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Abstract

Consider i.i.d. percolation with retention parameter p on an infinite graph G. There
is a well known critical parameter p. € [0,1] for the existence of infinite open clusters.
Recently, it has been shown that when G is quasi-transitive, there is another critical value
DPu € [Pe, 1] such that the number of infinite clusters is a.s. oo for p € (p¢,py), and there
is a unique infinite cluster for p > p,. We prove a simultaneous version of this result
in the canonical coupling of the percolation processes for all p € [0,1]; in particular, a.s.
simultaneous uniqueness holds for all p > p,. Simultaneously for all p € (p.,p.), we also
prove that each infinite cluster has uncountably many ends. For p > p. we prove that all
infinite clusters are indistinguishable by robust properties. Under the additional assumption
that G is unimodular, we prove that a.s. for all py < ps in (pe, pu), every infinite cluster at
level po contains infinitely many infinite clusters at level p;. We also show that any product

G of d infinite connected graphs of bounded degree satisfies p,(G) < p.(Z%).
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1 Introduction

We consider i.i.d. bond percolation with retention parameter p € [0,1] on an infinite locally
finite connected graph G = (V, E). This means that each edge is independently assigned the
value 1 (open) with probability p, and the value 0 (closed) with probability 1 —p. We write Pf
for the resulting probability measure on {0,1}¥. All our results and proofs may be adapted to

site percolation as well.

Percolation theory deals with the structure of the connected components of open edges, es-
pecially infinite connected components (clusters). By Kolmogorov’s zero-one law, the existence

of at least one infinite cluster has probability 0 or 1, and one defines
pe(G) =inf{p €[0,1] : Pf(EI an infinite cluster) = 1}.
Following Benjamini and Schramm [9], we also define
pu(G) = inf{p € [0,1] : P5(3 a unique infinite cluster) = 1}.

For G = Z%, Aizenman, Kesten and Newman [1] showed that whenever an infinite cluster exists,
it is a.s. unique, so that p. = p,; subsequently, shorter proofs were given in [14] and [11]. (With
the usual abuse of notation, we write Z? for the graph whose vertex set is Z¢ and whose edge
set consists of the pairs of Euclidean nearest neighbors.) For general graphs uniqueness no
longer holds, but for a large class of graphs, including the quasi-transitive ones, (see Definition
1.1 below), the number of infinite clusters is an a.s. constant (depending on p) which may be
either 0, 1 or co. As noted independently by several authors, this follows from the arguments

of Newman and Schulman [27].

The pioneering paper of Grimmett and Newman [16] revealed that surprising new phenom-
ena appear when one goes beyond lattices in Euclidean space, and Benjamini and Schramm [9]
indicated the right level of generality to study these phenomena. Nevertheless, as we shall see
in Section 8, certain deep results for percolation in Z¢ (uniqueness in orthants, and estimates

of p.) have significant implications beyond the Euclidean setting.

Write Aut(G) for the group of graph automorphisms of the graph G.



Definition 1.1 A graph G = (V, E) is called transitive if for any z,y € V there exists a
v € Aut(G) which maps x toy. The graph G is called quasi-transitive if V' can be partitioned
into finitely many sets (orbits) Vi,..., Vi, so that for x € V; and y € V;, there ezists v € Aut(Q)
mapping x toy iff i = 5.

Clearly, a transitive graph is quasi-transitive.

Benjamini and Schramm [9] conjectured that for quasi-transitive graphs, a.s. uniqueness of
the infinite cluster holds for all p > p,. This was proved for Cayley graphs (and, more generally,
for quasi-transitive unimodular graphs; see Definition 6.1) by Haggstrom and Peres [18], and

in full generality by Schonmann [29].

Theorem 1.2 ([18], [29]) Consider bond percolation on a connected, infinite, locally finite,

quasi-transitive graph G. Then Pg -a.5., the number N of infinite clusters satisfies

0 if pel0,pe)
N =14 oo if pe(pe,pu)
1 if pe(pu,1].

The parameter space [0, 1] is thus split into three qualitatively different intervals, separated by
the two critical values p. and p,. Some of the intervals may be degenerate or empty (e.g., for
Z? we have p. = p,, and for trees we have p, = 1). Grimmett and Newman [16] presented the
first example of a transitive graph where all three regimes are nondegenerate: the product of a

regular tree and Z. Other examples were given by Benjamini and Schramm [9] and Lalley [22].

There is a natural way to couple the percolation processes for all p simultaneously. Equip
the edges of G with i.i.d. random variables {U(e)}cc g, uniform in [0, 1], and write U for the
resulting product measure on [0,1]¥. For each p, the edge set {¢ € E : U(e) < p} has the
same distribution as the set of open edges under Pg . This yields a coalescent process which
has turned out to be a fruitful object of study in Erdés—Rényi random graph theory (see e.g.
[19, 2]) and which has recently attracted more attention also in percolation theory (e.g. [10]):

When p = 0 every vertex is its own connected component. As the parameter p is increased,



more and more edges become open, causing connected components to coalesce, until finally,

when p = 1 all edges are open.

By Theorem 1.2 and Fubini’s Theorem, we have ¥%-a.s. that the number of infinite clusters
is oo for (Lebesgue-)a.e. p € (p¢,py), and 1 for a.e. p € (py,1]. However, it is not obvious
that the quantifier “a.e.” can be strengthened to “every” in these statements. Alexander [3]
demonstrated that this strengthening holds for G = Z¢ and other Euclidean lattices, and
Héggstrom and Peres [18] handled the case where G is quasi-transitive and unimodular. Here

we prove the simultaneous version of Theorem 1.2 for all quasi-transitive graphs.

Theorem 1.3 Let G be an infinite, locally finite, connected, quasi-transitive graph, and let p.
and py be as in Theorem 1.2. Consider the coupling € of the percolation processes on G for
all p € [0,1] simultaneously, and let N(p) be the number of infinite clusters determined by the
edge set {e € E: U(e) < p}. With U%-probability 1, we then have

0 forall pel0,p.)
N(p) =4 oo forall p€ (pc;pu)
1 forall pe€ (py,1].

This is an immediate consequence of the following result.

Theorem 1.4 Let G be an infinite, locally finite, connected, quasi-transitive graph, With UG-

probability 1, for all py < pa in (pe, 1], every infinite pa-cluster contains an infinite p1-cluster.

This sharpens a result of Schonmann [29], which gives the same assertion except that the order

i

of the quantifiers “with U%-probability 17 and “for all p; < po” is interchanged.

Theorems 1.3 and 1.4 imply that as the parameter p increases, infinite clusters are “born”
only at, or immediately after, level p.. For larger p, infinite clusters grow and merge, but no
new ones are formed from finite clusters. Our next result shows that infinite clusters “merge re-
lentlessly” in the intermediate regime (p., p,). We can only prove this result for quasi-transitive
graphs under the additional assumption of unimodularity (see Definition 6.1), but we believe

it holds for all quasi-transitive graphs.



Theorem 1.5 Let G be an infinite, locally finite, connected, quasi-transitive unimodular graph,
and let p. and py, be as in Theorem 1.2. Then, with ¥ -probability 1, for any p1 < p2 in (Pe, Pu),

any infinite cluster at level pa contains infinitely many infinite clusters at level p;.

The next result also concerns the intermediate regime (p,p,). Say that two infinite self-
avoiding paths &; and & in the same infinite cluster C are equivalent if for any finite set
{e1,...,en} of edges in C, both paths are eventually in the same connected component of
C\{ei,...,en}. Equivalence classes of self-avoiding paths in C are called ends of C. The

following theorem is proved in Section 4.

Theorem 1.6 Let G be an infinite, locally finite, connected, quasi-transitive graph. Then,

UG- qa.s., for all p € (pe,pu) every infinite p-cluster has precisely 280 many ends.

The proof extends to the case p = p, if there are multiple infinite clusters at that level; thus,
this theorem confirms Conjecture 5 of Benjamini and Schramm [9] (except for the case p = p.,
if infinitely many infinite clusters can exist there). The fixed-p unimodular case was proved in

the original version of [18].

When there are infinitely many infinite clusters, can they be qualitatively different? To

make this question precise, we need some definitions.

Definition 1.7 Let G = (V, E) be a quasi-transitive graph. By a subgraph of G, we mean a
collection of edges. A set Q of subgraphs of G is called a property if for every p € (0,1) and

every vertez x, the event that the open cluster of = at level p belongs to Q is Pp-measurable.

e @ is an invariant property if for every v € Aut(G) and Ey € Q, necessarily v(Ep) € Q.
e () is monotone if whenever E1 € Q and E1 C E», then also Ey € Q.

e () is robust if for for every infinite connected subgraph C of G and every edge e € C, we
have the equivalence: C € Q iff there is an infinite connected component of C \ {e} that
satisfies Q.



Suppose that @) is a robust property and C is an infinite cluster satisfying (). If an edge adjacent
to C is opened, then the resulting cluster will satisfy ), and if an edge in C is closed, then at

least one of the resulting infinite clusters will satisfy Q.

Transience (for simple random walk) is a robust, monotone, invariant property of subgraphs
that has been studied extensively. An invariant property of interest, that is robust but not
monotone, is {C : I infinitely many encounter points in C} (see [11], [8], or the end of the
present paper for the definition and significance of encounter points). A monotone invariant

property for which robustness is not known is {C : p.(C x Z) < po}, where py < 1 is fixed.

Following a question of O. Schramm (personal communication), Higgstrom and Peres [18]
showed that for G quasi-transitive and unimodular, if () is any monotone invariant property,
then P,-a.s, infinite clusters with and without () cannot coexist, except possibly at one value
of p. This result was substantially improved by Lyons and Schramm [24], who showed there
is no exceptional p, and the monotonicity assumption on @} can be dropped. Thus on quasi-
transitive unimodular graphs, [24] shows that infinite clusters are indistinguishable by invariant

properties. as noted there, this strong result fails without unimodularity; see Section 6.

Nevertheless, on any quasi-transitive graph, infinite clusters cannot be distinguished by

robust invariant properties. The following theorem is proved in Section 5.

Theorem 1.8 Let G be an infinite, locally finite, connected, quasi-transitive graph, and let
P € (pe,pul- If Q is a robust invariant property of subgraphs of G such that
P,(3 an infinite cluster satisfying Q) > 0, then Pp-a.s., all infinite clusters in G satisfy Q.

Next, we present an upper bound on p, for products of infinite graphs. For d graphs
{G; = (V;, E;)}¢_,, define the product graph G = G x - -+ x G as the graph with vertex set
V =V; x--- x Vg, and edge set E consisting of pairs (z1,...,24) and (y1,-...,yq) such that z;
and y; are neighbors in G; for exactly one coordinate ¢ € {1,...,d}, and z; = y; for all other
coordinates j. Clearly, a product of two or more quasi-transitive graphs is quasi-transitive.

Some of the most natural examples (such as the Grimmett—-Newman example) arise this way.



Theorem 1.9 Let G1,...,G be infinite connected graphs with bounded degree, and let G be
their product G1 x --- X Gg. Then, for bond percolation on G with parameter p > p.(Z%), we
have Pg—a.s. that the number of infinite clusters is ezactly 1. Moreover, in the coupling ¥C,

uniqueness of the infinite cluster holds a.s. simultaneously for all p > p.(Z%).

In particular, if G4,..., Gy are infinite connected graphs with bounded degree, then

pu(G1 % -+ x Gg) < po(ZY).

The rest of the paper is organized as follows. In the next section we state an extension
of Theorem 1.4. We prove this extension in Section 3, by combining the approach of Schon-
mann [29] with invasion percolation ideas. Theorem 1.6 on ends is established by similar means
in Section 4. We prove Theorem 1.8 (indistinguishability by robust properties) in Section 5. In
Section 6, we define unimodularity and recall a technique known as the mass-transport method,
which we then use in Section 7 to prove Theorem 1.5. In Section 8 we prove Theorem 1.9, build-
ing on classical results for percolation in Z¢, and a result in [29]. Lower bounds on p,, are also

discussed there. Section 9 contains examples, remarks, and unsolved problems.

2 Uniform percolation and semi-transitive graphs

In this section we will extend Theorem 1.4. To state this extension, we will need the notion of
uniform percolation from [29]. The ball B(z, R) of radius R centered at z € V, is defined as
the set of edges in G which have both endpoints within (graph-theoretic) distance R from z.

Definition 2.1 A graph G = (V, E) ezhibits uniform percolation at level p if

lim inf P,(some infinite p-cluster intersects B(z,R)) = 1. (1)
R—ocoz€V

It is easy to see that any quasi-transitive graph exhibits uniform percolation at all levels

p > pe. In fact, this holds in the larger class of semi-transitive graphs.



Definition 2.2 A graph G = (V, E) is called semi-transitive if there is a finite set Vp C V
such that for any vertex x € V, there is a vertex y € Vi and an injective graph homomorphism

of G that maps y to x.

The simplest examples of semi-transitive graph that are not quasi-transitive are the nearest-
neighbor graph on the positive integers Z, , and d-ary trees where the root has degree d and all
other vertices have degree d + 1. More generally, the “super-periodic” trees that discussed in
Lyons and Peres [23] are semi-transitive; an example is the subtree of the binary tree consisting
of all vertices such that the path from the root to v has at least as many left turns as right
turns. These trees are closely related to the “super self-similar” sets studied by Falconer [13].
A class of graphs, mentioned in [29], which are semi-transitive but not quasi-transitive, are

products G X Z, where G is quasi-transitive.

The next result extends Theorem 1.4.

Theorem 2.3 Let G be an infinite connected graph with bounded degree, that exhibits uniform
percolation at level p,. With W% -probability 1, for all p1 < py in (ps, 1], every infinite po-cluster
contains some infinite pi-cluster. In particular, there is UC-a.s. a unique infinite cluster at

level p for all p > max(py, px).

This will be proved in the next section using invasion percolation. Here, we show how it implies

a generalization of Theorem 1.4.

Proof of Theorem 1.4, generalized to semi-transitive G: Let p > p.(G). Since the

existence of an infinite cluster has P,-probability 1, we have for each fixed z € V' that

1%1_1)130 P, (some infinite p;-cluster intersects B(z, R)) = 1.

The infimum in (1) is attained for some y in the finite set Vp specified in Definition 2.2, and it

follows that (1) holds for any p > p.(G). Invoking Theorem 2.3 completes the proof. 0

Theorem 1.3 may fail in the semi-transitive setting, because there exist semi-transitive
graphs where with positive probability, the number of infinite clusters is finite but greater than

one. (An example of this, due to O. Schramm, is described in the final section.) Nevertheless,



Theorem 1.3 does extend to semi-transitive graphs G where Aut(G) has an infinite orbit (e.g.
G = G1 X G9 where (1 is quasi transitive and G is semi-transitive), since a standard argument
shows that in such graphs G, for each parameter p the number of infinite clusters is 0,1 or oo

a.S.

3 Invasion clusters hit infinite percolation clusters

A key idea in proving Theorem 2.3 is to use invasion percolation, which is a sequential construc-
tion based on the same uniform random variables {U(e)}ecr as the canonical coupling of the
ordinary percolation processes. Here we give only a brief description of invasion percolation;
we refer to Chayes, Chayes and Newman [12] for a general introduction to the model, and to

[25, 28] for some interesting recent applications in statistical mechanics.

The invasion cluster of a vertex z € V is built up sequentially by constructing an increasing
sequence of edge sets IT C I C --- as follows. Let I{ consist of the single edge e which
minimizes U(e) among all edges incident to x. When I} is constructed, I{,, is taken to be
I* U {e}, where e is the edge which minimizes U(e) among all edges e that are not in I but

are adjacent to some edge in I. The invasion cluster of = is the edge set

o
z=JI.
i=1

Proposition 3.1 Let G = (V, E) be an infinite, connected graph with bounded degrees. If G
ezhibits uniform percolation at level p,, then UC-a.s. for any p > p, and any = € V, the

invasion cluster 17, intersects some infinite p-cluster.

This proposition was proved by Chayes, Chayes and Newman [12] for Z¢, by Alexander [4] for
other Euclidean graphs, and by O. Schramm (personal communication) for transitive unimod-

ular graphs. Before proving Proposition 3.1, we explain how it implies Theorem 2.3.

Proof of Theorem 2.3: For p € [0,1] and a vertex z, let C(z,p) denote the cluster at level
p containing z. Also let Q2 , denote the event that (i) all the edges in G are assigned distinct

labels Ul(e), and (ii) the invasion cluster IZ hits some infinite p-cluster. Fix p > p, and an



edge labeling {U(e)}ecr in Qyp. For any parameter pa > p such that the cluster C(z,ps) is
infinite, it must contain the invasion cluster IZ, and hence C(z, p2) must intersect some infinite
p-cluster C(y,p). Obviously, C(z, p2) then intersects some infinite p;-cluster for any p; € [p, p2).
Proposition 3.1 ensures that ¥%(N, €, ,) = 1, where the intersection ranges over all z € V

and all rational p > p,, and this proves the theorem. 0
The proof of Proposition 3.1 is based on an adaptation to invasion percolation of the proof

of the main result in [29]. The following lemma is needed.

Lemma 3.2 Let G = (V, E) be an infinite, connected graph with bounded degrees, and let R > 0

be an integer. With UC-probability 1, the invasion cluster IZ, contains a ball of radius R.

Proof: Denote by D the maximum degree of vertices in G. The standard inequality

PlG) 2 51 >0 2)

(see, e.g., [15]), will be used at the end of the proof. Let (v, v, ...) be an arbitrary enumeration
of the vertex set V. For n =1,2,..., set L, = n(2R + 1), and define

Tp := min{k : Ij comes within distance R from some y € V' \ B(z, L,)}.

Since the invasion cluster IZ is infinite, 7, is a.s. finite for every n. For each n, define y, to
be the vertex in V' \ B(z, L) at minimal distance from I7 (in case of a tie, ¥, is the one with

minimal index in the above enumeration). Finally, consider the events
Ap, ={U(e) < pc for all e € By, R)}.

Since there are a.s. no infinite p-clusters for p < p., on A,, the invasion cluster IZ, must contain
the ball B(yy, R). Thus it suffices to prove that ¥ ( ne, g) = 0. The conditional probability

of A, given AS,..., A | and the invasion process up to time 7, , is at least p” 4+ Therefore
n
¥ (g, 49) < (1= 2" )"

and the right-hand side tends to 0 as n — oo by (2). O

10



Proof of Proposition 3.1: Fix p,, p and z as in the proposition. Define the random variable
&p. as the number of edges that have one endpoint in I5, and the other in some infinite p,-cluster.

Our proof consists of first showing that
e, = o00) =1 3)
and then showing that for p > p,,
WY (12, intersects some infinite p-cluster |&, =) =1. (4)
Letting p | p. through a countable sequence then proves the proposition.

By the uniform percolation assumption, we can, for any € > 0, pick an R so large that
in‘f/ U%(some infinite p,-cluster intersects B(y, R)) > 1 —«¢. (5)
y€

Let 7 denote the smallest k for which I} contains a ball of radius R; by Lemma 3.2, 7 < 0o a.s.

For an edge set Ey C E, set
V(Ey) ={y € V : y is an endpoint of some e € FEy}.

If Ey is finite and contains some ball of radius R, then by (5) we have with probability at least
1 — ¢ that some vertex in V' (Ey)¢ at distance 1 from V (Ey) has an open path to infinity at level
P« via vertices in V(Ey)¢ only. Since the invasion cluster up to time 7 gives no information
about the set of edges not adjacent to I, we may apply the above reasoning with Ey = I* to
deduce that the conditional probability that there is some infinite p,-cluster within distance 1

from I* is at least 1 —e. This shows that \IJG(fg* = 0) < ¢, and since £ was arbitrary we have
TE(EE =0)=0. (6)

The next step is to rule out the possibility of having {f = n for any finite n. Note that on the
event ({5 = n) we can move into the event (5 = 0) by changing the status of finitely many
edges. It is easy to see that this implies that if \IJG(fg* =mn) > 0, then \I;G(gg* = 0) > 0 holds

as well. But this would contradict (6), so we have

PO(EE =n)=0 (7)

Px

11



for any n < oo, and (3) is established.

To prove (4), consider the following “coloring followed by invasion percolation” procedure.
First mark every edge blue which is in some infinite p,-cluster. Then mark every edge red which
is not blue but is adjacent to some blue edge. Given the coloring information, start to build
the invasion cluster at z in the usual way. For the event ({I‘f* = 00) to happen, the invasion
cluster has to meet (become adjacent to) infinitely many colored edges. If the invasion cluster
ever meets any of the blue edges, then we are done (i.e. the invasion cluster intersects some
infinite p-cluster). Otherwise (still on the event ({5 = oo)) the invasion cluster has to meet
infinitely many red edges. Suppose now that a given red edge e is met for the first time. Then
the conditional distribution of U(e) (given the coloring information and the invasion cluster
so far) is uniform on (p,,1]. Thus the event that U(e) < p (which obviously implies that IZ
intersects some infinite p-cluster) has conditional probability ’f:—gi > 0. Since this conditional
probability is the same every time a red edge is encountered by the invasion cluster for the first

time, we have (4), and the proof is complete. 0

4 Uncountably many ends

Proof of Theorem 1.6: We shall prove that for any p1 < p2 in (p,py) we have
T (Vp € [p1,po], all infinite p-clusters have 280 ends) = 1. (8)

Sending p; | p. and ps 1 p, through countable sequences then proves the theorem.

Fix p; and p; as above, and set pg = 2<f2L. To prove (8), it is (due to Theorem 1.4) enough
to show, for any =y € V, that
TE(HZ  )=0 9)

Po,P1,P2

where H}° s the event that zo is in an infinite po-cluster and for some p € [p1,po] it is

in an infinite p-cluster with less than 2%¢ ends. Also define ffgg,p ., p» as the event that z¢ is in

an infinite po-cluster and for some p € [p1,po] it is in an infinite p-cluster with just one end.
If a given realization 7 € [0,1]® of the variables {U(e)}ecp is in HZ0 . then (arguing as in

12



Benjamini and Schramm [9], p. 76) one can change finitely many of the variables to obtain a

realization 7/ which is in HZ0 Thus, (9) follows easily once we show

Po,p1,p2°

UO(H2 ) = 0. (10)

Fix k > 1. Since ps € (p¢, pu), and each infinite po-cluster contains some infinite p;-cluster

Ug-a.s., for every z € V we have

lim ¢ (# {pg-clusters containing infinite pi-clusters that intersect B(z, R)} > k) =1,
R—o0

Thus given € > 0, for every « € V there is an R such that
VA (#{pg—clusters containing infinite p;-clusters that intersect B(z, R)} > k) >1-e.  (11)

Since G is quasi-transitive, there exists an R that satisfies (11) for all z € V. (R may depend
on pi1,pe, k and €, but not on z.) Fix such an R, and grow the invasion cluster of zy until the
first time 7 for which I’® contains some ball of radius R; Lemma 3.2 ensures that this happens
a.s. for some finite 7. Let 0I*° be the set of edges in E \ I*° that are adjacent to I*°. Using

(11) and arguing as in the proof of Proposition 3.1, we have that
\I/G(Afé0 | the invasion process up to time 7) > 1 —¢,

where A7° is the event that the percolation process restricted to the edge set E \ (IZ° U 9I%°)

has at least k infinite pi-clusters that

(i) are contained in separate po-clusters, and

(ii) contain some vertex at distance 1 from I*0.
If 2y is in an infinite pg-cluster, then
U(e) < po for every e € I*°. (12)

Given (12) and the invasion process up to time 7, each e € 9I*° is open at level p; independently

with conditional probability at least 7’11_;;:)0. If A}° happens, we may pick eq,...e, € OI¥

13



adjacent to k different p;-clusters with the properties (i), (ii) above. These properties guarantee
that if g is in an infinite pg-cluster and at least two of the edges eq,...,ex are open at level
p1, then zg is in an infinite p-cluster with at least two ends for all p € [p1, p2]. Hence

. 1—p1\* p1—po) (1—-p1 !
\I/G(H;g’phm)gejt(l ) +k( )( ) .

—Po 1—po 1—po

Sending ¢ — 0 and k¥ — oo proves (10), and thus also (9) and (8), so the proof is complete.

We end this section by noting the following very simple corollary to Theorem 1.4. It is the

natural analogue for the uniqueness regime (p,, 1) of Theorem 1.6.

Corollary 4.1 Let G be an infinite, locally finite, connected, semi-transitive graph. Then,

UG q.s., for all p € (py,1) the (unique) infinite p-cluster has a single end.

Proof: Suppose for contradiction that with positive U@-probability, there exists some p €
(pu, 1) for which the infinite cluster has more than one end. Any realization n € [0,1]¥ of the
{U(€)}ecr variables for which this happens at level p can be modified into a configuration n’
in which uniqueness of the infinite cluster fails at level p, by changing the status of just finitely
many edges. Tt follows that with positive U@-probability, there is some p € (py, 1) for which

uniqueness of the infinite cluster fails, contradicting Theorem 1.4. 0

5 Indistinguishability by Robust Properties

Proof of Theorem 1.8: Fix py € (p,p). Since, by Theorem 1.4, ¥%-a.s. any infinite p-cluster

contains an infinite py-cluster, it suffices to show that for all z € V,

WEC(x,po) is infinite and C(z,p) ¢ Q] = 0. (13)

Define the random variable £% as the number of edges that are adjacent to, or contained in,
I7, and are also adjacent to, or contained in, some infinite p-cluster which satisfies (). We will

establish (13) by proving the following two statements:
O < o0] =0, (14)

14



and
\I/G[C(w,po) is infinite, £ = oo and C(z,p) ¢ Q] =0. (15)

We first prove (14). By the 0-1 law for automorphism-invariant events,
¥Y93 an infinite p-cluster satisfying Q] = 1.
Therefore, for any € > 0, we can pick an R so that

in‘i; VS (no infinite p-cluster with property @ intersects B(y, R)) <e. (16)
ye

Let 7 be the smallest m for which I contains a ball of radius R; by Lemma 3.2, 7 < oo a.s.

For an edge set Ey C FE, let 0Ej be the set of edges outside Ej that are adjacent to Ey, and
denote by S(Ep) the set of edges in 0E) that are adjacent to an infinite connected component
of {e ¢ OEy : U(e) < p} which has property Q.

If a finite edge set Ej intersects an infinite p-cluster that has property @, then robustness
of @ implies that S(Ey) # (0. Therefore, any finite edge set Fy that contains a ball of radius R,
satisfies U¥ (S(Eo) = (Z)) < e by (16).

Since the invasion cluster I? gives no information about the labels on edges not in IF U 0I7,
we may apply the above reasoning with Ey = I? to deduce that ¥¢ (S(If) = @) <e In
particular, U (¢% = 0) < ¢, and since € was arbitrary, ¥ (¢ = 0) = 0. On the event (£* = n),
we can move into the event (£ = 0) by changing the labels U(e) on finitely many edges to be
greater than p; it follows that U (£ = n) = 0 for any n < oo, and (14) is established.

To prove (15), observe that if C(z,py) is infinite, then IZ C C(z,pg). Therefore, if also
&¥ = o0 and C(z,p) ¢ Q, then the following event, which we call F', must happen: C(z,p) ¢ Q
but there are infinitely many edges in 9C(x, pg) which are adjacent to p-clusters C € @ such that
CNC(z,po) = 0. (Note that these p-clusters C are connected components in G.) To establish
(15), it suffices to show that U¥(F) = 0. To prove this, write Cs(z,pg) for the collection of
edges that can be reached from z by a path which is open at level py and is contained in the
ball B(z,¢). Consider the event Fy; that C(z,p) ¢ Q and 0C¢(x,po) contains at least k edges
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that are adjacent to infinite p-clusters C € @ such that C N C(z,py) = 0. Clearly, for every k,
F CUP, Fr, whence U9(F) < Jim UE(Fpp) .
—00

The proof will therefore be complete once we establish that for any £, k,

RN
iR < (1=2) - (17)

Clearly,
Fei € {C(z.p) ¢ Q and |S(Ce(w po))| > K}

(In fact these events coincide, but we do not need this.) Therefore, by robustness of @,
Fui € {IS(Col(z,p0))| > k and Ve € S(Cul(z,p0)) Ule) > p}- (18)

Denote by F; the o-field generated by Cy(x,pg) and the labels {U(e) : e ¢ 9C¢(z,po)}. Then
S(Cy(z,po)) is Fe-measurable, and the remaining labels {U(e) : e € 9Cy(x, pg)} are conditionally
independent and uniform on [py, 1] given Fp. Thus (17) follows from (18). 0

6 Unimodularity and the Mass-Transport Principle

For z € V, define the stabilizer S(z) = {y € Aut(G) : y(z) = z}, and for y € V, define
S(z)y ={y(y) : v€ S(z)}. Let |A| denote the cardinality of a set A.

Definition 6.1 A quasi-transitive graph G is called unimodular if for any two vertices x,y

in the same orbit, we have |S(z)y| = |S(y)z|.

For equivalent definitions of unimodularity, see Trofimov [31] and Benjamini, Lyons, Peres
and Schramm [7]. Most quasi-transitive graphs that come up naturally are unimodular. In
particular, the Cayley graph of any finitely generated group is transitive and unimodular. A
transitive graph Td which is not unimodular can be constructed by considering a regular tree
T4 with degree d > 3, fixing an end & of Ty, and for each vertex z adding an edge between z
and its {-grandparent; see [31] or [7]. In this example, p, = 1, and for p € (p¢,1) every infinite
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cluster C has a unique vertex v(C, ) that is “closest” to . Thus, as noted in [24], the invariant
property {C : v(C,&) has degree 1 in C} distinguishes some infinite clusters in T from others.
By utilizing more of the local structure of a cluster C as seen from v(C,£), any two infinite

clusters in T} may be invariantly distinguished.

The significance of unimodularity for us is that it allows a certain mass-transport technique,
which was introduced in percolation theory in [17] and systematically developed in [7]. Central
to the mass-transport method is Theorem 6.2 below, which was proved (in a more general
setting) in [7]. For any graph G, every automorphism in Aut(G) acts as a measure-preserving
transformation on the probability space ({0, 1}Z, PE). Let m(z,y,w) be a nonnegative function
of three variables: two vertices x,y in the same orbit of Aut(G), and w € {0,1}¥. Intuitively,
m(z,y,w) represents the mass transported from z to y given the configuration w. We suppose
that m(-,-,-) is invariant under the diagonal action of Aut(G), i.e., m(z,y,w) = m(yz, vy, yw)

for all z,y,w and v € Aut(QG).

Theorem 6.2 (The Mass-Transport Principle) Suppose that G = (V, E) is unimodular
and quasi-transitive. Given m(-,-,-) as above, let
Moyy) = [ mlz,y,w) dPE ().
{0,1}#
Then the expected total mass transported out of any vertex = equals the expected total mass

transported into x, i.e.,

Vz eV > M(z,y) =Y Myz). (19)
yev yev

We remark that (19) fails in the nonunimodular case; see [7]. The key element in a successful
application of the mass-transport method is to make a suitable choice of the transport function

m(-,-,-); examples can be found e.g. in [17, 7, 8, 18], and also in Section 7 below.

7 Relentless merging

The main step in proving Theorem 1.5 is showing that for p € (p.,py), any infinite p-cluster

will a.s. come within distance 1 from other infinite p-clusters in infinitely many places, as
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stated in the following proposition. The result assumes quasi-transitivity and unimodularity;

we conjecture the latter condition to be removable.

Proposition 7.1 Consider bond percolation on an infinite, locally finite, connected, quasi-
transitive unimodular graph G with retention parameter p € (pc,py). Then, Pf—a.s., for any
infinite cluster C there exist infinitely many closed edges e with one endpoint in C and the other

endpoint in some other infinite cluster (which may depend on e).

Proof: Assume for contradiction that with positive Pg -probability there is some infinite cluster
C which comes within distance exactly 1 from the set of other infinite clusters in at most finitely
many locations. As in the argument for (7) in the proof of Proposition 3.1, it follows that with
positive probability there is some infinite cluster C in which exactly one vertex z is at distance
1 from the set of other infinite clusters. Call such an infinite cluster C a kingdom, call z its
king, and consider the following mass transport. If a vertex y is in a kingdom, and its king
is in the same orbit as y (recall Definition 1.1), then y sends unit mass to its king. If y is in
a kingdom but not in the same orbit as the king, then y sends unit mass which it distributes
equally among the vertices in its orbit which are closest in G to the king. Otherwise, no mass is
sent from y. The expected mass sent from each vertex is then at most 1, whereas the expected
mass received has to be oo for some vertices. By the Mass-Transport Principle (Theorem 6.2)

we have the desired contradiction. =

Proof of Theorem 1.5: We first prove the assertion of the theorem with the quantifiers

interchanged, i.e. that

for all p; < po in (pe, pu), we have UC-a.s. that any infinite py-cluster (20)
contains infinitely many infinite p;-clusters.

We know from Theorem 1.2 that any infinite po-cluster contains some infinite p;-cluster. Hence,

it suffices to show that any infinite p;-cluster C gets connected to infinitely many infinite p;-

clusters disjoint from C as we raise the percolation level to ps. Fix a vertex z, let C(z, p1) be the

pi-cluster containing z, and assume that C(z, p;) is infinite. Call an edge e pivotal if it is closed

at level p1, has one endpoint in C and the other endpoint in some other infinite p;-cluster. By
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Proposition 7.1, there are U%-a.s. infinitely many pivotal edges. As we raise the level to po,
each pivotal edge gets turned on independently with probability %ﬁ, whence at least one of
them gets turned on a.s., so that C(z,p1) gets connected to at least one other infinite cluster

a.S.

Now pick £ > 2 and ¢, ..., q, such that p; = ¢1 < g2 < -+ < g = p2. The above reasoning
shows that the infinite cluster C(x,p;) gets connected to at least one additional infinite p;-
cluster for each interval (g;,qgi+1), so that C(z,p2) contains at least k£ — 1 infinite p;-clusters.

Since k was arbitrary, we have established (20).

It remains to change the order of the quantifiers “for all p; < py” and “¥%a.s.” in (20).
To do this, note first that we can apply (20) to all rational p; < p2 in (pc,py) simultaneously.
The assertion of the theorem now follows easily using Theorem 1.3 and the observation that

for any p; < p9, we can find two distinct rational numbers between p; and po. =

8 Product graphs and estimates on p,

Let us collect the results from the literature that are needed to prove Theorem 1.9. The first
one concerns percolation on the orthant Z¢. For d = 2, it follows from the work of Kesten [20],

while for general d it was first obtained by Barsky, Grimmett and Newman [6].
Theorem 8.1 ([20], [6]) For bond percolation on Z%, d > 2, we have
(a) pc(Zi) :pc(zd); and
d
(b) for p > pc(ZL), there is sz+—a.s. a unique infinite cluster.

The following result is due to Schonmann [29]. There it was formulated in the setting of

quasi-transitive graphs, but that proof goes through unchanged in the generality stated here.

Theorem 8.2 ([29]) Let G be any bounded degree graph, and pick p € [0,1]. If

o G -
Rll—I};o:c,l;l}lEfV P, (B(z,R) < B(y,R)) =1, (21)
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then for all p' > p, there is PG-a.s. ezactly one infinite cluster.
2

Remark: The conclusion of this theorem can now be strengthened to “ ¥%-a.s. there is exactly
one infinite cluster at each level p’ > p ”. Indeed, (21) implies uniform percolation at level p,

so Theorem 2.3 applies.

In the following proof, we shall work with more than one graph, and therefore write Bg(z, R)

for B(z, R) to indicate in which graph the ball sits.

Proof of Theorem 1.9: We first prove uniqueness of the infinite cluster on G for fixed
p > p.(Z%). By Theorem 8.2, it is sufficient to show that (21) holds for all p > p.(Z%). Fix such
a p. Theorem 8.1 implies that

lim P2+ (Bga (0,R) ¢ 00) =1, (22)

R—x

where (Bzi (0, R) <> 00) is the event that there is an infinite open cluster intersecting Bzi (0, R).
Pick € > 0, and R large enough so that

d
Pf*(Bzi(O,R) Soo)>1—¢.

Now let z = (z1,...,24) and y = (y1,--.,yq) be arbitrary vertices of G. For i = 1,...,d,
let T¢ be some infinite self-avoiding path in G; starting in z;. Also let ng be some infinite
self-avoiding path in G; from y; which eventually coincides with T¢. Such a path is easily seen
to exist: just take a path from y; to z;, concatenate it with T¢, and erase any circuits. Finally,
let z; be the first vertex on T with the property that 77 and ng coincide from z; to infinity, and
define T? to be the self-avoiding path starting at z; that is contained in T?. Define the product
graph G} = T; x ---T¢, and define G} and G} analogously. Note that G}, G} and G} are all
isomorphic to Z‘j_, and furthermore that they are all subgraphs of G and that G is a subgraph
both of G} and of Gj.

Let Dg; be the event that some vertex in Bgx(z, R) has an open path to infinity in G7.
Define Dp, analogously, and set Dg 5, = Dry N Dgy. Using (22), we get

PS(Dpay) >1—2¢.
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By Theorem 8.1, we have Pg -a.s. that G and G}, each have a unique infinite cluster, and that
both these infinite clusters contain the unique infinite cluster of G7;. Hence, we have P]? -a.s. on

the event Dp ;. that there is an open path in G connecting Bg(z, R) and Bg(y, R), so that
PS(Bg(z,R) ¢ Bg(y,R)) > 1— 2e.

Note that this is a uniform bound for all vertices  and y in G. Since € was arbitrary we have

(21), so the proof for fixed p is complete.
The asserted simultaneous uniqueness is implied by the remark following Theorem 8.2.

Next, we discuss lower bounds for p,. Benjamini and Schramm [9, Theorem 4] proved that
any quasi-transitive graph G satisfies p,(G) > (Dpg) ™", where D is the maximal degree in G,
and p¢ is the spectral radius for simple random walk on G. Their proof was based on coupling
the percolation process with a branching random walk. In fact, a simple counting argument

yields a slightly better bound.
Given a locally finite connected graph G, let A7, denote the number of paths of length n
which connect x to y. It is easy to see that

Ag = lim sup(Agyy)l/”

n—00

does not depend on z and y.

Proposition 8.3 Let G be an infinite, locally finite, connected graph. Then for p < )\51, for

any x,y €V,
(pPAg) ™)

P¢ <

If G is also quasi-transitive, then p,(G) > A5

This bound on p, coincides with the bound in [9] for quasi-transitive graphs with constant

degree, and improves upon it if the degree is nonconstant.
Proof: Clearly,

A > AT A7, (23)
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for any two sites x,y, and any non-negative integers m,n. Since Ai’fw > 0, it follows (see, e.g.,
Section 8 of [21]) that
lim (A% )ﬁ = \g = sup (A% )ﬁ .

koo’ T st T,T

Using symmetry and (23), we obtain
/2 -
Veyev Ve>1 b, < (a%) <3k, (24)

Note that (24) implies that Ag = Ag. Denote by [z <> 4] the event that there is an open path
connecting the sites z and y, and let [z <> co] denote the event that z belongs to an infinite

p-cluster. Let N, éf“y) be the number of self-avoiding paths of length k& which connect z to y. Then

- k). k =k gk - K (pPAg)4ew)
Plzoyl< Y NEpPF< Y prak < Y (ae)f = Topig (25)
k:d(:c,y) k:d(way) k:d(xay)

provided p < )\51.

Suppose now that G is quasi-transitive. In this case 0(p) = inf,cy Pp[z <> oo] > 0 for any

p > pe. If p>p,, then for all z,y € V,
Pylz ¢ y] > Pylz ¢ 00,y < 00] > Pylz ¢ oo]Pyly  00] = 6(p)” > 0, (26)

where the second inequality is an instance of the Harris inequality. Comparing (25) to (26)

gives p, > /\E;l. 0
Remark. O. Schramm (personal communication) has obtained a sharper lower bound for p,,.

T

1
He showed that p, > 75", where vg := sup,cy limsupy_, o (N k) * and NF is the number of

self-avoiding cycles that start and end at x.

The final topic of this section is the relation between the number of ends of a quasi-transitive
graph and the critical parameters p. and p,. It is well known that a quasi-transitive graph G
can only have 1, 2 or uncountably many ends (see, e.g., Section 6 in [26]). In case the number
of ends is more than 1, one can use the converse of Theorem 8.2 to show that p, = 1. This
converse states that for quasi-transitive graphs,

Vp>p, lim inf PY(B(z,R) < B(y,R))=1. (27)

R—o0 z,yeV p
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(This is a consequence of the Harris inequality, see Theorem 3.1 of [29]). The removal of an
appropriate finite set of sites and edges from a graph G which has more than 1 end breaks the
graph into more than one infinite connected component. Therefore the limit in (27) cannot
be 1 when p < 1, and we must have p, = 1. If the number of ends of G is uncountable,
then p.(G) < 1, since then G has a positive Cheeger constant (see Proposition 6.2 in [26] and
Theorem 2 in [9]). If G has 2 ends, then G is just a “finite extension” of Z, so p.(G) = 1.
More precisely, by the proof of Proposition 6.1 in [26], there is a doubly infinite sequence
(cy Ao, A1, Ag, A1, Ag,...) of pairwise disjoint and isomorphic finite subgraphs of G, such
that any infinite self-avoiding path in G' must intersect either all the graphs A; with large
enough j, or all the graphs A_; with large enough j.

The case of a single end is more delicate. Babson and Benjamini [5] proved that p,(G) < 1
if G is the Cayley graph of a finitely presented group with one end. The question stated in [9],

whether p,(G) < 1 whenever G is a quasi transitive graph with one end, is still unsolved.

9 Examples and questions

A variant of the following example was shown to us by O. Schramm.

Example: A semi-transitive graph where exactly 2 infinite clusters can coexist. Let
T be a binary tree with root p, i.e. T is the tree in which p is incident to exactly two edges,
and all other vertices are incident to exactly three edges. Let H be the product graph 7' x Z
with an additional distinguished vertex v* joined by a single edge to the vertex (p,0) of T' x Z.
Theorem 1.9 implies that p,(H) = pu(T x Z) < 1. Finally, let G consist of two copies Hy, Hy
of H, glued together at their distinguished vertices (so these vertices v} and v; are identified,
and the resulting vertex of G is denoted w*). It is easy to see that G is semi-transitive, with
Vr consisting of the distinguished vertex w* only. For all p > p,(H), it follows that bond
percolation on G can have one or two infinite clusters with positive probability: If at least one
of the two edges incident to w* is closed, then a.s. there are exactly two infinite clusters, one
contained in H; and the other in Hs. On the other hand, clearly the infinite clusters of H1 and

Hj can connect to each other with positive probability. 0
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Next, we discuss briefly yet another phase transition. Let G be a nonunimodular quasi-
transitive graph, and denote by p the left Haar measure on Aut(G). Recall the definition
of stabilizer S(z) from Section 6. Say that a cluster C with vertex set V(C) is heavy if
Yaev(c) BlS(z)] = oo; otherwise, we say that C is light. Theorem 1.8 implies that heavy and

light infinite clusters cannot coexist at any fixed level p, so it is natural to define
pp, = inf {p : P, there is a heavy infinite cluster] > O} . (28)

The mass transport method can be used effectively in heavy clusters. For instance, Theorem 1.5
can be easily extended to nonunimodular graphs, provided that the parameters p;, ps considered
there are greater than pp. For the nonunimodular example T, mentioned in Section 6 (a tree
with additional edges leading to &-grandparents) it is easy to see that p, < pp = p, = 1. On
the other hand, let T}, denote the k-regular tree. For any graph Gy with bounded degrees, if k
is large enough, then G = G x T}, satisfies

pr(G) < pu(G) . (29)

The proof is similar to an argument in [9, Sect. 4]. Let Dy be the maximal degree in Gy, and
let pe be the spectral radius for simple random walk on G. It is easy to see that if p > p.(T%),
then any infinite p-cluster in G = Gy X T}, is heavy. Therefore,

Dy +k
k—1

Ac - pr(G) < (Do + k) - pa - pr(G) < (Do + k) - pg - pe(Tk) = PG - (30)

Since pg = pgoxm, — 0 as k — oo, it follows from [9, Theorem 4], or from Proposition 8.3
above, that for large enough k (when the right hand side of (30) is less than 1) we have (29).
We expect that there exist transitive graphs where p. < pp < p, < 1, but we do not have an

explicit example.

We end the paper with some questions:

1. Is p. < pp, for every nonunimodular quasi-transitive graph? (py, is defined in (28).)

What geometric properties of G guarantee that pp < p,?

2. Can one drop the unimodularity assumption made in Theorem 1.5 and Proposition 7.17
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3. Let u,v be vertices of a transitive graph G, and denote by [u <> v] the event that there
is some open path connecting v and v. Is the function p — Pg [u > v] continuous on
(pe,pu)? (By monotonicity, the set of points of discontinuity is at most countable.) Left-
continuity of this function on (0, 1] and its continuity on (0,p.) and on (p,, 1] are easily
established using well-known arguments (see Grimmett [15], p. 118). On the other hand,
results in [30], where the Grimmett—Newman example is studied, imply that this function

can be discontinuous at p,.

4. A graph G is said to exhibit cluster repulsion at level p if, for i.i.d. percolation with
retention parameter p on G, any two infinite clusters can come within unit distance from
each other in at most finitely many places. Does a quasi-transitive graph necessarily
exhibit cluster repulsion for any p € [0,1]7 It is not hard to show that cluster repulsion at
level p follows from continuity at p of the pair connectivity function discussed in Question
3; hence cluster repulsion can fail at most for countably many values of p. If cluster
repulsion holds, then it follows that for every R, any two infinite clusters come within
distance R from each other at most finitely often a.s. We have an example of a (non-

semi-transitive) graph for which cluster repulsion fails for certain p.

5. Let G be a quasi-transitive graph. A site = is an encounter point of the cluster C if re-
moving the edges incident to z from C yields at least three infinite connected components.
For p € (p¢,pu), is Pp[3 an infinite cluster with infinitely many encounter points] > 07
By Theorem 1.8, this would imply that every infinite cluster has infinitely many en-
counter points Pp-a.s. This question has a positive answer in the unimodular case (see
[8] or [24]), which readily extends to heavy clusters in the nonunimodular case. A general

answer would be a significant step toward determining whether
P, [3 infinite open clusters | = 0 (31)

for quasi-transitive graphs with a nonamenable automorphism group. (Under the addi-

tional assumption of unimodularity, (31) is proved in [8].)
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