On the Milne problem and the hydrodynamic limit
for a steady Boltzmann equation model.

L. Arkeryd * & A. Nouri f. *

Abstract. For a stationary nonlinear Boltzmann equation in a slab with
a particular truncation in the collision operator, the Milne problem for the
boundary layer together with a weak type of hydrodynamic behaviour in the
interior of the slab, are studied by non-perturbative methods in the small
mean free path limit.

1 Introduction

Solutions to half-space problems for the Boltzmann equation play an im-
portant role as boundary layers in the study of hydrodynamic limits for
solutions to the Boltzmann equation when the mean free path tends to zero.
Such problems have been extensively studied in the linear context, using
functional analytic and energy methods ([BCN1], [C1], [C2], [G], [GP], [Gu]
and others). In the discrete velocity case for the Boltzmann equation a num-
ber of problems have been investigated, among them half-space problems for
the Broadwell model in [BT] and weak shock wave solutions in [BIU]. The
existence of solutions to the half-space problem with given indata at one end
was proven in [CIPS], as well as their convergence to a set of Maxwellians
at infinity. The question whether the limit Maxwellian can be fixed a priori
was answered positively in [U] for a fixed Maxwellian at infinity which is
close to the given indata.

For the BGK and Boltzmann equations, a wide range of similar questions
have been addressed by the Kyoto group around Y. Sone and K. Aoki in
a perspective of asymptotic analysis and numerical studies. Among their
papers in this area we mention [S1], [S2], [SOA1], [SOA2], where extensive
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references can also be found.

So far there are few purely theoretical results on the half-space problem and
the hydrodynamic limit for the fully nonlinear Boltzmann equation with
continuous velocities. An existence theorem for the half-space problem was
established [GPS] for small data and specular reflexion boundary condi-
tions. The hydrodynamic limit of solutions of the (evolutionary) Boltzmann
equation [DL] towards solutions of the incompressible Navier-Stokes equa-
tions was performed for smooth solutions in [DEL] and for weak solutions
in [BGL1], [BGL2], complemented in [BU]. In [BCN2], a kinetic description
of a gas between two plates at different temperatures and no mass flux was
given in the case of a small mean free path for the nonlinear stationary
Boltzmann equation under diffuse reflection boundary conditions.

In this paper, we address the half-space problem for the stationary nonlinear
Boltzmann equation in the slab with given indata, for a collision operator
truncated for large velocities and for small values of the velocity compo-
nent in the slab direction. Instead of considering the half-space problem
in isolation, it is here studied within a frame of hydrodynamic limits for
solutions to the nonlinear stationary Boltzmann equation in the slab. This
avoids explicitly dealing with what type of Maxwellians that are permitted
at infinity in the half space problem (cf. e.g. [AC], [CGS]). An earlier paper
[AN1] considered in the same spirit a fluid approximation inside a bounded
domain together with initial and boundary layers for an evolutionary linear
Boltzmann model of condensation and evaporation.

Existence of solutions to the nonlinear Boltzmann equation in a bounded
slab is proved in [AN2], [AN3] (see also [AN4] and [P] for the related sta-
tionary Povzner equation). By the conservation properties of the Boltzmann
collision operator, there are in general at most two Maxwellians with the
same fluxes as the limit of such solutions, when the mean free path tends
to zero. In that limit the existence is proven of solutions to the Milne prob-
lem with given indata at the boundary point, and either convergence to one
of those two Maxwellians, or collapse at small velocities at spatial infinity.
One main ingredient in the techniques of the paper is the use of a kinetic
inequality, deduced from the smallness of the entropy production term, for
measuring the distance to the set of Maxellians, see [A], [N].

The plan of the paper is as follows. Section 2 is devoted to preliminaries
and a statement of the main results. In Section 3 the existence of solutions
to the half-space problem is proven. Section 4 describes the asymptotic be-
haviour of such half-space solutions, in particular a possible convergence to
one of the at most two Maxwellians having the same fluxes as the solution.



Finally Section 5 studies a limiting behaviour with hydrodynamic aspects
in the interior of the slab, when the mean free path tends to zero.

2 Preliminaries and statement of results.

An integrable cylindrically symmetric Maxwellian
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with p > 0 and T > 0), is uniquely determined by its three moments
p

p= /M(v)dv, pu = /ﬁM(v)dv, p(u? +T) = /U2M(v)dv.

However, it is well known that for nonzero bulk velocity, there can be zero,
one or two Maxwellians with given fluxes

/fM(v)dv, /§2M('U)dv, /{vQM(U)d'u,

as stated in the following lemma.

Lemma 2.1 Let (¢;)1<i<3, with ¢; # 0, be given.

(i) If c2 <0 or c1c3 < 0 or cie3 > %C%, there is no Mazwellian with fluzes
(€i)1<i<3-

1) If c1e3 = ECZ, there is a unique Mazwellian with fluzes (c;)1<i<3-

1622 . : <i<
i) If 0 < 3 < cie3 < 2¢3, there are two Mazwellians with fluzes (¢;)1<i<3.
2 16 -2 ASAS
w) If ¢ > cicg > 0, there is a unique Mazwellian with fluzes (c;)1<i<3.
2 <i<

For the convenience of the reader, we recall a short proof.
Proof of Lemma 2.1 The unknown p, u, T' defining an integrable Maxwellian
M, are solutions to the system

p>0,T>0, pu=cy, p(u? +T) = ca, pu(u® + 5T) = c3. (2.1)
Since ¢ # 0, there are no positive solutions p and T' when ¢s < 0 or ¢cic3 < 0.
Since ¢; # 0,

C1 C2
p=— T:—’U,—’U,2,
u (6]

where u is a solution to
4e1u? — BSegu + ¢3 = 0, (2.2)
ciu>0, u E]Oa 6_2[5 (23)
C1



and 0, Z[ denotes the open interval with end points 0 and 2. For cic3 >

%cg, there is no real solution u to equation (2.2). For cic3 = %cg, the

solution 3¢ to equation (2.2) satisfies (2.3). For 0 < ¢3 < c1c3 < 22¢3, both
8c1 2 162

solutions to equation (2.2),

b5co + (—:\/25c2 — 16¢1c3
= 2 . ee{—+}, (2.4)

861

Ue

/252 _16¢1ca
satisfy (2.3). For ¢3 > cic3 > 0, only u = bea— 256, 18615 gatisfies (2.3).0

8c1

Remark. We note for ¢; > 0 that 0 <u_ <wuy, Ty < §'§—2 < T . The Mach
number is defined by M2 = g—% Then

u2: C?,]Me2 T — 3C3
¢ C1(3+M€2)’ ¢ 501(3+M€2).
With
16c;ic T
) 1€3
0= 0<o< —
s %G ==Y
we get
3 3
M?*0)= ——— M20)= ——
©) 4cthg—1’ +0) 4tg23—1’

where M_(#) is subsonic and M, () is supersonic.

Define for 0 < p < A
Wwi={veR%|v|<\}, Vi={veVyu<|&l}

By a perturbative argument there are \g < oo and 0 < pg, so that in the
sense of the following lemma, for A > Xg,0 < p < pyg, (iii-iv) of Lemma 2.1
hold for the Maxwellian fluxes, also when the integrals are truncated with
respect to V3.

Lemma 2.2 Let (c;)1<i<3, with 0 < cic3 < 22¢3 and cic3 # c3 be given.

There are A9 < o0 and py > 0, such that for X > Ao, p €]0, uo[, (i-1v) of
Lemma 2.1 hold for the truncated Mazwellian fluzes

(c1, 2, 03) = ( /V M (v)dv, /V EM(v)dv, /V M), (25)



In the case cic3 = c2, let (p_,u_,T ) be the values of (p,u,T) for X\ =
00, 4 = 0 when € = — in (2.4), and correspondingly (p+,u+,T+) with Ty =0
for € = +. Given any neighbourhoods O_ and Oy of (p—,u_,T_) and
(p4,uq,Ty) respectively, then (p(A, p), u(X, p), T (X, 1)) is either in O_ orin
O, for \, ! large enough. Moreover, (p(\, ), u(X, 1), T(\, ) is uniquely
determined in the O_-case.

Proof of Lemma 2.2. We discuss the case ¢; > 0. The case ¢; < 0 is
analogous.
For (¢;)1<i<3 with 0 < ¢e3 < %cg, consider

F(Aauapau’T) = (F1’F25F3)(A’/1’7p7uaT)7

where
) _lv—u?
Ry T) = — L [ gemti,
(2x1)} g
P g _lv—ul’
FQ(Aauapau’T) = 3 5 € 2T,
(2n7)} Iy
P _lv—ul?
F3(A7uap,u7T) = 3 EIU € .
(2n1)% Jy;

At (A, p, p,u, T) with p > 0,7 > 0,\"! = 1 = 0, it holds that

oR _, 0m_ 0m |
9 " au P ar T
ap U + ? B'U, p’“’? aT p7

OF3 _ 2 OF} _ 2 OF; —
op = u(u” + 57), 50 = p(3u” + 5T, 5T = 5pu,

and so the Jacobian J with respect to (p,u,T) of F at (00,0, p,u,T) is equal
to

J = p*u(3u® — 5T).
At any (po,ug,Tp) of Lemma 2.1 such that Ty # 0, and such that

F(00,0, po,uo, To) = (c1,c2,¢3)



with 0 < ¢1e3 < %cg, it holds that

J =8c(ug— —) #0
c1(uo 801) #
Consequently, by the implicit function theorem, there are neighborhoods
V1 of (00,0) with Vi = {A > X,0 < p < po}, and V, of (00,0, po,uo, o)
respectively, and a C'! function G from Vi to R3, so that for (\, ) € V4,
Ty > 0, it holds that

(61502,03) = F(A’M,pauaT), and (Aau,pauaT) €Vy
if (p,u,T) = G(A p).

The neighbourhoods can be taken locally constant with respect to ¢. Assume
that there are other solutions than the above local perturbations for arbitrar-
ily large A and for arbitrarily small . Then there is a sequence (Ay, tin)nemw
tending to (00, 0), when n — 400 and a sequence (py,, Up, T )new, satisfying

Cc= (61302703) = F(AnaunapnaunaTn)a pn >0, Tp>0. (26)

By the positivity of ¢; it follows that u, > 0. Writing V/{n for Vy with
A = A, b = [, we discuss separately the cases, when (py,, uy, Ty,) is bounded
and unbounded.

Case 1. (pp,un,Ty) is bounded, hence converges (up to a subsequence) to
some (px, Uy, Tk).

Case 1(i). Ty > 0. Passing to the limit when 7 tends to +oo in (2.6) implies
that F'(00,0, px, us, Tx) = c¢. Hence, by Lemma 2.1, (px, us, Tx) is one of the
(at most) two solutions of the case A = oo, 4 = 0. Then, for n large enough,
(Pn,un,Ty) is in a given neighbourhood of (p,,us,T:). Hence in this case
only the previous local perturbative Maxwellians exist.

lv—un|?
Case 1(ii). Tx = 0,us # 0. Then ( ’;”)3 e~ ?Tn  converges for the weak*
I — 27T,)2

topology of bounded measures to p.d,—,,. Hence,

p _lv—un/?
" e T dv)? = (pul)”
2 V]

ez = ( lim
n—-+oo (27TTn)

_ lv—unl?

3 . Pn
= (psus) (psuy) = (lim ——— e T dv
(o prst) = (Jim o [ 6 )

lv—un|?
TL —
p &v“e” 2T dv) = cics,

( lim T
o0 (27T,)2 Vi,



and (p«, ux, Tx) = (p+,u4,T+) in the notation of (2.4).
Case 1(iii). Tx = 0,us = 0. Then

_ lv—un)?
Pn e T du
n

Cc1 = lim 3
n—+oo (27TTn)5 V/{

Jv—up|?
< lim Pins/ [&le 2T do
n—+oo (27TTn)§ )(n

m P S| e
gngrfooﬁ/|un+x 2T, | e dz =0,

which contradicts the assumption ¢; > 0.

Case 2(i). The sequence (pn,un,Ty) is unbounded with - for a subse-
quence - lim, o u, = +00. Then, for any A > 0 there is n4 € IN, such
that for n > n4,

_lv—unl?

Pins/ e T dv > ﬂ.
(27Ty,) 2 Jei€>2A,0v|<An 2
Then,
. Pn g lv—unl®
co= lim —— / &e T du
n=+00 (20T, )2 J|v|<Anlé[>pn
2A _lv—un|? 2A
> lim i{,’/ fe” 2T duv > a2 = A,
210 ) (27T, )2 Je1€>24, /v <, 2 ¢

which contradicts the finiteness of cs.

Case 2(ii) limy,—y oo Ty, = 400, limy, 4 o0 Uy, = us > 0 and finite. Then

i Pn _lv—unl?
0<cp= lim ——— (e ?Tn du
n—+oo (27TTn)5 V/(n

. pn _|U—un|2
< lim 73/ | €] e 2T dv.
)5 Vi




In this case the integral representation of a bound from below of g—f has
infinite limit when n — oo, which leads to a contradiction.

Case 2(iii). The sequence (py, un,T},) is unbounded and the sequences
(un) and (T3,) are bounded. Then

_|v7un|2
(61302503) = pinl&/ 6(1,5,’02)6 T dv
(27Ty,)2 /W5,
coincides with the limit when n — oo of
_|v—un|2
(C?,Cg’,cg) = %/ 5(1565102)6 dv.
)2 JI€l>un

(27nT,)>
For T, > 0 this contradicts the boundedness of ¢y. If T}, = 0, u, > 0, then

. Chy : 1 _lv—un|?
0= lim 2 = lim 73/ %" 2 dv= lim w2 =u?>0,
n—o0 p, n—+o0 (27TTn)5 |€]> pim, n—-+00

which is impossible. It remains the case Ty = u4, = 0. Then
/+00 _ (E—up)? _ (&+un)?
n

Ccl1 = 2T —e 2Ty,

lim —2»
n—+oo /27Ty,

Hence, by an integration by parts,

. T, _ (un—un)? _ (pntun)?
c1 = lim (e 2T, —e 3T,
too  (@—un)? (2+un)?
U _ n _
4-Lntn (e 7T +e T )dz). (2.7)
vV 27TTn Un
Analogously,
1 (Hn2Tun) n 7(/'«n2;un)2)
Co — 1m e
o= i +oo[pn {un n n
_ (e—up)? (tun)?
Mo +e 2T )dz} 4+ upcl. (2.8)
n
Finally,
Tn _ (en —'Mn)2 _ (Mn+un)2

c3 = lim [(u2 4+ 2T,)c1 + Unpppint| ~o(e” " I  +e 2

n—+oo 2

T _(en —un)2 _ (Mn+un)2
Fon + 2T [ Jh (e T R
+°° _ (@—un)? (etun)?
+3pnun 27_(_/ o +e T )dm} (29)




By (2.7) and (2.8),

Tn 7(Mn*un)2 7(I~Ln+un)2
Un Prfin %(e T 4e  Ta )< Colp,

Tn 7(Hn—un)2 7(#n+un)2

pole T e ) <y, + 2T,),

T, [T, _(z-un)? _(etun)?
Py —n/ (e7 2 4+e ) < Ty
27 Jpn

Consequently, in the limit when n — +o00 in (2.9), c3 = 0 which contradicts
the hypotheses.

We have thus proved that for cic3 # c3 there are only the perturbative
Maxwellian solutions. For cic3 = ¢ and (A, i) close enough to (0o, 0), the
above proof implies that either the Maxwellian is of perturbative type con-
nected to 7_, or that the O -situation holds. O

Remark. When cjc3 = ¢3, it is the discussion in 1(ii) that only leads to the
O, -control instead of the stronger uniqueness results that follows from the
implicit function theorem in the other cases. We do not exclude that a more
detailed analysis also in this case might prove the same type of uniqueness
as when cjc3 # c3.

For cie3 < 0 or ¢ie3 > %cg, and (A, u) close enough to (00,0), the above
proof implies that there is no Maxwellian with such c-values and satisfy-
ing (2.5). For cic3 = 22¢} and any neighbourhood O of (p_,u_,T_) =
P+, Uy, 1), the above proof implies that (p(A, p),u(A, u), T (A, u)) is in O
for A, u~ ! large enough.

Pn (/’I‘i + 2Tn)

For the stationary Boltzmann equation in a slab with given indata on the
boundary the following result was proved in [AN3].

Lemma 2.3 Consider a slab —a < z < a with £ the component of the
velocity v € IR® in the z—direction. Let indata fy be given on the boundary
with

[ JEC 0 1og fl) + (14 ol ofea, ) < o0, € (1,1,

Given 8 with 0 < 8 < 2 and m > 0, there is a weak solution to the stationary
Boltzmann equation such that [(14 | v |)? f(z,v)dzdv = m, and with indata



kfy for some k > 0.
Given B with —3 < 8 < 0 and m > 0, there is a mild solution to the
stationary Boltzmann equation such that [ f(z,v)dzdv = m, and with indata

kfy for some k > 0.

In the sequel we shall also need a result relating the distance of density
functions from the set of Maxwellians, to the magnitude of the collision
integrand.

Lemma 2.4 Consider a set of non-negative functions f that is weakly com-
pact in L*(IR®). Given e,n > 0, there is § > 0, such that if

| ffe—ffrl< 6

in V3§ x V{ x S§? outside of some subset of measure smaller than &, then for
some Mazwellian My (depending on f),

/ |f— M| dv<e.
VI

A=n

Lemma 2.4 was proved in the IR? case in [A] and [N]. From those proofs the
present local version can be obtained similarly to the way the corresponding
result for the functional equation f f, — f'f! = 0 was localized in [W].

Denote by (&,7,¢) the three components of v € IR? and set o = \/n2 + (2.
In this paper, the hydrodynamic limit is considered for subsequences of f¢,
solutions to

586{: = %Q(feafe)a z e] - ]-a 1[5 v E R?)’ (210)
fe(_lav) = Ml(v)a §>0, fe(lav) = M,,«(U), £ <0, (2'11)

when the mean free path ¢ tends to zero. Here

2 2

P1 % Pr —
M(v) == ———e T, M,(v) == ———e T,
(21T})> ' (2 T,)3

and

QUN@0) = [ bOX(w0es0) [0 = v P (F ~ f1)dv.do,

IR3x 52

10



0 € (0,7) is the azimuthal angle between v — v, and w,

f*:f(.’I?,’U*), fI:f('T’UI), fi:f(xavi)a

vVV=v— (v -, w)w, V. =0+ (V—v,w)w.

Moreover,
X(v,v,w) =0 if |v|>Xor| v |>Xor|v |>Xor| v, |> A

or [&[< por|&|<p,or|E < por| &< p,
x(v,ve,w) =1 else, B€[0,2, beLl(0,7), b6)>c>0, ae.

For ) finite, the factor |v — v,|? only introduces minor changes in the
arguments, so we shall only discuss the case 8 = 0. Under the boundary
conditions (2.11), there are cylindrically symmetric (with respect to the
variables (¢, 0)) functions f€ solutions to (2.10-11). Only such solutions are
considered in the following. In particular,

/ Enf(z,v)dv = / ECfE(z,v)dv =0

under the cylindrical symmetry. By Green’s formula the fluxes

(cf)i<i<s = ( £(1,€,0%) f¢(x, v)dv)
€121, w|<A
are constant in z with e-independent bounds determined by M; and M,.. De-
note by (c? )1<i<3 a converging subsequence with limit (¢;(A, ¢1))1<i<3, when
ej — 0. Either ¢;(A\, ) = 0 or ¢1(A, ) # 0. In this paper we only discuss
such sequences of solutions with ¢;(\, u) # 0, and then - possibly after a
change of z-direction - take c; (A, 1) > 0, also requiring ¢’ > 0 for all 5. Such
systems can be considered to model an evaporation-condensation situation
with evaporation at £ = —1 and condensation at z = 1. We shall further
assume (for a subfamily in A, ) the existence of limy ,—1_,. ci(A, 1) = ¢,
for 1 = 1,2,3, with ¢; > 0. The quantities A9 and ug as defined in Lemma,
2.2 may be taken locally constant with respect to (ci, c2,c3) satisfying the
conditions of the lemma, and with Ag, pg ! 50 large that negative T’s are
excluded. From here on we only consider such A > Xg,0 < p < po, and

25 2
0<ciez < 16C2-

11



The main results established in this paper are contained in the following
three theorems.

Theorem 2.5 Denote by

rz+1
g(

) = f(z,v), aa.z€]l-1,1, ve R

Then there is a sequence (€;) with lim; o €; = 0, such that (¢%) converges
weakly in L'([—1,1] x IR3) to a function g, which is a weak solution to the
half-space problem

ag _Q(g7 )’ 'Z‘Z()’ ,UER37

(OaIU) = Ml(v)a 6 >0,
in the sense that for any xo > 0, for any test function ¢ with support in
[0,$0[XV)(
/.g EM;(v) O'ud’u+/ / {g——I—Qg, g)p)dzdv = 0.
>0

Remark. In this paper test functions are L°°-functions, differentiable in the
z-variable for a.e. v € V} with ¢(0,v) =0 for £ < 0.
An analogous result holds for h°(1=2,v) := f.(z,v) and M,.

Theorem 2.6 Denote by Ss the union of {v € Vi;u <| £ |< p+ 6,0 <
4p+ 6} and {v € Vi;u <[ € |< 3p+ 0,0 < 6}. If cics = c3, then include in
Ss also a d-neighbourhood in Vy of (2,0,0). Either for all 6 >0

lim g(z,v)dv =0,

T—00 V! \SJ

hm/|ng M_(v) | dv =0,

T—00

T—00

lim / | g(z,v) — My (v) |dv=0
in the case cics3 # 3, respectively
$hﬁngolnf/ lg(z,v) — My ,(v)|dv =0

in the case cic3 = c3. Here M, M, are those defined in Lemma 2.2, and in
the notations of that lemma the infimum is taken over M) , corresponding
to Oy and satisfying (2.5).

12



Remark. The solution g of the half-space problem in Theorem 2.5 satisfies
the Milne problem in the sense of Theorem 2.6. The M -alternative is only
possible in the case (iii) of Lemma 2.2.

Theorem 2.7 Suppose cic3 # c3. There is a sequence (€;) such that
lim; o €; = 0, and (f% ) converges in weak* measure sense to a non-negative

element f of L'((—1,1); M(V})) that satisfies

- {(l,f,UQ)f(m,v)dv = (Cl(Aaﬂ)a02()"”)’03()‘7“))'

Moreover, there are measurable non-negative functions 0_(z),04(z) with
0<60_(z)+0:(x) <1,-1 <=z <1, such that for test functions ¢ with
support in Vi \ S5 for some § >0,

/(ﬁf(:v,v)dv _ /(9,M, + 0, M.)bdv.
Here we have written f(z,v)dv for the measure in the v—variable defined by
fl,.).
Remark. Also for this theorem, there is a (more involved) version in the case

C1C3 = C%.

3 Boundary layer analysis and the half-space prob-
lem.

This section is devoted to a proof of Theorem 2.5. The theorem is an
immediate consequence of Lemma 3.1-3 below.

Lemma 3.1 The family (¢¢) is weakly compact in L'((0,z9) x Vy).

Proof of Lemma 3.1. Since

1
/gf(:v,v)dxdv < F/gge(a:,v)dwdv,

(¢¢) is uniformly bounded in L'((0,z) x VJ). It remains to prove the uni-
form equiintegrability of (¢€) in L'((0,zo) x V). If (¢¢) were not uniformly

13



equiintegrable on (0,zy) x V3, then there would be a number 7 > 0, a se-
quence of subsets Vj of (0,z9) x VY, and a subsequence of (¢¢), denoted by
(g4), such that

e —=0,]V;|< ]1 , and /V] gj(z,v)dzdv > 1. (3.1)
Denote by

By = {o € O,a0)s| {o € Vi (0) € i} |2 )
and by

Wj(2) = {v € Vi (w,0) €V}, @ € (0,20).

Then | B; [< %, so that

n
i(z,v)dvdr > =,
/;/wj(x)g’( ) 5

for j large enough. Only consider j so large that

02()\ 2 /52% z,v)dv < 2ca(, p1)-

Set

n
B = xEBq;/ i(z,v)dv > —1},

Jn
Wj'(x) = {v € Wj(z);gj(z,v) > 8ag )

It holds that

/da:/ wvdv>ﬁ.
B} W;( 4

And so for z € B;-,

U
z,v)dv > —
/W]{(z) g(z,v) 820’

together with

/dm/ xvdv>ﬂ.
B Wi(z 8

14



Using the exponential form of the equation for g;, it follows for z < =z,
A > €& > p, that gj(z,v) > e~ M;(v), where ¢ > 0 is independent of j.
Set V/(z) = {v € V};gj(z,v) < %} Then | V{ — V/(z) |[< é. Let = € B,
v € Wj(z) be given. It follows that there is a subset Wj(z,v) C Vy§ x 52
with measure uniformly in z, v, j bounded from below by a positive constant,
such that for (v,,w) € Wj(z,v) it holds that
gj(z,vs) > e “0inf M(v),
£

and that

262
W > maX(gj(QUa ’Ul)agj(xa ’Ufk))

Hence,

gj(-TJ,’U)gj (:E,’U*) - gj(xav,)gj(a’"v;) > ng(.'E,U), (3'2)
9j(z,v)g;(z, vy)
gi(z,v")gj(z,v})

Integrating (3.2) over
K= {(z,v,v,w);z € B;-,’U € W]I(:(:), (v4, w) € Wj(z,v)},

leads to

en < ﬁ /Kj b(0)x (v, Vs, ) (95 (%, 0)gj (x, v.) — g;(w,0")gj(x, VL))

. . !
% (z, U/)QJ (z, Ui) dzdvdv,dw < c—.,
g5(z,v")g;(z,vl) Inj

which is impossible for j large enough. O

Lemma 3.2 The family (Q*(g¢, g¢)) is weakly compact in any L*((0,zq) X
V).

Proof of Lemma 3.2. It is sufficient to prove the weak compactness of (Q~ (g, g¢))-
Then the compactness of (QT (g, g¢)) will follow from the weak compact-

ness of (@~ (¢¢, g¢)) together with the boundedness of the entropy production
term. And so it is enough to prove the weak L' compactness of (g¢g¢). If

this family were not compact, then for some 7 > 0, there would be a family

(€¢;) and a family of sets B; C [0,z¢] x V) x V) with

1
| Bj |< = and / gjgjxdrdvdv, > 1.
J B,
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But then for each j, there would be a subset of [0,z(] of measure not ex-
ceeding %, outside of which the set A; of (v,v,) such that (z,v,v,) € Bj,
over the first set is of magnitude < % For z from the second set,

has measure bounded by % Since [ gj(z,v)dv < the integral of g;g;«

202
‘qicdodo, < — -

for A, C VY, | AL |< j ~%. An application of Lemma 3.1 completes the proof.
a
Also using the regularizing properties of the equation, we get

Lemma 3.3 Denote by g the weak L' limit in (0,z0) x V3 of a converging
sequence of (g;) with lime; = 0. For any test function ¢ defined on (0, zg) x
W,

lim + i,gi)(x,v dxdv:/ + ,9)(x,v)dzdv.
Jj—r+oo (0,0) x Vy (PQ (gj gj)( ) (0,x0)x Vy (PQ (g g)( )

This can be proved similarly to the corresponding (more involved) result in
the time-dependent case [DL].

In Section 4 an entropy dissipation estimate for the half-space solution g
will be needed.

Lemma 3.4 [bx(g9. — ¢'g.) log ggf;z
only depends on the boundary values.

dxdvdv,dw < ¢, where the constant c

This easily follows from the corresponding inequality for g¢, the weak L'
compactness of (¢g¢g¢) in the proof of Lemma 3.2, and the convexity of the
entropy-dissipation integrand.

4 The behaviour at infinity in the boundary layer.

This section is devoted to a proof of Theorem 2.6.
Proof of Theorem 2.6. By the weak L' convergence and by the conservation
properties, in the notation of Lemma 3.3,

[ etg@ o = tim [ (€62 0%)g;(w, v)do.

j—+4oo
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Recall that in the present setup, by Lemma 2.1-2 there are at most two
Maxwellians M_ and M, of perturbation type such that

/(5’52,5’02)Mi(’l})d’0 = /(5,52,5’02)9(.’13,’1])(1’0 = (01762163)a
r€ R ie{+, -}

Recall that for ¢; = limy -1, ¢j(A, ) with 0 < 16cic3 < 2563, (cf Sec-
tion 2 just before the statement of Theorem 2.6), and with cic3 # c2, the
constants 0 < pg and 0 < Ag are fixed, so that for 0 < p < pg, Ao < A the
corresponding c¢;j(A, ), 7 = 1,2, 3, still define the same number (one or two)
of Maxwellians. In the case cic3 = c%, the set S5 as defined in Theorem 2.6
also contains a d-neighbourhood of (ﬁ—f, 0,0), and M, is replaced by an O
based family F of A, y-truncated Maxwellians satisfying (2.5).

Either for all § > 0

lim g(z,v)dv =0, (4.1)

T—00 V;\S(S

or for some § > 0 and some sequence (z;) tending to infinity,
/ g(zj,v)dv > 26. (4.2)
Vi\Ss

In the latter case g(,.) converges in L'(Vy) to either M_, M., or in the
the case cic3 = c3  to the family F, as will now be proved.

Uniform continuity of g(z,.) in the L' (V{)-norm follows from the equation
for g and from sup, [ | Q(g,¢)(z,v) | dv < co. This means that given o > 0,
there is a(a) > 0 such that

[ la(@0) = g(w0) [ o < o,
Vi
for | z —y |< a(a). Take o = § so that for a1 = a(d) by (4.2),
/ g(z,v)dv >4 (4.3)
Vi\Ss

for |z —z; |<ai,j € IN. Set

! !

G(z) = [ bx(d'g. — gg«)1lo 9 9« Z,V, Vs, w)dvdv,dw,
* g 99
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and (if necessary) take a subsequence (z;) so that ;.1 —z; > a1,j € IN.
It follows from [;"*° G(z)dz < +oc that

Tjta1 ai
5 [0 Glayda = [ (5,6l +a))dy < +ox,

Tj—a1 —a1
hence lim;j_, 1o G(y + z;) = 0 a.e. in [—ai,a1]. For such an y, the sub-
sequence (g(z; +y,.)) is weakly L'(V}) compact. Only the uniform equi-
integrability has to be discussed, and that follows similarly to the proof of
Lemma 3.1, but using the estimate (4.2) instead of estimating g(z, v,) from
below using boundary values. For this we start from such an y with

/ 9(z; +y,v)dv, >0, lim G(zj+y)=0.
V>’\\55 J—+oo

Write g;(v) := g(z; + y,v). A Dirac measure limit for a subsequence of g;
at v = vy implies & > p + 6,00 = 0, and is excluded when c;c3 # ¢, and
by the condition on S; also when cic3 = c3. Instead the following holds for
some d €]0,4]. For all vy € V{ and all j € IN,

/v—'uo>d gj(v)dv > d. (4.4)

If (g;) is not uniformly equiintegrable, then there are a constant n > 0 and
a sequence of subsets (V;) of V} with | V; |< j%, such that

/V gj(v)dv > 1.

i
Similarly to Lemma 3.1 this is contradicted using an entropy dissipation

argument. Consider the following three cases.
Either

[ siwaw=1, (4.5)

J

where Wi :={v e V;N S%;o <1073d}. Or

/W gj(v)dv

J

where Wjg :=V;\ Ss. Or
2

v

g, (4.6)

gj(w)dv > 1, (4.7)
Wis 3

18



where Wj3 := {v € V; N Sg;a > 1073d}. For any v in Wy, k = 1,2,3, the
contradiction follows from delineating for each j a set of v,’s with volume
uniformly bounded from below by a positive constant, where g;(v,) is uni-
formly in v, and j bounded away from zero, together with for each j and
vy a set of w’s in S? of measure uniformly bounded away from zero, that
generate (from above) uniformly bounded g;(v’), g;(v.), so that the entropy
dissipation argument applies.

Case 1(i). The bound (4.5) holds. Also using (4.3), assume in this case that

Jw. gj(ve)dve > g, where

W, == {v. € Vi \ S5;0 > 10 3d, g; (v.) > — 1}

4 VY|
W, is invariant under rotation around the ¢-axis. Taking v € Wj1, there is
sufficient volume of v, € W, and w € S? for the entropy dissipation argu-

ment to apply and to exclude this case.
Case 1(ii). The bound (4.5) holds, but the second condition of 1(i) is vio-

lated. And so using (4.3), [y, g;(v.)dv. > ¢, where W, = {v, € V{\Ss; 0. <
1073d}. For v € Wj; and v, € W,, notice that | v — v, |> %. Write

W, = A1 U Ay U A3, with three disjoint subsets A, As, A3, such that

inf g;(vs«) > sup g;(v«) > inf g;(v<) > supg;(v.) and
Aq Ao As As

1)
[, s, = [ giwdv. = [ g )dv. > G

Analogously split W into three disjoint sets B, Bo, B3 with the same prop-
erties. Denote by S(v,v,) the subset of w € S? such that v/, v} € V{,0' > &
and ol > %. We shall discuss the case when supy, gj(v«) < infp, g;(v) for
an infinite sequence of j’s. The converse case is analogous after changing
the roles of v and v,. There is a positive uniform bound from below C,, for
the measure of S(v,v.). Suppose 2 [ gj(vi)dv. > [y, g;(vs)dv, where the
first integral is taken over those v, € Ay for which g;g;. > 2g;g;, for at least
half of S(v,v,). This cannot hold for infinitely many j’s since

n S/ gj(v)dv < CG(z;+y) = 0,5 = oo.
3 w;

So the converse holds for infinitely many j’s. Then g;(v.) < v/2g;(v') on at
least th of S(v,v.). And so g;(v.) < % J gj(v")dw where the integral is
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over %th of S(v,vs). The Jacobian of the Carleman transformation of the
gain term is uniformly bounded with respect to the relevant v, v,,and w in
respectively By, As,and S(v,v,).

Then switch from v, to such v’ at a distance > % from the &-axis. Cylindrical
symmetry can be applied for v' to generate enough volumes in V'(v,v',v})
and V/(v,v',v]) for the entropy dissipation argument to apply, excluding
this case when j is large enough.

Case 2(i). The bound (4.6) holds, and [y, gj(v)dv > &, where W = {v €
Wigso > 10=3d}. Then denote by ng the image set of W by rotation
around the £ -axis. Moreover, given v, by (4.4)

d
AL

d
/W g;(vs)dv, > 2 where W, , := {vs;| v« —v |> d, g;(vi) >

Taking v € ng, v« € Wi, and using rotation around the {-axis in ng,
generates volumes bounded from below for which g;(v'), g;(v}) are uniformly
bounded from above and for which the entropy dissipation argument applies,
excluding this case when j is large enough.

Case 2(ii). The bound (4.6) holds, and [y, g;(v)dv > E, where W; = {v €
Wo;0 < 1073d}. Then, either given v, by (4.4)

d

i(vi)dvye > —.
/v*—v|2d,o*2103dg]( v 2

For such v € W, taking v, in the image set by rotation around the {-axis

of {v, € V{;| vx —v |> d,0, > 1073d, g (vs) > ﬁ}, and taking suitable

w € §2, gives a setting where the entropy dissipation argument applies. Or

otherwise

d
(ve)dvye > =,
/'U*—’U|Zd,0'*<10_3d g]( ) 2
and the argument of Case 1(ii) can be used. And so this type of concentra-
tion is excluded. )
Case 3. The bound (4.7) holds. Denote by Wj; the image set of Wj3 by ro-

tation around the £-axis. Then ijs gj(v)dv > 2. Taking v € W3, suitable
ve € V) \ S5 and w € S?%, generates using (4.3), a setting where the entropy
dissipation argument applies as in the earlier cases, thus excluding also this
final possibility.

We conclude that (g;) is uniformly equiintegrable. It then follows for y with
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lim; ;o G(y+ ;) = 0 from the weak L'-compactness just proved and using
Lemma 2.4, that there is a sequence (M;(v)) of Maxwellians such that

lim [ | g(z; +y,v) — M;(v) | dv =0.
j—o0
Moreover,
Tim [ (6,€2,60)M;(0)do = (e1 (A, 1), 20 ), al ).

Except in the case cic3 = ¢3 and T, = 0, this implies (for a subsequence) that
lim; o0 [ | Mj(v) — M_(v) | dv =0 or limj_, [ | M;(v) — M4 (v) | dv =0.
It then remains to prove that

lim / | gz, v) = M_(v) | dv = 0

T—00

in the first case, and that

lim / | g(z,v) — My (v) | dv = 0

T—00

in the second case. We carry out the proof in the first case. Let

0 < ¢ < min[6,10~" / | M_(v) — My (v) | dv, 107" o M@ (1)
VI\Ss

be given. Let us prove that for z large enough, [ | g(z,v) —M_(v) | dv < 2,
when we already know that there is j3, such that

/ | g(zj +y,v) —M_(v) |dv<e, j>jo.
Let ay be such that

[19t0) = gls,0) [dv <, 7 =s]<a.
We have

/ g9(z; +y,v)dv > M_(v)dv
Vi\Ss V{\Ss

—/ | gj(zj +y,v) — M_(v) | dv>10e —e =9¢, j > jo.
Vi\Ss

21



And so,
/ g(z,v)dv > 8¢, z€ [zj+y—az,zj+y+az,j> jo.
Vi\Ss

Now limx_, o f;oo G(z)dx = 0, and so given n > 0, there is X; > 0

such that meas{z > X1;G(z) > n} < @. So for j > jo there is z; €

[zj +y+ %%,a:j + y + ag] such that G(z;) < . Here n > 0 has by the
previous discussion been chosen small enough, so that

min( [ [ g(z,0) = M- () | do, [ | 9(zj,0) = My (v) | do) < e
B

ut
[ 196i0) = Mo(w) [ do > [ | My(0) = M_(v) | do

([ 1M-(v) = gla; +9),0) [ do + [ | gla; +,0) = g(z5,0) | dv) > e
Hence

min( [ [ g(z,0) = M(v) | dv, [ | glzj,0) = M (0) | do) = [ | g(zj,0) = M_(v) | dv < &,
[ 19(z0) = M_() [ dv < [ | 9(2,0) = glz3,v) | do

+/|g(zj,v)—M_(v) |dv <2 z€zj+y,zj+y+as.

We can now repeat the above discussion from z; + vy + a2 instead of z; + y,
and in a finite number of iterations reach z;11 + y.

In the remaining case when c¢jc3 = ¢ and Ty = 0, we replace [ |M_(v) —
M, (v)|dv with inf [ |M_(v) — M) ,|dv. Here the infimum is taken over the
family F of (A, p)-truncated Maxwellians M) ,, according to Lemma 2.2.
Using (2.5) we choose (Ag, 110) so that the infimum in (4.8) is positive in this
case. Then the above proof can be repeated in the case 7'y = 0, if M, is
replaced by relevant members M) , from the family . O
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5 A hydrodynamic limit in the slab.

This section is devoted to a proof of Theorem 2.7.

Proof of Theorem 2.7. Let 0 < ¢j,5 € IN, be a decreasing sequence with
¥jej < 0o, and with f; converging in weak® measure sense to a measure f.
Write f., = fj. Set

1 gl
z) = /bx(fe'fé'* — fefer) log Jeles (z,v,v4,w)dvdv,dw
f€f€*
The above hypotheses imply that
/ 3jGe; (z)dz < CXje; < oo.
And so for a.e. z,
EjGeJ- (CE) < 00,
and in particular lim; o G¢;(z) = 0. Moreover, given m € IV, in the

complement I, of some set of measure less than m ' in [—1,1], G¢; con-
verges uniformly to 0 when j tends to infinity. Let x,,(z) be the char-
acteristic function of I,. Let x;n(x,v) be the characteristic function (in
z) of those z € [—1,1], for which fV;\\Sn—l fi(z,v)dv > n~!, multiplied
with the characteristic function (in v) of V) \ S,-1. We may take the se-
quence (f;) so that for each m,n € IN, the sequence (fjxjnXm)jenv con-
verges in weak® measure sense. By a variant of the reasoning in Section
4, the sequence is also weakly compact in L'((—1,1) x V), and with a
weak™ measure limit 6™ M_ + 07" M. Here 67, 07™ are increasing as
functions of m,n with limits 6_,60,, and as functions of z they satisfy
0 < 6™™(z),07™(z), "™ (z) + 07™(z) < 1 with 64 = 0 in the case ¢} > cics.
For test functions ¢ with support in V} \ S,,-1,

| [ 41 = xgn)ddado] < 2] lloon”"
Also

[ 550~ xm)dadv < m~!
And so

/ ¢ dzdv = lim / fiddedo = lim / Fi(1 = xm)dddo

C2
—.
I
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+ hm /f] — Xjn)Xm@dzdv + hm /fjxjnxmd)dwdfu

where O,,,, tends to zero when n,m — co. And so

/gbfdwd'u = /(9_M_ + 604 M, )pdzdv.

By the same argument for any § > 0, for any test function ¢ and with y the
characteristic function of Vy \ S,

[ oxtasio = [0 M+ 6.00)xpdudv

It follows that f is composed of a singular measure on [—1,1] x Sp, together
with a Lebesgue absolutely continuous measure with density 6_M_ 460, M, .
Finally [ ¢fdv is Lebesgue measurable in z and

[ £ vt = (er,ea,e0) (A 0).0
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