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Abstract

We study the two-type Richardson model on Z?, d > 2, in the asymmetric case
where the two particle types have different infection rates. Starting with a single
particle of each type, and fixing the infection rate for one of the types, we show that
mutual unbounded growth has probability 0 for all but at most countably many
values of the other type’s infection rate.

1 Introduction

The study of interacting particle systems has become one of the most fruitful branches
of probability theory in the last couple of decades, see e.g. [11], [4] and [12] for overviews.
One of the simplest such systems is the Richardson model [14], which can be described
as the {0, 1}Zd-valued Markov process {Z; };>0 where no two sites z,y € Z? flip (change
their value) simultaneously, and z € Z¢ flips at rate
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here A > 0 is a fixed parameter and n,(Z;) is the number of nearest neighbors y of z
with value Z;(y) = 1 (two sites in Z¢ are considered nearest neighbors if their Euclidean
distance is 1). Although this model makes sense also for d = 1, we will always assume
that d > 2. If we think of 1’s as occupied sites and 0’s as empty sites, then this defines
a pure growth model, where a particle at x gives birth at rate A at each of its empty
neighboring sites. The main questions that have been studied for this model concern
the asymptotic growth of the set of occupied vertices starting from a single occupied
vertex at time (0. The fundamental result says roughly that the set of occupied vertices
has a non-random asymptotic shape as t — oo; this will be given a precise formulation
in Theorem 2.1 below and then heavily used throughout the rest of the paper.

Recently, in [7], we introduced the two-type Richardson model, which is a gen-
eralization of the above model, where two kinds of particles compete for space in Z¢.
This new model has state space {0, 1, 2}Zd, two parameters Aj, Ay > 0, and the following
flip rates: 1’s and 2’s never flip, while a 0 flips to a 1 (resp. a 2) at rate A\; (A2) times
the number of nearest neighbors with value 1 (2).

Suppose that the two-type Richardson model is started at time 0 with the site
0 =(0,0,...,0) occupied by a 1, the site 1 = (1,0,...,0) occupied by a 2, and all other



sites being vacant (i.e. having value 0). It is easily seen that with probability 1, all sites
will eventually be occupied by a particle. Thus, one of the following three scenarios
must take place:

(i) The set of 1’s at some point surrounds (strangles) the set of 2’s, so that only finitely
many sites are eventually turned into 2’s, and the rest of Z¢ is filled with 1’s.

(ii) The set of 2’s similarly strangles the set of 1’s.
(iii) Both the set of 1’s and the set of 2’s keep growing indefinitely.

It is easy to see that scenario (i) happens with positive probability for any choice of
A1 and Ag, and similarly for scenario (ii). The main question studied here and in [7] is
whether scenario (iii) also has positive probability. Writing G' (G?) for the event that
the number of 1’s (2’s) grows unboundedly, and Pé’ll”\2 for the probability law of this
process, we thus ask whether or not

Py (G' NG?) > 0. (1)

We remark that the particular choice of starting configuration is irrelevant for whether
or not the event in (1) has positive probability (unless one of the sets is already strangled
by the other): For two disjoint subsets ¢! and ¢2 of Z¢, write Pg‘ll,’g‘f for the law of the
process starting with the sites in &' having value 1, those in ¢? having value 2, and
the rest value 0. A straightforward generalization of the proof of Proposition 1.2 of [7]
shows that (1) is equivalent to having
PR (G'NG?) >0

for any choice of finite £ and ¢? except those where one of the sets is already strangled
by the other.

In [7], we showed that (1) holds for d = 2 and A; = A9, i.e. that mutual unbounded
growth has positive probability if the two particle types have equal infection rates.
We also stated the conjecture that mutual unbounded growth does not happen in the
two-dimensional asymmetric case where A\ # Ao. We now extend this conjecture to
arbitrary d > 2:

Conjecture 1.1 For the two-type Richardson model on Z¢, d > 2, we have
Py (GING?) =0
whenever \1 # Ao.

The problem of deciding whether or not (1) holds for Ay = A\, and d > 3 is also open.
It seems reasonable to expect that (1) should hold in this case, although we are slightly
less confident about this than about Conjecture 1.1.

The following result, which is the main result of the present paper, is a weak form
of Conjecture 1.1. Note that by time-scaling, it is enough to consider the case \; = 1.

Theorem 1.2 For the two-type Richardson model on Z%, d > 2, we have
Py (G'NG?) =0

for all but at most countably many choices of Ao.



This strongly suggests that Conjecture 1.1 should be true. To see why, consider the
following heuristic argument. The event G' N G2 of mutual unbounded growth reflects
some kind of “power balance” between the two types, and therefore it is reasonable to

expect that P(l)”’P(Gl N G?) should decrease as Ao moves away from 1. For any fixed

A2 > 1 there exists, by Theorem 1.2, a Ay € (1, A2) such that Péﬁz (G'NG?) =0, so
that (if the above intuition is correct) P%,’jQ(Gl N G?) = 0 as well. Mutual unbounded

growth for Ay < 1 is ruled out by the same argument, or by noting that symmetry plus
time-scaling implies that

PyY (G NG%) =Py (G nG?). 2)

Unfortunately, we have not been able to turn the above heuristics into a proof.

Theorem 1.2 puts current knowledge about the two-type Richardson model in a
situation analogous to those of certain models of statistical mechanics in d > 3 dimen-
sions, such as the random-cluster model and the parity-dependent hard-core model (see
[5] and [6], respectively). For both these models, phase transition (nonuniqueness of
Gibbs measures) is known to occur for at most countably many points along certain
one-dimensional curves in the parameter space. Both models are, however, very differ-
ent in spirit from the two-type Richardson model, and our proof of Theorem 1.2 has
little in common with the proofs of the analogous results in the other models.

Neuhauser [13] has considered a model which generalizes the standard contact pro-
cess in exactly the same way that the two-type Richardson model generalizes the ordi-
nary Richardson model. The two-type Richardson model would arise by taking death
rate 0 in Neuhauser’s model. We doubt, however, that this observation can be used to
draw any conclusions about the problem studied here.

The rest of this paper is organized as follows. In Section 2, we recall the asymptotic
shape theorem and formulate a proposition which plays a key role in the proof of Theo-
rem 1.2. After some preliminaries in Section 3, we prove this key proposition in Section
4, and finally in Section 5 we use it to prove Theorem 1.2.

2 The shape theorem and a key proposition

Let us recall the classical shape theorem. For XA > 0 and ¢ C Z%, we write Pg‘ for the
law of the Richardson model with parameter A, started at time 0 with 1’s in £ and 0’s
in Z?\ ¢. We furthermore write 7(t) for the set of 1’s at time t, i.e.

n(t) == {z € Z%: By(z) = 1}.
Also define the “smoothed out” version 7(t) C R® of 7(t) as

7t ={z+y:zent),ye (-5 1.

Theorem 2.1 (the Shape Theorem) There ezists a nonrandom compact convez set
By C R? which is invariant under permutation of and reflection in the coordinate hy-
perplanes, and has a nonempty interior, such that for any A > 0 and any € > 0 we
have

(t)

Py |37 < o0, Vt > T, (1—e)By C == C (1+)By| = 1.
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An “in probability” version of this a.s. limit theorem appears already in Richardson
[14]. As pointed out by Cox and Durrett [3], the a.s. version follows by combining
Richardson’s results with that of Kesten [8]. Subsequently more general shape theorems
have been obtained by Kesten [9] and Boivin [2]. The exact shape of By remains
unknown.

By defines a norm | - | as |z| := inf{t : € tBy}. Define the modulus of a set A by
|A| := inf{t : A C tBy} and the dual modulus by |A|. := sup{t: tBpN A =0}. If A
is a subset of the integer lattice, the complementation refers to complementation in Z¢,
not in R%. The following key result, which will be proved in Section 4, says roughly
that in the long run even a relatively small advantage (in terms of the set of occupied
sites) for the stronger type is enough to doom the weaker type.

Proposition 2.2 Fiz Ao > 1 and let 1 < a < b. Let S(u,v) denote the set of pairs of
configurations (€1,€2) such that |¢'| < u and |€2| > v. Then

lim sup PV, (G =0.
£ (61 eneS(tagh) ©

3 Comparison results

We first record a few easy facts about stochastic domination and the relation of the
one- and two-type models. Analogously to the notation for the one-type model in the
previous section, we write n'(¢) and n%(t) for the set of 1’s resp. 2’s in the two-type
model at time t.

Lemma 3.1 Assume that M < ):1, Ay > /\~2, {1 C él and §2 D) 52, and consider the

two processes {n*(t),n*(t)} and {7 (t),7*(t)} with respective distributions Pg‘ll’g‘f and

Péll ’é\;. These can be coupled in such a way that for all t we get
n'(t) 7' (t) 3)
and
2 )
n(t) 27°(t)- (4)

Proof: For ¢ = 0, (3) and (4) are trivial. The flip rates of the two systems can be
paired according to the so called “basic coupling” (see e.g. Section III.1 of Liggett [11]),
and this is easily seen to preserve (3) and (4). Alternatively, the “omni-A” coupling Q
in Section 5 may be used. o

An instance of this lemma, is that the set of 1’s at time ¢ in the two-type process Pé’f‘gz

is stochastically dominated by the set of 1’s at time ¢ in the single-type process P;.
Similarly, we have for any ¢ that the set of 2’s in Pé’l)\gz is dominated by the set of 1’s
in ng.

Lemma 3.2 Fiz A € (0,1), and consider the two processes {n(t)} and {7'(t),7%(t)}
with respective distributions Pé and PS:}[. These can be coupled in such a way that

n(t) C i (t) Ui’(t) (5)

for all t.



Proof: Again the case ¢ = 0 is trivial. The flips can be coupled as follows. Each or-
dered pair (z,y) of nearest neighbors is equipped with an independent unit rate Poisson
process. At the times of the Poisson process assigned to (z,y), we toss an independent
biased coin with head-probability 1 — A, and also check in both processes whether x
is infected and y is not. Whenever this is the case, y is infected by z, except if the
infection at z is of type 1 and the coin came up heads. This preserves (5). O

For a subset R of Z%, define its boundary OR to be the set of sites in R® that have
some nearest neighbor in R. To describe the next result, we define a modification of
the two-type Richardson model as follows, with state space {0, 1,2, 2*}Zd. A 0 flips to
a1 (resp 2, 2*) at rate A1 (resp. Ag, A2) times the number of neighboring 1’s (resp. 2’s,
2*’s). A 1 and a 2* stays put forever, while a 2 flips to a 2* at rate Ay times the number
of neighboring 2*’s. The first thing to note is that if we observe this process without
distinguishing 2’s and 2*’s, then we see the usual two-type Richardson model. Now let
R be any fixed subset of Z¢, and start the modified process from some configuration
(€1,€2,6%") such that &' NR = ) and ¢€2° C R. Let 7 be the first time that a site in
OR flips to a 1 or a site in 9(R°) flips to a 2*. Then the growth of the set of 2*’s up
to time 7 is a version of the rate Ao single-type model. More precisely, the modified
two-type model starting from (¢!, €2, 52*) can be coupled with the single-type process
Pg‘; in such a way that up to time 7, the set of 2*’s in the modified process equals the
set of occupied sites in the single-type process. This fact, which we call the separator
lemma, is trivial, but easy to state incorrectly.

The point of having two subtypes of type 2 is that it is useful to have the stopping
time 7 as large as possible. When we apply the separator lemma, we let £2° be the set
of type-2 particles we know about, thus not allowing others to trigger 7.

4 Proof of key proposition

This section is devoted to the proof of Proposition 2.2. The geometrical picture to have
in mind, in the setup of the proposition, is that with high probability, the particles of
type 2 outside the bi-ball grow into ever-widening spherical shells, until eventually they
completely fill a sphere surrounding all the weaker particles. The following definitions
make precise the shape of this growth, which is roughly a d-dimensional Archimedian
spiral. Recall that | - | is the norm defined by the shape By in Theorem 2.1.

Definition 4.1 Given ¢ > 0 and z € R® with |z| = 1, define sets C,, = Cp(z,¢)
recursively by Cy = {z} and

Crnt1={y: |yl =1 and |y — z| < e for some z € Cy}.

Given additionally b > 1, 6,t > 0 and y € Z¢ with y/|y| = = and |y| = bt, define sets
Ap = Apn(bye,d,t,y) by letting Ag = {y} and for n > 1,

Ay ={z€Z: b1+ 6" 't <|z| < b1+ 6"t and z/|z| € Cy}.
Record for later use the following geometrical fact:

Lemma 4.2 For fized b, 8,y and any 6' > 6, an € > 0 may be chosen sufficiently small
so that each point of An(b,e,6,t,y) is within

(b8")t(1 + &)t
of some point in Ap_1(b,€,0,t,y), for all n and all sufficiently large t.



Proof: Let A, be the corresponding set in R4, i.e.,
Ap={z € RE:bt(1 4+ 6)"! < |2| < bt(1+6)" and z/|2| € Cp}-

As e = 0, d(Cp,Cn-1) — 0 in the Hausdorff metric, uniformly in y and n. Rescaling
by (1 +6)" !, we then see that the lemma is true with A,, in place of A,, using

d(Ap, Ay_y) < b1+ 6)"d(Cp, Crey) + E[(1+ 6)" — (14 6)"1].

Since d(An, Ay)/(bt(1 4+ 6)" ') = 0 as t — oo, the lemma follows. O

Without loss of generality, it suffices to prove Proposition 2.2 in the case where b < A9
and £2 contains some site z with |z| = bt, because if not, replace b by some b’ € (1, \2),
replace a by some a' € (max{1,ab’/b},t'), and replace t by ' = |z|/V/, where z € &>
with |z| > bt; this turns (£1,£2) € S(at, bt) into (£1,€2) € S(a't',b't') with |z| = b't' for
some z € £2, reducing to the desired case. Clearly there is an n(e) such that C, is the
entire unit sphere, and hence 4,,(b, ¢, d, t,y) disconnects the set {z : |z| < at(1+6)} from
infinity (for sufficiently large t). Thus, Proposition 2.2 follows once the following
result is established:

Theorem 4.3 For fired 1 < a < b < A there are €,0 > 0 such that

supP i\ (T < nle) : A(b,e,6,t,y) L’ (t[(1+6)F 1)) or [n' ([(1+6)F~1])| > at(1+6)*)
converges to 0 as t — oo, where the sup is over (£1,£2) € S(ta,tb) and x € &2 with
|z| = bt.

The one-sentence summary of the proof of Theorem 4.3 is as follows. The separator
lemma keeps the strong infection starting in A4,, growing unfettered up to time ¢(1+ )"
unless either it or the weak cluster grows uncharacteristically fast; this forces A1 to be
in the strong cluster at time #(144)™ unless the strong cluster grows uncharacteristically
slowly (here we start at time ¢ in configuration (¢!, £2)). Making this rigorous is simply a
matter of stating and using a few lemmas bounding the probability of growth in the one-
type model that is either uncharacteristically slow or uncharacteristically fast. These
lemmas are elementary consequences of the shape theorem (Theorem 2.1); superior
bounds may be possible to derive e.g. from the work of Alexander [1], Kesten [10] and
Talagrand [15]. Our bounds are more powerful in one direction (ruling out slow growth)
than the other because of the superadditivity of the process in time.

Lemma 4.4 Given a > 1 and r > 0, we have

lim sup Pé(EIs >rt:|n(s)| >a(s+1t)) =0.
1200 g1 ¢|<at

To prove this, we need to recall the well known edge representation (i.e. the first-passage
percolation formulation) of the one-type process. We equip the edge set E of the Z¢
lattice with i.i.d. random variables {7 }.c g that are exponentially distributed with mean
one. For z,y € Z%, we set T(z,y) to be the infimum over all paths from z to y of the
sum of the T¢’s of the edges along the path. We use the convention that T(z,z) = 0
for all z. For fixed ¢ € Z% we can define a {0, 1}Zd-valued process {E;};>0 by for each
z € Z% taking

= ( ) o O for t< infyeg T(ya‘r)
ST 1 for t > infyee T(y, 2) ,



so that in particular Z¢(z) = 1 for all ¢ whenever z € £. It is easy to see that the process
{E¢}¢>0 defined in this way has precisely distribution Pé. We now think of the one-type
process as being generated by this edge representation, and take the liberty to write
P% (A) also for events defined in terms of the edge representation.

Fix ¢ > 0. For s > rt and a starting configuration ¢ with |¢| < at, the event
{In(s)| > a(s +t)} implies (for sufficiently large t), the event A(a,r,t,¢) defined to be
the existence of x,y and s > rt with the following properties:

(i) at<|z| <(1+¢€)at;
(i) (I—ea(s+1) <yl <als+1);
(iii)  T(z,y) <s.

Clearly,
P¢(Fs > rt: [n(s)| 2 a(s + 1)) < Pg(A(a, 1 ,¢)),

so Lemma 4.4 follows from

Proposition 4.5 Given a > 1, r > 0 and small enough € > 0,

lim P(A(a,r,t,e)) =0.

t—o0

Proof: Assume for contradiction that this probability does not go to zero. Then there
is a sequence of times ¢, — oo for which the probabilities are at least §, and hence the
probability that A(a,r,t,,€) happens for infinitely many ¢, is at least §. Choose € small

enough so that
(14+2)a—1

le o T28)07 2
< (1—2¢)a—1

<1+
The event A(a,r,t,e) implies the disjunction

{In((1 + 2¢)at)[« < (1 + €)at} U{|n((1 + 2¢)at + 5)| > (1 —€)a(s + 1)},
which under the assumption on ¢ implies

{n((1 +26)at)], < (1+ )at} U {n((1 — 26)a(s + )| > (1 — e)als + )}

If these occur infinitely often, then the shape theorem (Theorem 2.1) is violated, finishing
the proof by contradiction. O
Along the same lines we can prove a lemma for how fast the shape can creep in from
beyond a sphere:

Lemma 4.6 Let A,e > 0 and let {a,} and {b,} be increasing sequences with b, /a, >
14+ A and by /by_1,an/an_1 > 1+¢. Let U, = {z : |z| > by}. Then for any A' < A,

Z Py, 3z € n(A'ay) 1 7] < ap) < o0. (6)

n=1

In fact the sum goes to zero as a; — 00.



Proof: For a € R, let [a] denote min{z € Z : z > a}. Replacing b, by [(1+A)a,, | only
increases the sum in (6), so we assume without loss of generality that b, = [(1+ A)a,].
With M = [log(1+ A)/log(1+¢€)]+1 we then have ap4ar > by + 1 for sufficiently large
n. For such n, use the edge representation again, and let F,, be the o-field of times on
those edges with an endpoint z with a, < |z| < b,. For z,y in this set of vertices or
on its boundary, write T;,(z,y) for the infimum, over paths from z to y whose times
are Fp-measurable, of the sum of the times; thus 7, (z,y) € F,. Note that {F,, } are
independent if {n;} is a set with ng; —ny > M. Write G,, for the event of existence
of z,y with |z| < ay, |y| > b, and T (z,y) < Alay,.

Observe that the event in the summand of (6) implies the existence of z,,y, for
which |z,| < an,|yn| > by > an + Aay, and T'(zy,y,) < A’a,. The path from z,, to
Ypn Minimizing the sum of the times will have a last hit on d{z : |z| > a,} and a first
entrance into {z : |z| > b, }; the path between (and including) these steps witnesses Gy,.

Assume now for contradiction that the sum in (6) is at least § for arbitrarily large
values of a;. Then the sum restricted to n in some residue class {k + jM} modulo M
is at least 6/M for arbitrarily large a;. Hence

> 0
E Z Legijm 2 M
§=0

for some k and arbitrarily large a;. Since the events G s are independent, this means
that

o
P (U Gk‘—l—jM) Z 1-— e_J/M.
j=0

If this holds for arbitrarily large a1, then the probability is at least 1 — e~%/™ that
infinitely many pairs (2, yn) with |z,| < a, and |y, | > (1+A)a, will satisfy T'(zp, yn) <
A’a,,. This contradicts the shape theorem, since for each such pair, either the time to
Ty, is too long or the time to y, is too short. O

The next lemma is a simple large deviations result, bounding the probability of unchar-
acteristically slow growth.

Lemma 4.7 For any 8 < 1 there are positive constants Cg and ~yg such that
Py (In(t)]« < Bt) < Cgexp(—st)
for all t.

Proof: It is known (see e.g. Theorem 2.1 of [1]) that ET(0,z)/|z| — 1 as |z| — oo,
where E is expectation with respect to P§. Choose M large enough so that |z| > M
implies

ET(0,z) < 87 3|a).
We may choose a finite collection A of vectors of norm at least M such that any vector
y € Z¢ with |y| sufficiently large may be written as z1 + - - - + z,, with each zj € A and

> lmsl < B~1/3|y|. Observe that T'(0,y) is bounded above by the sum of independent
copies of T'(0,z;). We now make the following



Claim: For any 8 < 1, there exists a constant s € (0,1) such that for any
n and any multiset {z1,...,z,} of elements of A,

P(S > 7Y EBT(0,2;) < 5"
j=1
where S is the sum of independent random variables distributed as T'(0, ;)
forj=1,...,n.

We prove the claim by establishing that there are A > 0 and s € (0, 1) for which

sup exp{—A3"3ET(0,z)} BT < 5. (7)
T€EA

The first step in this is the observation that for each x € A, the variable T'(0,z) has
exponential tails, so that Ee* (%) ig finite for A in a neighborhood of 0 and we can
differentiate under the integral at A = 0 to get

d E[T(0,z)e’ ()]

d AT(0,2)] _ ya-1/3 _ _ 41/3
o )\Zolog[Ee | =8 /°ET(0,x) ( EN(02) g ET(O,x))

A=0
= (1-p7'*ET(0,x)
< 0.

When A = 0 of course log[Ee)‘T(O’””)] —A\B~Y3ET(0,z) = 0, so we see that this expression
is strictly negative in some interval (0,a(x)). Choosing any positive A < minge 4 a(x)
proves (7).

Now the claim follows from Markov’s inequality:

P(S >4 /3 zn: ET(0,z;)) < exp {—,\51/3 Xn: ET(0, xj)} EeM’

=1 7j=1
= H exp{—A8~3ET(0, a:j)}Ee’\T(O’wj)

j=1
< s™

Furthermore, for any y with |y| sufficiently large there is a representation as y =
> i=1y; with y; € A and

Byl > B3 |yl > B3 ET(0,y;).
j=1

j=1
Thus .
Po(T(0,y) > A" |yl) <Po(S > 5712 3 ET(0,y)).
J=1
By applying the claim, we see that this is at most s” with n > |y|/ maxzca |z|. The

event {[n(t)|« < Bt} is contained in the event U,y {7'(0,y) > t}, where W is the set of
points within unit distance from the boundary of the Ft-ball. Hence

Po(In(t)l <pt) < > C exp(—7ly|/ max |2])
yeWwW



for ¢ sufficiently large. Picking any yg < v/ max,c4 |z|, using the subexponential
growth of W, and adjusting Cjs to account for small values of ¢ finishes the proof. O

Equipped with these lemmas, we are now ready for the proof of Theorem 4.3.

Proof of Theorem 4.3: Begin with § and € > 0 fixed but arbitrary. The first step
is to take care of the possibility that the weak cluster grows fast enough to impede the
strong cluster. Let E be the event that |n(s + ¢)| > a(s +t) for some s > 6t. E is thus
defined for the one-type process, but in (8) below we let E denote the corresponding
event for the type-1 infection in the two-type process. Lemma 4.4 with r = § (together
with the strong Markov property) implies that P§(E |n(t) = £') — 0 as t — oo, when
|€'] < at. Using the fact that from any starting configuration n' is dominated by the
single-type model, and shifting time ¢ to 0, we then have

sup Py, (T : 0! (11 + )% — 1)] > at(1 + 6)*)

< sup PG (3s >0t n(s +1)| > als +1) [ n(t) = ¢')
(¢ <at

which tends to 0 as t — oo; the supremum on the left hand side is over (¢!, £2) € S(at, bt)
with some z € £2 such that |z| = bt. Thus it suffices to prove that

sup Py’ (BN {3k <nle) : A @ (t[(1+)F 1))} ) = 0 ®)

as t — oo.

The second step is to take care of the possibility that the growth of the strong cluster
is due to some growth fast enough to violate the hypotheses of the separator lemma.
We first rewrite (8) as the sum from k£ =1 to n(e) of the probability that & is the first
such k, and bound this by the sum

n(e)
> sup P (B0 { Ak @n? (851 +0)F)}) (9)
k=1

where the supremum is restricted to &2 containing Az_; (we have used the Markov
property to shift time by #[(1 + 6)¥~! — 1]).

Now take k > 3; the cases £k = 1,2 can be handled similarly. We wish to apply the
separator lemma with £2° = A,_; and R}, being the complement of the ball of radius
at(1 4 0)¥=2. Thus we let 7, be the first time that a type-1 particle reaches OR}, or a
type-2* particle reaches O(Rj). By the separator lemma,

P (Bon {Ar @1 + 05 })

1, - _
< PRl (Bon{m <ts(1+0)F 1))+ PA,_| (Ak Znto(1 +0)FY). (10)
On E¢, the only way for the event {7 < t§(1 4 6)*~1} to occur is to have a type-2*

particle reach O(Rf,). The first of the two terms in (10) is bounded as follows. Recalling
that § was arbitrary, we now choose § small enough so that

A(1+0) <b—(1+6)%a.

10



Let b, = bt(1 +6)" ! and a,, = at(1 + 6)"*!, and define A = b,/a, — 1 = (b—a(l +
8)?)/(a(1 +6)?) and A’ = X\§/(a(1 + §)). Set U, = {2z : |z| > b,} so that U, O A,. By
the choice of §, we have A’ < A. Lemma 4.6 says that the sum

n(e)

Z P}]k_l(EIx en(Aag_1) : |z| < ak_1)
k=1

goes to zero as t — oo. Unraveling definitions,
n(e)
> Phk_l(ﬂx € n(AGt(1 + 6% 1) 1 |z < at(1+6)F) = 0
k=1

as t — oo, and hence

n(e)
S P (BN {m <ot(1+0)1}) =0
k=1

as t — o0.

Having successfully bounded the first term in (10), it remains to deal with the
second. We may change the infection rate to 1 and allow greater time by a factor A, so
it suffices to show that

n(e)

1 k-1

> PlL,  (Ap En(Ats(1+6)" 1) =0 (11)

k=1
as t — oo. So far € has been arbitrary, but we now choose ¢’ € (§, A\d/b) (recalling that
A > b) and use Lemma 4.2 to pick € such that for sufficiently large ¢, every point of Ay
is within bd’t(1 + §)¥~! of some point in Az_;. The event {4 In(Até(1 + 61} is
therefore contained in the event

{ U B(z,bd't(1+6)* 1) gn(Ats(1 + 5)k—1)} :

2€EAK_1

where B(z,r) denotes the ball of radius r centered at z. Using the edge representation
of the one-type process, it is easy to see (and a standard fact) that we can view the
cluster of infected sites under le41¢_1 as the union of clusters with law P. for z € A;_1.
The sum (11) is therefore bounded by

n(e)
SN PLB(z,b0't(1+6)F 1) En(Mts(1 + 6)F ).
k=1z€Ap_1

Translate z to the origin in each summand, we rewrite this as
n(e)
> Y P (|n(>\t5(1 +8)F |, < btd'(1+ 5)'6*1) .

k=1 ZEAk_l

Now set 8 = bd'/(Ad) and apply Lemma 4.7 to achieve an upper bound of

3 [Ak-1|Cy exp(—ystAS(L + 8)F)
k=1

for the sum in (11). The bound |Ax| < C((1 + §)*t)¢ shows that the supremum over
t > 1 of |Ag_1|Cgexp(—vy5tAd(1 + §)F 1) is summable in k, and also that for fixed k
the summand goes to zero as ¢ — oo. Then by dominated convergence, the sum goes
to zero as t — 0o, completing the proof. O

11



5 Proof of main result

In this section we finally prove Theorem 1.2. Besides the key proposition (Proposi-
tion 2.2), the other main ingredient is the following coupling of the two-type processes
generated by Paﬁ for all \ € [0,1] simultaneously.

To each ordered pair (z,y) of nearest neighbors in Z?, we assign an independent
unit rate Poisson process. Also let

{Uw,y,i}w,yezd,z‘e{l,z...}

be an array of i.i.d. random variables (independent also of the Poisson processes), uni-
formly distributed on [0,1]. For each A € [0,1], a two-type process {n}(t),n3(t)}i>0 is
defined by taking (n1(0),73(0)) = (0,1), and infections as follows. For each ordered
nearest neighbor pair (z,y) and each i, we check whether at the ith occurence of the
Poisson process assigned to (z,y) it is the case that z is infected (i.e. has value 1 or 2)
while y is not (i.e. has value 0). If that is the case, then y flips to a 1 if z is a 1 and
Ugy,i < A, and y flips to a 2 if z is a 2. Tt is easy to check that for each X € [0,1] the

process {n)(t),n3(t) }+>0 has distribution P()]‘ﬁ. We write Q for the probability measure

underlying this coupling. For j = 1,2, we write Gg\ for the event of unbounded growth
for type j in the {n}(¢),n3(¢)}+>0 process. This means e.g. that

Q(G}) =Pga(GY).
Lemma 5.1 For A; < A\g € [0,1], we have Q-a.s. for all t,

M, (1) € 13, (1) (12)
and

i (£) 2 3, (2) - (13)
Proof: The case t = 0 is immediate, and it is also clear from the construction that (12)
and (13) are preserved in time. O

The key proposition (Proposition 2.2) comes into play in the following lemma, saying
that the asymptotic shape result holds on the event of mutual unbounded growth.

Lemma 5.2 For X € [0,1], we have Péﬁ—a.s. on the event (G' N G?) that

[n* () Un*(®)]

= A
t
and ) )
t) U 1)«
In' (%) tn O,
as t — oo.
Proof: It suffices to show that
1 2
lim supM <A (14)
t—00 t
and ) )
liminf O YT Ol o (15)
t—00 t
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Péﬁ—a.s. on the event (G N G?). To see that (14) holds, note first that

1
lim sup (@)l

t—00 t

<A (16)

by Lemma 3.1 and Theorem 2.1. Secondly, limsup;_, @)

t
there would be an € > 0 such that

[n*(1)]
t

< A, because if not, then

> (1+4+¢)X infinitely often

which in combination with (16) prevents the event G' due to Proposition 2.2 (where,
by time scaling, Pé’l):gz can be replaced by Pé{f‘él) and the strong Markov property.
Hence, (14) is established.

On the other hand, (15) follows by invoking Lemma 3.2 and Theorem 2.1. O

Lemma 5.3 For any A\ < A\ € [0, 1], we have
Q(G}, NG3,) =0.

Proof: Suppose that G%\l happens. We need to show that G%Q does not happen. If Gil
does not happen, then we are done by Lemma 5.1, so we can assume that Gil N Gil
happens. Then

e Inx, @) Un3 (t)]

t—00 t - )\1
by Lemma, 5.2, so that in particular
2
lim su |77)\1( ) <A
t—00 t
By another application of Lemma 5.1, we get
2
t
lim sup M <A (17)
t—oc t

On the other hand, Lemma 3.2 and Theorem 2.1 imply that

- I3, (8) Un3, (8]«

t—o0 t

> A (18)
But the events in (17) and (18) together imply that the n§2 infection eventually becomes
surrounded by the 77/1\2 infection, preventing the event G?\Q. O

Lemma 5.4 With Q-probability 1, the event (G} N G3) happens for at most one X €
[0,1].

Proof: By Lemma 5.1, the set of A for which G%\ happens is increasing (i.e. if A\; < Ao
and G%\l occurs, then also G%\z occurs), and the set of A\ for which G% happens is
decreasing, Q-a.s. Hence the set L := {\ € [0,1] : G} N G3} is Q-a.s. an interval.
We need to show that L consists Q-a.s. of at most one point. If, with positive Q-
probability, L were a nondegenerate interval, then there would exist A\; < Ag in [0, 1]

13



such that the event (G} N G3 N G’%\z N Giz) has positive Q-probability. This, however,
would contradict Lemma 5.3. O

Proof of Theorem 1.2: By (2), it is enough to prove that P(lj’j2 (G*NG?) > 0 for
at most countably many Ao > 1. By time scaling, this is the same as saying that
Péﬁ(G1 N G?%) > 0 for at most countably many A € [0,1]. Lemma 5.4 tells us that
Q(G} N G?%) > 0 for at most countably many A € [0, 1], and since
Al
Po,l(G1 NG*) = Q(G5NG3)
we are done. O
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