanical assembly. The datum system determines the local
coordinate system of a part and has six degrees of freedom. Recall that it takes six
parameters to uniquely determine the position of a rigid object; three parameters
for the translation vector and three more for the orientation. To determine all
six degrees of freedom the datum system usually consists of six points. It can
be a combination of different types of locating features such as guide pins, holes
and contact lugs'. Figure 3.1 illustrates a contact lug and its locating feature. A
contact lug locks one degree of freedom. A hole can also be used as a locating
feature. If a hole is used as a locating feature the rigid body movement of the
corresponding part is restricted in the plane that is tangent to the hole. Such a
locating feature is modelled mathematically by a datum point defining the centre
of the hole and two guiding directions that span the plane tangent to the hole. The
datum point is counted with multiplicity two since the hole locks two degrees of
freedom. Figure 3.2 illustrates another type of locating feature that also restricts
two degrees of freedom of the part’s possible rigid body movements. In principle,

L“lug. A cast or forged projection integral with, or attached to, an object, for supporting it,
or attaching another part to it pivotally.” from Chambers Science and Technology Dictionary,
W & R Chambers Ltd., Edinburgh, 1988

24
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it is equivalent to two contact lugs. The guide pin is yet another type of locating
feature, see Figure 3.3. A guide pin restricts three degrees of freedom of the part
i.e. it has multiplicity three.

The datum system locates each part throughout the assembly. It is also used
to determine the reference coordinate system relative to which the geometric form
deviations are evaluated. A geometrically ideal choice of datum system is to choose
the points or datum features as far apart as possible to make them “cover” the
part. Unfortunately, the ideal choice from a geometric viewpoint does not always
coincide with other requirements imposed on the datum system.

Furthermore, most industrial standards, for example the STD 5026,2 (1996)
of Volvo Car Corporation, specify that the guiding directions of the datum points
shall coincide with the main coordinate axes z, y or z of the global coordinate
system. This is a special case of the 3 — 2 — 1 system that means that the datum
points lie in three mutually orthogonal planes, where three points are located in
the first plane, two in the second and one in the third. The planes are sometimes
called primary, secondary and tertiary datum planes, respectively, see Figures 3.4
and 3.5. Another problem, which complicates the choice of datum system further,
is the complexity of the geometry of the parts.

Taking all these aspects into consideration there are maybe a handful of plau-
sible candidates left for datum systems of a part. Most often, the manufacturing
engineer can intuitively determine which of these that form the most robust datum
system. By a robust datum system we mean one that is insensitive to small pertur-
bations of the datum points in the guiding directions, i.e. a small perturbation of
one or more of the datum points in their guiding directions does not significantly
alter the position of the part. In some cases, though, it is difficult even for an
experienced manufacturing engineer to choose the most robust datum system. In
such a case he needs a tool to support his choice.

In this chapter we present a method that determines the sensitivity of a datum
system of a part. The results are both qualitative and quantitative in nature
and can eagsily be visualised. The method is based on a linearisation of both the
geometry of the part and the rigid body transform.

Carlson and Ahlmark (1997) have studied a similar problem but not in direct
connection with the rigid best fit problem. They develop theory and methods
for linear root cause analysis of fixture systems using measurement data from a
manufacturing process. This ideas are developed further by Carlson (1999) who
uses subspace techniques. Cai et al. (1997) present a method to optimise a fixture
system based on a similar method to the one presented here.

3.2 Perturbation Analysis

Let n = 6 and let {p;}_, be the datum points of the nominal model M. Assume
that we manufacture a part P that is identical to M. During the subsequent
assembly operations in the manufacturing process involving the object P it is
located by a fixture that supports the workpiece P in its datum points. The
workpiece is supported in the datum points during the inspection phase as well.
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Figure 3.1: A contact lug and its locating feature. A contact lug guides the part
in one direction.

)I'\

Figure 3.2: A locating feature for two guide functions.

“%

Figure 3.3: An example of a guide pin that guides a hole in three directions.
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Secondary datum plane

Figure 3.4: The figure illustrates three mutually orthogonal datum planes for a
part. To be a 3-2-1 system, three distinct datum points shall be chosen from the
primary datum plane, two from the secondary and three from the tertiary.

Since the fixtures are physical objects they are bound to suffer from geometric
imperfections. The imperfect fixtures perturb the position of the part from nom-
inal, see Figure 3.6. If the part is subject to inspection the perturbed position
introduces a systematic error in the inspection measurements. The part may also
be subject to a manufacturing operation in which case the workpiece dislocation
may cause an unexpected manufacturing result.

In order to minimise the dislocation due to fixture imperfections the datum

l VA : z
<
X \\J\Ly/ Y
"

R

Figure 3.5: The datum system of an automotive roof. The black flags indicate the
datum points and the associated letter z, y or z indicate the guiding direction. The
part is seen to have three datum points that guide the workpiece in the z-direction,
two in y and one in the z-direction.
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Figure 3.6: The upper left figure shows a box resting on the locators that constitute
the fixture. The upper right figure illustrates the datum system of the box. The
datum system consists of the datum points {pj ?:1 and their guiding directions
{sj};’le. Please observe that in the two dimensional case illustrated here it is
sufficient to have three datum points since a rigid body motion in the plane only
has three degrees of freedom. The upper right picture also illustrate the inspection
points {q;}, and their evaluation directions {m;}!2,. The lower left figure shows
the tolerance zones of the locators. The lower right figure demonstrates the possible
dislocations of the box due to locator perturbations within the tolerance zones.



3.2. PERTURBATION ANALYSIS 29

system should be robust, i.e. insensitive to small perturbations of the locators of
a fixture. This motivates the first order perturbation analysis of the rigid best fit
problem for the special case when n = 6 that is presented in this chapter.

Let {p;}9_, be the coordinates of the locators that are in contact with the
workpiece P in the points c(u;’) =p;, j =1,...,6, where the superscript on ug
indicates that the parameterised model ¢ equals p;. Assume that each of the six
locators are perturbed by an amount ¢; in their guiding directions n;, |n;| = 1, for
all j =1,...,6. Let x = [t” w”]” € R® denote the parameters of the rigid body
transform R(x). The rigid body transform is defined so as to take an arbitrary
space point p € R?® to R(z)p =t + R(w)p. The vector t € R? is a translation
vector and the vector w € RR? is the axis of rotation. More about rigid body
transforms can be found in Appendix C.

We define the residual to be r;(x,u;, ;) = c(u;) — R(z)(p; +€;n;) and we
also define ¢;(x,u;,e;) = |r;|*/2. Finally, we define the target function of the
localisation problem f(x, %, &) = 2521 pj(x,uj,e;), where e = [g1 --- €6]" is the
vector of perturbation scalars and @ = [uf - - - ug]”. The problem we want to solve
is the following.

The datum system of the mechanical part M parameterised by c(u),u €
D is defined by the points {p;}5_, and guiding directions {n;}$_,. For given
perturbations € we seek the rigid body transformation parameters & € RS that
solve

i u 3.1
min f(z,a(z,e),¢) (3.1)

where
uj(z,e;) = arg melg pj(x,u,e5), j=1,...,6. (3.2)

As opposed to the general case (2.1)—(2.2) when n > 6 the target function will
here attain zero since we only have six unknowns and six degrees of freedom in the
rigid body transformation parameterised by € RS. Since the target function f
vanishes at its minimum each of the terms ¢;, j = 1,... ,6 must vanish as well.
The optimisation problem can be relaxed to only consider the residuals in the
guiding directions of the datum points. To this end, define

h(z,e) = [n{ri(z,ui(z,e1),61) -+ mire (w,uﬁ(w,sﬁ),56)]T,

where u;(x,e;) = argmin,ep @;(x,u,&;) for all j =1,...,6. The relaxed prob-
lem then reads as follows.

Let € € R® be a given perturbation vector that perturbs the datum system de-
fined by the datum points {p;}%_, in its guiding directions {n;}%_,. The problem
is to find the rigid body transformation parameters € R® that solve

h(z,e) = 0. (3.3)
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3.2.1 The Least Distance Problem

Before discussing ways of solving (3.3) we pay attention to the existence of the
parameter function (3.2). The equation (3.2) establishes the connection between
the surface parameters u;, the rigid body transformation x and the perturbation
gj. The existence of such a connection u; = u;(x,¢;) is guaranteed by the im-
plicit function theorem, see Rudin (1976, p. 223). A first order necessary local
condition for a solution (z*,u},e}) to minimise (3.2) in the interior of D is that
Pju; (®*,uj,e]) = 0. If also the second order local condition that ¢j v (T, uj,e5)
is positive definite holds then the local existence of u;(x,¢;) is guaranteed in a
neighbourhood of (w*,u;,s;). As a consequence

0
%(wu(m,u(m,s),a)) = Ypu T Punltz =0,

-1

cu(w)" [I —[p]]. (3.4)

Here we have neglected the subscript j for simplicity. In deriving equation (3.4)
we used equation (2.4) which says that @uu = IN = cycy, when the corresponding
measurement lies in the surface, i.e. when p = 0 which is the case here. We have
also used the derivation of g, in (2.13). Continuing to compute the dependence
of u on £ we have

= u4(0,0) = _‘Pq_ulﬁpmu = (cu(uo)CU(uo)T)

0
%(WU(wau(wae)aE)) = Pue T Puale =0,
- -1
= u:(0,0) = _‘Pmlﬁpsu = (CU(UO)CU(UO)T) cy(u’)n,
where ¢ = rIr. = —cu(u®)™n when (x,e) = (0,0) because the derivative of

the residual with respect to € is r. = —0r/0¢ = —R(w)n.

3.2.2 The Sensitivity Matrix

A standard application of the implicit function theorem (Rudin, 1976, p. 223)
on (3.3) guarantees the existence of a continuously differentiable function & =
x(e) that solves (3.3) whenever h. is invertible. More specifically it holds that
h(xz(e),e) = 0 in a neighbourhood of (x*,e*) that solves h(x*,e*) = 0 and from
this we have that also the derivative is zero, i.e. Z(h(z(€),€)) = ha®e + he =0
from which we have £ = —h_'h.. Please note that (3.3) is trivially solved by
(z",e") = (0,0).

In computing h; we take a closer look at its jth row nj(rj e + rjuujz). To
ease the burden of notation we drop the subscript j and write T, to mean ;.
From (C.2) we know that %(R(w)(p +en)) =[I — [R(w)(p + en)]] and hence
that

0
— (7 (z,u(z,¢),e = (Ta + Tula)| ,
5 (7 ) oe00) le.01-00)

=—[I -[pl] +eulcact) el [I —[p]] =T [T —[p]],
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where T = I — cy(cycl) el is a projection matrix that takes vectors to the
principal normal of e(u®). If we assume the guiding directions n to be collinear
with the principal normal of ¢(u®) then Tn = n and

0 n
—(r(x,u(x,e),e =—[ ]
7a (" ) @a=00)  PX™

Now we are in a position to define the sensitivity matrizc A = —h(0,0)". More
precisely
A =—h.(0,0)" = [ oo M ] (3.5)
P XNy -+ Pg X Ng

We continue with the derivative of h with respect to €. Since h has components

njr;,j=1,...,6 and since the jth component n}r; only depend on £; and not

on gy, for k # j then the matrix h.(z,€) is a diagonal matrix with
he = diag([n] (r1e, +T1ub1e) 0 1§ (Toe + Toullse])-

Let us look at the jth term and drop the subscript temporarily. The derivative is

(=,6)=(0,0) |( ,£)=(0,0)

o}
g(r (w,u(w,s),a))
=cu(cucy) 'cin—n=-Tn = -n.

Consequently, we have that h.(0,0) = —diag([nini --- nfng]) = —1I, i.e. the
negative identity matrix.

Putting the pieces together we have that xe = —h(0,0)"'h(0,0) = —A~7.
We conclude that the sensitivity of the rigid body transformation parameters x as
a function of locators perturbations € is given to first order by

z(e) = x(0) + - (0)e + o(|e|1) = —A™"e + o(|e|1). (3.6)

Please note that the sensitivity matrix A defined in (3.5) is a special case of
the sensitivity matrix defined by (2.18) in Section 2.5. It is interesting, though,
that the general sensitivity analysis of the rigid best fit problem that gives rise to
expression (2.19) in Section 2.5 appears to be very different from the result (3.6).
Further comparison and investigation of this difference is yet to be made.

3.3 The Effect on the Inspection Points

Consider a set of inspection points {g;}*, of the part P. We want to study
the effect of locator perturbations € in the inspection points, see the upper right
illustration in Figure 3.6. We assume that the locators are perturbed in the guiding
directions of the datum points. Furthermore, we assume that the locators support
the surface as in Figure 3.1, i.e. that the guiding directions coincide with the
principal normal of the surface in the datum points.
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To each inspection point g; we associate an evaluation direction m;. These
are illustrated to the upper right in Figure 3.6. The geometric error is evaluated
in the evaluation direction. Let us define the deviation in inspection point g; as

Xi(e) = m] (R(2(e)"a; — a:)- (3.7)

The deviation of the ith inspection point defined in (3.7) can be interpreted as
the deviation in inspection point g; due to locator perturbation e projected in
the evaluation direction m;. Please observe that the inverse transform is applied
to the inspection point. Recall that the target function (3.1) is minimised with
respect to the transform that best fits the measurement data to the model, not the
opposite although they are equivalent. In a real situation, though, the workpiece
moves as an effect of the perturbation of the locators. This movement is given
by the inverse rigid body transform, hence the motivation for using the inverse
transform in (3.7).

Claim C.6 asserts that the inverse of the rigid body transform applied to a point
pisR(z)~'q = R(—w)(g—t). To first order it becomes R(x)~'q = g—[I —[q]]z+
o(|z|1) that is inserted in (3.7) together with the first order approximation of the
rigid body transform parameters from (3.6), namely z(e) = —A™ "¢ + o([e|1).
Then we have

M@ =mi (1 —fal] A7 +olelt) = [ T4 | Ae - oef).

q; Xxm
If the inspection matriz is defined by

B = 1 2 m :|,

g; XMy gy XMz - (g, XMy,

then the deviations can be then computed simultaneously for all inspection points
by

A(e) = B"A "¢, (3.8)
where A = A - S\y]T and ); is the linear part of \; where the remainder is
dropped, i.e. A(e) = A(e) + o(|e|1).

3.3.1 Worst Case Analysis

Assuming that the perturbation of the locators € is constrained to satisfy the
bounds [e;| < e7°" we are interested in finding the largest deviation X that a
perturbation e can give rise to for each inspection point q;, ¢+ = 1,... ,m. Thus
we want to solve

2 )

E={eeR’: || <ej°"j=1,...,6},
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for all i = 1,... ,m. The maximum is trivially given by the perturbation vector
ef = *diag(e™°")sign(A~'b;), where e™°" = [¢T°" £]°" ... gF°"]" and b; is the
ith column of inspection matrix B, i.e. b; = [m] (m;xq;)"]". Thus the maximum
deviation in modulus is simply

[Ai(el)| = bf A~ "diag(e™ " )sign(A~"b;).

If all locator tolerances are equal, i.e. if e]°% = 5% = --- = gg® = €"°" then
the maximum deviation at inspection point ¢ is given by |A;(e)| = ™| A™"b;|1,
where || - || is the ! vector norm.

Assume that a profile tolerance relative to the datum system allows the devi-
ation of the ith inspection point g; in evaluation direction m; to be A\j°* at the
most, i.e. we require |A;(e)| < AJ°". It is then of interest to know how much of
the tolerance that is occupied by variation due to fixture imperfections. To this
end we introduce the fizture influence coefficient p; = |X;(e)|/ATO". If all locator
tolerances are equal then the fixture influence coefficient becomes

3. * TOL
_ )l E—HA_lbi”l, i=1,...,m. (3.9)

pi= o =
A;FOL A;}‘OL

The quotient allows the impact of the locator perturbation on different areas of
the model to be compared, where the areas do not necessarily need to have the
same tolerance. The resulting fixture influence coefficients {p;}/, of the worst
case analysis can be visualised in a computer-aided design (CAD) environment
by colouring of the inspection part surface according to the magnitude of the
coeflicients.

3.3.2 Statistical Analysis

As the worst case analysis will give an overly pessimistic view of the situation it
might be appropriate to consider a statistical method instead. We can, for exam-
ple, assume that the perturbations €; are normally distributed and independent
with zero mean and variance 012-, i.e. € ~ Ng(0,3X,), where the covariance matrix
is ¥ = diag([o? o3 --- 02]). If the locator tolerances are given we can set the
locator variances to be o; = €7°"/3, which is common in transitions between the
deterministic and the stochastic worlds. The mean of the deviations K(e) due to
stochastic locator perturbations € is

px =E[A(e)] = E[B"A™"¢] = B"A™"E[e] = 0.
Moreover, the covariance is

»: =E[A - pz)A - pz)"] =E[AAL | = E[B" A "ee” A~' B]
=B"A"E[ec’]A"'B=B"A"3.A"'B

and hence A = [\ Ay -+ Am]|” ~ N, (0, BPA™"S.A7'B).
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If the part tolerance allows the inspection point g; to deviate at most A7°" in
the evaluation direction m,; then we can adequately compare the effect of locator
perturbation in point g, to other points by the fixture influence coeflicient

30 3 /BTATTE.AD,

Pi = 3rorL = TOL ’
)‘i )‘i

where af} = (Xgx)ii is the ith diagonal element of the covariance matrix Xx. If

the locator tolerances are all equal, i.e. e7°" = .- = gg°" = ™" = 30, for all
i=1,...,m, then 3. = (¢™°"/3)>I and consequently
ETOL
1 .
pPi = W”A bi”Q, 7,=1,... ,m, (310)
K3

where || - ||2 is the vector 2-norm. Observe the similarities between equations (3.9)
and (3.10) that illustrate the close relationship between the worst case analysis
and the statistical analysis.

3.3.3 Qualitative Analysis

In this section we will make use of the singular value decomposition (SVD) to
pinpoint the weakness of a given datum system.

The Singular Value Decomposition

The value v > 0 is said to be a singular value of the m x n matrix C if there exist
non-zero vectors u € R™ and v € R™ such that

Cv=vu and C"u=vv.

The vectors u and v are singular vectors corresponding to v. A matrix C can be
completely decomposed into its singular values and singular vectors so that we can
write C = UXV", where U = [u; -+ up] and V = [v; --- v,]. The matrix
X = diag([1 ---vp)), p = min(m,n) contain the singular values in descending
order. For more on the SVD see for example Golub and Van Loan (1996, p. 70).

SVD in Datum Analysis

From (3.6) we have € = —A"x when the locators are perturbed in the normal
direction of the datum points. If the matrix —A” is decomposed into its singular
values then the singular value/vector triple (Zmin, €min, Ymin), Where vpi, is the
smallest singular value of — A", correspond to the most critical rigid body motion
Tmin- Of course, the singular value vy, is required to be non-zero for the datum
system to be acceptable, in which case we say that the datum system is deter-
ministic (Cai et al., 1997). The singular value v, gives qualitative information
about the datum system described by the sensitivity matrix A.

More specifically vmin€min = —A” Zmin, which means that xy;, is the param-
eter of the rigid body motion that causes the smallest effect on the locators, or
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conversely, the perturbation € = vin€min causes the rigid body movement of P
parameterised by @min. The singular value vmin is a measure of goodness of the
datum system. For example, if the datum system is robust, then it is insensitive
to small perturbations of the locators (by definition) and hence the smallest sin-
gular value will not be critically small. Conversely, if the datum system is of poor
quality then even small perturbations € = vnijn€min can cause large dislocations
Tmin- The rigid body motion parameters @i, corresponds to the most critical
dislocation.

The weakness of the datum system that is revealed by the singular vector @iy
can be visualised simply by applying the rigid body transform parameterised by
Tmin to the part M under consideration. In this way the manufacturing engineer
gets a clear picture of the weakness of the datum system and can make the appro-
priate changes to prevent the movement to occur by adjusting the datum points
accordingly. For the modified datum system to be improved, the smallest singular
value of the modified system u.)$% should be larger than the old singular value
Vmin- See Section 3.6 for some examples of how the qualitative analysis can be
used.

3.4 The Quality of the Approximation

In this section we compare the approximation (3.8) with the true solution to the
original problem (3.7). As a prototype part we use the surface shown in Figure 3.7
with the datum system indicated by the arrows. We have tried to mimic the
3 — 2 — 1 system by placing the reference points in nearly mutually orthogonal
coordinate planes. The deviations are computed in the inspection points shown in
Figure 3.8.

3.4.1 Checking the Convergence Rate

We perturb every point of the datum system equally much, solve the non-linear
system of equations (3.3) by Newton’s method and compare the deviations (3.8)
in the chosen inspection points seen in Figure 3.8 with the approximation.
We denote the approximated deviation as defined in (3.8) by A(e) = [A; --- Am]7,

and the true deviation is denoted by A(e) = [A1 --- Ap]T where A;(e) is as defined

n (3.7). We consider perturbations € of the form e = ¢ [£1 1 --- =£1]” so
the magnitude of the perturbations at all datum points are the same. The relative
error is measured by

_IA©) ~ AEle
o) = A

where ||-|| o denotes the maximum norm for vectors, see Golub and Van Loan (1996,
p- 52). The relative error Emax(e) is assumed to be of the form Enax(e) = Ce?,
where C' > 0 is a constant and « is the rate of convergence of the approximation A
to the true solution A. For two subsequent values of e, k = 1,2 we can compute
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Figure 3.7: The model surface and the chosen datum system consisting of six
datum points p;,...,ps and their guiding directions n4,... ,n6. Observe that
the datum system is of 3—-2-1 type.

Figure 3.8: The chosen inspection points g; and the corresponding inspection
directions m;, t =1,... ,m.

Figure 3.9: A datum system located at curved parts of the surface to illustrate
the effect of curvature



3.4. THE QUALITY OF THE APPROXIMATION

e [mm] | Emax(e)-107% | «
0.8 33.0 -
0.4 16.8 0.97
0.2 8.47 0.99
0.1 4.25 0.99
0.05 2.13 1.0

0.025 1.07 1.0

0.0125 0.534 1.0
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Table 3.1: The table shows the convergence result for the locator perturbation

e’ =¢[-1,1,-1,1,—1,1] for the datum system shown in Figure 3.7.

g [mm] | Emax(e)-107% | «
0.8 19.4 -
0.4 9.52 1.0
0.2 4.72 1.0
0.1 2.35 1.0
0.05 1.17 1.0

0.025 0.585 1.0

0.0125 0.293 1.0

Table 3.2: The table shows the convergence result for the locator perturbation

e’ =¢[1,1,1,—-1,—1, —1] for the datum system shown in Figure 3.7.

e [mm] | Emax(e) 1073 | «
0.8 396 -
0.4 241 0.71
0.2 139 0.79
0.1 76.9 0.86
0.05 40.8 0.91

0.025 21.1 0.95

0.0125 10.7 0.97

Table 3.3: The table shows the convergence result for the locator perturbation

e’ =¢[-1,1,-1,1,-1,1] for the datum system shown in Figure 3.9.

g [mm] | Emax(e)-107% | a
0.8 123 -
0.4 47.8 1.4
0.2 22.0 1.1
0.1 10.6 1.1
0.05 5.22 1.0

0.025 2.59 1.0

0.0125 1.29 1.0

Table 3.4: The table shows the convergence result for the locator perturbation

e’ =¢[1,1,1,—-1,—1, —1] for the datum system shown in Figure 3.9.
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an estimate of a by

_ 10g(Eumax(€1)/ Bmax(e2))
log(e1/e2)

Tables 3.1 and 3.2 show the convergence results for the datum system shown in
Figure 3.7 for two different perturbation patterns €. The results show that the
approximation converges linearly to the true solution. The result is expected since
the approximation is based on a linearisation of the rotation and the geometry.

To investigate the effect of curvature we carried out some investigations of a
datum system where the datum points are located at curved parts of the surface
as shown in Figure 3.9. The convergence result is shown in Tables 3.3 and 3.4

The rate of convergence is linear even here and the results show that the rate
of convergence approaches unity for both of the perturbation patterns, however,
the first converges to unity from below and the second from above. This unstable
behaviour is probably due to the non-zero curvature at the datum points. The
difference illustrates the non-linear effects that the curvature induces. These effects
are not predicted by the linear approximation that neglects curvature.

3.4.2 A Statistical Test

According to the statistical analysis of the approximation in Section 3.3.2 the
deviations A(e) are normally distributed with mean zero. In particular, we found
that A(e) ~ Ny (0, BTA™"S. A7 B). In this section we perform a statistical test
to verify if this is true for the true deviation A(e) as well. In particular we will
test the null hypothesis that the mean is zero for the true deviation A(e) against
the hypothesis that the mean is not zero. In order to do this we use Hotelling’s 72
test for normally distributed variables, see Johnson and Wichern (1992, p. 184).

Statistical Theory

. . . B r T
Given an m x n matrix of variables Y = [y; yo--- ¥,,]", where each row ¢ is an
observation and each column is a variable, we form the test statistics

where y € R™ is the mean value of the m observations and S is the estimated
covariance matrix defined as

S = T L D9

For a given significance level p the critical value 7§ is defined as

—1)n
T2 — LF _
0 m—n P(n7m TL),



3.4. THE QUALITY OF THE APPROXIMATION 39

where the value of F,(n,m —n) can be looked up in a standard statistical table.
We wish to test the hypothesis

Hy:p=0 (3.11)
versus

Hi:p#0 (3.12)

at the level of significance 100p%. The null hypothesis that the mean is zero can
be rejected if T2 > T¢ at the level of significance 100p%, otherwise we cannot
reject the null-hypothesis in favour of the alternative hypothesis H 4.

Statistical Tests

We simulated random numbers that we used to perturb the datum systems of
Figures 3.7 and 3.9 in the guiding directions for different values of the locator
tolerance £™°". We used the same tolerance for all locators. Then we solved the
non-linear system of equations (3.1)—(3.2) to find the rigid body transform caused
by the locator perturbations. Thereafter we computed the true deviations A(e)
in the inspection points shown in Figure 3.8. Assuming the deviations A(g) come
from a normal distribution A(g) ~ Ny, (1, Xa) we used Hotelling’s T2 test to see
if we could reject the null hypothesis (3.11) that the mean is zero in favour of the
alternative hypothesis (3.12) that the mean is non-zero. For both configurations of
datum systems we did numerical simulations for a range of variances and studied
the deviation in the n = 25 points for each of the m = 1000 observations. More
specifically, we generated m = 1000 random vectors €® from the distribution
Ng(0,X.) where ¥ = I(£7°%/3)*. For each e*) we solved the system (3.1)—
(3.2) in order to compute £* = x(e™®). Finally, we computed the vector A =
A(e™), where the components A"’ of A* are computed from (3.7). In order to
form the test statistics 72 we computed the mean

1000
1

A= (k)
A 1000 A
k=1

and the estimated covariance matrix

1000
> (A® - Ry (AR - A"
k=1

1

SAp= ——

A7 1000 -1

Then the test statistics is formed according to T? = 1000 A S'A. The outcome

of the statistical test can be studied in Tables 3.5 and 3.6. The tables display the

value of the test statistics 72 for different values of the locator variance. At the
level of significance p = 0.9 the critical value 7§ is

(1000 — 1)25

T2 =
0 1000 — 25

Fo.0(25,1000 — 25) ~ 25.61 - 1.38 ~ 35.4.
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g™ /3| T? | Tg | T? 2Ty | reject/accept

0.8 1641 | 354 > reject
0.4 2690 | =7 — > -7 —
0.2 2873 | =7 — > -7 —
0.1 3151 | =7— > 7=
0.056 | 2985 | =" — > 7

Table 3.5: The table shows the outcome of the statistical experiment for the datum
system in Figure 3.7.

gror/3 | T? T8 | T? 2 T¢ | reject/accept
0.2 2444 | 354 > reject
0.1 2607 | =" — > -7 —
0.05 8924 | -7 — > -7 —

Table 3.6: The table shows the outcome of the statistical experiment for the datum
system in Figure 3.9.

As the critical value T¢ is consequently smaller than the observed test statistics
T? for all values of the locator tolerance €™ and for both datum systems the
null hypothesis u = 0 is reject in all cases. This illustrates the need for a better
approximation of the solution to the perturbed datum system than the linear one
we have derived in this report if we want to do statistical predictions. Our statis-
tical analysis of the linear approximation in Section 3.3.2 predicts the linearised
deviations A(e) in the inspection points to have zero mean when the perturbations
e is distributed as € ~ Ng(0,X,), a result which is not correct according to our
numerical investigations.

3.5 An Algorithm

In this section we state an algorithm for datum system analysis suitable for im-
plementation in a CAD-environment, see Algorithm 3.1.

3.6 Examples

In this section we show examples of the worst case analysis, the statistical analysis
and qualitative analysis as applied to a model surface. The results are computed
by a MATLAB implementation of the algorithm described in Section 3.5.

The Figures 3.10-3.12 and 3.14-3.16 show the result of the datum system
analysis. The surfaces are coloured according to the magnitude of the fixture
influence coefficient p; for the inspection points gq;, ¢ = 1,... ,m. The inspection
points are not displayed separately but are chosen very densely along the surface.
In the figures, both the inspection point tolerances A7°" and the locator tolerances
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Algorithm 3.1 An outline of the algorithm for datum system analysis.

Give type and position of datum elements (e.g. , contact lug, hole, or guide
pin), and hence define {p;}5_, and {n;}3_;.

Give inspection points {q;}™, and evaluation directions {m;}™, /x e.g. by
discretising the surface. x/

Rescale and centre the points {p;}%_, and {g,}72, /* for numerical reasons x/
Initialise sensitivity matrix A.

Initialise inspection matrix B.

Perform qualitative analysis of A, i.e. compute minimum smallest singular value
Vmin and the corresponding singular vector Zmin of A”.

Visualise the qualitative result by applying the rigid body transform parame-
terised by @min-

Compute fixture influence coefficients by worst case analysis or statistical anal-
ysis.

Visualise the result by e.g. colouring of the part.

g;°%" are all equal and of unit size, i.e. Aj°" = ;%" = 1foralli = 1,...,m

and j = 1,...,6. Hence the fixture influence coefficients p; can be seen as a
magnification factor of the locator tolerances. The fixture influence coefficient is
in this simplified setting p; = ||A™"b;||x, where k = 1 for the worst case analysis
and k = 2 for the statistical analysis.

The qualitative analysis is visualised by applying the most sensitive rigid body
movement to the part subject to analysis. The rigid body movement is visualised
together with the part in nominal position. The latter is represented by a trans-
parent surface, whereas the dislocated part is illustrated as being non-transparent.
Please observe that the amount that the part is moved is not important, but only
the type of movement. The sensitivity of the displayed movement is given by the
minimum singular value that corresponds to the visualised singular movement.

3.6.1 Comments on the 3—2-1 System

Figure 3.10 shows the datum system analysis of an initial configuration of a system
consisting of contact lugs only. The next two Figures 3.11 and 3.12 show how the
initial system is improved by moving one datum point at the time. Observe the
reduction in maximum deviation for the worst case analysis from 8.94 for the first
down to 5.66 for the last one. Also the maximum deviation for the statistical
analysis decreases, here from 4.76 via 4.55 down to 3.23. The qualitative analysis
is presented in the rightmost part of the figures and gives valuable information
about the most sensitive rigid body motion. To be specific the qualitative analysis
pictures show the rigid body movement that causes the smallest deviations in
the locating points. The analysis result can guide the manufacturing engineer in
placing datum points in order to prohibit this movement. It is important, though,
to keep an eye on the minimum singular value. For the given example, the singular
value increases from 0.211 up to 0.234, which indicates an improved system.
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Worst Case Analysis Statistical Analysis 30 Qualitative Analysis
Max deviation=8.94 Max deviation=4.76 Min singular value=0.211

2 4 6 8 2 4

Figure 3.10: Analysis result of a datum system consisting purely of datum points
with one guiding direction each. Commented in Section 3.6.1 on page 41.

Worst Case Analysis Statistical Analysis 30 Qualitative Analysis
Max deviation=8.54 Max deviation=4.55 Min singular value=0.217

2 4 6 8 2 4

Figure 3.11: Almost the same datum system as in Figure 3.10 the only difference
being the lower left datum point that is moved forwards to increase stability.

Worst Case Analysis Statistical Analysis 30

o L Qualitative Analysis
Max deviation=5.66 Max deviation=3.23

Min singular value=0.234

2 4 1 2 3

Figure 3.12: A significant improvement is made compared to Figure 3.11 by moving
one of the upper datum points forward.
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3.6.2 A Second Example

In order to represent different types of locating features such as holes and guide
pins we have coinciding datum points with two and three guiding directions, re-
spectively. A hole is represented by two guiding directions that spans the plane in
which the hole lies and a guide pin is represented as a hole in combination with a
contact lug, i.e. by three guiding directions, see Figure 3.13.

The second example consists of the Figures 3.14-3.16. Here we have chosen
to apply the analysis to other types of datum features such as holes and guide
pins apart from the usual contact lugs. However, the analysis results should be
interpreted with caution as the approximation used for datum system analysis is
derived for datum points of contact lug type that only guide the datum point in
the normal direction. In this example, on the other hand, we have applied the
method to cases when this assumption is not valid. It is likely, though, that the
same approximation holds for this case as well, although there is no mathematical
evidence to support it in this report.

The first figure in the series, i.e. Figure 3.14, shows the analysis result of
the initial configuration of datum elements. The datum system is thought to be
supported by a guide pin (see Figure 3.3), a locating feature for two guide functions
(see Figure 3.2) and a contact lug (see Figure 3.1). The qualitative result to the
right indicates that the component has a tendency to rise. This phenomenon is
hopefully reduced by moving out the contact lug from the edge as in Figure 3.15.
The analysis of the modified system gives a significant reduction in maximum
deviation for both the worst case and the statistical analysis; they decrease from
8.06 and 3.69 to 6.82 and 2.98, respectively. However, the minimum singular value
remains unchanged 0.3. The second attempt to improve the datum system fails
as Figure 3.16 confirms. The contact lug is here moved once more, this time
downward to try to prevent the movement detected by the current qualitative
analysis. But this gives rise to an increase in maximum deviation (to 8 and 3.58)
as well as a stability reduction.

Contact Lug Guide Pin

%
%
i
i
|

Figure 3.13: The figures illustrate how a contact lug, a hole and a guide pin are
represented, respectively.
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Worst Case Analysis Statistical Analysis 30 o .
O L Qualitative Analysis
Max deviation=8.06 Max deviation=3.69 Min singular value=0.335

N
s
'll,,;o‘:“‘\
Uiy
st

Figure 3.14: A datum system to be supported by a fixture consisting of a guide
pin, a locating feature as in Figure 3.2 and a contact lug. See Section 3.6.2 on
page 43 for additional comments.

Worst Case Analysis  Statistical Analysis 36 Qualitative Analysis
Max deviation=6.82 Max deviation=2.98 Min singular value=0.333

115 2 25

Figure 3.15: An improved variant the datum system in Figure 3.14.

Worst Case Analysis  Statistical Analysis 30 Qualitative Analysis
Max deviation=8 Max deviation=3.58 Min singular value=0.322

Figure 3.16: A failed attempt to further improve the datum system in Figure 3.15.
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3.7 Conclusion

In this chapter we have applied the rigid best fit from Chapter 2 to the specific case
where the “coordinate measurements” represent a datum system. In such a case
the problem is not over-determined but simply a system of non-linear equations
that can be solved by, for example, Newton’s method. By linearising the rotation
of the rigid body transform as well as the geometry of the part, we achieved
a linear approximation of the non-linear system of equations. In applying the
approximation to worst case, statistical and qualitative analysis of datum systems
we achieved a fast and simple method of evaluating robustness of such systems.

The linear convergence of the approximation to the true solution of the non-
linear system of equations was confirmed by numerical results. Moreover, we
performed a statistical test to see whether the true solution has zero mean when-
ever the locator perturbations have. Unfortunately, the zero mean hypothesis was
rejected which is an indication of the presence of a mean-shift not detected by the
linear approximation.

We stated an algorithm to support understanding and implementation of the
method. Lastly, we showed some examples of both the worst-case method and the
statistical one when applied to a model surface.

In a choice between worst case analysis and statistical analysis we recommend
the former since it is better in revealing poor datum systems whereas the statistical
method tends to be averaging not giving as clear indications of how to improve a
given datum system. The qualitative analysis could, and should, be used regardless
of whether the worst case or statistical method is used.



Chapter 4

Flexible Best Fit of Curves

This chapter presents a way to model geometric form errors of mechanical parts.
The aim is to create a mathematical model of the form error, a model that is based
on the nominal form.

Consider a manufactured, physical part P with nominal form described by the
ideal model M. In order to determine the geometric quality of P relative to the
nominal model M we inspect the part P by taking a set of discrete coordinate
measurements {p;}7_; of it. The measurements convey information about the
appearance of P, in particular they contain information about (i) the positional
error and (ii) the form error. The positional error of the part is typically due to
misalignment of the workpiece subject to inspection in the coordinate measuring
machine (CMM). The form error has to satisfy the geometric specification of the
part. The geometric specification consists of the part tolerances specified by the
designer. In Chapter 2 we assumed the positional error of the part to appear
as a systematic error in the measurements and derived an algorithm to filter out
the rigid body transformation from the measurements. The method was based on
the assumption that both the measurement error € caused by the CMM and the
geometric form error v of the measured points are independent and normally dis-
tributed with zero mean. The residuals, i.e. the distance between the transformed
measurements and their closest points in the nominal model are then interpreted
as the form error and can be compared to the geometric tolerances to check the
conformance of the part.

In cases when the form and measurement errors v and € do not satisfy the
assumption about being independent and normally distributed, then we cannot
justify the use of the least squares rigid best fit algorithm described in Chapter 2.
This is typically the case when the form errors are systematic and is revealed
by a strong dependence or correlation between neighbouring measurements even
when the rigid body transform is filtered out. Then, we have to take one step
further and try to model not only the localisation error R(x) but also the form
error v of the physical part P subject to inspection. In this case, the residuals
only represent measurement error and the geometric model of the form error is
compared to the geometric tolerances to see if the part is acceptable. Another

46
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advantage of creating a mathematical description of the form error is that it can
easily be visualised in the same CAD-system as the nominal part, either as a
parallel, deformed object, or by colouring the nominal object according to the
estimated deviations. The possibility of visualising the geometric deviations is
important in aiding the manufacturing engineers to detect and pinpoint the main
causes of the deviations. In this way they can make the correct decisions about
the necessary corrections that need to be made to the manufacturing process in
order to reduce the form errors.

This chapter presents a model that can incorporate both form and positional
errors. Furthermore, we add conditions on the form error in order to separate
it from the positional error. As a first step, the method is developed for curves.
The motivation for using curves is that they can represent cross sections of three-
dimensional objects. The described methods, however, should be possible to gen-
eralise also to work for surfaces.

The problem we want to solve can be stated as follows: Given measurements
{p, 71 of a physical part P manufactured from the nominal, ideal model M with
parametric description given by ¢(u), where u € I C R (or R? for surfaces), find
an at least continuous vector field d : M — R? such that doc(u;) = p; +¢;, where
€; is the measurement error. The parameter u; € I is taken to be the parameter
of the point of the deformed part given by d o c that is closest to the measurement

D;.

4.1 A Literature Review on Surface Deformation

The basic problem at hand is to approximate the measured form deviation by
some function living on the part. This can be done in several ways and similar
problems have been studied in the literature.

4.1.1 Free Form Deformation

A simple way to deform the nominal model is to use free-form deformation. As-
sume we are given a Bézier surface that we want to modify globally. The idea is
to embed the surface in a Bézier volume. Placing the control points of the Bézier
volume uniformly creates an identity map of a subset of R?® onto itself due to
the linear precision property of the Bézier volume, see Farin (1997, p. 48). If the
control points of the Bézier volume are moved the unit map is perturbed into a
deformation of the initial volume. The idea is now to use the deformation map to
alter the control points of the surface. This type of deformation has the disadvan-
tage that it destroys continuity of adjacent patches since the continuity conditions
of the surface are violated. Johansson (1995) has studied this problem further and
transforms the geometry itself instead of just the control points of the surface. In
this way, the continuity properties are preserved. A drawback of these methods
are that they introduce a large number of degrees of freedom.
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4.1.2 Creating a New Curve or Surface

Instead of modifying the old surface we can create a completely new curve or sur-
face to the inspection data. After the new curve/surface is created we can compare
it to the nominal and interpret the difference between them as the geometric defect
of the inspected part.

Algorithms for creation of new curves and surfaces from measurement data
is given by Bajaj et al. (1997). They develop a method that is able to generate
both a geometric model of the measured shape and a scalar field over its surface.
The algorithm requires a dense set of measurements so their method is suitable
for scanned objects. By laser scanning it is possible to measure an abundance of
points in short time. The method appears to be general and not to require any
prior knowledge about the shape of the object to reconstruct.

Helfrich and Zwick (1996) present a trust region algorithm for optimising the
shape of a parametric curve or surface by orthogonal distance regression. As
already indicated, the structure of the curve or surface to model is required to
be known and the paper deals with efficient algorithms for finding the optimal
parameters of the model.

4.1.3 Scattered Data Interpolation

A survey of scattered data interpolation methods is given by Foley and Hagen
(1994). Particularly interesting is the case where the independent data is three-
dimensional and the dependent data is a scalar. For the application considered in
this chapter, scattered data interpolation might be an interesting alternative since
the independent, three-dimensional data could be taken to be the coordinates of
the target points in the nominal model and the dependent scalar data could be
the deviation of the nominal normal direction of the target points.

Scattered data interpolation methods can be divided into two groups; the global
interpolants and the local interpolants, respectively. The global interpolants are
typically radial basis functions. For the local interpolants it is common to use
triangulation methods where the independent data generates a triangulation that
interpolates the dependent data locally by e.g. barycentric combinations.

Scattered data interpolation methods have grown out of a demand from physi-
cists to represent volumetric data. An important application arises in meteorology
from the need to visualise weather data on the earth.

However, in presence of measurement error, which is the case in coordinate
inspection, it is not of interest to interpolate the data. Unfortunately, there seems
to be almost no literature on scattered data approrimation.

4.1.4 Manufactured Part Models

Hulting (1995) presents a manufacturing process oriented approach to the CMM
data analysis. Based on straight extrusions with square cross-section he develops
a process control scheme to pinpoint and estimate form errors using manufactured
part models. As he is targeted towards manufacturing processes he is interested in
making the appropriate process correction based on the inspection data in order
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to control the manufacturing process towards the nominal form. The ideas are
interesting but the example he gives is far too simple to be applicable in the
general case of sculptured surfaces. However, the work by Hulting is by far the
most interesting we have found in this area, despite its limitations.

4.2 The Model

In Chapter 2 we modelled the positional error R(Z) of the nominal part M rela-
tive to the true part P. Thus, we allowed our model M to be transformed by the
rigid body transform R(Z) and tried to find the optimal transformation parameter
Z. To this end we introduced the transformed model Mz (%) = R(Z)M. Recall,
however, that we did not solve directly for & but instead for the parameters corre-
sponding to the inverse of R(&), namely x. In other words, we did not transform
the model M but chose instead to transform the measurements p;, j = 1,... ,n.
The derivation of the derivatives of the rigid best fit problem was significantly
simplified by this choice.

Now, we want to extend the rigid model M« (Z) to incorporate form deviations
as well. Therefore, we introduce the deformation parameter space ) and the de-
formation space D. These definitions allow for the introduction of the deformation
function d : M x Q — D C R? that gives the deformation vector corresponding
to deformation parameter § € ) for every point on M. The deformation pa-
rameter space {) can be thought of as R®*"¢ for the moment. In Section 4.11 the
deformation parameter space {1 is restricted to a subset of R374,

The idea is that the function d is a vector field that gives the deformation for
every point in M. However, it is rather impractical to have a trivariate function
that is only defined on a subset M of R3. It is more convenient to parameterise d.
To this end we define d = d o ¢ that shares parameter space with ¢. We have that
d: IxQ — D, where I = ¢~ *(M). To be specific, we assume that the deformation
d can be written as

ng—l1 i,
d(u,é) = z 5,’3?‘1_1(11), Sl = 6iy S IR3,
=0

iz

where Bl'"*~' € C?(I) foralli = 0,... ,ng—1 constitute a basis of the deformation.
For convenience, we most usually write the deformation in matrix form as
do
d(u;6) = [Bg¢ ' (w)I --- BMZI(wI]| : | =DB(u)d.
5

The description of the deformation as a function of the parameter space I simplifies
our construction. In this way, the deformation can be described by, for example,
a three-dimensional polynomial. It is seen from the above that the deformation d

depends linearly on its deformation parameters § € 2. We can now introduce the
flexible model

Ma(8) = {c(u) +d(u;0) e R® :u € I,6 € Q},
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in terms of which we define the transformed flexible model
M. a(Z,0) = R(Z)Ma(9).

As the goal is to determine the geometric quality of P relative to M we assume
that a CMM has taken n discrete coordinate measurements {p;}7_; of P. The
measurements are the conveyors of the geometric information about P. We assume
that the measurements satisfy the relation

p; = R(.’ﬁ)(c(uj) + d(uj,é)) +€j, j=1...,n, (4.1)

where £; denotes the measurement error of the jth measurement that we assume
to be normally distributed with zero mean and variance Cov(e;) = o2I. Please
observe that we assume that the variance of the measurement noise is the same
for all points.

The model of the form error d that we try to create can be viewed as a variant
of the manufacturing part models developed by Hulting. The ideas behind the
manufacturing part models are appealing but he provides no information on how
to extend the manufacturing part models to general sculptured curves or surfaces.
Recall that the example in Hulting (1995) is limited to a straight extrusion with
square cross-section. In this chapter our aim is to extend the manufactured part
models to more general objects. This chapter should be seen as a first step in that
direction. Before we can develop methods for general sculptured surfaces, though,
we have to try to see if we can develop a working method for curves. The curves
can be seen as cross-sections of three-dimensional objects. Nevertheless, though it
appears limited, the curve case is a very important indicator of the performance
of these ideas. The surface case is bound to be more complicated, and things that
work only poorly for curves cannot be expected to work at all for surfaces.

4.2.1 The Deformation Space

The deformation space D that describes the deformations we allow is crucial for
the result. We want to allow deformations that are characteristic for P. Selecting a
basis of D is a very important task. If we know what types of deformation we want
to detect it is relatively easy to limit the number of degrees of freedom (dof) of Q.
In order to know which deformations that are characteristic, we need a thorough
knowledge of the typical physical part P or the limitations of the manufacturing
process that prevents P from being identical to M.

In this study we have chosen the Bézier polynomials as the basis of our defor-
mation space. The reason is that they are easy to deal with, widely used and well
understood in the computer-aided design (CAD) community. Moreover, the more
general B-spline basis can be converted to Bézier form. However, the most general
form of polynomials, the rational ones, have not been studied in this report.

Having chosen the deformation basis, there is still a large obstacle to overcome,
that is the number of dof to use for the deformation. Naturally, we would like to
have an abundance of measurements, a lot more than the dof of the deformation.
Then, we can estimate the geometric deviations of the inspected part with narrow
confidence intervals.
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Alternatively, we let our deformation space have a large number of dof although
the number of measurements will not determine all of them. Without restrictions
on the deformation space this would give rise to an ill-posed problem. However,
by imposing constraints on the deformation space the problem becomes well-posed
with a unique solution. The disadvantage of this approach is that no statistical
analysis can be carried out. Another disadvantage is the difficulty of selecting
appropriate constraints.

The latter case allows for a priori information about the nominal form of the
part to be taken into account. Remember that the deformation is expected to be
small, and we want to use knowledge about the appearance of the nominal model
M in the estimation procedure. Moreover, the constraints of the deformation space
can be varied continuously while keeping its dof fixed. This allows for a continuous
variation of the flexibility of M. The third, and maybe most important advan-
tage, at least from a practical point of view, is that the method with constrained
deformation space means that the deformation can be achieved by varying the
coefficients of the original representation of M, i.e. without introducing a separate
representation for the deformation.

4.3 The Least Squares Problem

Let r;(x, d,u;) = c(u;j)+d(u;; §) —R(x)p; denote the residual and let the squared
residual be p;(z,8,u;) = |r;(z,d,u;)|?/2. Then, we can define the target function
of the optimisation problem to be f(z,d,u) = 2?21 pj(x,0,u;). We have not
introduced any weights in the target function. This is because the measurement
error is assumed to have the same variance for all measurements.

Please note that we have defined the residual differently from what is suggested
by the statistical model (4.1). The difference is that the rigid transform act on
the measurements instead of the curve. In addition, the parameters & are ex-
changed for the parameters corresponding to the inverse of R(&), namely . This
is motivated by the simpler derivation of derivatives of the target function in this
setting compared to the original form. According to Claim C.7 these two ways of
formulating the problem are equivalent.

We want to minimise f with respect to & and é using an optimal parameterisa-

tion w = [u; --- u,]”. Hence, we want to solve the orthogonal distance regression
problem
i ,0,u(z,0)), 4.2
ocifeq (8 ul 0) (@2)
where
uj(z,0) = argmei?cpj(w,é,u), j=1,...,n. (4.3)
u

This problem is similar to the rigid best fit problem (2.1)-(2.2) but with the
difference that we have added some flexibility to the underlying curve ¢ in terms
of the deformation d. The least distance problem (4.3) gives the least distance
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Figure 4.1: The figure illustrates three of the infinite number of solutions to the
unconstrained problem (4.2)—(4.3) when the displacement and the deformation are
unrelated. The thick solid line illustrates the deformed curve obtained from the
flexible best fit and the dashed lines represent possible location of the rigid part
of the flexible best fit.

projection of R(x)p; on the deformed model Mg and we refer to Section 2.3 for
a discussion of existence and uniqueness of least distance projections.

For a unique solution (x*,d*,u*) to exist, a necessary condition is that the
number of inspection points n are equal to or greater than the number of dof
of the deformation parameter space 2. The rigid body transform R(x) has six
degrees of freedom and the deformation d has dimension 3ng of Q (ng parameters
for each coordinate). Hence, we require that n > 6 + 3ng4. If we know that the
curve is plane we can restrain the rigid body transformation and the deformation
to lie in a plane in which case it is enough to require n > 3 + 2n4. Later we
will discuss the under-determined case when n < 6 4+ 3ng. The problem is then
ill-posed and we have to impose constraints to make the problem well-posed.

4.4 Separating Form and Positional Error

In the proposed setting, the minimisation problem (4.2)—(4.3) is not well-posed
even when the condition about sufficiently many measurement points is satisfied.
The observant reader might have noticed that nothing connects the rigid body
transform R(z) to the deformation d. In effect, there are infinitely many solutions
to the problem. More specifically, for every position of the model Mg (&) there is a
deformation parameter § that solves the problem, see Figure 4.1 for an illustration.

The next few sections introduce and discuss two separation functionals that are
essential to the methods developed here. They are essential because the separation
functional makes it possible to separate the form and positional error.

4.4.1 Equilibrium Separation

From a physical viewpoint, the most natural way to define the position of the
nominal model relative to the deformation is to interpret the deformation vector
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field d as a force field acting on the nominal model M. Then, we can require M
to be in mechanical equilibrium. In order to achieve this, we introduce the force
and moment functionals Fryrce and Fioment- Moreover, we require them to equal
zero. To be specific, we require that

Froreo (83 €) = /1 d(u; 8)|cu(w)]du = 0

Frnoment (8;¢) = /1 e(u) x d(u; 8)[cu(u)|du = 0.

These two equations determine three degrees of freedom each and thus we have
determined the six degrees of freedom of the localisation. Recall that we assumed
the deformation vector field d(u; d) to be linear in its deformation parameters and
hence it can be written as d(u; ) = B(u)d, where B(u) € R®*3"e are the deforma-
tion basis functions in matrix form. The conditions are linear in the deformation
parameters and can be written in matrix form as

Frorce(8) = /B(u)6 |eu|du = (/ B(u)|cu|du)6 = Storced = 0
I I

Fuomen(8) = [ e x (BO) leuldu= [ [cBoleuldu
I

I

= (/[c]B|cu|du)6 = Smomentd = 0.
I
These two conditions can be combined into the single condition

Storce | 5 _ Seqd = 0. 4.4
q

Smoment

4.4.2 Datum Separation

When inspecting parts with a fixed coordinate system, the form error is evaluated
relative to the datum, i.e. the reference frame. In this section, we introduce a
way to evaluate the form error relative to the part’s datum system®. We call this
method datum separation.

In order to fix the reference frame in space we need six constraint equations.
Recalling that a part is required to be equipped with a non-singular datum system
consisting of six points {p,}_, C M, each one paired with its guiding direction
{sk}$_,, we define our virtual reference frame. Assume that {u;}$_, is a set of
parameters such that p, = e(ug), k = 1,...,6. Then our virtual reference frame
is defined by the constraints

spd(ug;0) =0, k=1,...,6.

LA datum system is a set of six points and their controlling directions on a workpiece. Ad-
equately located, the reference system uniquely defines a local coordinate system, c.f. 3-2-1
system. For details, see Sections 1.2 and 3.1.
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Since the deformation is linear in its parameters we can conveniently combine the
constraints in matrix form as

87 B(u1)
o | 6=Sus=0. (4.5)
s B(us)

4.4.3 Other Options

In principle, any restraint on d giving rise to a rank six matrix is an adequate
separation condition. Other options that could be considered are for example to
locate the nominal model where the bending energy of the deformation is smallest
or where the L2 norm of the deformation has its minimum. These constraints,
however, give rise to non-linear separation conditions.

4.5 Incorporating the Least Distance Problem

It is possible to incorporate the least distance problem (4.3) into the target func-
tion (4.2). This section describes how this is done and the argumentation fol-
lows the same pattern as in Section 2.4.1. Thus, we argue that for (x,d) in a
neighbourhood of the triple (z*,8",u}) that solves (4.3) for some j there is a
continuously differentiable function u; = u;(«,d) in the interior of D that sat-
isfies @ u(x,0,u;j(x,8)) = 0 if ;4u(x*,8%,u}) # 0. That the latter condition
is guaranteed to hold follows from our assumption about the existence of a triple
(x*,0%,u}) in which case condition (2.5) holds. Please note that the discussion
about least distance projections in Section 2.3 goes through for this case too with

c replaced by ¢ + d. It follows by the chain rule that
% (pju (@, 6,u;(, 6))) = Qjeu + Piunllje = 0= Uje = =@ L Piau  (4-6)
% (P50 (8, u (=, 5))) = ¢jout+ Qiuntjs = 0= ujs = —9) L Pisu- (47)
Redefining the target function as f(x,d8) = f(x, 8, u(x, §)) we can state the mod-

ified minimisation problem as

i 4.
e in _ f(x0) (4.8)
subject to S0 =0, (4.9)

where S is the separation constraint and could be either of (4.4) or (4.5) or some
other user-defined separation constraint. Equations (4.6) and (4.7) are useful later
when the derivatives of f are calculated.

4.6 A Separable Problem

The minimisation problem (4.8)—(4.9) is naturally separated in the rigid body
transformation variables x and the deformation variables §. Moreover, for fixed §
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the subproblem of finding the optimal « is an unconstrained least squares problem
of order six. Methods for finding the optimal x given § are equivalent to the
problem covered in Chapter 2. We can take advantage of the separated structure
of the problem in order to compute a solution. More specifically, the subproblem

min f(@,9), (4.10)

is easy to solve numerically for every fixed § € (2 satisfying the separation con-
straint (4.9). Let x(d) denote the solution of (4.10) and define ¢¥(d) = f(Z(d), ).
The existence of a continuously differentiable function x(d) is guaranteed by the
implicit function theorem in a neighbourhood of a pair (z*,d") that solves (4.10),
see Rudin (1976, p. 223). If the pair (x*,d") is a minimiser of (4.10) then the first
order condition necessary fg(x*,8*) = 0 is satisfied since the problem is uncon-
strained in . The existence of x(0) is then immediately justified since the Hessian
of f with respect to @ is necessarily positive definite in (z*,8*) if the pair is a
minimiser. Recall that the positive definiteness of the Hessian of f is a sufficient
requirement for the implicit function theorem to hold.
The problem is then to solve

{}gg¢(5) (4.11)
subject to Sé = 0.

Please observe that each evaluation of the function (4) involves the solution of
the subproblem (4.10) to find x(d). The next section is devoted to calculating the
derivatives of 1.

4.7 Derivative Information

4.7.1 The Gradient
The gradient of ¢ is

of (x(8),6) -
Vs = 55 fzxs + fs.
The vector f, occurring in the first term is almost identical to (2.10) except for
an obvious modification due to the deformation function d. Moreover, from our
discussion in Section 4.6 it is evident that the first order condition fx((6),d) =0
holds and hence we only need to consider the second term fs. Thus

of(x,8) _ 0f(,d,u(z,0))

=1

fs=

where the last terms containing ¢; . (x,d,u;(x,d)) vanish due to the first order
condition on u;(x, d) to solve (4.3). Hence, the derivative 15 takes the form

n n n
Ys=1fs=1fs =) wjs=) rjds =) /B, (4.12)
Jj=1 j=1 j=1
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where we have left out the arguments of r; and B; to simplify the notation. Recall,
though, that r; = r;(x(0),d,u;(x(),d)) and B; = B(u;(x(6),0)).

4.7.2 The Hessian

The Hessian of 9(0) is

Ys55(0) = 6(;65 = afa(ma(?"S) = fmswa + faa, (4.13)

where x5 is determined from the necessary first order condition for z(d) to be a
solution to (4.10). The condition says that f.(x(d),d) = 0 whose derivative with
respect to 4 is

0f=(x(8),6)

66 :fmmwﬁ""fﬁmzo

from which we get x5 = — f2! f55. Substituting back into (4.13) we get

Vo5 = fo5 — fus foufsa- (4.14)

The Mixed Derivative

The mixed derivative of f is

z fr T 757 76 ’
f&z(a:;a) = (‘)ai:; = af (m 6:;(w )) = f&z +fuzu5

n
_§ : . . -1 . _§ : T e mT ) -1 T .
- Pj,6 (pJaum(pj,uu(pJvau - ’f‘j’m’f“]’a rj,:l:lr]au(pj,uurlj,ur],&
Jj=1 j=1

Il
]

L (I =75 T s (4.15)

.
Il
-

n

’I";w (I — (Cu + du)go;,im(cu + du)T)djﬁ = Z T;‘,ETJ‘BJ',

3

[
M=

.
I
—

=1

where T'j = I — (cy + du)¢j ,,, (cu +du)" and we know from (C.2) in Appendix C
that rj» = — [I — [R(w)p,]], see also Section 2.4.2. If r; = 0 then @ yy = |7ju®
and consequently T'; is a projection matrix that spans the normal plane of e(u;).
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Second Deformation Derivative

The second derivative of f with respect to the deformation parameters 8 is

8~T 6f5 LE,(S,’U, ZE,(S ‘ - —1
=95 ( 85( ) = foo + fus®s = Y _ 5,65 — Pjus P uuPidu
Jj=1

fas

Il
M= ¢

T T T -1 T T
756756 = (T56Tiu T 75 usT) P uu(T5uTi6 T T5T5us)
1

’I"j’a r I 0 _ ’l"j,u _1 ’l"j,u f ’f‘j’a
— |Tjus 0 0 ry | Piwn | T jus

~ v
~~

=U,
O oy |G 4.16
1[31 " |B; (4.16)

where B; = B(u;(x(d),6)) and Bj = a—iBj. By substitution of (4.15) and (4.16)
in (4.14) the second derivative of 9 is seen to be

n B T B . n N n
Vs = Z [Bj] U; [Bj] - (J; BJT-Tjrj,m)f;wl (; r]T-,wTij) (4.17)

=1

<.
3 |l

<
I

2] v li]-

=1 ki

<.

To sum up, we have calculated the derivatives of the objective function ()
to second order, i.e.

V(6 + A8) = Y(8) + Ya(5)A + L A8 53 (5)AS +0(|Ad]),

where 15 is taken from (4.12) and 55 is seen in (4.17). The expansion is useful
in solving the optimisation problem (4.11) numerically.

4.8 Composite Curves

Until now we have assumed the nominal model M to be described by a single
curve ¢ € C2(I). In this section we will generalise the model and allow M to be
described by a composite curve.

Assume that the underlying curve ¢ is a composite curve consisting of piecewise
curves, here denoted by arcs. Thus, we assume that our model M is described by
the composite curve ¢ : I — IR?, where the parameter interval I = [a,b] can be
described by the union of its components I = U2, I, Each parameter interval
is IV = [s"=,sW], where a = s < s < --- < s = b. Please note that this
definition of the parameter interval is not entirely satisfactory since the curve is
two-valued in the joints. More specifically, at the Ith joint the curve ¢(s) takes
on the both the value ¢ (s") and ¢"*"(s"). However, this is not an issue when
we only consider the trace of the curve since it is assumed to be continuous, i.e. we
have ¢ (s®) = ¢V (s"). On the other hand, when considering the derivatives
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of the curve, this definition causes a problem since the curve is not continuously
differentiable, i.e. does not belong to C'(I). Nevertheless, we stick to this definition
and try to stay out of trouble by dealing with the joints separately.

The breakpoints s, 1 =0, ... , L are called knots and the corresponding points
on the curve ¢(s”) are denoted joints. The curve ¢ can be described as

c(u) =), welb,

As already mentioned, we assume that the nominal curve ¢ is continuous on the
whole of I and we assume it second order continuous on each parameter interval.
Put mathematically, we assume that ¢ € C(I)N (U, C%(I™)) for each coordinate.
Some of the joints ¢(s®”) might be G! or G? continuous (see e.g. Farin (1997) for
a definition of G™ continuity).

As for the deformation, we want it to have the same properties as the nominal
curve. In particular, we want it to share parameter space with ¢ and we want it
to consist of piecewise arcs with the same knot sequence as ¢. Moreover, we want
the deformation to inherit the continuity properties of ¢, i.e. if ¢(s) is a G joint
for some [ we want (¢ + d)(s) to be a G! joint as well.

How does the extension to composite curves affect the structure of the deriva-
tives? Attempting to answer this question we recall the definition of the target
function

n

f(walsau) = Z(pj(malsauj)a

=1

where u; is the parameter of the least distance projection of R(x)p; on Maq.
Recall also that the jth term of the sum ¢; is the squared distance between the
transformed measurement R(m)pj and its least distance projection on Mg given
by parameter u;. When c+d is a composite curve we can group the measurements
according to which arc their least distance projection hits (assuming it exists). If
we also create an internal ordering within these groups we can define an index
function j = j(l,k) for all I = 1,...,L, k = 1,...,n; that gives the original
measurement index j as a function of the arc I that contains its least distance
projection and its internal number k£ within group I. This construction allows us
to write the target function as

L ny

f(wa 6; u) = Z Z Pi(1,k) (Il:, 6; uj(l,k))'

=1 k=1

Let us assume that u are the parameters of the deformed object that correspond
to the least distance projection of R(z)p;. A standard application of the implicit
function theorem asserts the existence of a continuously differentiable function
u = u(x,d) and we can define f(x,d) = f(x,d,u(x,d)). The problem can be
separated as in Section 4.6 and another standard application of the implicit func-
tion theorem guarantees that there exists a continuously differentiable function
x = x(8) and we can therefore define ¥(8) = f((d),d). Working through the
derivations of the derivatives in Section 4.7 with § = [§" --- §"]T we get the
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result that the first derivative is ¢ 50) = fa(n as in (4.12) and the second derivative
is

Dstwrgr = { Fsmsw — fost faafswa, 1=k

—fas) foafs0)a> L#k.
From this the composite gradient is seen to be
fs
Ys=|
fsw
and the composite Hessian
~ ~ ~ T
fswsm 0 Jws fzs0
Yss = ol oz | ;
0 fsmgw) fus®) fus®)

where f5u), fosm and fsw s are computed from (4.12), (4.15) and (4.16), respec-
tively, with 6 here corresponding to d there.

4.9 Geometric Continuity

This section is devoted to deriving conditions for continuity and first order geo-
metric continuity of the deformation d.

4.9.1 G° Continuity

In order to derive conditions for continuity of the deformation we consider the /th
joint of the curve and simply require the deformed curve to be continuous in this
point. This means that the pair of arcs that the constitute the curve around this
point should have one point in common. Put mathematically, continuity of (¢ +d)
at the point (¢ + d)(s) implies that

lim (¢ +d)(t) = lim (e + d)(t) = (¢ + d)(u),

t—u— t—ut
for all w € I. In particular, the condition holds for the curve joints, i.e. when
t=s8® 1=1,...,L— 1. Stating the condition in terms of the arcs themselves we
have

lim (¢® +dP)(u) = lim (™Y +d™D)(w).
u—s(t)— u— s+
Because of continuity of the curve ¢, the condition above implies that the defor-
mation itself is continuous, i.e. that d”(s®;8") = d“*V(s?;8"""). Recalling
that we assume the deformation to be linear in its deformation parameters § we
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desired G! joint of deformed curve ¢ + d
measurements p;

. = = = = = _— = -

G' joint of nominal curve ¢

Figure 4.2: The example illustrates a case when we deformed curve is desired to
inherit the G' condition of the nominal curve. The thick solid line illustrate the
deformed curve of the flexible best fit to the measurements and the dashed line
represent the nominal model.

can write dV(s@;8") = B®(sM)§". Because of the linearity we can write the
continuity condition of the Ith joint as

)
[B(”(s(”) —B”+”(s(”)] [6((5’“)] =0.

By combining the continuity conditions for all of the L — 1 joints the final G°
condition can be written as

BY (M) —B® (M) 0 s
52
: = G06 =
51
0 B(L—l)(s(Lfl)) _ B (S(L—l)) 5
(4.18)

where Gy is the G° continuity constraint matrix, independent of the deformation
parameters 9.

4.9.2 G' Continuity

Consider the Ith joint of the nominal composite curve ¢. Set t1, = ¢{’(s™) and
tp = ¢V (s®). If ¢(s®) is a G! joint, then the angle between the vectors #r,
and tg is zero, i.e. we conclude from the well-known identity ¢]tg = |tL||tr]| cos o,
where ¢ is the angle between {1, and tg, that

titr = [tol[trl- (4.19)

Let us now introduce a shorthand notation for the right and left limits of the deriva-
tives of the deformation d in s® Let u, = d{’ (sV; ) and ug = d{*" (s©; §"*V).
Recalling that t1, + w1, and tg + ugr are the left and right limits of the tangent of
the deformed curve at joint | we want the identity

(t., + ur)" (tr + ur) = |tL + ’LLLHtR + uR| (4.20)
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to hold in order for the tangent continuity to be preserved by the deformed curve.
Note that equation (4.20) is the G! condition for the deformed curve. Since the
vectors uy, and ug are assumed small (due to the deformation d) we can approx-
imate the right hand side of (4.20) by a second order Taylor series (see equation

(B.1))

t t t trt]
et + ) = ftulltn] + Ot + Ry o g (IR,
[tr] 2] 2|t R
|| T( tLtf) uptLigur 2 2
TRL (1 - 2L YLILIRUR . (2
ogay BT~ o) Ut T Ol el (42D

Using that t{tr = |tv||tr| from equation (4.19) and collecting the first order terms
on the left hand side and the second order terms on the right hand side in equation
(4.21) we have

[tr|, \r ltul, \r | - trig
th — ) Tur + (b, — o tr) uR = u ( ——)uR
( [t ) ( tr| ) 2Jtg| " [tr[?
ltr| - titf tiig 2 2
4+ PRI, (I— A)uL—uL(I— )uR+o url? + [ug|?). (4.22
20ty " [tL]? [tL|[tr] (e + funl®). - (422)

The vectors t;, and tg are collinear due to the tangent continuity of ¢, hence by
letting t = #1,/|tL| we also have t* = tg/|tg|. The notation will be simplified
by defining U" = I — t®¢™"7”. By substituting these new definitions into (4.22)
the left hand side vanishes and thus

1

B m(ltRlzuEU(”uL + [t PufUOup — 20ty |[tr|uf UV u)

0

1
2[tw|[tr|

where we have dropped the remainder, and thus the equality holds to second

order. Recall that ug, = d”(s®;6") = B (s0)6" and ug = d*V(s®; 6+)) =

(trlur — [to|ur)"UY (ftrlur — [tulur), (4.23)

B (50)8%. We can then write
. . 5O
[trlur — [to|ur = [|tR|B(l) (s) _|tL|B(l+1)(S(l))] [5”“) (4.24)
[ T
6(l) 6(1) 1)
=v® lé(l"'l)] = [0 o 0 VO o ... 0] 504D .
50

Let us now rewrite equation (4.23) in terms of (4.24) to get

o~ T o~ o~
57O U0 = 575 Vs = o,
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which is the approximate G' constraint for the Ith joint of the deformed curve. If
the set of G! joints is denoted by

i ={le{l,...,L}: ¢(sV) is a G" joint.},
then the G' constraints
50" =0, le, (4.25)

are equivalent to the constraint

57G16=0, G =Y 0", (4.26)

ez,

where G is independent of the deformation parameters §. That constraint (4.25)
implies (4.26) is trivial. The reverse implication follows by the semi-positive defi-

. . ~(1)
niteness of the matrices U ,lel.

4.10 Regularisation Using A Priori Information

Until now we have only considered the energy of the deformation in terms of the
distance from the measurements to their projections in the deformed object Mg4.
We have not taken the initial form of the ideal model M into consideration but
have only focused on getting the best match possible given the degrees freedom of
the deformation.

However, there is a need for a mechanism that tries to give weight to the
nominal form M. This is particularly true when the number of measurements
of the physical object P is not sufficient to make the minimisation problem well-
posed. This case can occur if the underlying, nominal model is complex and
consists of many arcs. Since we have assumed that the deformation consists of the
same number of arcs as the underlying curve it might be that the total number
of degrees of freedom (dof) of the deformation exceeds the number of available
measurements although the number of dof of each arc might be low.

Another case is when the number of measurements equal the number of dof
of the deformation. In such a case, measurement data will be interpolated. In-
terpolation is something that we definitely want to avoid since the measurements
are polluted by measurement noise that we want to filter out. In this case we can
hold back the match of the deformation to data by putting more emphasis on the
nominal form.

The idea is not only to consider the measurements but also to use a priori
information about the shape of the object given by the nominal model. Thus,
we restrict the deformation space D to a neighbourhood of the nominal model.
In practice, we know that the deformations we are looking for are small. The
limitation on the deformation space makes the optimisation problem easier to solve
since the set of plausible solutions is smaller. Nevertheless, immediately another
question arises; what kind restriction should be put on the deformation space and
to what extent? This section tries to answer the first of these two questions by
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|d(c + d)| = |ey + dyl|du|
// c+d

d(u + du)

—_— —~ —~
— ~

- c(u + du)

7
7o) de) = Jeydul

7
7/

Figure 4.3: The figure shows an infinitesimal curve element |dc| and its deformed
counterpart |d(c + d)|.

deriving inequality constraints for the length change, shape change and joint angle
change.

4.10.1 Length Preservation

In order to constrain the length of the deformed curve we introduce a functional
that measures the change of length of the deformed curve Mg relative to M.
Consider an infinitesimal distance |de®| = |¢{||du| along the Ith arc ¢ and the
corresponding distance |d(c® + d")| = |e? + d||du| along the deformed arc
c® +d", see Figure 4.3. The change in length of the deformation relative to the
original curve can be expressed as

ld(e® +dD)] —1de®]| |l +aP] = 1] e +dD — &P 1d?)
e < =
|de| 1e?] - B e
(4.27)

The non-smoothness of the quotient (4.27) can be handled by considering the
squared relative change of length instead. Integration of the square of (4.27) over
the parameter interval I gives a measure of the change of length of the deformed
object Mg relative to its nominal form M. A functional measuring the length
discrepancy of the deformed curve along the Ith arc is

d(l)|2 |d(l)|2
Fronean (@0 ) = / 140’1 014y — / v " g, 4.28
le gth( ) 160 |cg)|2| u | o |c1(f)| ( )

Assuming d to be of the form d (u) = B® (u)8"”, then (4.28) is seen to be the
quadratic form

Fiengn(d;¢0) = [ 60" BO ()" BO (u)6" e |du
I
= 5<”T( BYw)*B® (u)|cgf>|du)5<l> =0 Yy OO,

I
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Let 7 denote the nominal length of arc I. It can be computed by v* =
Fiengtn (€®;¢®). Suppose now we want to constrain the length change of the
deformed curve to be less than one per cent, say. Then, this can approximately
be accomplished by letting v = 0.01 and requiring that

sO Vs <y O foralli=1,...,L.

If a global relative length constraint is sufficient we can relax the constraints by
adding them together and simply require that

B s v 0 7 [e®
At Z sO Yy g0 — At | =07V <w,
=1 J(L) 0 V(L) 6(L)
(4.29)

where 7y is the length of the whole of M, i.e. v = ElL:l AW,

4.10.2 Shape Preservation

The difference in shape between the nominal arc ¢ and the deformed arc ¢®¥ +
d" can be measured by comparing the difference in curvature between the two.
Following Wesselink (1996) we introduce the smoothness functional

Fshape(e) = /(1) nZ|eu|du, (4'30)
I

where ke is the curvature of the curve e defined on I‘”. Suppose we want to
measure the shape difference of the curve e relative to ¢®. We assume e to
be close to ¢ in shape. In order to do this we introduce the Laplace-Beltrami
operator A, (e) defined on the arc ¢®.

ONIN0)

_ Cyy (cu Cuu)eu
Aco(e) = |cg)|2 - |cgp|4
In particular K.0) = |Acw (€?)|. According to Wesselink (1996) we can approxi-
mate (4.30) by
ﬁshape(e§c(l)) - /(z) |Ac(z)(e)|2|c$f)|du, (4.31)
I

as long as e is close to ¢!”. The approximation is trivially exact for e = ¢!, i.e.
Fshape(c(”) = Fshape(cm; c(l))-

We can use this result to measure the smoothness of the deformed curve by
letting e = ¢ + d"“ in (4.31). However, this is not exactly what we want. We
only want to measure the difference in shape of ¢ + d" relative to ¢®. In order

to do this we measure the relative curvature of d with respect to ¢ using the
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Laplace-Beltrami operator A_u)(d"). The deformation measure is then taken to
be the integral

Finape(dY; e®) = / 1A 0 (dD)?|eD|du (4.32)
I

The functional (4.32) turns out to be a quadratic form in the deformation param-
eters 6 if d” is assumed linear in §'”. Thus

i3 (0 (1) M7 (O s |2
Fshape(d(l);c(l)) :/ B4 . (Cu Cuu)B 0 |cg)|du
0 |CSLZ)|2 |c£f)|4
.. (1) T . () .. (1) T . (1)
=50" (/( B (el dil)B T( B7 (V) B )|c(l)|du> 50
7 |cq(‘l)|2 |cg)|4 |cg)|2 |c$f)|4 u

=60 " whs. (4.33)

The total shape change of the deformed arc ¢ + d can thus be restricted by
constraining (4.33) divided by the length of the lth arc 4 in order to constrain
the shape change per unit length. More precisely, require that

sO"WO§ < w®yO, foralli=1,...,L. (4.34)

It is sufficient to constrain the quadratic form from above since the matrix W
is semi-positive definite. Instead of having L constraints of the form (4.34) we
can relax them by incorporating them into one single constraint whose sum is
restricted from above. To put it mathematically we have that

. s T w® 0 FISY)
A1 Z 5(1)Tw(l)5(l) =t =6"Wéo <w,
1=1 5L 0 wD | |5
(4.35)

where W is independent of the deformation parameters §. It is difficult to give
a quantitative interpretation of the constraint parameter w in (4.35) and w® in
(4.34). Nevertheless, they are very important in controlling the bending energy of
the deformation.

4.10.3 Joint Angle Preservation

The third and last property of the deformed curve that we want to be able to
constrain is the difference in joint angle of the deformed curve relative to the
nominal. In some sense this corresponds to restricting the bending energy of the
joint. Of course, this constraint does not apply to the G' joints whose angle are
not allowed to deviate at all, see Section 4.9.2.

In practice, the true joint angle difference of a joint relative to the nominal
model can be assumed small, typically within five degrees, say. Of course, the



66 CHAPTER 4. FLEXIBLE BEST FIT OF CURVES

+1 (1+1)
NP0 el +d

tr, = ! (s0)

WtL +u = (D + d) (s0)

Figure 4.4: An illustration of the joint angle difference between the nominal and
the deformed curve.

maximum expected joint angle difference will depend on the manufacturing process
through which the workpiece under consideration is produced. The aim of this
section is to derive constraints so that this physical limitation of the joint angle
difference is reflected in our geometric model of the deformation. A side-effect of
the constraint is of mathematical importance in that the set of possible solutions
to the minimisation problem is restricted.

Mathematically, the angle difference of a joint can be constrained by consid-
ering the left and right limits of the tangents of the nominal and deformed curve
separately, see Figure 4.4 for an illustration.

Joint Angle Mathematics.

The angle « in Figure 4.4 can be computed through the relation
ti(tL + ur) = |tL||tL + uL| cos a, (4.36)

where t1, and uy, are defined in Section 4.9.2. Our aim is to simplify this non-linear
condition and derive an explicit inequality constraint for the joint angle difference.

A second order expansion of cos a around the origin is cosa = 1 —a?/2+ o(a?)
and substitution in (4.36) gives after rearrangement

|tL + UL||tL| — tf(tL + uL) ao? 9
= — +o(a”). 4.37
|tL +'U/L||tL| 2 ( ) ( )

Expanding |t1, + ur,| with respect to uy, around the origin (see equation (B.1)) we
see that the numerator of (4.37) can be approximated to second order by

o+t =7 ) = (el B8 Lr (1B Yoy o (jun ) o)
L L||tL L\L L) — L |tL| 2|tL| L |tL|2 L L L

tt?
[t]?

STt 4 u) = Sul (r Jur +ofusl?). (438)

2
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To get a second order approximation of the left-hand side of (4.37) is suffices
to expand its denominator to zeroth order since the numerator appears to be of
second order judging from (4.38). Hence the denominator is expanded to

1 1 1 1
(o)) = —— +0(1), 4.39
e~ (g o) g = o o (4.39)

according to equation (B.2). Using (4.38) and (4.39) a second order approximation
to (4.37) is

1 T(r oty _ 2 2 2
WUL _W up = o +o(a +|UL| )

Recall that ur, = B" (s)6® and define the matrix X .p, = |tr.|=>(I — || *tLtT).

Then the angle « is approximately given by

50" BY (s0) X1 BY (50)5 = 607 X050 x o2, (4.40)

The angle corresponding to the right limit of the deformed curve tangent is denoted
by § and satisfies the similar relation

PIGEY) Xﬁ;hﬁ(lﬂ) ~ B2 (4.41)

Suppose now that we want the total joint angle difference of joint I to be limited
by some angle A§®, i.e. that

la+ 8] < AWV,
Then we have a problem in that we do not know the signs of a or 8. Moreover, the
derived expressions for them determine the square of the deformed angle. However,

observing that? |a + 3|*> < 2(a® + %), it is clear that a more restrictive condition
on the deformed joint angle is

2(a? + 82) < (A60)*. (4.42)

On the other hand, this condition is easier to compute. A matrix version of the
constraint is achieved by formulating it in terms of (4.40) and (4.41), i.e.

s0 1 [2x® o 5 2
[5(1+1)] l 01 " 2x(l) U+ S(Ae()) .

right

2Follows from 0 < |a + 8|2 by which we see that —2a8 < 2|af| < a? + 2. Now, expanding
the square once again we have |a + 8|2 < a® + 82 + 2af8 < o® + 82 + 2|af| < 2(a® + $2) which
concludes the proof. O
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Alternatively, the condition can be formulated in terms of all deformation param-
eters, i.e.

5{1) 9x® 5{1)

_ ST 1 1)\2
50D o x () siin | =8 X106 < (26)

(4.43)

Why Two Conditions for G' Continuity?

Imagine that we use equation (4.43) to impose G' continuity on the deformation.
How is this different from the other G condition (4.26)?

Consider the [th joint of the curve as depicted in Figure 4.4 and suppose that
we try to make the deformation d tangent continuous by letting A’ = 0 in (4.43).
In the present situation the joint angle constraint is modelled by constraining the
squared, tangential angle differences o and 3%2. Hence letting A to zero will
force the sub-angles o and 8 to zero as well. Apart from achieving G' continuity
of d, the constraint will disallow rotation of the joint, an undesirable property. See
Figure 4.2 for an example of a situation that we want to allow, that would not be
allowed using (4.43) with A" = 0.

4.10.4 Summary of Regularisation

We have derived constraints that can be used to include information about length,
shape and joint angles of the nominal model. They take the form

d"Vé <, (length) (4.44)
"W <w, (shape) (4.45)
"XV < (AOV), lely, (joint angle). (4.46)

The constraints are in block matrix form. It is likely that the problem can be
solved efficiently by exploiting the block form in a solution algorithm. However,
methods of optimisation are not within the scope of this study where we are mostly
concerned with the geometric model and its implications.

Relating the Constraints to Each Other

Is there a close relationship between the constraints (4.44)—(4.46)? These con-
straints add parameters to the optimisation problem, parameters that has to be
set somehow. It would be highly advantageous if we can combine the three types of
constraints to reduce the number of variables. In particular, the second and third
constraint type are special in that both of them measure bending energy. The
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second constraint (4.45) measures the bending energy in terms of the curvature of
the deformation on each arc, and (4.46) measures the joint angle difference. The
latter can be seen as discrete curvature. However, as of today, this issue is yet to
be dealt with.

4.11 Restricting the Deformation Space

In Sections 4.4, 4.9 and 4.10 we derived constraints on the deformation parameters.
With the help of these constraints we can restrict the deformation parameter space.
In particular, let Q = Q(v, w, Af) be defined as

Qv,w, Af) = {5 € R¥ma'++n8) . §5 =0, God =0, 6" G156 =0, ...
0TV <v, "W <w, §"X1§ < (Ah)? forall 1 € T }.
The type of separation matrix is here left unspecified. It can be either S¢q or
S4s. For simplicity we have chosen to use the global versions of the length and
shape constraints, i.e. equations (4.29) and (4.35), respectively. Moreover, the

joint angles are constrained by the same angle. The deformation is then required
to be in the set

D={deCI)n (UL, C?(ID)): d:Ix Quv,w,A0) - R?,...
- d(u;6) = dY (u;6Y) = BOw)sW, u e I(l)},

where B are matrices consisting of the deformation bases for each arc. The
notation presented is somewhat misleading since the parameter space 2 does not
appear to depend on the deformation space D. However, the constraints defining

Q) are defined in terms of the bases B, 1 =1,...,L and are thus dependent on
the representation of d.
To conclude, given a model M and a set of measurements p; j =1,... ,nof a
real workpiece P, find the deformation d € D of P by solving
i 4).
seatum a0 VO

Recall that each evaluation of ¥ requires the solution of a rigid best fit problem
to find x(d). Moreover, each evaluation of the rigid best fit problem requires the
solution of n least distance problems to find u;(x, d).

4.11.1 A Discussion on Parameter Selection

How can we assign adequate values to the parameters? Except for the dof of the
deformation 3(n{’ + --- + n{’) we have introduced constraints with parameters
(v, w, Af) on the parameter space ! that have to be set. The number of dof
of the deformation together with the newly introduced regularisation parameters
control the flexibility of the deformation. In general, the deformation should be
flexible enough to incorporate all of the form error, but should at the same time
be sufficiently stiff to filter out the measurement noise. This section discusses the
regularisation parameters, one by one.
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Length Constraint

The length restriction is the easiest parameter to deal with. The length change has
to be restricted due to the lack of control in the tangential direction of the curve.
By the definition of the residuals, the measurements only control the deformed
curve in its normal direction. Recall that the target point of a measurement is
always taken to be the least distance projection of the transformed point on the
deformed curve. The length constraint has a very clear quantitative interpretation;
the length of the deformed curve is only allowed to differ from its nominal length
by 100v%. A typical value of the length constraint is v = 0.01.

Joint Angle Constraint

Also the joint angle constraint is easily understood. It is easy to imagine what it
means for a workpiece when its joint angles differ from nominal. Physically, a joint
angle difference is due to incorrect bending of a sheet metal part or to inaccurate
machining of a solid part during the manufacturing process. Therefore, there
will be some physical limitations of the plausible size of the joint angle difference
can take. In general, the joint angle difference can be expected to lie within five
degrees, say.

Shape Constraint vs. Deformation Dof

The most difficult parameters to select are the shape constraint and the defor-
mation dof. The dof of the deformation should, of course, be significantly lower
than the number of measurements for the optimisation problem to be well-posed.
Nevertheless, using the regularisation constraints we can solve under-constrained
problems as well.

Consider for a moment the /th arc of the curve ¢ and its deformation d®”.
There seems to be a close relationship between the deformation degree of the arc
ny and the shape constraint parameter w®. For a fixed value of the degree of
freedom of the arc ng) the deformation is becoming increasingly stiff as the shape
deformation parameter w® decreases to zero. Conversely, consider a fixed value
of w®”. Then the flexibility of the curve decreases as ng) decreases discretely to
zero. We have not derived the explicit relationship between these two parameters,
though.

Taking a step backwards to consider the whole curve instead the same re-
lationship holds globally. The trouble in the global case is that the composite
deformation is connected through joints, not all of them G'. The joint angles
contribute to the same type of flexibility as the arcs, but on a discrete level. An
interesting issue would be to try to connect the joint angle constraints to the shape
constraint.

4.11.2 The Typical Case

In a typical application, the nominal curve ¢ is a cross-section of a CAD-model.
Usually a CAD-model is very complex and consists of hundreds of surface patches
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which means that a cross-section is described by dozens of arcs. Considering that
each arc is a three-dimensional polynomial of degree four, say, this gives a hint
of the number of measurements required to over-determine the deformation. This
experiment of thought motivates the introduction of constraints on the parameter
space, i.e. the regularisation.

The measurements are usually collected with a CMM or laser scanner. A CMM
is a measurement robot that registers discrete positions of a workpiece through
a touch probe. Inspection using a CMM is a time-consuming process that only
allows a limited number of points to be inspected in practice. The maximum rate
is about 50-60 points per minute (Ramsdale, 1999). Laser scanning is another
technique gaining in popularity. Then, the measuring is carried out by one or more
laser cameras that measure a huge amount of points by a non-contact technique.
Dimensional inspection with laser scanners puts higher demands on data analysis
as it becomes necessary to process the data in order to reduce the gigantic data
set and extract the desired dimensional information.

In the first case, that we denote by sparse measuring, the number of mea-
surements does in general not exceed the degree of freedom of the deformation
3(ny’ +---+nY’) and the deformation parameter space Q(v,w,Af) has to be
constramed so that we can find a unique best deformation. The constraints are
defined to represent the nominal geometry, i.e. lowering the bounds on the con-
straints means that more care is taken to the nominal geometry in the search of
the most plausible deformation.

The second case, when we have a dense set of measurements, can be treated
without much care taken to the nominal geometry since the number of measure-
ments is likely to be well above the deformation dof.

4.12 Example: Bézier Curves

In this section we are more specific about the representation of the deformation.
So far, we have not put any assumptions on the representation of the curve ¢
other than that it is required to be regular, continuous and piecewise curvature
continuous, i.e. |¢y(u)| # 0,u € I and ¢ € C(I) N (UL, C*(I™)). Almost the same
the same restrictions have been put on the deformation d, except for the regularity
requirement, since it is sufficient that ¢ + d is regular. The deformation itself does
not have to be regular.

Nevertheless, in this section we show how the continuity constraints are sim-
plified when the deformation is a Bézier polynomial. We will not be more specific
about the nominal curve ¢, though, but instead leave it in its general form.

Let us assume that each arc of the deformation d" is described by a polynomial

®
m _ g(l-1)
d® (l) s pgm (U5 o 50 _ | s 3
(u; 6 E_ B; (s(l (1_1)), welV § = g(l) € R°,
(4.47)

where my = n 1 6(1) _ [SS)T 5(11)T . (l)T]T € R3"d and {Bmz( )}mlo is a
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polynomial basis of degree m;. If they are the Bernstein polynomials then d"" is
of Bézier type. The Bernstein polynomials are defined by

B™(t) = (’Dtiu —gym=i,

Since a Bézier curve is invariant under affine parameter transformations (Farin,
1997) we can write (4.47) as

my
d(u;60) = 388" (u), uweI®.
=0

Please note that d" is linear in its coefficients ’. We can express (4.47) in matrix
form as

S(l)
50
1
dO(u;69) = (B (¢ ()T B (V)T - Bri, (V)] |,
:B?lr) —(-z)
(u) b
= BYw)s?,

where t = t®(u) = (u — s¥=D) /(s — s¢=1) € [0,1].

4.12.1 G° Continuity in the Bézier Representation

From Section 4.9.1 it is clear that continuity of the /th joint of the deformed curve
implies that

5@
[BU(sV) —BUI(s0)] l&(m)] "

Since t®(s) = 1 and ¢‘+V(s®) = 0 then B“(s") = &y, and B (s") = §5 .
Hence the above condition reduces to

g(l) 5(1)
[I _I] [g(m%)] =1 lg(m%) =0,

0 0

which we write in matrix form as

I, --- 5

I, --- 5("‘-—1)
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4.12.2 G' Continuity in the Bézier Representation
Recall that the left tangent of the deformation at the Ith joint is ur, = B" (s®)§®

and that the corresponding right tangent is ur = B(Hl)(s“))é”“) as defined in

Section 4.9.2. When the deformation is represented by a Bézier polynomial then

=(1)
- (1 ) = 4
up = B( )(S(l))é(l) — ml(agn), _ 6;),_1) = —myI, l T{l)1]
0
and similarly
s(l-i-l)
UR = —ml+1I2 |f§?l+n .
1
In terms of the deformation parameters § we can write
s
O
. _ ml|tR| 0 Iz 0 6ml
|tL|uR |tR|UL = I2 |: 0 ml+1|tL| 0 1-2 sg+1)
N -~ - 5(1+1)
:V(l) L1
O]
(1 é
= [0 e 0 V() 0 --- 0] 5(l+1)]
) i
_ 0 A
= [0 o v o 016=V"6
Recalling that U = T — tM7¢® where ¢ is tangent to the nominal curve at

c(s) we write
6T‘~/'(l) U(l)‘"}v(l)(; =0, foralllel.

that sums to the final G! condition

0"G16=0.

See Section (4.9.2) for the details.

4.12.3 Joint Angle Constraints for Bézier Curves

When d is a piecewise Bézier polynomial then the joint angle constraint can be
simplified somewhat. This section presents a such a simplification of the joint
angle constraint defined in Section 4.10.3. Just as in the previous section we

define ur, = B (s") = —mIa[8y 1 8y ]™ and we can simplify condition (4.40)
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to

5(1) T () 5(1)
g(lfl myI2" Xepmuls 3—”(1)71
my mp
:5(1)T[O i 0 Iy 0 .- O]ijl(gt[() oo 0 myIly O --- 0]5(1)
T 1 b
= 6O Xl(e)fté(l) ~ o2

The matrix X Eght is defined analogously. Substitution in (4.43) gives the desired
constraint.

4.12.4 Plane Bézier Curves

When the nominal curve is a cross-section then the curve is plane. Assume that
c is a plane curve ¢ with tangent ¢t = c,(up) and well-defined normal n at a
point ¢(ug) of the curve. The curve then lies in the tn-plane and its deformed
counterpart is then expected to do the same. Let the vector orthogonal to both ¢
and n be b. It can be defined by b =t x n. Since the deformation d is a vector
field that is added to ¢ the deformed curve is guaranteed to lie in the same plane
as ¢ if d(u;0)"b=0 for all u € I.
When each arc is represented by a Bézier polynomial then we have that

mg T my _ T
d(l)(u; 5(l))Tb — <Z Sgl)B:nz (t(l) (u))) b= Z ng) szmz (t(l)(u)) =0,
i=1 i=1

when u € [s"~",s"]. Since the Bernstein polynomials form a basis, this implies

_(N\T
that 5?) b=0foralli=0,...,m;. In matrix form we can write

V[T --- I]6=Pys=0.

4.13 Algorithm

This section outlines an algorithm that solves the flexible best fit problem. As
we are not concerned with methods of optimisation in this report we assume the
existence of a numerical solver that efficiently solve the problem

1
min > Ay"HAy + g"Ay, where y =y, + Ay

Y
subject to Ay <a

By=1»b
yTCinCia i:]-:"';nl
yTD]-yzdj, j= 1,... ,ME,
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where g is the starting value for the solver. The syntax of the solver is assumed
to be

Ay* :SO|Ve(Hag;AaaaBuba[Cl C, "']a[cl C2 ]7[D1 D, ]:[dl dy "']ayO)a

where Ay* denotes the solution. The algorithm that uses the Solve() function to
solve the flexible best fit problem is outlined in Algorithm 4.1.

Algorithm 4.1 The algorithm computes the flexible best fit of a curve to mea-
surements.
Input: The nominal curve ¢, measurements {p;}7_;, deformation dof {ny’}~,
and regularisation parameters (v, w, Af).
i< {le{l,...,L}: ¢(sW) is a G* joint.}
S < Separation matrix
Gy and G < Continuity matrices.
V, W and X [ € IC « Regularisation matrices.
if ¢ is a plane curve then
b < The binormal direction.
Py < Plane curve constraint matrix.
else
Py <« ]
end if
Initialise relErrTol
relErr < relErrTol + 1
69 <0
k<0
while not 0 < relErr < relErrTol do
g « ¢5(5(k))T
H® < 555"
A6®) & Solve(H®), g(k) g, 0, [§o] O0,[VW XU ] pw AG ---],G1,0,6P)
b

S+ o 5(k) L A§H)
relErr <= ((8®) — (8*+1)) /(| (6F+D)| + relErrTol)
k<k+1
end while
8" <= oW
x* < z(8%) /x by Algorithm 2.2 with ¢ < ¢ +d(-;6®) x/
Output: The optimal deformation parameters §* and the corresponding rigid
body transformation parameter x*.

4.14 Examples

In this section we give examples of how the flexible best fit works in practice. The
examples are computed using an implementation of Algorithm 4.1 in MATLAB



76 CHAPTER 4. FLEXIBLE BEST FIT OF CURVES

Nominal Model and Measurements and
Nominal Model Measurements Flexible Best Fit

Figure 4.5: A typical example of a flexible best fit. The nominal model is seen
to the left and the simulated measurements in the middle. The flexible best fit is
shown to the right.

equipped with Version 2 of the Optimization Toolbox. First, we give a series of
examples that demonstrate how the different parameters and options affect the
result. Second, we show how the flexible best fit performs on a curve representing
a cross section of an automotive roof.

4.14.1 The Principle

To illustrate the basic idea of the flexible best fit we have chosen a nominal geom-
etry M consisting of two straight lines meeting each other in an orthogonal joint.
The model, shaped like a mirrored “L”, is shown to the left in Figure 4.5. We
simulate a set of noise-free measurements to represent a deformed object, whose
form we want to recover through the flexible best fit. The set of measurements
are shown together with the nominal model in the middle of Figure 4.5.

The nominal model M and the measurements are input to the flexible best
fit algorithm that returns the flexible best fit depicted to the right in Figure 4.5
together with the measurement data. The flexible best fit is obtained through a
piecewise linear deformation represented as Bézier polynomials. Since we want the
deformed curve to stay continuous we have used the continuity condition (4.18) in
the fitting process.

4.14.2 Separation of Form and Positional Error

As discussed in Section 4.4 the flexible best fit allows the form and positional
errors to be separated. We introduced two possibilities for separation, namely
equilibrium separation and datum separation.

In order to demonstrate the two possibilities we equipped the nominal geometry
of Figure 4.5 with a datum system (see Sections 1.2 and 3.1 where this concept
is defined). The nominal model M and its datum system are illustrated to the
left in Figure 4.6. Since the curve is restricted to the plane it is sufficient with
three datum points and three corresponding guiding directions. Recall that a rigid
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Nominal Model and
Datum System Datum System Separation Equilibrium Separation

I
y y y y
Figure 4.6: Separation methods. To the left is the nominal model and its da-

tum system used to define the datum separation in the middle. The equilibrium
separation is seen to the right.

body movement in the plane has three degrees of freedom, two for the translation
and one for the orientation. For the part under consideration we have chosen one
datum point to guide the part in the y-direction (the leftmost datum point in
the current picture) and one datum point to guide the part in both the z and
y-directions (the rightmost datum point in the current figure). Recall that the
latter datum point is said to have multiplicity two, see Section 1.2.

The picture in the middle of Figure 4.6 shows the flexible best fit to the same
set of measurements that we used in Figure 4.5. To make the picture clearer we
have chosen not to display the measurements. The flexible best fit is represented
by a solid line and the rigid part of the flexible best fit is represented by a dashed
line. The deformation is defined relative to the rigid part of the flexible best fit.
The position of the rigid part of the flexible best fit is defined by the position of
the datum system. Remember that the deformation is required to be zero in the
datum points along the guiding directions. The flexible best fit can be thought
of as consisting of two steps. In the first step, the flexible deformation is fitted
to the measurements. Second, the rigid part of the deformation is defined by the
separation condition. When the datum separation is used, as is the case in this
example, then the rigid part is located so that the form error is zero in the datum
points. However, in reality these two steps are carried out simultaneously since
the deformable part of the flexible best fit is defined as a function living on the
rigid part.

The equilibrium separation is an alternative to the datum separation. The
rightmost picture in Figure 4.6 shows where the nominal geometry is positioned
relative to the flexible best fit when the equilibrium separation is applied. Recall
that the deformation vector field acting on the nominal geometry satisfies static
equilibrium conditions when interpreted as a force field, hence the name.
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Nominal Model

Nominal Model and Measurements
D
O X
X
X
Estimated Form Error Estimated Form Error
without G Constraints with G! Constraints

f\f\

Figure 4.7: G! constraints for a nominal model consisting of two arcs (upper left)
using simulated data (upper right). Form estimates with (lower right) and without
(lower left) G' conditions.

4.14.3 First Order Continuity

Since a single arc is not sufficient to describe general geometries it is common
to connect several of them to form so-called composite curves. In the sequel we
will simply call them curves. Each arc is taken to be a polynomial in the Bézier
representation. In order to look visually pleasing the arcs are often connected
through tangent continuous joints. Performing a flexible best fit by applying a
deformation vector field to such a curve we want the deformed curve to inherit
the tangent continuity from the nominal model. This is illustrated in Figure 4.7.
The upper left picture of Figure 4.7 depicts the nominal model we have chosen
for this example. The curve consists of two arcs connected through a tangent
continuous joint. A tangent continuous joint is also denoted a G' joint, the G
meaning geometric as in geometric continuity and the one meaning first order,
see Farin (1997, p. 181). The joints of the curve are marked by small diamonds.
The upper right figure of Figure 4.7 shows the nominal geometry again but
here accompanied by a set of simulated measurements. The measurements are
chosen to provoke the flexible best fit not to be G'. Please note that the simu-
lated measurements do not intend to illustrate a physical phenomena observed in
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measurement data from a real situation but only serves to illustrate the properties
of the flexible best fit.

The lower left illustration of Figure 4.7 demonstrates the effect of a flexible
best fit to the given data set without imposing any G' constraints. Of course,
the flexible best fit is subject to a continuity condition. A continuity condition
is sometimes denoted a G° condition. Please observe the cusp that appears at
the joint that joins the two arcs. Finally, the lower right subfigure of Figure 4.7
shows the effect of imposing a G' condition on the flexible best fit. The result is
a smooth curve that does not reveal its joint by a cusp.

4.14.4 Regularisation Constraints

The flexible best fit generally introduces a large number of degrees of freedom.
These degrees of freedom has to be determined by the information in the measure-
ment data. However, when measuring is carried out using a touch-trigger probe,
then measurements can only be sampled at a rate of 50-60 points a minute (Rams-
dale, 1999). In such a case it is unreasonable to sample enough points to make the
optimisation problem of the flexible best fit well-posed. Nevertheless, it might still
be interesting to make a flexible best fit. The flexible best fit problem is then ill-
posed and need to be regularised. Regularisation is described in Section 4.10 and
is accomplished by adding information about the nominal form of the workpiece
in the optimisation process. More specifically, we described how to regularise the
problem by including information about the length of the nominal curve, its shape
and the magnitude of the joint angles whenever they are not G!. Here, we give
examples of the effect of each of these three parameters.

Regularising the Length

The optimisation problem (4.2)—(4.3) of the flexible best fit stated in Section 4.3
is formulated to minimise the orthogonal distance between the measurements and
the nominal model. Hence, the measurements do not control the deformed curve
in any other directions than those that lie in the normal plane of least distance
projection of the measurements. Consequently, the curve can change its length
without affecting the value of the target function of the flexible best fit problem
at all, hence it is singular. This motivates the introduction of a constraint
that restricts the length of the deformed curve to deviate excessively from the
length of the nominal curve. The length constraint is discussed and derived in
Section 4.10.1. We try to illustrate the length constraint in Figure 4.8. The curve
to the left in Figure 4.8 is chosen as the nominal model. The crosses in the same
figure represent measurement data. In the middle of Figure 4.8 we show the result
of a flexible best fit to the simulated measurements. The length of the deformed
curve has decreased by 5.7% in comparison to the length of the nominal curve.
A length change this large is unacceptable in practice. The length change of the
flexible best fit shown to the right in Figure 4.8 is reduced to 2.6% as an effect of
applying the length constraint with parameter v = 0.01.
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Flexible Best Fit With Flexible Best Fit With
Nominal Model Unconstrained Length Constrained Length v=0.01
and Measurements length decreased by 5.7% length decreased by 2.6%

Figure 4.8: Length preservation demonstrated with a flexible best fit to the mea-
surement, data shown to the left. The left picture also depicts the nominal model.
Flexible fits with and without length constraint are shown in to the right and in
the middle, respectively. The deformation is a single cubic polynomial.

Constraining the Shape Change

Perhaps the most important way to regularise the flexible best fit is to constrain the
shape change of the deformed curve. The shape difference between the deformed
and the nominal curve is measured by the curvature of the deformed curve relative
to the nominal. The details are described in Section 4.10.2.

The nominal model we have chosen to demonstrate the shape constraint is
shown to the left in Figure 4.9 and consists of three arcs joined in two G! joints.
We simulated measurements by picking ten points distributed uniformly along the
curve. The points are perturbed by adding sinusoidal perturbations in the normal
directions of the points. The added perturbations are meant to represent a plau-
sible form error of a corresponding physical workpiece subject to inspection. The
simulated measurements are shown together with the nominal model in the middle
of Figure 4.9. Our intention is to recover the simulated form error through the
flexible best fit. We have chosen the deformation to consist of piecewise polynomi-
als of degree four. Such a polynomial is chosen to represent the form error on each
of the three arcs constituting the nominal model. Since the joints of the nominal
model are G, we apply such a condition on the deformation in addition to the

Nominal Model Flexible Best Fit
Nominal Model and Measurements and Measurements

o—— X XX M
Figure 4.9: Nominal model to the left, consisting of three arcs connected through

G! joints. Measurements with a sinusoidal perturbation in the middle and the
flexible best fit to them shown to the right.
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Unconstrained Shape Constrained Shape w=10"2 Constrained Shape w=10"3

Figure 4.10: The flexible best fit (solid line) with increasingly constrained shape
to the right. Please note how the flexible best fit approaches the rigid part of the
deformation (dashed line) as the shape constraint parameter is decreased.

length constraint v = 0.01. The deformation has 24 degrees of freedom. This is
because a fourth degree polynomial in the plane has 5 x 2 = 10 degrees of freedom
that adds up to 30 for the three arcs. The continuity condition reduces the degrees
of freedom by two for each joint and the first order geometric continuity condition
reduces the degrees of freedom by one for each joint. In conclusion, the degrees
of freedom for the deformation is 30 — 2 x 2 — 2 x 1 = 24. Recall that we have
simulated ten measurements that determine one degree of freedom each. Hence,
there are 24 — 10 = 14 degrees of freedom left undetermined. The result of the
flexible best fit is shown to the right in Figure 4.9.

If the problem is under-determined because of too few measurements as in this
case we can use the shape constraint to regularise the problem by including shape
information about the nominal form. In the under-determined case we face the
risk of including the noise of the measurements in the deformation function of the
flexible best fit. Then we can use the shape constraint to hold back the fit of the
deformation to the measurements. Figure 4.10 shows an example of this. The
picture to the left in Figure 4.10 shows the same solution as is depicted to the
right in Figure 4.9. The difference between the two is that we have included the
rigid part of the deformation in the latter figure. The rigid part of the deformation
is shown by the dashed line. The rigid part of the flexible best fit is computed
using the equilibrium separation condition. The pictures in the middle and to
the right in Figure 4.10 show the result of the flexible best fit using the shape
constraint with parameters w = 1072 and w = 10~3, respectively. As seen in the
figures, the deformation is increasingly restricted as the shape constraint parameter
decreases. In presence of noise, the shape constraint can be useful in holding back
the fit so as not to interpolate the noise in the estimate of the form error. The
size and distribution of the residuals can be used as a guideline for the selection
of the shape constraint parameter. Ideally, we want the systematic form errors
to be modelled by the deformation function d. A method for selecting the shape
constraint parameter could be to start with a small value of w and increase it until
there is no systematic error left in the residuals. The absence of systematic errors
can be detected by the residuals being independent and normally distributed,
assuming the noise has these properties.
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Nominal Model Unconstrained Angle Constrained Angle AB=5°17180°
Nominal Angle p=11° Estimated Angle p=8.6° Estimated Angle f=3.9°

| 1
! 1
! 1
I 1
| I
! I
| [

y y y y
Figure 4.11: The joint angle constraint is illustrated using a nominal model

equipped with a datum system. The flexible best fit with and without joint angle
constraint to the right and in the middle, respectively.

y

The Joint Angle Constraint

In cases where the joints connecting the arcs of a curve are not G, then there is
nothing that limits the corresponding joints of the deformed curve in the flexible
best fit. Our aim to restrict the joints of the deformed curve has motivated the
development of the joint angle constraint. This constraint, which is derived in
Section 4.10.3, can be thought of as a discrete analogue of the shape constraint
exemplified in the previous section.

In Figure 4.11 we use the same nominal model as in Figure 4.5. The mea-
surements, visible along with the nominal model in the left picture of Figure 4.11,
represent an object that has a joint angle that is larger than that of the nomi-
nal model. The word angle refers to the angle between the two linear arcs that
constitute the nominal model. Please note that the angle of the nominal model
is 90°, i.e. the two arcs of the nominal model are orthogonal. A flexible best fit
of the nominal model to the simulated measurement data is shown in the middle
of Figure 4.11. The estimated joint angle difference 8 between the joint of the
deformed curve and the joint of the nominal curve is 8.6°. If we want to limit the
joint angle difference we can use the joint angle constraint. The picture to the right
in Figure 4.11 shows the result of letting the joint angle constraint parameter be
Af = 5° 1555 - Recall from equation (4.42) that the joint angle constraint satisfies
the relation 2(a? + 32) = A6 when the constraint is active, which is certainly the
case here. The angles a and f are the left and right limit angles of the current joint
between the rigid and the flexible part of the deformation, respectively. For the
model under consideration in this example, the left limit angle « is zero due to our
choice of datum system. Hence, the maximal theoretical value of the deformation
is B = AB/v2 = 5°/v/2 ~ 3.5°, which is close to the estimated angle 3 = 3.9°.
Recall, though, that the derived constraint is based on an approximation of the
true angle, hence the discrepancy between the estimate and the theoretical value.
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4.15 Case Study: An Automotive Roof

In order to verify how the flexible best fit performs in practice we have done a
case study. We have chosen to investigate a prototype of an automotive roof.
The nominal model of the roof is depicted in Figure 4.12. The prototype roof
is measured along five cross-sections denoted by X1 to X5, see Figure 4.13. The
nominal model of cross-section X1 is shown in Figure 4.14. The left picture of
Figure 4.14 shows the nominal model and the datum system that we have chosen
for the cross-section. Please note that we have defined separate datum systems
for each of the five cross-sections. Since the cross-sections are plane curves, the
datum system only consists of three datum points and three guiding directions.
We remark that the datum systems of the curves should only be considered sepa-
rately, i.e. the union of them cannot be interpreted as a datum system for the roof
itself. The reason for choosing a datum system for each cross-section is to allow
demonstration of the datum separation condition.

The picture in the middle of Figure 4.14 shows the arcs that constitute the
nominal model of cross-section X1. The joints of the curve that connect the arcs
are denoted by diamonds. We apologise for the difficulty of seeing the composition
of the curve close to the ends. However, the construction of the curve close to the
ends is better seen in Figure 4.15. The nominal model of cross-section X1 is made
up from 20 arcs of degree five, i.e. quintics. Cross-sections X2 and X3, which are
not displayed separately due to their similarity with cross-section X1, are made up
from 18 and 20 quintic arcs, respectively. The cross-sections X1, X2 and X3 are
measured in 37 points indicated by the markers in the right picture of Figure 4.14.
In this section we focus on the results from cross-section X3 why we leave the
figure that illustrates cross-sections X4 and X5 to Appendix D, see Figure D.7.
The figure displays cross-sections X4 and X5 in the same way as Figure 4.14
displays cross-sections X1, X2 and X3. We continue this section by discussing the
results from cross-section X1 in some detail and leave the results from the other
cross-sections to Appendix D.

4.15.1 The Measuring

Measurement data from a prototype part P corresponding to the nominal model of
the roof is used as input in the flexible best fit. This section briefly describes how
the measuring was carried out. The prototype was put to rest on a fixture whose
locators supported the roof in its datum points. Please note that we are only
interested in analysing cross-sections why we have not displayed the true datum
system of the roof in Figure 4.12. The interested reader can think of the datum
system of the automotive roof as the one illustrated in Figure 3.5. The position
of the fixture locators were required to satisfy a certain tolerance bound +&™°"
in order for the part to be correctly located in the CMM coordinate system. The
part was then measured in the fixed coordinate system as described in Section 1.2.
The measurements were taken along the cross-sections seen in Figure 4.13. The
cross-sections were sampled in the points shown in Figures 4.14 and D.7.
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Figure 4.12: Snapshot of a CAD-model of an automotive roof.

X3
X2

X5 X1
X4

Figure 4.13: The figure shows five cross-sections taken from the automotive roof
illustrated in Figure 4.12. The cross-sections are numbered X1 to X5.
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Nominal Model of Cross—Section X1 (X2, X3) and its Datum System
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The Arcs Constituting the Nominal Model of Cross—Section X1 (X2, X3)
O
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Figure 4.14: A closer view of the cross-sections from Figure 4.13. The cross-
section X1 is taken to represent X2 and X3 as well since they are very similar.
The pictures illustrate the appearance of the model as well as its composition of
arcs. The points subject to inspection are also indicated.
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4.15.2 Data Analysis

This section concentrates on the result of cross-section X1. The results from
the other cross-sections are put in Appendix D. Since it is difficult to view the
result for the whole cross-section we have chosen to concentrate on the left end of
cross-section X1, see top of Figure 4.15. The figure also illustrates the arcs that
constitute the curve. The joints of the arcs are marked by diamonds. The second
picture of Figure 4.15 shows the CMM measurements together with the nominal
model of cross-section X1 in the fixed coordinate system. The deviation of the
measurements from the nominal model of the cross-section, in the sequel denoted
by the residuals, are displayed in the top diagram of Figure 4.16. The residuals are
computed as the signed distance from the measurements to their closest points in
the nominal model. This corresponds to leaf (ii) in the tree depicted in Figure 1.1.
The residuals are sorted from left to right so that the first eight bars in the diagram
correspond to the measurements in the figure. The second diagram of Figure 4.16
shows the residuals after performing a rigid best fit of the measurements to the
nominal model as described in Chapter 2. This idea is represented by leaf (iii) in
the tree of Figure 1.1. Comparing the initial residuals with the residuals after the
rigid best fit we see that there is only a small change.

The third picture of Figure 4.15 shows a flexible best fit of the nominal model
to the measurements and the bottom diagram of Figure 4.16 shows the residuals
after the flexible best fit. The method is represented in Figure 1.1 by leaf (v). The
flexible best fit is obtained by adding a linear polynomial to each arc of the cross-
section, i.e. ny) =2 foralll =1,...,L = 20. The continuity of the deformation
is guaranteed by the G° condition (4.18) of Section 4.9.1. The cross-section is
made up from 20 plane arcs that are linear which implies that the deformation
has 42 degrees of freedom. Since we only have 37 measurements that contribute to
one degree of freedom each the problem is ill-posed. Recall that the measurements
only add information in the normal direction of the least distance projection of the
curve. In order to achieve an estimate of the form error through the flexible best
fit we regularised the problem by constraining the length and joint angles of the
deformed curve. The constraints are described in Section 4.10. We chose the joint
angle constraint parameter to be v = 0.01 and the joint angle constraint parameter
to be Af = 5° 555 We computed the flexible best fit using both the equilibrium
separation and datum separation. Recall that the separation condition is necessary
in order to separate the form error from the positional error. The result of the
equilibrium separation is seen in the fourth picture of Figure 4.15. The solid line
is the flexible best fit, the dashed line is the rigid part of the flexible best fit as
defined by the equilibrium separation condition and the dotted line is the nominal
position of the nominal cross-section. The bottom picture of Figure 4.15 shows
the result of the flexible best fit using the datum separation condition.

The upper two diagrams of Figure 4.17 show the form and positional error
as estimated by the flexible best fit using equilibrium separation conditions. The
form and positional errors are computed in the points where the cross-section
was measured. In this way the estimated errors can be compared with the initial
residuals and the residuals after a rigid best fit. Please remember, though, that the
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flexible best fit gives an estimate of the form error anywhere on the cross-section.
The lower two diagrams of Figure 4.17 show the estimated form and positional
errors of cross-section X1 using the datum separation.

4.15.3 Conclusion

The residuals after the flexible best fit seen in the lower two diagrams of Figure 4.16
are small compared to the initial residuals shown in the top diagram of the same
figure. Thus we conclude that our geometric model manages to incorporate a sub-
stantial part of the geometric deviation indicated by the measurements. However,
there is still some systematic errors left in the residuals that our geometric model
of the deformation does not manage to incorporate. Moreover, the residuals in
points 4-6 and 32-34 are too large for the model to be completely satisfactory.

Nevertheless, by comparing the estimated form error in Figure 4.17 with the
initial residuals in Figure 4.16 we see that the flexible best fit manages to capture
the main characteristics of the geometric deviations seen in the initial residuals.
If a better fit is desired then the flexibility of the deformation has to be increased
either by increasing the degree of the deformation or by decreasing the joint angle
constraint.

We can observe in the data that the form error estimated through a flexible
best fit using the equilibrium condition appears to be similar to the residuals
from the rigid best fit. This is not clearly seen in the results of cross-section X1
where there seems to be essentially no rigid body movement inherent in the initial
residuals. However, this observation can be made from the results of cross-section
X4. The similarities in the upper diagram of Figure D.10 that shows the estimated
form error using equilibrium separation and the second diagram of Figure D.9 that
display the residuals after a rigid best fit are evident. However, we recommend the
datum separation condition to be used in the flexible best fit since the form error
is related to the datum system in that case. The equilibrium separation relates
the form error to its average which makes it difficult to pinpoint its cause.

In conclusion, the flexible best fit succeeds in capturing the essence of the form
error. The resulting mathematical model that the flexible best fit gives rise to can
be used to visualise the form error in the same CAD-environment as the nominal
model. Moreover, by the flexible best fit we can separate the form error from the
positional error. Bear in mind, though, that the form error is defined relative to
the positional error in terms of the separation condition.
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4.16 Cross-Section X1

Nominal Model of Cross—Section X1

— Nominal Model
$ Joints
Nominal Model X1 and Measurements

+ —— Nominal Model
+ Measurements

Flexible Best Fit of X1 to Measurements

— Flexible Best Fit
+ Measurements

Flexible and Rigid Part of Flexible Best Fit of X1 Using Eq. Sep.

=

— Flexible Best Fit
— - Rigid Part
- Nominal Model

— Flexible Best Fit
— - Rigid Part
- Nominal Model

Figure 4.15: The five pictures show the result of a flexible best fit of cross-section
X1 to measurement data. From top to bottom they show the joints of the nominal
model, the measurements, the flexible best fit, the rigid and flexible parts of the
flexible best fit using equilibrium separation and datum separation, respectively.
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Figure 4.16: The top diagram shows the initial residuals of cross-section X1. The
second diagram shows the residuals after a rigid best fit to all measurements.
The two diagrams at the bottom show the residuals after a flexible best fit with
equilibrium separation and datum separation, respectively.
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Estimated Form Error of X1 Using Equilibrium Separation
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Figure 4.17: The two upper diagrams illustrate the form and positional error
estimated by the flexible best fit of X1 using equilibrium separation and the two
lower diagrams show same result using datum separation instead. The residuals
are computed in the same points that were measured to allow for comparison.
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4.17 Summary and Conclusion

We have stated a mathematical model that is able to model the form and positional
errors from coordinate measurements of mechanical workpieces. The model deals
with curves, which is useful in analysing geometric deviations of cross-sections.

We formulated an orthogonal least squares problem with the sum of the squared
residuals as the target function, the residuals being defined as the distance from
the measurements to their closest points in the nominal model. Identifying the
problem as being separable we derived the derivatives of the separated problem.
Recall that knowledge of the derivatives is essential for numerical solution.

Furthermore, we derived explicit continuity and first order continuity con-
straints. In order to deal with situations in which the number of measurements is
not sufficient to determine the dof of the deformation and rigid body transforma-
tion, we discussed how to include a priori information about the nominal shape in
the optimisation.

Finally, we specialised to the case when the deformation function is a composite
Bézier curve and applied it to a number of examples illustrating different features of
geometric model such as the tangent continuity and the regularisation conditions.
The flexible best fit was then applied to cross-sections of an automotive roof.
Measurements from a real prototype of the automotive roof was used as input to
the flexible best fit that succeeded in creating a visually pleasing, mathematical
model of the form error.

4.17.1 Open Issues

This study of the flexible best fit should be seen as a first step in trying to create a
mathematical model of form errors of mechanical parts. Of course, there is a need
for further investigation of several problems. For example, there is a need for a
better optimiser, as MATLAB’s fmincon in version 2 of the Optimisation Toolbox
cannot handle second order information about the target function and the non-
linear constraints. As we have seen in the report, the second order information is
available, and it would be advantageous to have an optimiser that can take care
of it.

A very important issue left open is how to select adequate parameters for the
flexible best fit. In addition to the degrees of freedom of the deformation, the
regularisation parameters has to be set as well. For an industrial strength version
of the flexible best fit, it is necessary to set these parameters automatically.

Finally, it would be interesting to generalise the flexible best fit to surfaces.
Form and positional errors are three-dimensional phenomena and should be studied
in a three-dimensional environment.



Appendix A

Derivative Definitions

Throughout the report we use the following definitions:

Definition A.1. Let a function f = f(x) be such that f : R™ — R, where
x € R™. Then we define the derivative of f with respect to x as

= _Ta a2

Definition A.2. We define the derivative of a vector valued function f : R™ —
R™ with respect to x € R™ to be
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Consequence A.3. The second mized derivative of a scalar valued function f :
R™ x R™ -+ R with respect to x € R™ and y € R"™ is
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Claim A.4. If f(x) = Az, where A is an m X n matriz, then fo = A.
Proof. The ith component of f(z) = Az is (f(z)); = (Ax); = (Z;-lzl a;jx;); and
since the (k,!)th component of f is %% we have that

ofe 0 &
(fz)e = i 6—371(; AkjTj) = Q-
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Taylor Expansions

Here we derive Taylor expansions that are useful in Chapter 4.

Claim B.1. Ifa € R™, B € R™*" and x € D C R"™ are such that |Bz| < |a|
whenever x € D, then the second order Taylor expansion of |a + Bx| around the
oTigin 1S

a"Bx 1 aa”®
la + Bz| = |a| + —— + —z"B"(I - Taf

la| ~ 2lal
Proof. Let f(x) = |a + Bez|, then the zeroth order term of the expansion is
f(0) = |a|. For the first order term we need to differentiate f,

)Bzx + of|z|?). (B.1)

0 0 1
fo(@) = 5~ (la+ Ba|) = 5—((la+ Ba")*)
1 -1 Bzx)*
= (la+Ba’) ?2(a+ Ba)"B = % .

From the above it is obvious that f5(0) = a” B/|a|. Continuing with the second
derivative we observe that f.(x) = f(x)~'(a + Bz)” B and from this we have

foo = 22 = 2 (j(2) (B"(a+ Ba)))

= f(z)"'B"B - f(z)*B"(a + Bz) fz()
1 BT(I— (a+B:1:)(a,+Bm)T)B

f(@) f(@)?
_ 1 T( B (a+Ba:)(a+Bw)T)
~ |a+ Bz| |a + Bzx|?
Evaluated at the origin
1 aa”
f22(0) = —=B"(I - —)B.
la| |af?

In conclusion, our derivations of f(0), fz(0) and fz.(0) justify the stated Taylor
expansion. O
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Claim B.2. Under the same circumstances as in Claim B.1 the second order Tay-
lor expansion of |a + Bx|™" is

1 1 a"Bz 1 aa”
- = "4 _TB"(3— —-1I)B 2, B.2

axBal "ol fap " Zap” ¥ Clap ~HBeTeleD) (B
Proof. Let g(x) = 1/ f(x), where f(2) = |a + Bxz| as in the proof of Claim B.1.
By observing that g, = —f./f? and that

fife fe_ (St
f? v f
then a second order expansion of g around the origin takes the form
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The proof is completed by insertion of the derived expressions for f(0), fz(0) and
f=2(0) from the proof of Claim B.1. O

oz = 2 _fmm)a

~ faa(0)) + o(j2 ).
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Rigid Body Calculus

The technique of parametrising a rotation matrix in terms of its axis of rotation
is described in detail by Angeles and Kecskeméthy (1995). The key observation
they describe, that was known already to Euler, is that the invariants of a rigid
body rotation are the axis and the angle of rotation. Furthermore, they show that
if w is the axis of rotation for a rotation matriz R with rotation angle § = |w|,
then R(w) = el where

0 —w, Wy
w] = | w, 0 —wy
—Wy  Wg 0

defines the cross product matriz of the vector w = [w,; wy w;]". The name is
due to the fact that we can rewrite the cross product of two vectors by a matrix
multiplication, i.e. @ x b = [a]b, where a and b are vectors in R3. Obviously,
we also have that (a x b)" = a”[b]. Furthermore, the cross product matrix is
skew-symmetric, i.e. [a]” = —[a]

Having identified the rotation matrix as the matrix exponential of the cross
product matrix of its rotation vector we can easily expand the rotation matrix in
a Taylor series, hence

wx (WX X (Wxp)) 4.

(C.1)

1
R(w)p:p+wxp+§wx(wxp)+...+y

C.1 Derivatives of the Rotation Matrix

The first and second derivatives of the rotation matrix are derived in this section.

Claim C.1. The first derivative of g(w) = R(w)p, where R(w) is a rigid body
rotation matriz parametrised by its azis of rotation and p is a point in R3, is

0.(©) = 5= (R(@)p) = ~[R(@)p].
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Proof. Tt is immediately seen from the expansion (C.1) that the derivative of
R(w)p evaluated at the origin is —[p]. Suppose now we are interested in the
derivative at wg, say. Then

go(@o) = oo (R@)D)| = 7 (Rw - wo)Rwo)p),

WwW=wo

= —[p] = —[R(wo)p],

= {p = R(wo)p} = %(R(“’)ﬁ) wm0

or more generally g,,(w) = & (R(w)p) = —[R(w)p]. O

In order to compute the second derivative without having to resort to tensor
notation due to that we get three-dimensional matrices we compute the second
derivatives for the scalar function h(w) = g"g(w). For our purposes it suffices to
have the second derivative in this form.

Claim C.2. The second derivative of h(w) = q" R(w)p, where R(w) is a rotation
matriz parametrised by its axis of rotation and p and q are points in R3, is

o ) = o (4" R(@)p) = a][Rw)p] + [R()plla]

Proof. Using the expansion (C.1) we can write the function h as

hw) = a"p — ¢"ple + 5" (iplla] + [allp))w + o(w1).

From the above it is evident that hww(0) = [p][g] + [¢][p]. We can evaluate the
derivative at an arbitrary parameter wy using the same technique as in the proof
of Claim C.1, i.e.
62
= —(¢"R(w — wo)R(w
ooy — 52 @R o) Rwo)p)| _
2

= {p = Rwop} = pos (@ R@)P)|__
= [q][p] + [Pllg] = [g][R(wo)p] + [R(wo)p][q]-

By dropping the subscript on wg we can write huw(w) = [q][R(w)p] + [R(w)p][q].
O

hawo(w0) = 5 (4" R(w)p)|

C.2 The Rigid Body Transform

Definition C.3. The map R : R® x R® — R? with parameters * = [t* w’]” €
RS, where t,w € R3, is defined by R(x)p =t + R(w)p, where R(w) is a rotation
matriz and p € R? is a point. The map R is called o rigid body transform.

Please remark that the rigid body transform is a special case of an affine map.
The parameter t is called the translation vector and w is called the rotation vector.
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C.3 Derivatives of the Rigid Body Transform

Since the rigid body transformation R(x) with transformation parameters x =
[t" w”]" is linear in ¢t with unit coefficient its first derivative with respect to
t is the identity and the second derivative vanishes. Thus we can sum up by
stating its derivatives with respect to & as direct consequences of the above and
the Claims C.1 and C.2.

Consequence C.4. If R(x) is a rigid body transform and p a point in R? then
the derivative of R(x)p with respect to x is

9

ox
Consequence C.5. If R(x) is a rigid body transform and h(x) = q"R(x)p,
where p and q are points in R® then the second derivative of h with respect to «
18

(R(z)p) = [I —[R(w)p]] . (C.2)

o? 0 0

haa(@) = 53 (@ R@P) = o [RW)P) + RG]~ ©P

C.4 The Inverse of the Rigid Body Transform

Claim C.6. The inverse of the rigid body transform R(x) acting on a point p in
R3 is

R(z)"'p=R(w)"'(p—1)
and has parameters

—Ww

P [—R(—w)t] ‘
Proof. The inverse of R is defined by R(x) " *R(xz)p = p. Let the inverse have
parameters & = [{ @7]7, i.e. R(Z) = R(x)~*. From direct calculation

p =R(z)"'R(z)p = R(&)R(x)p = R(Z)(t + R(w)p)
=1+ R(®)(t+ R(w)p) =t + R(®)t + R(@)R(w)p.

Equating the left and right and side it must be that
t+R@)t=0, and R(®)R(w)=1.
The latter gives
R(@)=R(w) ! =e ™ = ¢l = R(—w)
from which we conclude that @ = —w and from the former we see that

t=—R(®)t = —R(—w)t,
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hence = [~ (R(~w)t)” — w”]". As a consequence

R(Z)p=1t+ R(@)p = —R(-w)t + R(-w)p = R(-w)(p—1t) = R(w) ' (p—1t).

O

Claim C.7. Let R be a rigid body transform and assume ¢ and p belong to R3.
If r = R(Z)c — p then |r|> = |c — R(x)p|?>, where T are the inverse rigid body
transformation parameters to x.

Proof. Direct calculation gives

)(R(@)7't+ ¢ — R(@)"'p) = R(®)(R(-@)t + c — R(—@)p)
3)(e - (~R(-@)E + R(-@)p))
»)(e - (t + R(w)p)) = R(@)(c — R(z)p)

and since the rotation matrix R(®) is orthogonal we know that R(@)" R(@) = I
which is useful in computing

r? =r"r = (R(@)(c — R(z)p)) R(@)(c — R(z)p)



Appendix D

Results From Case Study

This appendix contains some of the results from the case study described in Sec-
tion 4.15. The section also contain the results from one out of the five measured
cross-sections that constitute that case study. The results from the other four
cross-sections X2 to X5 are displayed here. The results are left uncommented
since the comments made about the results of cross-section X1 in Section 4.15
applies to the cross-sections displayed here as well.
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D.1 Cross-Section X2

Nominal Model of Cross—Section X2

— Nominal Model
& Joints

Nominal Model X2 and Measurements

—— Nominal Model
+ Measurements

Flexible Best Fit of X2 to Measurements

— Flexible Best Fit
+ Measurements

Flexible and Rigid Part of Flexible Best Fit of X2 Using Eq. Sep.

— Flexible Best Fit
— - Rigid Part
- Nominal Model

Flexible and Rigid Part of Flexible Best Fit of X2 Using Datum Sep.

— Flexible Best Fit
z — - Rigid Part
- Nominal Model

Figure D.1: The five pictures show the result of a flexible best fit of cross-section
X2 to measurement data. From top to bottom they show the joints of the nominal
model, the measurements, the flexible best fit, the rigid and flexible parts of the
flexible best fit using equilibrium separation and datum separation, respectively.
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Initial Residuals for Cross—Section X2
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Figure D.2: The top diagram shows the initial residuals of cross-section X2. The
second diagram shows the residuals after a rigid best fit to all measurements.
The two diagrams at the bottom show the residuals after a flexible best fit with
equilibrium separation and datum separation, respectively.
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Estimated Form Error of X2 Using Equilibrium Separation
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Figure D.3: The two upper diagrams illustrate the form and positional error es-
timated by the flexible best fit of X2 using equilibrium separation and the two
lower diagrams show same result using datum separation instead. The residuals
are computed in the same points that were measured to allow for comparison.
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D.2 Cross-Section X3

Nominal Model of Cross—Section X3

— Nominal Model
O Joints

Nominal Model X3 and Measurements

—— Nominal Model
+ Measurements

Flexible Best Fit of X3 to Measurements

— Flexible Best Fit
+ Measurements

— Flexible Best Fit
— - Rigid Part
- Nominal Model

— Flexible Best Fit
— - Rigid Part
- Nominal Model

Figure D.4: The five pictures show the result of a flexible best fit of cross-section
X3 to measurement data. From top to bottom they show the joints of the nominal
model, the measurements, the flexible best fit, the rigid and flexible parts of the
flexible best fit using equilibrium separation and datum separation, respectively.
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Initial Residuals for Cross—Section X3
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Figure D.5: The top diagram shows the initial residuals of cross-section X3. The
second diagram shows the residuals after a rigid best fit to all measurements.
The two diagrams at the bottom show the residuals after a flexible best fit with
equilibrium separation and datum separation, respectively.
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Estimated Form Error of X3 Using Equilibrium Separation
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Figure D.6: The two upper diagrams illustrate the form and positional error es-
timated by the flexible best fit of X3 using equilibrium separation and the two
lower diagrams show same result using datum separation instead. The residuals
are computed in the same points that were measured to allow for comparison.
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D.3 Cross-Section X4

[

O
A4

N
A4

Nominal Model of Cross—Section X4 (X5)
PN
v

The Arcs Constituting the Nominal Model of Cross—Section X4 (X5)
The Distribution of Measurement Points Along Cross—Section X4 (X5)
+++++++++++
++++++++++++++++ RS S S
+ +
++

Y4

X

Figure D.7: A closer view of the cross-sections from Figure 4.13. Cross-section X4
is taken to represent X5 as well since are indentical. The pictures illustrate the
appearance of the models as well as its composition of arcs. The points subject to
inspection are also indicated.
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Nominal Model of Cross—Section X4

— Nominal Model
& Joints

Nominal Model X4 and Measurements

—— Nominal Model
+ Measurements

Flexible Best Fit of X4 to Measurements

— Flexible Best Fit
+ Measurements

Flexible and Rigid Part of Flexible Best Fit of X4 Using Eq. Sep.

— Flexible Best Fit
— - Rigid Part
- Nominal Model

Flexible and Rigid Part of Flexible Best Fit of X4 Using Datum Sep.

— Flexible Best Fit
— - Rigid Part
- Nominal Model

Figure D.8: The five pictures show the result of a flexible best fit of cross-section
X4 to measurement data. From top to bottom they show the joints of the nominal
model, the measurements, the flexible best fit, the rigid and flexible parts of the
flexible best fit using equilibrium separation and datum separation, respectively.
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Initial Residuals for Cross—Section X4
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Figure D.9: The top diagram shows the initial residuals of cross-section X4. The
second diagram shows the residuals after a rigid best fit to all measurements.
The two diagrams at the bottom show the residuals after a flexible best fit with
equilibrium separation and datum separation, respectively.
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Estimated Form Error of X4 Using Equilibrium Separation
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Figure D.10: The two upper diagrams illustrate the form and positional error
estimated by the flexible best fit of X4 using equilibrium separation and the two
lower diagrams show same result using datum separation instead. The residuals
are computed in the same points that were measured to allow for comparison.
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D.4 Cross-Section X5

Nominal Model of Cross—Section X5

— Nominal Model
& Joints

Nominal Model X5 and Measurements

—— Nominal Model
+ Measurements

Flexible Best Fit of X5 to Measurements

— Flexible Best Fit
+ Measurements

Flexible and Rigid Part of Flexible Best Fit of X5 Using Eq. Sep.
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Figure D.11: The five pictures show the result of a flexible best fit of cross-section
X5 to measurement data. From top to bottom they show the joints of the nominal
model, the measurements, the flexible best fit, the rigid and flexible parts of the
flexible best fit using equilibrium separation and datum separation, respectively.
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Initial Residuals for Cross—Section X5

111

l , T T T T T
Ll *
0 1" [ ol | III.I- ———————————— llll 1
|||||I III|||| |
0.5 4
_l = -
| | | | |
0 10 20 30 40 50 60
Residuals After Rigid Best Fit of X5
1F T T T T T
05F E
_III QT[] [T - I i
Om --.IIII"II.- = --.IIIIIII
-0.5F E
_l - -
| | | | |
0 10 20 30 40 50 60
Residuals After Flexible Best Fit of X5 Using Equilibrium Separation
1 , T T T T T
0.5 N
NI B — S
0.5 B
_l = -
| | | | |
0 10 20 30 40 50 60
Residuals After Flexible Best Fit of X5 Using Datum Separation
1F T T T T T
05F E
0 ___--.ll-l._ - - - -..-_-IIII---,__.I.l i
-0.5 E
_1 - -
| | | | |
0 10 20 30 40 50 60

Figure D.12: The top diagram shows the initial residuals of cross-section X5. The
second diagram shows the residuals after a rigid best fit to all measurements.
The two diagrams at the bottom show the residuals after a flexible best fit with

equilibrium separation and datum separation, respectively.
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Estimated Form Error of X5 Using Equilibrium Separation
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Figure D.13: The two upper diagrams illustrate the form and positional error
estimated by the flexible best fit of X5 using equilibrium separation and the two
lower diagrams show same result using datum separation instead. The residuals
are computed in the same points that were measured to allow for comparison.
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