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SUMMARY

Consider a pair of point processes, X and Y, where X is regarded as a ‘true’ point
process and Y is an imperfect observation of X. For the transformation from X to Y,
we consider a number of disturbance mechanisms covering random thinning, displace-
ment, censoring of the displaced points, and, in addition, superposition of extra points.
We present the conditional likelihood of Y given X. When both point processes are
observed the likelihood may be used for inference about the disturbance mechanisms:
estimation of parameters, tests of model reductions et cetera. The likelihood is a sum,
typically with extremely many terms, and we discuss an approximation with a small
number of terms. The results are applied to an example, where X denotes a set of
‘true’ positions of tree tops, while Y denotes tree top positions estimated by template
matching in a digital image obtained by high-resolution aerial photography. Using the
conditional likelihood the parameters governing the various disturbance mechanisms

are estimated.

Some key words: Censoring of point processes; Conditional likelihood; Image data;
Incomplete observation; Random displacement; Superposition; Thinning; Matching of

point sets.



1. INTRODUCTION

1.1 Background

Random displacement, thinning, and superposition are well-known operations on point
processes, see Daley & Vere-Jones (1988) and Stoyan et al. (1995). An important problem
is to decide when the distribution type, in particular, the Poisson process, is preserved un-
der these operations. A related problem is to determine when iteration of these operations
with suitable scaling gives a specific process, typically the Poisson process, as a limit.

In the present paper we will instead look at these mechanisms as disturbances of a
point process, that is, as elements in models for incomplete observation of a point process.
This type of modelling was used in Dralle & Rudemo (1997) where incomplete observa-
tions of tree positions from aerial photography data were studied. The combined effects of
thinning, systematic and random displacement, censoring through displacement out of the
study area, and superposition of additional points, called ‘ghost points’, were investigated.
The statistical method used was iterative least squares estimation combined with a ‘most
probable’ pairing of true and observed points. Here we will study the various disturbance
mechanisms by use of maximum likelihood estimation. This involves derivation of the con-
ditional likelihood function for the observed process given the true process, see Theorem 1
in § 2 with proof in the Appendix. A number of simplifications of the general disturbance
model are discussed in § 3 such as pure displacement models, spatially homogeneous noise
models and cluster processes.

The conditional likelihood for the observed point process contains a very large number
of terms, each term corresponding to a specific mode of generation for the set of observed
points. The model may be viewed as a missing data problem where each term specifies the
origin of each observed point as either a displacement of one of the original points, or as an
additional point. It is well-known that statistical inference for missing data may be com-
plicated and the EM algorithm is one well known way to handle missing data, McLachlan
& Krishnan (1997). However, the EM algorithm does not seem feasible in our case due to
a complicated E-step, and in § 4 we study approximations of the likelihood considering a
small number of comparatively large terms. We suggest an iterative procedure for finding
the largest terms, including a starting procedure and search among terms similar to those

currently considered according to specified ‘neighbour’ relations. Other computational



considerations concern approximations close to the boundary of observations.

Likelihood estimation is applied to estimation of tree top positions from an aerial
photo in § 5. Rather than using the kernel smoothing method of Dralle & Rudemo (1996,
1997) in the first step to find candidate tree positions, we employ the template matching
method described in Larsen & Rudemo (1998) suitable also for aerial photographs obtained
under off-nadir viewing angles. Point processes and marked point processes have a well
established tradition in forestry, see Penttinen et al. (1992), although data have usually

been acquired by ground-based field measurements.

1.2 Basic assumptions and notation

Let Y be an imperfect observation of a point process X. We assume that X and Y are
point processes on a subset A of the d-dimensional Euclidean space R? with a finite number
of points, X = {X;:i € M}, M ={1,...,m},Y ={Y;:j€ N}, N={1,...,n}. Assume
further that A is bounded with a positive d-dimensional volume |A|4. Suppose that Y is

generated from the X-process by the following disturbance mechanisms:

(i) Thinning. Each point X;,7 € M, is thinned with probability 1 — p(X;) and retained
with probability p(X;). If an X-point is thinned, then there will not be any corre-

sponding Y-point. Thinnings are assumed to be independent for different points.

(ii) Displacement. For each remaining point X; a corresponding Y-point is generated
by displacement to a position with probability density k(-|X;) with respect to the
Lebesgue measure on RY. Given X, the displacements of different points are inde-

pendent, mutually and of the thinnings.

(iii) Censoring. The displaced points are observed if they are within the observation
region A; otherwise they are censored and not observed. Thus censoring of an un-
thinned point generated by X; occurs with probability [,. k(y|X;)dy. (Here A°

denotes the complement R? \ A of the set A.)

(iv) Superposition of ghost points. In addition to the points generated as described above
we have superposition of extra 'ghost’ points. These points are assumed to arise from

a Poisson process on A with intensity g(-|X), where X, as above, denotes the entire



X-process including thinned points. Given X, the ghost points are assumed to be

independent of thinning, displacement and censoring.

The points generated from X by the combination of thinning, displacement, censoring and
superposition form the Y-process, which is thus restricted to the set A.

For a Borel set B, we let Y(B) denote the number of Y-points in the set B, that is,
we use the same symbol both for the point process and the associated counting measure.
Further, |S| will denote the number of elements in a finite set S. With this notation we
thus have Y (B) = |{j € N : Y; € B}|. Furthermore, we let P(M, M') denote the set of
one-to-one mappings m : M — M’ for two finite sets M and M’ with the same number of

elements.

2. THE CONDITIONAL LIKELIHOOD

The conditional likelihood L(Y|X) of a point process Y observed on a bounded set A C R?,
given another point process X, is the Radon-Nikodym derivative of the probability measure
of Y given X with respect to a reference measure. We will let the reference measure be the
probability measure for a Poisson process with a constant intensity Ag(y) = 1fory € A. In
the following theorem we assume for simplicity that the functions g and k are continuous,

although this condition can be weakened.

THEOREM 1. Let X and Y be two finite point processes specified as in § 1-2 on a bounded
set A. Suppose that g(y|X) and k(y|X;), i € M, are continuous functions of y € A. Then
the conditional likelihood of Y given X s

L(Y\X)=exp(|A|d— / g(y|X>dy) Y Y L, W

M1 CM WGP(Ml,Nl)
N1CN

1=
| My |=[N1]
where
Ly = [] p(X0)k(Yagi) | X0),
1EM;
L= ] (p(X» / k<y|Xi>dy+1—p(Xi)),
ieM\M; A
JEN\N;

and the reference measure corresponds to the Poisson process on A with intensity 1.



Proof: See Appendix.

3. SUBMODELS OF THE GENERAL MODEL

3-1 General considerations

In most applications the model described in § 1-2 is too general to be really useful and
we will describe some special cases of it. Firstly, the general model allows the thinning
probability 1 —p(z) to depend on the position z. Often it is reasonable to assume that the
probability of thinning is constant on the set A, p(x) = p, and we will do so in the sequel.
Secondly, the displacement distribution with density k(- |X;) is frequently chosen to
be centred around X; + p, where we may interpret p as a systematic error made in the
observations. A simple choice of the displacement distribution is a d-dimensional normal

distribution.

3-2  The pure displacement model

Assume that p = 1 and that g(-|X) = 0. This means that we do not have any extra
ghost points, and that we observe the randomly displaced X-points, provided they are not

censored.

3-:3 Homogeneous superposition noise
An important special case for the intensity of the ghost points is the homogeneous noise,
g(-|X) = A. Then the likelihood function (1) simplifies to

LY|IX)= ) > T(My,Ny,m) (2)

MiCM  mweP(M1,N1)
NiCN
| My|=|Ny|

with terms
T(Mi,Ny,m) =

pMINNW exp (1= N)[Alg) { [T *al Xy [ (p/ck(y|Xi)dy—|—1—p> . (3)

ieM i€M\M;



3-4 A cluster Cox process

When the intensity g for the ghost points depend on the X-process, these points con-
tain information on X. A specific example is when all the original X-points are thinned,
p = 0, so we only observe the ghost points. Assume further that each X; gives rise to
N; off-spring points, with N; Poisson distributed with mean v(X;). Assume also that,
conditional upon X, all the N;’s are independent, all off-spring points are independent,
and the points generated by X; are distributed according to a probability density h(-|X;).
Conditional upon X the Y-process is an inhomogeneous Poisson process with intensity
9y X) = v(X)h(y|X1) + ... + v(Xm)h(y|Xmm) and the X;’s will be cluster centres. Con-
ditional further on |Y'| = n, the distribution of the Y-points may be regarded as a mixture,
and estimation of the cluster centres in a mixture distribution is, for instance, considered
in Titterington et al. (1985). Considering X as random, we note that the Y-process is a
Cox point process. In our forestry example a cluster may be generated for each tree as

large branches may under certain conditions produce reflections similar to tree tops.

4. APPROXIMATE LIKELIHOOD ANALYSIS

4-1  Owerview

The likelihood function (2) is in theory simple to compute, but for even modest—sized
datasets the number of terms in the sum becomes enormous and it is impossible to calculate
all the terms within a reasonable time. Furthermore, the orders of magnitude of terms in
the sum are very different, and we have to be careful with numerical computations where
we add a large number of small terms.

We will now describe algorithms for finding approximations of the likelihood function
by focussing on the values of a few large terms. In particular, we will consider algorithms
for the choice of r terms in (2) for a fixed small r. In the example in § 5 the likelihood
function contains more than 10°° terms, whereas we find a reasonable approximation of
the likelihood function with r = 8 terms.

For notational simplicity we will in the sequel consider point processes in two-dimensional
space, although the methods can be generalized to d dimensions in a fairly straightforward
manner. We will also assume that the density function k(-|X;) for point displacement

from Xj;, cf. (3), is a two-dimensional normal density with mean vector X; + p, with a



systematic displacement y = (u1, pe), and with variances and correlation, %, o5 and p,
that do not depend on X;. Further, we assume the homogeneous noise model from § 3-3.
Let us call a combination s = (M, N1, 7), that we sum over in (2), a state. The
crucial issue in our approximate likelihood computation is to find states (Mj, Ny, ) such
that the corresponding terms T'(My, N1, 7) give large contributions to (2). This we will
try to achieve by use of a deterministic, iterative algorithm which consists of a starting
procedure for finding an initial set of states and local maximizations over suitably chosen
neighbourhoods of states until no further improvement is obtained. In the following sections

we will study:

(i) two approximations of the integral over A° in (3) with emphasis on points close to

the boundary of A,

(ii) neighbours of a state (M, N1, ) to be considered in the search for terms that give

large contributions to (2),

(iii) an iterative deterministic procedure for finding an optimal set of r states for the like-
lihood approximation and simultaneously finding approximate maximum likelihood

estimates of parameters, and

(iv) a starting procedure to find an initial set of r candidate states for the iterative

procedure.

4-2  Two approximations for points close to boundaries

For most points X; it turns out that they are so far from the boundary of the observation

area A that we safely can use the simplifying approximation

k(y|Xi) dy = 0. (4)
Ac
In the first approximation of (3) we assume that all X-points are so far from the boundary

that we can use the approximation (4), and thus replace (3) by

T(My, Ny, m) = ph*il (1 — p) MM NN ey (1= V)| Ala) $ ] kYl Xa) p - (5)
1€ M7

For s = (M;, N1, ) we note that (5) is maximized as a function of the parameter vector

0= (pa )\7#1,#27017027P) (6)



by 0(s) = (B, A, fix, iz, 61, 52, p), where p = [My| / |M], A = |[N\N1|/|Alq, and (fi1, iz, 61,62, p)
are the standard maximum likelihood estimates of the parameters in a two—dimensional
normal distributions based on the sample (Y — X;,i € My).

In the second approximation of (3) we assume that the boundary, viewed locally from
X;, can be approximated by a straight line. More precisely, let d; denote the distance
from X; to the boundary, and introduce local coordinates (V;1, Vio) in the direction of the
nearest point on the boundary and orthogonal to it. We may use the approximation

. k(y|Xi) dy = Pp(Vir > di), (7)
which can be expressed in terms of the last five parameters of the parameter vector ¢ in
(6), the standard one-dimensional normal distribution function and d;. For most points X;
the right hand side of (7) will still be effectively zero, but for points close to the boundary
it gives a better approximation than (4). With the approximation (7) we do not get closed
form expressions for the parameter vector that maximizes (3) as we got above with the

approximation (4).

4.3 Neighbours of a state

For a state (Mi, N1, 7) we will say that (M], N{,n') is a neighbour state if it is obtained
by adding a pair of X- and Y-points, by removal of a pair, by ’swapping’ one of the
components in a pair with an unpaired point, or by exchanging correspondences for two
pairs of states — more precisely, if (M], N{,7') is obtained from (Mj, N1, ) in one of the

following five ways:

(a) Addition of a pair: M| = Mj U {i'}, where i/ € M \ My, N| = Ny U {j'}, where
j' € N\ Ny, 7'(i) = w(i),s € My, and 7'(i') = j'. The number of such neighbours
are [M \ Mi||N \ Ny|.

(b) Removal of a pair: M| = My \ {i'}, where i' € My, N{ = Ny \ {j'}, where j' € Ny,

7' (1) = w(i),7 € M{, and 7 (i) = j'. This can be done in |M;| = |Ny| ways.

(c) Swapping an X-point: M| = (M \ {¢'}) U {i"}, where ¢/ € My and " € M \ M,
Ni = Ny, ©'(3) = w(i),is € My \ {i'}, and 7'(i") = w(i'). There are |M;||M \ M|

such neighbours.



(d) Swapping a Y-point: M| = M, N| = (N1 \ {5'}) U {j"}, where 7/ € N; and
j" e N\ Ny, 7'(i) = w(i),i € My \ {i'}, where n(i') = j/, and 7'(i') = j". Swapping

a Y-point can be done in |Ny||N \ N;| ways.

(e) Exchange among two pairs: M| = My, N{ = Ny, 7'(i) = 7(i),i € M1\ {¢, "}, where
i' € My and i" € My, ' £, #'(i") = n(i"), and 7'(s") = w(i"). The number of such

neighbours are |M;| (|[Mi| —1)/2.

We note that being a neighbour is a reciprocal relation.
In our computations in the example below we will consider a reduced set of neighbours

of a state s = (My, Ny, m) which is obtained as follows:

(a) Addition of a pair: for an added pair with X as X-point we only consider that
unpaired Y-point which is closest to X;; there are |M \ Mj| such neighbours, or zero

if all Y-points are already paired.
(b) Removal of a pair: no restriction; there are |Mj| such neighbours.

(c) Swapping an X-point: when swapping an X-point X in a pair we consider only
replacing it with the unpaired X-point which is closest to the corresponding Y -point;

there are | M| such neighbours, or zero if all X points are already paired.

(d) Swapping a Y-point: when swapping a Y-point Y} in a pair we consider only re-
placing it with the unpaired Y-point which is closest to the corresponding X-point;

there are |N7| such neighbours, or zero if all Y-points are already paired.

(e) Exchange among two pairs: for a pair with X-point X; we consider only the swap

involving the pair with X-point closest to Xy ; there are at most | M| such neighbours.
Note that the total number of elements in the reduced set of neighbours of a state is
at most | M| + 3| M.
4-4  An iterative likelihood mazimization procedure

Let T'(s,#) denote the term (5) with s = (M1, N1,7) and 6 given by (6). Consider a set S

of states and the truncated likelihood

L(S,0) =Y T(s,0). (8)

sES



The iterative procedure that we suggest for finding a good approximation (8) of (2)

with a small fixed number r of states in S runs as follows:

(i) Find an initial candidate set Sy with r states and a corresponding maximizing pa-

rameter vector fy as described below in § 4-5.

(ii) Let S; be our candidate set of states at stage ¢, ¢ = 0,1,..., with a corresponding
maximizing parameter vector 6;. To find the updated set Si;1 we proceed as follows:
Consider all states which are either contained in S; or are members of the reduced
neighbour sets (as described in the previous section ) of any state in S;. This aug-
mented set of states is denoted Sj. Let S;y1 consist of those r states s in S} that have
the largest values of T'(s, 6;). Let 641 be the #-value that maximizes L(S;y1,6). We

find 6;11 by a quasi-Newton method with 6; as starting value.

(i) If Sy4q1 = S; or, considering finite numerical accuracy, if L(Syy1,0i+1) < L(St, 0;) +e€
for a given small € > 0, cf. (10) below, we stop and choose
L(St41,0) = ) T(s,0) (9)
SESt+1
as our likelihood approximation, and 6;41 as our approximate maximum likelihood

parameter estimate. Otherwise the previous step is iterated.

From the description (ii) above of the basic iteration step it follows that L(S;i1,60;) >
L(S},0:) and L(Sgt1,0141) > L(St41,0;). This implies

L(St11,041) > L(Ss, 0), (10)

that is, the criterion function at stage ¢ + 1 is at least as good as the criterion function at

stage t.

4.5 Starting procedure

To start our procedure for finding a small number of large terms we choose an initial set of
7 states by use of a ‘greedy’ algorithm similar to the one used in Dralle & Rudemo (1997).

It can be described as follows:

For each X-point we let a circle grow. Circles grow simultaneously at the same

speed from all X-points. When a circle hits a Y-point that has not been hit

10



before by any other growing circle it is paired with the corresponding X-point,
and the growth of this circle is stopped. After the kth hit we assemble the k
pairs thus obtained in a state sy = (Mig, N1k, 7g), for each k = 0,... , k1, where
k1 = min(m,n). Assume first that k1 > r. As initial set Sy of states we choose
those r states si that have the largest values of supyT'(sk,0), k = 0,... , k1.
Let 6y be the f-value that maximizes L(Sp,#). We find 6y by a quasi-Newton
method with (s*) as starting value, where (s) is defined immediately after

6), and s* is the state among si, k = 0,... , k1, that maximizes supy T'(sg, 0)-
7

In case r > k1 we adjust the algorithm in a natural way. We start with the available
k1 states from the starting procedure, and then expand the number of states in each step
of the algorithm in § 4.4, until we have r states among the neighbouring states.

The starting procedure finds pairs of X- and Y-points close together. From an intuitive
point of view this is reasonable — provided that the displacements typically are small
compared to the distances between neighbouring X-points, and that the intensity of the
ghost points is not so high that they are likely to enter between the true and the displaced

points.

5. EXAMPLE: TREE TOP POSITIONS FROM AN AERIAL PHOTOGRAPH

5-1 Data: ‘true’ tree top points and points from template matching

Digital analysis of high resolution aerial photographs has recently been shown to be a
promising method for acquiring detailed information on individual trees in forest stands.
Panchromatic images obtained from a flight 560 m above a thinning experiment in Norway
spruce (Picea abies (L.) Karst.) have been studied in Dralle & Rudemo (1996, 1997) by use
of kernel smoothing, which proved to be a useful method for images obtained close to the
nadir. For off-nadir images a template matching method turned out to be more effective, see
Larsen & Rudemo (1998), where optimal templates were obtained for different geometries
of image acquisition. The upper part of Figure 1 shows an image with sidelighted trees
with a ground-projected pixel size of 0.15 x 0.15m?, and this image is the source of the
Y -points analyzed in the present paper.

FIGURE 1 ABOUT HERE

The ‘true’ X-points were obtained in the following way. For all trees in the subplot

11



delineated in the upper part of Figure 1 tree base positions measured in the field were
extrapolated to estimated tree top height and superimposed on the image to yield an initial
estimate of the true tree top positions as described in Dralle & Rudemo (1997). These
positions were adjusted by manual inspection of the images to correct for errors introduced
by deviations in the tree height estimates, variations due to wind and inaccuracy in the
image rectification. The resulting tree top positions, Xi,... , X, m = 171, coincide with
the centres of the circles shown in the lower part of Figure 1.
FIGURE 2 ABOUT HERE

The Y-points were obtained by matching a template constructed from a single light-
reflection model (indicated in the left part of Figure 2) adapted to the positions of the
camera and light sources: both the sun as a point source and a set of minor sources
distributed over the hemisphere and representing diffuse light. The resulting template,
shown in the right part of Figure 2 bounded by an ellipse, was moved pixelwise over the
image. Local maxima of the correlation between template and image pixel grey levels were
considered as candidate positions of tree tops. The optimal translation along the tree axis,
size and eccentricity of the bounding ellipse was obtained in Larsen & Rudemo (1998)
and the resulting optimal boundary is shown in the right part of Figure 2. The (ground
projected) size of the half axes of the optimal ellipse are 1.58 m and 1.42 m. Altogether
there were 570 positive local correlation maxima. The histogram of the correlation values
of these maxima is shown in Figure 3. The histogram indicates a bimodal distribution
where, roughly, large maxima correspond to tree tops and small maxima correspond to
superimposed noise. Three sets of Y-values, Y1,... ,Y,, were studied corresponding to the
correlation maxima above or equal to varying limits rg. These limits were chosen to obtain
approximately n = m, n = 1.2m and n = 1.4m. Using the limits ro = 148/255, ro =
127/255 and 9 = 110/255 we obtained n = 171, n = 206 and n = 243, respectively. The
Y -points in the data set with n = 206 points are shown as black dots in the lower part of
Figure 1.
FIGURE 3 ABOUT HERE

5-2  Results from approximate likelihood analyses

We will use the above described set of X-points and the set with 206 Y -points as the basic

12



datasets in this section. The points are shown in the lower part of Figure 1 within the
polygonal border of the set A. To describe the data we consider the model in § 3-3 with
the approximation (4) implying that each term in the likelihood function has the form (5).
Thus we assume that the thinning probabilities and the intensity of the Poisson noise
are homogeneous on the set A, that the displacement distribution & is a two-dimensional
normal distribution, and that the probability of censoring of a displaced point is negligible.
FIGURE 4 ABOUT HERE

Figure 4 shows the value of the term logsup, T'(sk, ) as a function of the number k
of pairs in the state s; for the starting procedure in § 4-5. It is seen that the size of the
terms considered in the starting procedure can vary a lot. The sudden decrease for large
k appears when the algorithm starts to pair X- and Y-points far apart. The subsequent
iterative algorithm (§ 4-4) tends to select terms among the neighbours of the largest and
second largest terms of the starting procedure, and exhibits after that fast convergence,
typically in two or three steps.
FIGURE 5 ABOUT HERE

Our algorithm does not prescribe how to choose the number r of states in S used in the
approximation of the likelihood function. We have run the algorithm with » = 1,...,16
terms and Figure 5 shows the value of the approximation of the likelihood function as
a function of the number of terms in the approximation. The improvement of adding a
term is largest when few terms are already included. We have chosen r = 8 terms in
the approximation in the following computations as this seems (from Figure 5) to give an
adequate approximation.
TABLE 1 ABOUT HERE

Table 1 shows the value of T'(s(®, é)/T(s(l),é), 1=1,...,8, of the terms evaluated in
the likelihood approximation and the number of pairs in each of the corresponding states.
The terms are sorted in order of decreasing contribution to the likelihood function. The
differences between the states of the eight terms are small. Compared to the state of the
leading term the other seven terms are obtained by swapping a Y-point, removal of a pair,
addition of a pair, or a combination of two such operations.

Table 2 shows the estimated parameters based on the eight terms as well as their esti-

mated standard deviations found by numerical differentiation of the approximate likelihood

13



function. The estimate p = 0.941 means that approximately 0.941 - 171 = 160.9 out of the
171 X-points are matched.
TABLE 2 ABOUT HERE

The size of the estimated standard deviations seem quite reasonable. We would, for
instance, expect the standard deviation of the estimate of y; to be around {1.004/(0.941 -
171)}% = 0.079 if the estimates for the displacement parameters were obtained in a model
with independent identically distributed normal observations.

As we have an approximation of the likelihood function we are also able to perform
approximate likelihood ratio tests. Testing, for instance, the hypothesis (u1,u2) = (0,0)
we find the test variable —2log @) = 17.85 with an approximate p-value of 0.00013 from
a x2-distribution with two degrees of freedom, and the hypothesis is rejected. Further
testing shows that we can accept pus = 0 (p-value 0.47) but not g1 = 0 in agreement with
Table 2.

TABLE 3 ABOUT HERE

Table 3 shows parameter estimates obtained when the number of Y-points are varied as
described in the end of § 5-1. The change in ) is not so interesting per se as it is essentially
determined by the surplus number of Y-points. Note that the p estimate increases with
an increasing number of Y-points, and that this increase is largest when the number of Y-
points increases from 171 to 206. The increase in p is accompanied with an increase in the
variance of the displacement, but generally the parameters of the displacement distribution

seem fairly stable when the number of Y-points varies.

6. DISCUSSION

6-1 Spatial point processes with noise

Models for random processes with noise is an important area of statistics which mainly has
been focussed on additive models, which are particularly tractable for Gaussian processes.
Models for point processes in one dimension have also been thoroughly treated, for instance
by martingale methods. However, incompletely observed spatial point processes, which are
the main topic of this paper, have received less interest. Point processes from images, as
in the example of the present paper, are potentially important sources of spatial point

processes observed with noise, cf. Young et al. (1998) for template matching of cells in
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digital microscopy, and van Lieshout (1994) for a Bayesian analysis of a scene with a

random set of objects generated by a point process.

6:2 Computational considerations

Only deterministic parameter search methods have been discussed in the present paper.
Random search methods are interesting alternatives which are particularly useful if our
estimation problem is considered as a missing data problem where the matching between
original and displaced points is unobserved. Possible algorithms are e.g. the stochastic EM
algorithm, Diebolt & Celeux (1993), MCMC approximations of the likelihood function,
Geyer (1996), and a Bayesian approach with missing data, Smith & Roberts (1993). By
regarding the matchings as missing data in a simulation type algorithm the evaluation of
the large sum in the likelihood (1) is replaced by sampling from a (large) number of states
in a simulation.

Related problems with matching of point sets arise in image analysis of multiple images
from different perspectives. An example is given by Cross & Hancock (1998) where an EM
algorithm is used to match graphs.

If the displacement density k has bounded support the approximation [ e k(Y| Xi) dy =
0 used in the example in this paper holds exactly for points X; such that the corresponding
support lies within A, and it is a good approximation when A is large compared to, say,
the 95% contour curves for the displacement distribution.

The initial step used in the present paper seems to function well, and our conclusion
from some experimentation is that the precise implementation of the initial step does not
appear to be crucial.

In general the suggested model and estimation algorithm work best when (i) the ran-
dom displacements are relatively small compared to the distances between the points in
the original point process X and (ii) the thinning probabilities and the intensity of the
superimposed Poisson process is relatively small. If these conditions are not satisfied the
model might still hold, but one could expect that we would then need a large number of
terms in the likelihood approximation and that many iterations would be necessary in the
likelihood maximization, in contrast to our example. The risk of finding a local optimum

instead of a global optimum would also be increased. Stochastic search algorithms would
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then be a natural alternative. Our example is, however, realistic for high quality aerial
photographs of forests, and the view analysed with sidelighted trees is the most difficult of

the three views studied in Larsen & Rudemo (1998).

6-3 FEaxtensions

In this paper we have considered the case where both the X- and the Y-processes are
observed, which enables us to estimate parameters of the disturbance mechanisms. When
we have such estimates it is possible to consider estimation of the X-process based on
observation of the Y-process alone. A natural procedure is to use a Bayesian approach

based on a prior point process model for the X-process.
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APPENDIX

Proof of Theorem 1

The likelihood function L(Y|X) is the Radon-Nikodym derivative of the measure described
in § 1-2 with respect to the Poisson process on A with intensity 1. We find the density by
considering the point process Y on a sequence of partitions.

A partition B of A is a set of disjoint subsets of A that have A as their union, and the
norm of B is defined as the maximal mesh-size, i.e.

1B]| = max Sup lz =yl

where ||z — y|| is the Euclidean distance between z and y. For a partition B we let
Y8 = (Y(B),B € B) denote the restriction of Y to B. Let us consider a sequence of
partitions B,,n > 1, of A. Assume that every B € B, can be written as a union of sets in

Bp+1, that ||B,|| — 0 and that |B|q > 0 for all B € B,
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Let P be the distribution of Y described in § 1-2 and let Py correspond to the Poisson
process on A with intensity 1. Further, let P" and P§ denote the distribution of Y5=
under P and Py. Hoffmann-Jgrgensen (1994, Sec. 11.11) now assures that if P" < Py,
then P < Py and the Radon- leodym derivative L, = W converges Py-a.s. to the
Radon-Nikodym derivative L = g5-. (For this to hold, we need sup,, L, < oo a.s., but this
condition is satisfied if we have convergence towards a limit L < oo a.s.)

In our case P" and Fj are distributions of a finite dimensional vector of integer-valued
random variables, and it follows that P"* < P§'. The Radon-Nikodym derivative is obtained
by dividing the two point probabilities with each other. We proceed to determine L.

Let y be a possible realization of Y (without multiple points). Then

R =y = [ o180 2 = exp(-ratg T B
° ( )! y(B)!

BeB, BeB,

Let us now turn to P*(YB» = yB»|X). To evaluate this probability we sum over the
finitely many ways in which the configuration y = {y;,j € N} can arise. Let M; and
N; denote subsets of M and N with |Mi| = |Ni1| and let 7 € P(M;y,N1). The set M;
corresponds to X-points that are neither thinned nor censored but displaced to a position
within A. The displaced X-points correspond to y;, 7 € N1, via the transformation 7
such that j = w(i). However, when we consider the distribution of the discrete variable
YB= rather than the full information Y, we should only consider into which sets in B, the
displaced points fall. For z € A we further let B(z) be the unique set B € B, such that
z € B.

The probability of a point Z; generated from the distribution k(- |X;), ¢ € M \ My, not
being observed (considering also thinning) is

p(X3) » k(2| X;)dz + 1 — p(X;).

This is seen from calculations like P(not observed) = P(not thinned)P(censored|not thinned)+

P(thinned). Similarly P(Z; € B) = P(not thinned)P(Z; € B|not thinned) for i € M, so

that

P(Z; € B) /kz|X
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Let us consider n-values so large that y(B) € {0,1} for B € B,,. Then we find

pPrYyPe =yP X)) = YRR,
%1%%’ wE€P(M1,N1)

1=
| M1 [=[N1]
where the three factors F1, Fs, and F3, correspond to displaced points, thinned or censored
points, and ghost points:

m=1] p(X,-)/ k(2] X;) dz,

i€ M B(y'lr(i))

B= ] (p(Xi)/Ack(z|X,-)dz+1—p(Xz~)>,

1€eM\ M,

y(B)—{i€ M1y ;) EBY|
Fs = H exp (—/ g(z|X) dz) {/ 9(z|X) dz}
B B

BeB,
= exp (—/ 9(z|X) dz) H / 9(z|X) dz
A jEN\N1 B@ﬂ

We now get the Radon-Nikodym derivative L, (y%"|X) = 3502 (yPn) as

Lo(y™X) =%=em (- ([seme-1a)) ¥ > Ank

M CM WE’P(Ml,Nl)
NiCN
| M1 |=|Ni|

with F5 as above,

) k(z|X;) dz

5 Isy 5
v |B(Yn(i))la jEINI\ .

Jp(y;) 9(21X) dz
|B(yj)la

Now, letting n — 00, ||By|| — 0 and replacing y with ¥ we find that the three factors Fy,

Fy, and Fy converge towards L, Lo, and L3, respectively. O
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TABLES AND FIGURES

Table 1: The value of T(s(i),é)/T(s(l),é), 1 =1,...,8, for the terms evaluated at the
approrimate mazrimum likelihood estimate 6 and the number of pairs in each of the corre-

sponding states

i 1 2 3 4 5 6 7 8
T(s9,0)/T(sM,6) 1 0.319 0.141 0.045 0.027 0.017 0.008 0.008
# pairs 161 161 160 160 162 160 162 160

Table 2: Parameter estimates and estimated standard deviations based on eight terms in

the likelihood sum

parameter P A 1 %) 0% (7% COV1,2
estimate 0.941 0.00028 -0.342 0.082 1.004 2.028 -0.049
std. dev. 0.018 0.00004 0.080 0.113 0.115 0.235 0.115

Table 3: Parameter estimates based on eight terms in the likelihood sum for three different

sets Y1,...,Y, with n=171, 206 and 2483, respectively

parameter p A 141 ) a% ag COV1,2
n=171 0.894 0.00011 -0.330 0.059 0.993 1.864 -0.092
n—206 0.941 0.00028 -0.342 0.082 1.004 2.028 -0.049

n=243 0.952 0.00050 -0.335 0.047 1.001 2.160 -0.035



500 O 171 'true’ tree tops

* 206 candidates

400

300 |

200

1007

Figure 1: Image with sidelighted trees, and, in the lower part, 171 X-points (centres of
circles) corresponding to ‘true’ tree tops and 206 Y-points (dots) corresponding to template
matching. The area of the delineated subplot is 4454 m?, and the unit of the axes in the

lower part is linear pixel size, 0.15 m.
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Figure 2: Model tree and, in the right part, template with optimal bounding ellipse.

Frequency
30 40
|

20
1

10
1

o

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Correlation

Figure 3: Histogram of the values of 570 positive local maxima for the correlation between

image and template.
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Figure 4: The logarithm of the terms obtained in the starting procedure for the approximate

likelihood maximization.
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Figure 5: Value of the conditional log likelihood as a function of the number of terms

included in the likelihood sum.
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