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Abstract

Markov Chain Monte Carlo has long become a very useful, established
tool in statistical physics and spatial statistics. Recent years have seen
the development of a new and exciting generation of Markov Chain Monte
Carlo methods: perfect simulation algorithms. In contrast to conventional
Markov Chain Monte Carlo, perfect simulation produces samples which
are guaranteed to have the exact equilibrium distribution. In the following
we provide an example-based introduction into perfect simulation focussed
on the method called Coupling From The Past.

1 Introduction

A model that is sufficiently realistic and flexible often leads to a distribution
over a high-dimensional or even infinite-dimensional space. Examples for such
complex distributions include Markov random fields in statistical physics and
Markov point processes in stochastic geometry. For many of these complex
distributions direct sampling is not feasible. However, there is a very useful
tool which may produce (approximate) samples, Markov Chain Monte Carlo
(MCMQO).

MCMC methods base the sampling of a distribution on a Markov chain. An
ergodic Markov chain whose equilibrium distribution is the target distribution
is sampled after it has run for a long time. There are many standard me-
thods, like the Metropolis-Hastings algorithm or the Gibbs Sampler, see Gilks
et al. (1996), which allow the construction of Markov chains whose distribution,
under regularity conditions, converges to the target distribution. A notoriously
difficult problem however remains: when has the chain run for long enough to be
sufficiently close to equilibrium? The MCMC literature refers to the initial time
the Markov chain is run until it is assumed to be close enough to stationarity
as the burn-in period.

In the last years a new variant of MCMC methods have been developed, so-
called perfect simulation algorithms. These are algorithms which automatically
ensure that the Markov chain is only sampled after equilibrium has been reached.
Thus they produce samples which are guaranteed to have the target distribution
and solve the problem of choosing an adequate burn-in period.

The aim of this paper is to give the reader a detailed introduction to the ideas
of perfect simulation. We concentrate on one particular method called Coupling
From The Past (CFTP) and its extensions. This algorithm was developed by
Propp and Wilson (1996) and, at the moment, is the more widely used method.
However, we would like to point out that there is an alternative general perfect



simulation method, Fill’s perfect rejection sampling algorithm, see Fill (1998a).
In contrast to Coupling From The Past, this method is interruptible, that is
the state sampled by the algorithm and its runtime are independent. Thus the
algorithm is also known as Fill’s interruptible algorithm. The interested reader
is referred to Fill (1998a), Fill et al. (1999) as well as Murdoch and Rosenthal
(1998) for a presentation of the method. Further applications and extensions of
Fill’s algorithm may be found in Fill (1998b), Mgller and Schladitz (1998) and
Thonnes (1999).

In the first section of this paper we will motivate the problem of choosing a
burn-in period using the example of a random walk. The next section then dis-
cusses couplings for Markov chains which are a basic tool in perfect simulation.
In Section 4 we present Coupling From The Past as developed in Propp and
Wilson (1996). This is followed by the discussion of two very useful extensions
of the method, Dominated Coupling From The Past and perfect simulation in
space.

Before we embark on our journey into the world of perfect simulation, let us
introduce some assumptions which we make throughout the paper. We consider
Markov chains which live on a state space E which is equipped with a separable
o-algebra £. We assume that the Markov chain of interest is ergodic, that
is irreducible, aperiodic and positive recurrent. For a general introduction into
Markov chain theory the reader may consult Norris (1997) or Meyn and Tweedie
(1993). Standard Markov chain theory tells us that the distribution of an ergodic
Markov chain converges towards the limit distribution, see for example Meyn
and Tweedie (1993). This distribution is called the equilibrium or stationary
distribution and is denoted by 7 throughout this paper. Our aim is to produce
an exact sample from the distribution 7.

2 Conventional Markov Chain Monte Carlo

As a simple introductory example let us consider the following urn model which
leads to a random walk on the four integers {0,1,2,3}. Urn models, like for
example the Ehrenfest urn model, are useful tools as they provide simple models
which may describe the movements of molecules. Because of their simplicity and
amenability to the method, simple random walks are also often used to introduce
the ideas of perfect simulation, see Kendall (1997), Kendall and Thonnes (1999).

Example 2.1 A random walk: Suppose we have three balls which are dis-
tributed over two urns. With probability 1/2 we pick a ball from the left urn and
put it into the right urn. Alternatively, we take a ball from the right urn and
put it into the left wrn. If we find a chosen wrn empty we do nothing. What is
the long-run average number M of balls in the right urn?

We may describe the number of balls in the right urn as a Markov chain X
whose state-flow diagram is shown in Figure 1. Suppose P denotes the tran-
sition matrix of X then, in this example, it is straightforward to compute the
equilibrium distribution 7 by solving the linear equation system 7P = 7. Then
we can determine M as the mean of 7. However, let us assume that we would
like to estimate M using simulation. We can do so by simulating the chain X
for s steps and by estimating M as the average * 37 _; Xn. The chain X may
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be simulated by flipping a fair coin. Everytime the coin comes up heads we go
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Figure 1: State-flow diagram for the Markov chain in Example 2.1.

a step upwards or if we are in state 3 we stay in state 3. If the coin comes up
tails we go a step downwards or if we are in state 0 we stay in state 0.

But how do we choose the initial configuration X¢? Suppose we start in 3,
that is we assume that in the beginning all 3 balls are in the right urn. Then
the first samples X, X5, ... will be slightly higher than we expect in the long
run. This is called the initialisation bias and it is due to choosing an initial
state which is not sampled from the equilibrium distribution. Nevertheless, for
any initial state the distribution of the Markov chain converges towards 7. So
a common procedure is to simulate the chain for a while without using the
initial samples in the estimate. We choose a time m € N and estimate M by
% Ef:;fl X,,- Thus the samples we produce before time m, during the burn-in
period, are ignored. But how long should we choose the burn-in period? We
would like the effect of the initial state to wear off, but when can we assume
this?

The choice of an appropriate burn-in period is a difficult problem which
may be approached in different ways. Omne possibility is to try to examine
analytically the convergence properties of the chain and thus to assess how fast
the chain approaches equilibrium. It is usually a hard task to find bounds on the
convergence rate and often the resulting bounds are not tight enough to be of
any practical value. There is a vast literature on convergence rate computations
and the interested reader is referred to a very incomplete selection: Roberts and
Polson (1994), Rosenthal (1995) and Saloff-Coste (1999).

Another approach to determine an adequate burn-in period is to use conver-
gence diagnostics. These are methods which observe the output of the MCMC
algorithm and warn if convergence has not been reached yet. However, although
these diagnostics may increase our confidence in that the Markov chain has con-
verged, they do not guarantee convergence. For an overview on the large variety
of convergence diagnostics see for example the reviews in Brooks and Roberts
(1999), Cowles and Carlin (1996).

A recent development are a new variant of MCMC methods which automat-
ically decide whether the chain has reached equilibrium. These methods have
become known as perfect simulation algorithms and have been particularly suc-
cessful for models in statistical physics and stochastic geometry. The basis of
perfect simulation are couplings and the next section is devoted to a detailed
introduction into the coupling method.

3 Coupling
In the last section we encountered the problem of determining the length of

the burn-in period. During this burn-in we would like the effect of choosing an
initial state, which was not drawn from the equilibrium distribution, to wear off.



A reasonable idea seems to start a path of the chain from each possible state and
then to wait until they all produce the same results. The intuition is that then
the results are no longer influenced by the starting value of the chain. To give the
paths started from different initial states a chance to agree we adopt a method
which is called the coupling method. A coupling specifies a joint distribution
for given marginals. The couplings considered in our setting are of a more
restrictive nature: two stochastic processes are coupled if their paths coincide
after a random time, the coupling time. Couplings are an extremely useful tool
in probability theory and are often used to determine convergence properties
of Markov chains. For an introduction into the coupling method we refer the
interested reader to the book by Lindvall (1992). As we will see at the end of
this section, “forward” couplings as described here are not sufficient to produce
a sample with the exact equilibrium distribution. Nevertheless, couplings are
an essential tool for perfect simulation and thus we will discuss in greater detail
how we may couple paths of a Markov chain which are started in different initial
states.

3.1 Random walks

Let us first consider the random walk from the previous section. Here we would
like to start a path of the chain in each of the possible initial states {0,1,2,3}.
Recall that we can use a fair coin to produce paths of the chain. This also
provides us with a simple way of coupling paths from different initial states.
Whenever the coin comes up heads all paths go a step upwards or stay in 3 if in
3. Alternatively, if the coin comes up tails then all paths move a step downwards
or stay in 0 if in 0. Figure 2 illustrates the procedure. Each of the resulting
paths behaves like a path of the random walk started in the corresponding initial
state. The coupling is such that once the state of two paths coincides subsequent
states of the two paths also coincide. In other words, if paths meet then they
merge, we say they coalesce. As we continue evolving the paths they all merge
eventually and we reach complete coalescence. At this point the current state
of the chain is the same regardless in which state it was started. Note from
Figure 2 that the paths started from the intermediate states 1 and 2 always lie
between the path started in state 0 and the path started in state 3. This is
due to the fact that we use a monotone transition rule to make the updates.
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Figure 2: Coupled paths of the random walk in Example 2.1 produced by ap-
plying the same outcomes of coin flips to all paths. Note how paths coalesce as
they meet. Complete coalescence is achieved after 7 steps.



A transition rule is a random map which specifies a transition for each state
according to the transition kernel of the chain. If all realisations of the random
map are monotone functions then we call it a monotone transition rule. In our
example the transition rule is given by

min(n+1,3) fC=H

fe) = {mmOriY ReZy  neli2n @)

where C describes whether the coin comes up heads (H) or tails (T). The
transition rule is thus a random map whose realisations are specified by the
realisations of the coin toss. We achieve the coupling of paths by applying the
same realisation of the random map f to all paths.

Notice that P(f(n,C) = m) = pp,m for n,m € {0,1, 2,3} where p,_ n, are the
transition probabilities of the target chain X. Furthermore, observe that

3
]P’(f(n,C’) = f(m,C’)) > j;opn,j Pm,j for all n,m € {0,1,2,3}. (3.2)

This means that at each step of our coupling the probability of two paths merg-
ing when using the transition rule f is greater or equal than the probability
of two paths merging in an independent coupling. An independent coupling is
achieved if we use an independent coin for each path. This does not hold for
every coupling. For example consider the simple symmetric random walk on
the vertices of a square as given in Figure 3. If we take a fair coin and move
from each state clockwise if it comes up heads and anti-clockwise if it comes up
tails, then paths started from different initial states will never meet. The per-
fect simulation algorithm, which is presented in the next section, assumes that
we use a transition rule for which the analogue of (3.2) holds. This can always
be satisfied as we can choose an independent coupling of paths. However, the
speed of the algorithm is greatly increased if we choose a coupling such that
paths coalesce quickly.

The realisations of the random map f in (3.1) are monotone and so f is
a monotone transition rule. Thus the use of f leads to paths which maintain
the initial order between the starting states. A necessary requirement for the
existence of such a monotone transition rule is the stochastic monotonicity of
the transition kernel of the Markov chain, for a definition see Lindvall (1992)
or Stoyan (1983). Due to the monotonicity of f we can determine the time of
complete coalescence simply by monitoring the path started in state 3 and the
path started in state 0. Complete coalescence occurs if and only if these two
paths merge and this occurs in finite time almost surely. For our random walk
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Figure 3: For this random walk we may define a coupling such that paths started
in different states do not meet.



this may seem not such a big improvement. However, for many Markov chains
on large state spaces the determination of complete coalescence is not practical
if we have to monitor the paths from all initial states. One example for such
a chain is the Gibbs Sampler for the Ising model, which will be presented in
Section 3.2. But first let us discuss another urn model.

Example 3.1 Another random walk: As before, we assume we have three
balls distributed over two urns. However, in this example if we choose the left
urn and it is empty, then we take a ball from the right urn and put into the
left one. If we find the right urn empty we do nothing. Below is the state flow
diagram of the resulting random walk. It only differs from the previous example
in the type of moves the chain can make from state 3.
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Figure 4: State-flow diagram for the Markov chain in Example 3.1.

Again we can simulate the chain by flipping a fair coin. We choose the following
strategy. Everytime the coin comes up heads we remain in state 0 if we are in
0, we move a step up if we are in state 1 or 2 and we move a step down if we
are in state 3. Alternatively, if the coin comes up tails, we move a step up from
state 0 and we move a step down if we are in state 1, 2 or 3.

Similar to the previous example we may produce a coupling of paths by using
the same realisation of a coin flip when updating the paths. Unfortunately the
resultant coupling is not monotone. (This is easily verified by drawing some
sample paths). However, by using a cross-over trick we may still determine the
time of complete coalescence by keeping track of two paths only. This cross-over
technique was first used in Kendall (1998) and is further examined for Markov
random fields in Higgstrom and Nelander (1998).

As before, we may describe the coupling using a transition rule given by

n+1 if C=H andn € {1,2}
n—1 if C=Tandn € {1,2}

fn,C) = 0 ifC=Handn=0 (3.3)
1 ifC=Tandn=20
2 ifn=3

where C' is the realisation of the coin flip. Suppose we impose the following
partial order on the state space: 2 <0 <1 < 3. Then for fixed C' and n < m
the above transition rule satisfies f(n,C) > f(m,C). For example if C = H,
then 0 = f(0,H) = f(1,H) = 2. Thus the transition rule is anti-monotone. In
Figure 5 we have ordered the states according to < and drawn some coupled
sample paths of the chain. The anti-monotonicity of our coupling can easily be
seen in the figure. For example in the first update, the highest state 3 moves to
the lowest state 2 and the lowest state 2 moves to the highest state 3.

The anti-monotonicity of the transition rule allows us to monitor complete
coalescence by evolving two paths only. We denote the two paths by X™ and



Xmax_ We start the minimal path in the minimal state and the maximal path
in the maximal state, that is

Xpn = 2 and X = 3.

We then evolve the two paths as follows
xpnoo= p(xpeol) oxEm o= f(XEm o),

where (Y, is the kth coin toss. Hence the two paths evolve as a two-component
Markov chain in which the update of one component is made according to the
current state of the other component. The two components are not individually
Markov and, as long as they differ, they do not evolve according to the transition
probabilities of our random walk. However, once the two components coincide
they do evolve like our random walk. Most importantly, the minimal and maxi-
mal path sandwich between them all paths of our random walk if evolved using
the same coin flip realisations. Thus coalescence of the minimal and maximal
path implies complete coalescence of the paths started from all initial states. In
Figure 5 we have drawn the maximal and the minimal path as dotted lines. In
this realisation the minimal and the maximal path (X™® Xmax) start in (2, 3)
respectively and then evolve as (2, 3),(2,3),(2,3),(2,1),(0,1),(2,0) and finally
coalesce after 6 steps in state 1. In the seventh step they jointly reach state 2.

Coin Flips
Time 0 1 2 3 4 5 6 7

Figure 5: Coupled sample paths of the random walk in Example 3.1. Note
that we reordered the initial states and that the coupling is anti-monotone with
respect to the new ordering. The dotted lines show the maximal and the minimal
path.

3.2 The Ising model

The next example, the Ising model as described for example in Winkler (1991),
is taken from statistical physics and was one of the first models to be considered
for perfect simulation, see Propp and Wilson (1996), Fill (1998a). The Ising
model is probably the simplest form of a Markov random field. Markov random
fields are defined on a discrete lattice A of sites where each site may take a value
from a finite set of states S. The distribution of a Markov random field is given
by the expression .
(@) = 5 ew(-H@),

where Z is the normalizing constant known as the partition function and H(x)
is the energy function. For most Markov random fields there is no closed form



expression for the partition function and therefore direct sampling of these mod-
els is not feasible. However, we may produce (approximate) samples of these
models using MCMC.

Example 3.2 Ising model:
The Ising model has energy function

H(z) = —%[Jij:ck—Bmka]

Gk k

where j, k are sites on a square lattice A. Here j ~ k, that is site j is a neighbour
of site k, if j and k are sites at Fuclidean distance one. We may imagine the
Ising model as o lattice which at each site has a small dipole or spin which
is directed either upwards or downwards. Thus each site j may teke a value
x; € {—1,+1} representing a downward respectively an upward spin.

A standard method of constructing a Markov chain whose distribution converges
to the target Markov random field is the Gibbs Sampler, see Geman and Geman
(1984). The Gibbs Sampler is based on sampling from the full conditional
distributions of a multi-dimensional Markov chain. For Markov random fields
these full conditional distributions reduce to the local characteristics of the
model. The following Gibbs Sampler, in the statistical physics literature also
known as the heat bath algorithm, see for example Creutz (1979), produces a
Markov chain whose distribution converges to the Ising model. We start by
choosing some initial configuration on the sites of a finite lattice A. Then, step
by step we go from one site to the next and update its spin. At site n we assign
an upward spin with probability

m(x, =41, z_p)
T(Tn = +1, _p) +7(Tn = =1, T_p) ‘

P(mn =41 | :U_n) =

Here z_,, denotes the configuration z on A excluding the site n and so the above
is the conditional probability of the Ising model having an upwards spin at site
n given the current spin configuration on all other sites. The reader may verify
that

o= fo) = (een(- o [ Ex])”

jn

which, notably, does not depend on the partition function Z.

More specifically, at each step k we independently draw a random number
Ui which is uniform on the interval (0,1) and a random number N}, which is
uniform on the lattice A. We then assign an upward spin to the site Ny, if

U < P(ka =+1 ‘ 'Z._Nk)7

otherwise, we assign a downward spin.

As the lattice A is finite we need to specify how we treat sites which are on
the boundary of A. One possibility is to impose periodic boundary conditions
(also called the torus condition). Here the lattice is mapped onto a torus by
identifying opposite boundaries. However, edge-effects may occur, that is the



sample we draw may not behave exactly like a finite lattice sample of an Ising
model defined on an infinite grid. In Section 6 discuss how these edge-effects
may be avoided but for now let us assume the torus condition.

We can couple paths of the Gibbs Sampler started from different initial states
by reusing the sampled random variates Ny and Uy, k € N. At time k we update
the same site N in each path using the same realisation of Uy for all paths.
As in the previous example we may describe our updating procedure using a
transition rule. We set

{zny = —-1,2_n} otherwise (3-4)

f(JI,U,N) _ { {.’L‘N = +].,.TL‘,N} ifU < P(.CL‘N =41 | .’E,N)
where {zy = +1,z_n} is the configuration which we obtain by setting zny = +1
and leaving the spins of all other sites in 2 unchanged.

One problem we encounter is that the set of all initial states of the Ising
model is usually very large. Thus it may be prohibitively expensive to monitor
all paths. However, as for the random walk examples, we may exploit the
monotonicity or anti-monotonicity of the transition rule to determine efficiently
the time of complete coalescence. Let us have a closer look at the update rule
which we are using. We assign an upward spin to site N if

U < P(xN:H‘x,N) = (1+exp(—% [mB-}-JZZ.J_]))_l.
j~N

First consider the case when J > 0, that is the ferromagnetic Ising model. Then
the probability P(zx = +1 | z_n) is the greater the more neighbours of N have
an upward spin. We may exploit this fact by equipping the state space of the
Ising model with an appropriate partial order <. We say the spin configuration
x is smaller than y, that is ¢ <y if

z; <y for all j € A.

This partial order, which was used in Propp and Wilson (1996), may seem
counter-intuitive from a physical point of view as a larger state may not neces-
sarily have smaller energy. However, we do not attempt to attach any physical
meaning but simply define a partial order for which our transition rule is mono-
tone. Figure 6 shows a triple of configurations which are ordered with respect
to <.

Now, if z <y then

]P’(xN =+1 ‘ x_N) < ]P’(yN =41 ‘ y_N) for any N € A.

[ JoN Nei [ X N Nei o000
[ NoN Ne < [ ol Nei < [ JoN XN
[oN NeoNe - ceoe o o000
ceoe ceeoe o000

Figure 6: Three spin configuration on a 4 x 4 lattice. Upward spins are repre-
sented as black sites and downward spins as white sites. We ordered the three
configurations with respect to <.
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Figure 7: Coupled paths of the Gibbs Sampler for the ferromagnetic Ising model
on a 4 x 4 lattice. Black sites have an upward spin, white sites a downward spin.
The site that has just been updated is encircled. The uppermost path is started
in Z..., the lowermost path in z,;,. Observe how the path started from the
intermediate configuration is sandwiched between the two paths started in the
maximal and minimal state.

It follows that, for fixed U and N, whenever f assigns an upwards spin to zy
then it also assigns an upwards spin to yy as

U < ]P(.’EN:—I—1|.CL'_N) < P(yNZ—}—l‘y_N).

Analogously, for fixed U and N, whenever f assigns a downward spin to yn then
it assigns a downward spin to . Thus if £ < y then the updated configurations
maintain their partial ordering, that is f(z,U, N) < f(y,U, N) for fixed U and
N. Tt follows that our transition rule is monotone with respect to < and so
the partial ordering between paths is preserved. The state space has a maximal
state ..., with respect to < which is the configuration consisting of upward spins
only. Similarly, the minimal state ..., is given by the configuration consisting
of downward spins only. Due to the monotonicity of the transition rule f the
paths are coupled in such a way that all paths lie between the path started in
the maximal state and the path started in the minimal state, see also Figure 7.
Complete coalescence occurs if and only if these two paths coalesce which will
occur in almost surely finite time.

Now let us discuss the anti-ferromagnetic case, that is if J < 0. Careful
inspection of the transition rule leads to the observation that f is anti-monotone
because for z <y

Plon=+1]o_y) > P(yw=+1]yn).

Moreover, if we start two paths in two states which are comparable with respect
to < then after some updates the states of the two paths may no longer be
comparable. However, we can still monitor complete coalescence by monitoring
a minimal and a maximal path which are evolved according to a cross-over. We
start a path X™2 in ., and another path X™™ in z,,,. We then update the
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two paths according to
xpn = f(XP UGN and XpEo = f(XER UGN,

This leads to a maximal path X™2* and a minimal path X™" which sandwich
between them the paths which are started from all initial states and evolved
according to the transition rule f and same realisations of Uy and Ny, k € N.
Thus we may determine complete coalescence by monitoring whether X™2* and
X™in coalesce. This can be shown to occur in almost surely finite time. Figure
8 illustrates the coupling and cross-over procedure.
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Figure 8: Coupled paths of the Gibbs Sampler for the anti-ferromagnetic Ising
model on a 4 x 4 lattice. The uppermost and lowermost path are the maximal
and minimal path respectively and evolved according to a cross-over. The two
intermediate paths in the middle are evolved according to the standard coupling
construction. Note that although these two paths are comparable at time 7" = 0,
they are no longer comparable at time T' = 6. However they are still comparable
to the states of the minimal and the maximal path.

3.3 Immigration-death process

Our final example is an immigration-death process on the natural numbers and
thus a Markov chain on an infinite state space.

Example 3.3 Immigration-Death process:

Consider the number of dust particles contained in a given small volume. If there
are N particles in the system, then new particles enter at a rate A (N +1) /(N +
2), where X\ is some positive constant. Thus the immigration rate increases the
more particles are already in the system. Particles stay in the system for an
exponential amount of time with unit mean.
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The number of particles N in the given volume is an immigration-death
process with transition rates

N - N+1 at rate A (N +1)/(N + 2),
N - N-1 at rate N for N € Ny. (3.5)

We may simulate N as follows. We start by simulating an immigration-death
process D with transition rates

D —- D+1 at rate A
D - D-1 at rate D for D € Ny. (3.6)

Observe that D and N have the same death rate, but the immigration rate of D
is larger than for N. In mathematical terms, D stochastically dominates N. A
description on how to simulate a constant rate immigration-death process may
be found in Ripley (1987).

Given a realisation of D we may derive a realisation of the process N. As
the initial configuration Ny at time 0 we choose a number from {0,1,...,Dg}.
Now, whenever a particle arrives in D say at time ¢, it enters the given volume
with probability (N;— + 1)/(N;— + 2) where N;_ is the number of particles in
the system immediately before the arrival of the new particle. We may achieve
this by marking every immigration time ¢ of D with an independent random
variable U; which is uniform on the unit interval. The new particle enters the
system if and only if
Ny +1
Ny +2°

Finally consider a death in D at time ¢ which leads to a death in NV at time
t with probability N;_ /D;_. Again we may achieve this by marking any death
time ¢ in D with a mark U; which is uniform on the unit interval. A death
occurs in N at time ¢ if

U

Ny
< e
= D

In the following whenever we speak of the dominating process D we implicitly
mean the process D and its jump time marks. By coupling NV to D we not only
define a simulation procedure, but, as we will see in Section 5, we also make the
process N amenable to a perfect simulation algorithm. Perfect simulation of
birth-and-death processes on the natural numbers like the one above was first
described in Kendall (1997).

The coupling procedure may be illustrated using a Hasse diagram as in
Figure 9. It consists of a sequence of horizontal levels which stand for the
states {0,1,2,...}. On each level we have arrows representing the jump times
of D. An arrow pointing upwards indicates an immigration time and an arrow
pointing downwards a death time. The arrow corresponding to the jump time
t is marked with U;. Now, for each level we may delete arrows according to
the rules described above. For example, on level 3 corresponding to state 3 we
delete any upwards arrow whose associated mark U exceeds (Ny— +1)/(Ny— +
2) = 4/5. We delete any downwards arrow whose associated mark U; exceeds
Ni_/Dy_ = 3/D;_. The process N started in some state j € {0,..., Do} may
now be constructed as follows. We start on level j and move from left to right.
Whenever we come across an upward arrow we go a level upwards. Alternatively,

Uy

12



whenever we come across a downward arrow then we go a level downwards, see
Figure 9.

States
[ )

(2]
—_— | — | — | —

| I
— || — | — | — | — |[— | — | —
— || — | — | — | — |[— | — | —

—_— | — | — | — | — | — [ — | —

,_.
I—»—»—»—»—»

Time

Figure 9: The Hasse diagram for the immigration-death process in Example 3.3.
The dashed line shows D which was started at time 0 in state 5. Some of the
jump times were deleted according to our decision rules. Notice that the more
jump times of D are deleted the lower the level. The solid line shows a path of
N started in state 0 and evolved coupled to D.

For the immigration-death process in Example 3.3 we may produce a cou-
pling by using the same realisation of D and the associated jump time marks
U, t > 0, and applying the above procedure to all paths started in a state
j €40,...,Do}. From Figure 9 we may see that two paths can never cross each
other but can only meet and then merge. Thus the paths maintain the partial
ordering of their initial states and so the coupling is monotone. It follows that
complete coalescence of paths started from every state in {0, ..., Do} occurs if
and only if the path started in state 0 and the path started in state Dy coalesce.
The state space of the target process N are the natural numbers Ny which, of
course, is much larger than the finite set {0,...,Do}. However, as we will see
in Section 5, to produce a perfect sample we only need complete coalescence
for the set bounded above by D. Complete coalescence occurs in almost surely
finite time as a sufficient event is that D hits zero, in which case all relevant

13



paths of N also hit zero.

3.4 Forward Coupling and exact sampling

We started this section with the motivation of finding a time when the effect
of the initial state of the chain has worn off. We may argue now that this
has happened when complete coalescence occurs as in this case the chain is in
the same state regardless of its starting value. Let S be the time of complete
coalescence which is a random stopping time. We may think that Xg has the
equilibrium distribution, however, this intuition is flawed! Even if the chain had
been started in equilibrium we cannot conclude that Xg has the equilibrium
distribution. This is due to the fact that S is not a fixed but a random time.
As an illustration let us consider again our random walk from Example 2.1.
From Figure 2 we can see that at the time of complete coalescence, that is at
time S, the chain is necessarily either in state 0 or in state 3. Clearly, this is
not a sample of the equilibrium distribution which is uniform on the integers
{0,1,2,3}.

Fortunately, a rather simple but very effective modification enables us to
sample X in equilibrium. This modification is called Coupling From The Past
and is due to Propp and Wilson (1996).

4 Coupling From The Past

The last section showed how to couple paths of a Markov chain from different
initial states such that after a random time S, the time of complete coalescence,
all paths have merged into one. Although the state of any of these paths at time
S does not depend on its starting value we have seen that sampling the chain at
time S may give a biased sample which is caused by the fact that S is not a fixed
time but a random stopping time. In the following we discuss an alternative
approach called Coupling From The Past (CFTP) which was introduced by
Propp and Wilson (1996). It is also based on coupling and complete coalescence
but samples the chain at a fixed time, namely time 0.

Recall from the previous section that we produced coupled sample paths of
the chain X started from every initial state by sampling transition rules. At each
time step k € N we independently sampled a transition rule f; and produced a
sample path starting in z € E by setting

Xp(x) = fu(Xe—1(z)) = feofe—10---0 fi(z).

For instance, for our random walk in Example 2.1 we sampled an independent
coin Cj_1 and set

Xi(z) = f(Xp-1(2), Cr-1)
where f is defined as in (3.1). We have also seen in the previous section that an
adequate choice of transition rules eventually leads to complete coalescence of
the sample paths. Or, in other words, the image of the composite map defined
as

For = feofr—10---0f1 (4.7)
eventually becomes a singleton as k approaches infinity. Let S be the time of
complete coalescence then, unfortunately, the unique image of Fj s does not
have the equilibrium distribution in general.
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In 1995, Propp and Wilson made a simple but ingenious observation: if we
reverse the order in which we compose the sampled transition rules and continue
sampling until the image of the composite map becomes a singleton then this
unique image has the equilibrium distribution!

Let us look at this in more detail. At time k& we sample the transition rule
fr but now we define a composite map by

ﬁb,k = fio--ofp.

Thus we have reversed the order of composition compared to (4.7). The above
is equivalent to the following procedure. We go backwards in time and sample
at time —k the transition rule f_j and now define a composite map by

F ro = f-10--0f keN (4.8)

A nice illustration of the difference between forward coupling as in (4.7) and

backward coupling as in (4.8) on the example of Matheron’s dead leaves model

can be found in Kendall and Thénnes (1999). It is also illustrated in an animated

simulation on http://www.warwick.ac.uk/statsdept/Staff/WSK/dead.html.
How can we interpret the composite map in (4.8)7 If we set

X;h@) = fojoroo fsla)

then {X{k(x),—k < j < 0} behaves like a path of X started at time —k
in state . Thus F_po(z) is the state at time O of a path of X started at
time —k in state z. It follows that F_; o has a singleton image if and only if
the corresponding coupled paths of X started at time —k in all initial states
achieve complete coalescence by time 0. Thus the above procedure produces
coupled paths started in all initial states at earlier and earlier times until they
achieve complete coalescence by time 0. The time when all paths coalesce is not
necessarily time 0 but can occur earlier. Nevertheless, we only ever sample at
the fixed time 0. If complete coalescence is achieved then the common state at
time 0 is an exact sample from 7.

We may describe the procedure using the pseudo-code notation from com-
puter science. Suppose we have an algorithm RandomMap (—k) which samples
the transition rule f_j. Then we can describe the CFTP algorithm as follows:

CFTP:
k<0
Fy + identity map
Repeat
kE—k-1
f < RandomMap (k)
Fy, + Fk+1 o f
until image of F} is a singleton
return image of Fj

We will first give a heuristical argument which provides an intuitive expla-
nation why this method produces an exact sample. This is followed by some
examples. A rigorous proof for the correctness of the procedure is given at the
end of the section.
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Let —T be the first time when the image of F_j ¢ becomes a singleton, that
is T = min{k : F_ o has a singleton image}. Suppose we could start the chain
X at time —oo and run it up to time —7'. As the chain is ergodic and has run for
an infinite amount of time, the heuristic suggests that the chain is in equilibrium
at time —T'. Suppose now that the value of the infinite time simulation at time
—T is z, then x is a sample from 7. The transition rules f_,k € N describe
transitions according to the transition kernel P of X. As 7P = 7 the transition
rules preserve the equilibrium distribution and so it follows that F_rg(z) is
also a sample from 7. Of course, we do not know z but, as the image of the
composite map is unique, it does not matter which value z the infinite time
chain takes at time —7'. Hence, if the image of the composite map becomes a
singleton then we may deduce the state of the infinite time simulation at time
0. Thus, by extending backwards in time until the image of the composite map
becomes a singleton, we reconstruct the path of the infinite time simulation in
the recent past. In other words, we create a “virtual simulation from time —oo0”.

Let us now apply the above algorithm to our examples. For the random walk
in Example 2.1 the procedure runs as follows. Recall that we may simulate the
random walk using fair coin flips. We go step by step backwards in time and
perform the following routine.

1. At time —k, k € N, we independently flip a fair coin C_y.

2. We then start a path from all initial states {0,1,2,3} and evolve them
from time —k till time 0 according to the coin flips C_g,C_gy1,...,C—1
(note the order of the coins!).

3. If all paths coalesce at time 0 then we return their common state as a
sample from 7.

If the paths do not coalesce, then we go a step further backwards in time and
repeat the above steps. Thus we independently flip another biased coin C_j_1,
and again evolve the paths started in all initial states from time —k—1 to time 0
using the coin flips C_j_1,C_g, ..., C—1. We continue going successively further
backwards in time until we finally reach complete coalescence at time 0.

Remark 4.1 It is essential that in the kth iteration the coins are used in the
order C_y,C_k41,...C_1 and that we reuse all previously sampled coin flips in
the appropriate order. Only then is the sample guaranteed to have the equilib-
rium distribution.

We can make the above procedure more efficient by noting the following.
It is not necessary to evolve paths started in all initial states till time 0. As
discussed in the previous section, due to the monotonicity of the transition rule,
complete coalescence occurs if and only if the path started in state 0 and the
path started in state 3 coalesce. Thus we only need to monitor these two paths
for coalescence.

Neither is it necessary to check for coalescence at each time step. Recall that
complete coalescence of paths started from time —7" means that the map F_7
has a singleton image. But then the composite map F_7_10 = F_100 f_7_1
has exactly the same singleton image and, by induction, so has any F_g o with
S > T. Thus we may proceed as follows. Let 0 = Tp < T1 < T5... be
an increasing sequence of time points. Then for k£ = 1,2,..., we perform the
following steps until we reach complete coalescence:
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1. Sample independent coin flips C_1,,C_7,41,...,C_1_,—1-

2. Evolve one path started in state 0 and one started in state 3 from time
—T}, to time 0 using the coin flips C_7,,C_7, 41,--., C_1.

3. Check for coalescence at time 0.

A recommended choice for the sequence of time points is Ty = 2¢¥~!, which in
Propp and Wilson (1996) is shown to be close to optimal.

For simulation purposes we do not need to store all coin toss realisations.
Instead we can reproduce them by resetting the seed of a seeded pseudo-random
number generator.

Figure 10 illustrates the CFTP algorithm for the random walk from Example
2.1

Tteration 1: Tj = 3 @—»@—»@\
/4@\@

N /@@@

tmn@’i@@ © 0 0050\
0/20\8 /280!

/ Ne/odcNoRte

5o 6 e S 6 6

Coin Flips: H
Time -8 -7 -6 -5 -4 -3 -2 -1 0

Figure 10: CFTP for Example 2.1. The paths started in state 0 and in state 3
are shown as solid lines. The dotted lines are the paths started from interme-
diate states. However we do not need to monitor these to determine complete
coalescence. Note how the coin toss realisations of the previous iteration are
reused! Complete coalescence occurs at time —1, however we continue till time
0 and sample state 2.

For the random walk in Example 3.1 we may proceed in a similar fashion.

As discussed earlier, in this setting we may use a cross-over to detect com-
plete coalescence of all paths by monitoring two paths only, a minimal and a
maximal path. At time —T} we start a path in the minimal state 2 and a path
in the maximal state 3. (Recall that we chose a partial ordering < which differs
from the natural partial ordering on the integers.) We then evolve the minimal
and the maximal path by updating the minimal path according to the current
configuration of the maximal path and vice versa. If coalescence of these two
paths occurs by time 0, then their common state at time 0 has the equilibrium
distribution.
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For the Ising model we may proceed as follows. In iteration k& we sample
independent random variables U_r, ,U_1, +1,-..,U_1,_,—1 which are uniform
on the unit interval and random variables N_7,, N_7,41,..., N_1,_,—1 which
are uniform on the lattice A. In the ferromagnetic case, we start a path in z,,.,,
that is the configuration consisting of only upwards spins, and a path in z,;,,
that is the configuration with only downward spins. The two paths are evolved
from time —T} to time 0 using the transition rule f as defined in (3.4) together
with the realisationsof U_r, ,U_1,41,...U_1and N_1, , N_1,41,... N_1. If the
two paths coalesce then we output their common state at time 0 as a sample
from the equilibrium distribution. If coalescence has not been achieved yet then
we extend further backwards in time.

In the anti-ferromagnetic case we adopt the following procedure. In iteration
k we also sample independent random variables U_1,,U_7, 41, ..., U_1,_,—1
and N_1,,N_7,41,-.-N_1,_,—1. We again start two paths at time —T}, one
in z.,,, and one in z.;,,. However, we now evolve the two paths according to
a cross-over as described in the previous section. As before, if coalescence of
these two paths occurs then we may deduce complete coalescence of the paths
started in all initial values. The unique state at time 0 is then a perfect sample.
If coalescence has not occurred yet then we extend further backwards in time.

Remark 4.2 The heat bath algorithm is known to miz slowly for temperatures
close to criticality. To produce samples of the Ising model close to the critical
temperature Propp and Wilson (1996) apply Coupling From The Past to a Gibbs
Sampler for the random cluster model. (This type of Gibbs Sampler is also
known as single bond heat bath.) By assigning random colours to the obtained
clusters a realisation of a random cluster model is turned into a realisation of an
Ising or Potts model. Propp and Wilson (1996) produced samples of the Ising
model at critical temperature on a 512 x 512 toroidal grid in about 20 seconds
on a Sparcstation. CFTP needed to go back only to about time -30 to produce
such a sample. The authors also show how to produce samples from the Ising
model simultaneously for a range of temperature values.

We now give a rigorous proof for the correctness of the CFTP algorithm for
finite state spaces, see also Propp and Wilson (1996).

Theorem 4.3 Let X be an ergodic Markov chain with transition matriz P and
stationary distribution w. Coupling From The Past as presented above produces
an exact sample of the target equilibrium distribution .

Proof : For k € N consider the composite map
F—k,—j = f—j—l 0---0 f—k where ] S k.

We will first show that the image of F_, ¢ almost surely becomes a singleton as
k approaches infinity. We then proceed to show that this unique image has the
distribution 7.

Let z € FE be an arbitrary state in the state space of X. As the chain X
is irreducible and aperiodic there is a finite N > 0 such that PN (y,z) > 0
for all y € E. Here PV denotes the N—step transition matrix of X, that is
PN(y,z) = P(Xn = 2| X = y). It follows the existence of a constant € > 0 such
that for any £ € N we have

]P’(image of F_pn,_(k—1)n is a singleton) > €.
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Now, the events
{image of F_pn,_(k—1)n is a singleton}, keN
are independent and have a probability of at least e. Thus by Borel-Cantelli
S = min {k € N: image of F__jn _(xr—1)n is @ singleton}
is almost surely finite. But then the composite map

F_sno = F_sn_(s—1)n © F_(s_1)np

has also a unique image.
Like the “forwards” composite map

For = fro---ofi

the map F_j o is composed of k independent transition rules and thus X *(z) =
F_j o(x) has the same distribution as X (z) = Fy r(x). Now, Xy (z) for k € Ny
is a path of X started at time 0 in = and so, due to the ergodicity of X, the
distribution of X}, () converges to 7 as k approaches infinity. As X, *(z) has
the same distribution as Xy (x) it follows that its distribution also converges to
m. Moreover, by the definition of X k¥ we have

lim Xg*(z) = lim F ,o(z) = unique image of F sy g
k—o0 k—o00

where S is defined as above. As X k(z) tends in distribution to 7 it follows
that the unique image of F_gn o must also have the equilibrium distribution .

O

5 Dominated Coupling From The Past

In this section we discuss an extension of the original CFTP algorithm as in
Propp and Wilson (1996). This extension is called Dominated Coupling From
The Past, or Coupling Into And From The Past, and is due to Kendall (1997),
see also Kendall (1998). Suppose T' > 0 is the smallest random time such that
coupled paths of the target chain started in all initial states at time —T have
coalesced by time 0. Foss and Tweedie (1998) showed that T is almost surely
finite if and only if the chain is uniformly ergodic. Thus CFTP as described
in the previous section only applies to uniformly ergodic Markov chains. How-
ever, many Markov chains of interest, in particular chains which converge to
point process distributions, are not uniformly, but only geometrically ergodic.
Fortunately, Dominated Coupling From The Past may enable us to sample the
stationary distribution of these Markov chains.

Dominated CFTP essentially specifies a time-evolving bounded random set
0;,t € R, such that

1. there exists an almost surely finite time 7" such that paths started at time
—T from all initial states in @_7 coalesce at time 0,
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2. if coalescence as in 1. occurs then the unique state at time 0 has equilib-
rium distribution.

Heuristically we may think of ©; as a random set which provides a stochastically
varying upper and lower bound on the values at time ¢ of an infinite time simula-
tion. This is best explained using an example, so consider our immigration-death
process from Example 3.3. In Section 3 we showed how to couple paths of the
process started from different initial states. We have seen that this coupling
is monotone with respect to the natural ordering on the integers. The state
space has a minimal state with respect to this partial order, the state 0, but it
does not have a maximal state. However, due to our coupling construction, we
do know that the process IV is bounded above at any time by the process D.
Thus, although we do not have a fixed bound on Ny for any ¢ € R, we do have
a random bound given by D; and we may set ©; = {0,..., Ds}.

How can we exploit this in a CFTP-type algorithm? Let us first use the
heuristic of an infinite time simulation to provide the intuition; a formal proof
follows later. Consider an infinite time simulation of the target Markov chain N
started at time —oo. We denote the infinite time simulation by N~°°. Our aim
is to reconstruct the path of N~ in the recent past. Clearly, N~°° is bounded
below by 0. But how about an upper bound? If we assume that the infinite time
simulation N ~°° is started in state 0 and coupled to an infinite time simulation
of D then N~ is bounded above by D~>°. So our first task is to reconstruct
the path of D~ in a finite interval [-T,0]. A little thought shows that this
is easily done. If D was started at time —oo then heuristics suggest that it is
in equilibrium at time —7'. Now, the stationary distribution of D is a Poisson
distribution which is easy to sample. Thus, if we start D at time —T in its
equilibrium and simulate it till time 0 then we may interpret this realisation as
the path of D~ on [-T,0].

Because N~ °° is coupled to and thus bounded above by D, we may deduce
that the path of N~ on [T, 0] lies below the given realisation of D on the
same time interval. In particular we have that N”7° < D_r. Suppose that
the paths of N started at time —T from all initial states in {0,1,...,D_r} and
coupled to the realisation of D on [-T,0] coalesce by time 0. Then, according
to our heuristic, their common state at time 0 is also the state of the infinite
time simulation N~°° at time 0. Therefore this state is a sample from the
equilibrium distribution. Recall that the coalescence of the path of N started
in state 0 and the path of NV started in state D_ implies the coalescence of all
paths started in {0,...,D_r}. Thus it is sufficient to monitor only these two
paths for coalescence.

If the paths started from {0, 1,..., D_7} do not coalesce by time 0, then we
need to extend backwards in time and repeat the above procedure. To do this we
need to extend the realisation of D on [—T, 0] backwards in time, that is we need
to produce a realisation of D on [T — S, 0] which coincides with the previous
realisation on [—T',0]. We can do this by exploiting the time-reversibility of D.
We start D at time 0 in equilibrium and simulate it up to time 7. Then we set

D_t = Dt for t € [0, T]

that is we reverse the path of D in time. This produces a path of D on [T, 0].
If we extend backwards then we just continue our simulation of D from time T
to time T+ S and again reverse the resulting path in time.
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Here is a pseudo-code description of the algorithm, which is also illustrated
in Figure 11. The algorithm Extend(D,—T) extends a given path of D to
a path on [-T,0] and assigns marks to any new jump times. The algorithm
Evolve (D, —T) then starts path of N in 0 and one in D_7 and evolves them
coupled to the path D till time 0.

DominatedCFTP:
T+0
D+« 0
Repeat
T+T-1
D + Extend(D,-T)
Ny < Evolve(D,-T)
until Ny is a singleton
return Y

What are the characteristics of the above procedure? Firstly, we started with
a time-homogeneous process D which stochastically dominated N. This process
D had a standard stationary distribution which is easy to sample. Furthermore,
we made use of the fact that D was time-reversible.

Paths of the target process N were derived as an adapted functional of D.
The coupling between D and N ensured that if we started N at time ¢ € R in
a configuration bounded above by D then the path of N was bounded by the
path of D at any later time.

We determined coalescence by starting a path of N at time —7" in D_7 and
one in state 0. Let the “upper” path started at time —7 in D_7 be denoted
by U~ and the “lower” path started at time —T in state 0 by L~7. The two
processes U and L have the following properties, some of which can also been
seen in Figure 11.

1. Conditional on a realisation of D on [-T — S,0] we have a funneling
property, that is

LiT < 1775 < u;™% < u;T forte[-T,0. (5.9
Thus the earlier we start U and L the closer the two paths get.

2. ¥ L; T =U; T for t € [-T,0] then LT = U, T for u € [t,0]. Hence once
the upper and lower path coalesce they remain coalesced. We call this the
coalescence property.

3. Suppose we start a path of N at time —T in some j € {0,...,D_r} and
evolve it coupled to the same realisation D as the lower and upper path,
then we have the following sandwiching property:

;" < NT < U” for t € [-T,0]. (5.10)

Therefore a path of N started at time —T in some state bounded above by
D_r and evolved according to D lies between the upper and lower path
started at time —7" and coupled to the same realisation of D. Together
with the funneling property it follows that any path of N started at time
—T — S in a state bounded above by D_7_g lies on [—T, 0] between the
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lower and upper path started at time —7' and evolved according to the
same realisation of D.

TS T o Time

Figure 11: The immigration-death process example 3.3. The dashed-dotted line
is the immigration-death process D. The solid line marked with squares shows
the maximal path and the solid line marked with disks the minimal path started
at time —T — S. The two paths have coalesced by time 0. The shaded area is
the area in which any path of NV started at time —7 — S in some state smaller
than D_r_g lies. The dashed lines show an earlier CFTP iteration started from
time —7 in which coalescence of the lower and upper path did not occur. Note
how the process D has been extended backwards in time. Observe also that the
lower process lies below the upper process and how both processes satisfy the
funneling property.

We now prove rigorously that our Dominated CFTP algorithm does in fact
sample the desired equilibrium distribution. The proof is a special case of the
proof in Kendall and Mgller (1999) for general Dominated CFTP algorithms.

Theorem 5.1 Suppose U and L are defined as above and satisfy the funneling,
coalescence and sandwiching properties. If

Te = inf {T >0: U, T = LgT}
is almost surely finite then Uy Tc has the distribution =.

Proof : As T¢ is almost surely finite the funneling property implies that the
limit lim7_, o Uy T exists and that

lim Uy? = lim LyT = U, *e.
T—oo T—o00

Now, let Ny 1 be the state at time 0 of a path of N started at time —7 in state
0. Then the distribution of Nj T is the same as of Ny, that is a path of N
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started at time 0 in state 0 and run up to time 7'. Due to the ergodicity of N,
it follows that the distribution of Ny * converges to m as T — oco. The limit
of N;¥' may be interpreted as our infinite time simulation. The sandwiching
property ensures that

lim LyT < lim Ng7 < lim U7

T— o0 T—o0 T—o0
and so
lim Ny© = UyTe
T— o0
which implies that Uy ¢ has the equilibrium distribution . 0

Dominated Coupling From The Past was originally developed for locally
stable Markov point processes, see Kendall (1997), Kendall (1998), Kendall and
Mgller (1999). Markov point processes are usually specified by a density = with
respect to a unit rate homogeneous Poisson point process on a bounded window
W. For example the Strauss process, which is described in Stoyan and Stoyan
(1994) and which models repulsive point patterns, is given by

m(z) = a @ 44 zCW,

where 8 > 0 and 0 < v < 1. Here n(z) counts the number of points in x and
t(x) the number of pairs of neighbour points, that is points which are less than
the interaction range R apart. Like for many other point process models, the
normalizing constant a cannot be computed in closed form. From the density
of a Markov point process we may derive its Papangelou conditional intensity

{ HeAED if n(z) > 0

Az =
@6 0 otherwise,
where x C W is a point pattern and £ € W an individual point. For example,
for the Strauss process the Papangelou conditional intensity is given by

Az, &) = B9,

where t(z,£) counts the number of neighbours of ¢ in . More information
on Papangelou conditional intensities may be found in Daley and Vere-Jones
(1988). A Markov point process that is locally stable has a Papangelou con-
ditional intensity which is uniformly bounded above by some constant A\*. For
example, for the Strauss model \* = .

Spatial birth-death processes may converge in distribution to point processes.
These birth-and-death processes are Markov jump processes whose states are
point patterns and which evolve in time through births and deaths of individual
points. For an introduction see Stoyan et al. (1995) or Mgller (1999a). A
spatial birth-death process is specified by its birth rate and its death rate. If
we choose a unit death rate and a birth rate which is equal to the Papangelou
conditional intensity of a Markov point process then, under regularity conditions
specified for example in Mgller (1999a), the resultant spatial birth-death process
Y converges to the distribution of the point process.

Similar to the immigration-death process example, we can produce exact
samples for locally stable Markov point processes using Dominated CFTP. Sup-
pose the ergodic spatial birth-and-death process Y converges to the distribution
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of such a Markov point process with density 7. Note that we may derive a real-
isation of Y from a realisation of a spatial birth-and-death process Z with the
same death rate and a higher birth rate. In our setting we may choose Z to
have unit death rate and birth rate A*. Then Z is time-reversible and has a
Poisson point process as its equilibrium. We mark every birth time ¢ of Z with
a mark V; which is uniform on (0,1). We then can derive a path of Y from a
path of Z as follows. A birth of a point ¢ in Z at time ¢ leads to the birth of
the same point at the same time in Y if

Vi < MY, 8)/A"

Thus the acceptance rule for births is very similar to our acceptance rule for
births in the immigration-death process example. The acceptance rule for deaths
differs from the procedure for the immigration-death process. For spatial birth-
and-death processes we can distinguish the individual elements of a configura-
tion. Thus we may adopt the following simple procedure. Whenever a point 7
dies in Z we check whether this point exists in Y and if so, let it die at the same
time in Y. The reader may verify that this coupling construction leads to the
correct birth and death rate for Y.

The above coupling is very similar to the coupling we chose for our immi-
gration-death process. Careful inspection leads to the observation that Y; is
always a subset of Z; if we start it in a configuration which is a subset of Z
at the starting time. We can use the set-up for a Dominated CFTP algorithm
as follows. We produce a stationary path of Z on [-T,0] and mark all birth
times. Then we start a path of Y at time —T in every point pattern which is a
subset of Z_7. We evolve the paths according to the above coupling till time 0
and check for complete coalescence. If all paths have coalesced at time 0 their
common state has the distribution 7. If they have not coalesced, then we need
to extend backwards in a similar manner as for the immigration-death process.

We can detect complete coalescence more efficiently if A(z, ) is monotone,
that is A(z,£) < My, &) if z C y. Then we only need to monitor a path started
at time —7T in the empty set and a path started at time —T in the point pattern
Z_7p. If the two paths coalesce by time 0 then their common state at time 0
is a perfect sample. If \(x, ) is anti-monotone, as for example for the Strauss
process, then we may use a cross-over to monitor coalescence efficiently.

For a more detailed introduction into the perfect simulation of locally stable
Markov point processes see Kendall and Mgller (1999). Further examples may
found in Kendall (1997) and Kendall (1998). The method is extended to random
set processes in Kendall and Thénnes (1999). It may also be applied to general
distributions, see for example Mira et al. (1998), Mgller (1999b) or Murdoch
and Green (1998).

6 Perfection in Space

When introducing the Ising model we promised the reader a simulation method
which avoids edge-effects. A perfect sample in space may be achieved by extend-
ing not only backwards in time but also in space. This idea was first presented
in Kendall (1997) and for Markov random fields is discussed in more detail in
Haggstrom and Steif (1999) or in van den Berg and Steif (1999). We explain
the method using the example of a ferromagnetic Ising model.
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Suppose we would like to produce a perfect sample on the m x m lattice
A=A For k € Nlet A_p_1 = A_p UO(A_g) be the lattice we achieve by
adding the neighbours of the boundary sites of A_j to the lattice.

In the kth iteration of the CFTP algorithm we now perform the following
procedure.

1. Sample independent random variables U_r,,U_7,41,.-.,U—71,_,—1 which
are uniform on the unit interval and random variables N_r,, N_7, 1,
..., N_g,_,—1 which are uniform on the lattice A_p41.

2. Start one path of the Gibbs Sampler in z,,,, and one in z,,;, on the lattice
A _. Evolve the paths from time —T}, to time 0 using the transition rule A
as defined in (3.4) together with the realisations of U_1,,U_71,41,...U_1
and N,Tk,N,Tk_;_l, [P Nfl.

If the two paths coalesce at time 0 on Ag, then we output their common state at
time 0 as a sample from the equilibrium distribution. If coalescence has not been
achieved yet we extend further backwards in time and space. Figure 12 further
illustrates the procedure. The reader is invited to compare this algorithm to
the standard CFTP procedure on page 18.

The algorithm is set up such that from time —T7 until time —7;_; — 1 only
sites on the interior of the lattice A_; are updated but taking into account the
configuration on the boundary sites.

If the two paths coalesce at time 0 on A then their common state is not
only independent from the starting configuration on A but also independent
from any starting configuration on the infinite lattice Z2. For a formal proof see
Haggstrom and Steif (1999). Of course, it can happen that we do not achieve
coalescence in finite time. This crucially depends on the strength of interac-
tion between sites. In Haggstrom and Steif (1999) a bound on the strength of
interaction is given such that coalescence in almost surely finite time is ensured.

Many refinements of the algorithm presented here are possible. If we use
a cross-over then we may also apply the method to the anti-ferromagnetic
Ising model. An application to general Markov random fields can be found
in Haggstrom and Steif (1999), van den Berg and Steif (1999). Furthermore,
the point process setting is discussed in Kendall (1997).

7 Conclusion

Our aim was to introduce the reader to the concept of Coupling From The Past,
one of the new perfect simulation methods which allow the exact sampling of
the equilibrium distribution of Markov chains.

We have seen that CF'TP is based on couplings of paths of the target Markov
chain started in different initial states such that after an almost surely finite time
the paths coincide. Crucial for the practicality of CFTP algorithms is a way
of determining complete coalescence in an efficient manner. We have shown
how monotonicity or anti-monotonicity of the chosen coupling may provide us
with a practical procedure of checking for complete coalescence. Many models in
spatial statistics and statistical physics are amenable to the method as modelling
spatial interaction may lead to (anti-)monotonicity of a Markov chain converging
to these distributions. (Anti-)Monotonicity is with respect to a partial order
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Figure 12: Two iterations of the “perfect in space” CFTP algorithm for the
ferromagnetic Ising model on a 4 x 4 lattice. Sites with upward spins are black
and sites with downward spins white. The upper path is started in z,,., and
the lower in z,,;,. The encircled site has just been updated. Only sites in the
interior of each lattice are updated, taking into account the configuration on
the boundary sites. We need to achieve coalescence on the centre 4 x 4 lattice,
which for clarity we have drawn at the end of each path. In the second iteration,
we reduce the site of the lattice after time T' = —2 because from then onwards
only sites of the centre 4 x 4 lattice are updated.

and, as was illustrated in the examples, we can choose any partial ordering
for our purposes. However, there are also CFTP algorithms which determine
coalescence efficiently without exploiting (anti-)monotonicity, see for example
Green and Murdoch (1999), Murdoch and Green (1998). They are usually based
on a coupling where paths started in all initial states coalesce very quickly into
a small number of paths which can then be monitored efficiently.

If the target chain is uniformly ergodic, then we may proceed as in Section
4. TIf not, then we have to use Dominated CFTP as in Section 5. In the
(anti-)monotone setting, we define an upper and a lower path such that if they
coalesce at time 0, their common state is an exact sample from the equilibrium
distribution. Note that the lower and upper path do not need to evolve like
the target chain if they have not coalesced yet. Before coalescence they may
even live on an augmented state space, for an example see Kendall and Thénnes
(1999). However, once they coalesce, they behave like the target chain.

All in all, there is a lot of freedom in setting up a CFTP algorithm. The
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challenge is to construct an algorithm which is efficient enough to be prac-
tical. An annotated bibliography which contains a multitude of examples of
perfect simulation algorithms may be found on the perfect simulation website
www.dimacs.rutgers.edu/ dbwilson/exact.
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