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Abstract

Let {X¢}+>0 be a weakly (Ito sense) differentiable Markov process on
Rt ie., Vs € [0,00) the expression
1 ; _
- log Ex (1)@ X G+ =X O]
has a limit in the sense of convergence in probability as h — 0 (Ito

differential of the process {X;};>o at the point #y).
Let s(z) be a real function satisfying the following equation
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s(z)a(z) + §b2(x)52($) + 4
Using the function
flz) = / el ()t gy,
0

sufficient and necessary conditions for different asymptotic behavior and
in the exponential ergodic case computable bounds of rate of convergence
are obtained.

Keywords: Lyapunov function, drift criteria, ergodicity, exponential ergo-
dicty

*Chalmers University of Technology, Department of Mathematics, Gothenburg, SE-412 96,
Sweden



1 Introduction

It is natural to consider Markov processes with state space RT, which locally
exhibit the same behavior as processes with independent increments. Let us
consider the characteristic function

¢(h,z,s) = / e P(h,z,du), h > 0,
Rt
#(0,2,8) =1
of the transition semigorup P(h,z, B).

Definition 1.1. A Markov process { X, };>¢ is called weakly differentiable in wide
sense or (differrentiable in Ito sense at a point t) if for every ¢, s € R the expression
1
h
has a limit in the sense of convergence in probability as A — 07 (Ito differential

of the process {X;}:>o at the point ¢), or if the function ¢(-, z, s) is differentiable
at zero uniformly on |s| < S, i.e.,

iy O 5) = 1
h—0 h

log Ex CilSIX (R =X (B)]

= g(iE,S)

exists uniformly on |s| < S for all z € R* and an arbitrary S > 0.

The value of the Ito differential is a function of s and of {X;};>o and has the
form of the characteristic function of an infinitely divisible law, so it is well known
that if a Markov process is weakly differentiable, then there exists a function a(zx),
nonnegative function *(z) > 0 and a measure g,(du) on R*, g,(0) = 0 such that

fen_1_ _iST
isz—1 )

2
ia(z)s—%bz(z)s2+fR+[e It+a ]l;t—;:q(z,dz)
)

g(z,s) =e
and for an arbitrary function f € C3(R") it follows that

Af(z) = lim h
= o@)f'(x) + @@ + [ ) - f@)ad)

R+

We shall assume that the measures ¢,(du) are uniformly bounded, so we can
write ¢, (du) = 3(x)B;(du), where B,(-) is probability measure.

This means that the process evolves as a regular diffusion with variance b%(x)
and drift a(x) in between jumps, and that jumps U occur at rate ((z), and
have distribution B, when X; = z, and Vz € (0,00) B;(0,00) =1 or in an-
other words, we obtain processes whose jumps are superposed on the continuous
diffusion component, assuming that 3(z) = .
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Suppose also that the following conditions on the continuous functions b?(-)
and a(-) are satisfied: for any > 0 and some v > 0,b(-) > 0 and Vv € (0,1)

inf (—a(z)) >0, sup (—a(z)) < oo,

<<yt O<z<y !
sup b*(r) < oo, b*(0)=0, infb*(z)>0,
z€[0,00) T>v

where obviously the function a(-) is supposed to be non-positive, a(0) = 0 and

/om —Zijy) =

Hence, the process {X;}i>¢ is irreducible (se [1],[4] [5]), strong Markov with right
continuous path.

By Prop. 7.2 in [5] it follows that in the recurrent case, each one-state point set
z* is a regeneration set for {X;};>o. In the positive recurrent case, the ergodicity
is provided by the existence of the spread-out regenerations cycles [1]. We will
use some drift-criteria from [4] which involve the concept of the truncation {X;"}
of {X;} and concept of the extended generator A,, of the truncated process. Let
{O, : n € Z*} be a fixed family of open precompact sets for which O, + R* as
n — oo. Let T™ be defined as the first-entrance time to O;, and defined X" by

m_ | Xy, t<T™
Xi _{cm, t>Tm °

where (,, is any fixed state in Of,.

Two next sections deal with the asymptotic properties of {X;};>o, the third
section describes the one-dimensional zero-reflected diffusion, and the last one
shows the behavior in the storage case.

The purpose of this paper is to construct Lyapunov functions applicable to
situations where

—a(z)/B -E,U

lim =0,

z—o0 b2(z) /3 + E, U?

and the construction is based upon roots of the equation

E,e’V —1

g — = —a(z) — %bQ(x)s.

2 Conditions for Harris recurrence and tran-
sience

1. Harris recurrence, limiting case: Jv > 0 such that s(z) = 0 on [0,v] and
s(z) <0 on (v,00). s(z) — 0 as x — oo.
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Let s(-) be an auxiliary function such that s(-) < s(-), s(x) — 0 as z — oc.
Suppose that 38 > 0,3n € Z* such that for some v > 0

sup E,U?* < 00 (2.1)
EUU > 2] < LB+ (@) [s(z) — s(z)] (2.2)

Let us define functions s"(-) and f"(-) by

$"(x) = mfﬁw,f%w=/€”“Wwa
0

ye[ﬁam]
n

Lemma 2.1. Suppose that (2.1), (2.2) hold true for the function s(-) and some
n € Z*. If f"(oo) = oo, then the process {X;};>o is Harris recurrent.

Proof. Trying the norm-like function f,(z) in (CD1), [4], we get that Ym €
Zt Yz € Op N (v,00)

E,es@V — 1 1

—————— +a(z) + =b*(z)s(w)

s(z) 2
" n s(x) s(x)

The recurrence of {X;};>o follows by Th. 3.3 in [4]. O

A fa(z) < €lo Sn‘wdy{ﬂ

Th. 2.1. The process {X;}:>o is Harris recurrent if and only if
/ elo sy = oo,
0
Proof. (=) Let s(z) = s(z) — -, for some suitable o > 1. Since (2.2) obviously
holds true Vn € Z+,
Anf™(z) <0 Vm € Z*, Vr € O, N (v,00).
Then

z+U v on 1
IEE/ el "Wy < _q(z) — §b2(:c)8"(x)

for any n € Z™.
Let go(z) = [0 el "@dugy  Obviously, g,(2) 1T g(2) = [} el s@dugy, as
n — oo and by monotone convergence theorem we get that

e+U Y on 1
lim {]Ez/ ele " wdugy 4 Ebz(x)s”(x)} =

n—0o0

x+U v 1
_E, / el 0 1 Z52(0)5() < —afz).

x
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Anf(z) = Am</ elo §(“)dudy> <0 VmeZ"'VreOpn (v,00)
0

and the function f(-) is norm-like if and only if

/ elo 5@ gy — g

0

(<) There is an obvious duality in the consideration of the transient behavior
of {X;}i>0, and we omit the proof. O

Corollary 2.1. Let # € (0,1). Then the process {X;}i>o is

(i) Harris recurrent if
Y

0 s 20+0) -2 -ByU)
/ e0 T 2@)/B+Eu? WY g —
0

(ii) transient if

xR g 2(1—9)[—a(y)/ﬁ—EyU]dy
/ e 0 b2(7!)/5+EyU2 dx < 0.
0

3 Conditions for ergodicity and exponential er-
godicity

1. Ergodicity, limiting case: Vz > v and some v > 0, s(z) =0 on [0,v], s(z) > 0
on (v,00), s(z) — 0 as  — oo and

U 1y 20) g,
sup Ez/ e 0w dy < oo (3.1)
z€RT x
inf E,U? >0 (3.2)

Let us suppose that for an auxiliary function s(-) and some n € Z™

+U v 2a(u) 1
— d
E[/ e o Etdy US> 21| <
T n

< B + ¥ @)]ls(z) - s()] (3.3)



and define the functions f™(-) and f.(-) by

T T
fe(x) — / efg’[s(u)—e(u)}dudy’ fen(x) _ / €f0y[sn(u)_€n(u)]dudy,
0

0

where

e"(gj) =e Jo sn(:‘/)dy, G(LL') — e Iy s(y)dy'
Lemma 3.1. Suppose that (2.1), (3.1), (3.2) and (3.3) hold true. If

/ e fow sn(y)dydx < 0,

0

then the process {X;};>o is Haris ergodic.

The extended generator of the truncated process is shown to satisfy [4]: Vf €
C2[0, )

Amf(z) = ﬂ/om[f(x +y) = f(@)]Be(dy) + c[f(x + m) — f(2)][1 = Ba(m)]
5P (@) 1) + ale) (@)
Trying the function f(z) in (CD2)[4], we get that Vz € O,, N (v, 00)

Aufia) < Ol o) ¢

E, els(@) @ _ 1
)

1 2
+ lsla) — elai(o) + 57
for all m € Z*. Since (3.2) and (3.3)

E, els@-<@lU _ 1 | E,es@V _ 1
s(z) — e(z) 2

1 2
—5ls(@) —e(@)]p(z) - B

for some v > 0 and Vz € O, N (v,00), YVm € Z*. Since (3.1), the assumptions of
Th. 4.4 in [4] are satisfied.

Th. 3.1. The process {X;}:>o is Harris ergodic if

/ e~ Jo s gy « 0.
0



Proof. The inequality (3.3) holds true for s(x) = s(z)——= for some suitable o > 1
and any n € Z*. Applying the assumptions of the theorem and the monotone
convergence theorem, we get that 37y > 0 such that

Anf(r) < —v V€0, N (v,00) VmeZ".
Since (3.1),

sup A, fe(x) < oc.
z€[0,v]

U
2. Exponential ergodicity, limiting case: for some A > 0 s(z) > A on (v,00) and

s(z) =0on [0,v], s(x) = A as £ — 0.
Let us assume that (2.1), (3.1), (3.2) and (3.3) hold true.

Lemma 3.2. The process is exponentially ergodic if

/Oo e oW gy < o0,
0

Proof. Testing the norm-like function fP(z) = [y elo"@=Adugy in (CD3), [4],
we get that Vm € ZT,Vx € O,, N (v, 00)
A[30%(z) + B(3 — e)E, U?]

(= e Rrwaa A

Anfi(z) < —

(We have used that Vs >0  ¢'(s) = (ESU_I) > (3 —e)U?). O

S

Th. 3.2. The process {X;}i>o is exponentially ergodic if

/ " e TNy < o
0

and the convergence rate p satisfies
[3(3 — e) inf,5, E,U? + £ inf,, b*(z)]
f0°° e~ Jo ls()-Ndy g,

0<p<A

Proof. Similar to the proof of Th. 3.1. O

Corollary 3.1. Let 0 < 6 < 1. Then the process {X;}i> is

(i) Harris ergodic if

© g 200-a(y)/B-EyU]
/ e o =wty e Wir < 00,
0

and (ii) exponentially ergodic with the convergence rate p satisfying (3.4) if

00 = 20[7a(y)/ﬂ7]EyU7/\]EyU28>‘U]d
e
0

b2 (y)+EyU2

dr < 0o.



4 Application: one dimension time-homogeneous
diffusion processes

If diffusion and drift coefficients of a diffusion process are o%(z) and a(z), then
the diffusion process will be in the form of a solution to the equation

d(®y) = a(D(t)) + o(®())dB(t)

B, is standard Brownian motion. We assume that the {®;};>o is governed
on [0,00) and the reflection at {0} is done in such a manner that {®:}:>o
has continuous sample paths. It follows from [3] that the asymptotic behav-
ior, for {®;};>0 can be obtained by studying the unreflected generator A, i.e.,
Af(2) = alx) f'(2) + Ho(@)2f"(x) V] € C2[0, 00).

1. Conditions for recurrence and transience.

Th. 4.1. The process {®;}:>o is (i) Harris recurrent <

0 _ ry 2a(x)
/ e I 2Py = oo,
0

and (ii) transient <

0y 2@ 4y
e 0@ T dy < o0
0

— [y 2a(w)
Proof. Obviously the function f(z) = [; e Jo 02<u>dudy is harmonic for {®;};>o.
Under the assumptions of theorem, it is norm-like in the recurrent case and
bounded in the transient one. O

Note 4.1. In [2] the following result gives the criterion for recurrence and tran-
sience of {®}};>o on R. Let the process {®}};>¢ be defined by the equation

AP, = a(®))dt + o(P)dB(t),

where a and o are continuously differentiable in R and o?(z) # 0.
Consider the functions

Q) = o A"
f@) = | e
0
It is easily seen that

Af = 0.



If, moreover,

lim f(z) = o0

T—00
lim f(z) = —oo,
T—r—00
then the process {®}};>¢ is recurrent, and transient otherwise. 4

2. Conditions for ergodicity and exponential ergodicty.

Th. 4.2. Suppose that inf,~, 0?(z) > 0 the process {®;}> is (i) Harris ergodic
if and only if

z 2a( )
/ 0 20 W gy < 00,
0
and (ii) exponentially ergodic with convergence rate p satisfying

% infw>v 2(3:) * A

0 < < 2a
p= fooo . NI 2((1’1)) +Aldy
if
/ RGNy < oo,
0
. . z JY[- 20(4) _ (u)]d
Proof. (i) (<) We shall test the functionf(z) = [; e @ “dy where
2a(u)
e(y) = e 2™ Then
- 2a(y) € 1 2
Af(a) = ¢ FEF O o) 4 1o [ 250 - ]| =
1_w2a(u) e(uw)ldu 1‘ o acZa()
= _Z¢ I8 [02(u)+ (u))d '0'2(1')6(1') < —= 1nf02(33)/ elo 2(?!) ydl‘
2 2 z>v 0
The process is Harris ergodic by Th. 4.4. in [4].
(=) Th. 3.8 in [2].
-y (u)_|_
(ii) Trying the function fy(z) = [; e "°'=2@ " “dy, we get
oIl ziy)ﬂ Lo 20@) gy
AU Rk h@) _

———O' )\f // fo[%((’y’g_'—/\dyd.’b,

and assumptions of Th. 6.1 in [4] are satisfied.



Example 1. Th. 6.1 in [3]. Affine drift. Assume that a(z) < —a(1 + z) and

lo(@)| < 7.
By Th. 4.2 (ii) we have that convergence rate p satisfy

1 % far=2a(1+y) 1. 9
Depsyr A / o 75 Ny g o — 2 20
2 0 2 o?

Example 2. Th 6.2 in [3]. Constant drift, b?>(z) = 1. Using Th. 4.2 (ii), we get

12
0<pﬁ§u

5 Application: storage model

Let {X:}i>0 be a continuous time Markov process on the state space [0, 00),
satisfying the storage equation

t
Xt = X() + At — / T(Xs)ds
0

where {A;};>0 is an input process which we shall assume to be a compound
Poisson process without drift term,

Nt
A=) U
=0

where {N;}>¢ is a Poisson process with jump rate 3 and {U;}§° is a sequence of
independent identically distributed random variables with

P{U < 2} = G(z)

and independent of {N;};>o. (Here U > 0, i.e., G(0) = 0). The function r :
[0,00) — [0,00),7(0) = 0 is called the release rate for the system. The release
rate being r(z) at content x means that in between jumps, {X;};> should satisfy
the differential equation

di = —r(x)dt,

where di means left derivative. We shall assume that r is strictly positive, left
continuous and has strictly positive right limits everywhere on [0, 00). We also
assume that

0< inf 7r(z),
e<r<e !

sup r(z) < oo
O<z<e™?!
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for any € € (0,1) and

/ r(y) 'dy < oo, z>0.
0

The construction is based upon roots of the equation
]Ees(w)U -1
riz)

Let us suppose that s(z) = 0 on [0,v], s(z) < 0 on (v,00) and s(z) — 0 as
x — 00, we give next results without proofs.

s(z) =13

Th. 5.1. If (i)
/ efom S(y)dydx — OO,
0

then {Y,}5° and {X,};>¢ are Harris recurrent;
(i) If
/ efom S(y)dyd$ < 0,
0

then {Y,,}§° and {X,};>¢ are transient;

Let us suppose that s(z) = 0 on [0,v] s(z) > 0 for some v > 0 and s(z) — 0
as & — 0.

Th. 5.2. Then the process {X;}+>o is Harris ergodic if
/ e~ o s gy « .
0

0

Th. 5.3. Let us assume that 3\ > 0 such that s(z) = 0 on [0,v], s(z) > A
on (v,00) and s(xz) — X as x — 0o. Then the process {X;}:> is exponentially
ergodic if

o
/ e~ Ny g < o
0
and the convergence rate p satisfies

(3 — ) \GEU?

O<p< NGRS
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Corollary 5.1. Suppose that P{U < 2} =1 — e,z > 0. Then the process
{Xt}tZO is

(i) Harris recurrent if and only if

/ fO r(u) dydx — OO,
0

(ii) transient if and only if

IR
/ elo D=7 W gy < oo,
0

(iii) Harris ergodic if

/ IS Ul gy < 00,
0

(iv) exponentially ergodic if for some A > 0

o0 - P
/ e ol AWy < o,
0

6 Comments

The construction of the test functions presented in this paper will also work for
discrete parameter chains, where the characteristic function of transition semi-
group is of infinitely divisible law [6].

The asymptotic behavior of the storage and risk processes is described in [7].
The assumption of the existence of the exponential moments is quite restrictive,
but the relaxation of this assumption is presented in [7].
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