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Abstract:  The aim of our paper is to review the results obtained in [K-M] and
some other relevant papers ([G1, G2, O, St1, U1, U2]) on the structure of Ky(Zmn)
for a cyclic group 7 of prime power order. Using a new method, we also reprove
results of [K-M] for a cyclic group of order p* in the case p is a regular prime
number (results obtained in [K-M] are based on an advanced Iwasawa theory
while we use more elementary methods).
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81 Introduction

The algebraic K-theory has a rather long history. Some early works by Higman
in 1940 [Hig] and Whitehead in 1939 [W] are recognized as first papers of the K-
theory. However the subject really began with Grothendieck’s work [BSG] on the
Riemann-Roch theorem in 1958. Here Grothendieck introduced the functor K,
now known as K. The best known application of his functor Kj is the topological
K-theory developed by Atiyah and Hirzebruch in 1961 in [A-H]. The next step in
the algebraic K-theory was done by Bass [B1] who defined K;-functor in the case
of rings. It turned out to be the same as one introduced by Whitehead. In 1969
Milnor showed how to define all the projective modules over a Cartesian diagram
of ring homomorphisms. He succeeded in constructing an exact Mayer-Vietoris
sequence for the Cartesian diagram, which links K- and Kj-functors (see [M]).

One of the most important initial problems in algebraic K-theory is simply
to compute the groups Ky(R) for various rings R, among which group rings Zx
play an important role because of topological applications.

On the International Congress of Mathematicians in 1970, in Nice, R.G. Swan
announced that Ky(Zn) was computed by Kervaire and Murthy for 7 cyclic of
prime power order. However when they published their paper in 1977 ([K-M)]),
it turned out that this was just partially true.

The aim of our paper is to review the results obtained in [K-M] and some
other relevant papers ([G1, G2, O, St1, U1, U2]) on a structure of Ky(Zn) for the
cyclic group 7 of prime power order. Using a new method, we also reprove results
of [K-M] for a cyclic group of order p* in the case p is a regular prime number
(results obtained in [K-M] are based on an advanced Iwasawa theory while we
use more elementary methods).

1.1 Preliminaries

In the sequel p will denote a prime number > 3. As usual Z is the ring of rational
integers and @ is the field of rational numbers.

Let ¢, be a primitive p"T!-th root of unity, n = 0,1,.... It is well known that
the ring Z[(,] is the ring of algebraic integers in the cyclotomic field Q(¢,)([R],
pp. 265-268) and that Z[(,] is a Dedekind domain ([A-M], p. 96; [M], p.10).

In this paper we deal with associative unital rings and all ring homomorphisms
map the unity to the unity.

If A;, A" are rings and j; : A; = A, i = 1,2, are ring homomorphisms, we can
define a fibre product of the pair {ji,j2} as

A = {(a1,a2)|a; € A, ji(a1) = ja(az)}.

A turns out to be a ring and the diagram



ALAl

12 L J1

A2 T Al (*)

is commutative with (a1, a2) = ag, k = 1,2. We will say that A is the product
of A; and Ay over A’. The following example of this construction will arise in
our applications: Let «, # be two-sided ideals of a ring A. Then one has the fibre
product diagram (Cartesian square)

Alanp - A/«
AJf—— Af(a+ ) (4)

where the maps are all canonical ring surjections ([C-R], Vol I, pp. 22-23; [M],
p. 19).

1.2 Properties of KyA

Let P be a finitely generated projective module over a ring A and let [P] denote
the isomorphism class of P. Define [P] + [Q] = [P & @)]. It is easy to see that
the sum is independent of the choice of representatives P and (). Let E be
the set of isomorphism classes with the operation defined above. Then FE is a
monoid. Now let F be the free abelian group generated by E with elements
Y»onp < P >, np € Z, where < P > is the generator of F corresponding to
[P] € E. Note that < P >=< @ > if and only if [P] = [@Q]. Let B be the
subgroup of F generated by all expressions < P > + < @ > — < P®Q >. Then
KA is defined as the quotient of F by B.

It is easy to show that every element of KA can be represented as [P] — [Q]
for some [P],[Q] € E.

The following lemma is well known (see for instance [M]).

Lemma 1.1. If A is a local ring or a principal ideal domain, then every finitely
generated, projective module over A is free, and KyA = 7.

Now consider a homomorphism f : A — A’ between two rings. For any
A-module M we define the following A’-module

f#M = A, X a M

Note that f,M is finitely generated and projective if M is finitely generated and
projective. The map

[P] = [f4P]
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provides a homomorphism
f* : KOA — K()AI

with (identity), = identity and (f o g). = fi © g
Let us consider the unique homomorphism

1:7 — A.
Clearly K¢Z = 7 (see above) and i,KyZ = 7Z. The cokernel
KoA/i Ko7

is called the projective class group of A.
Suppose we have a homomorphism j : A—F into a field or skew-field F'. Then
we get

Ko7 —— KgAK F

Z Z

Since j, o7, = identity map, we obtain a decomposition KgA = (Im i,)® (Ker j,).
Furthermore, since Im 7, = 7Z we obtain that Ker j, is isomorphic to the projec-
tive class group of A usually denoted by KyA.

If A is commutative, then KyA has a commutative ring structure if we define

[PllQ]:= [P ® Q.
Moreover, KyA becomes an ideal in KyA and KyA = Z & KoA ([M], pp. 6-8).

1.3 Dedekind Domains

Suppose we have two non-zero ideals «, § in a Dedekind domain A. They are said
to belong to the same ideal class if there exist non-zero ring elements = and y so
that xa = yB. These ideal classes form an abelian group under multiplication.
The class of principal ideals acts as identity element. The notation CI(A) will be
used for the ideal class group of A ([M], p. 9).

Lemma 1.2. FEvery ideal in a Dedekind domain A is projective over A. More-
over, every finitely generated projective module over A is isomorphic to a direct
sum a1 @D ... D o of ideals.

Lemma 1.3. If a and B are non-zero ideals in a Dedekind domain A, then the
module a @ [ is isomorphic to A @ (af).

Theorem 1.1. Let A be a Dedekind domain. Then K¢A =7 @ Ky A, where the
additive group of KoA is canonically isomorphic to the ideal class group Cl(A).
Moreover, the product of any two elements in the ideal KyA is zero.
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The second isomorphism assertion in the theorem follows from Lemma 1.2
above and the correspondence

KoA — 7.® Cl(A)
1@ ... B a,] — (r,{ar- - a}).

Here {a; ---a,} € CI(A) is the ideal class of a1 - - - .

A module M, over a commutative ring A, is said to be invertible if there exists
a module N over A so that M @ 4 N = A (i.e., M ® 4 N is free on one generator).
The set of isomorphism classes of invertible modules forms a group under the
tensor product. We call this group the Picard group and denote it by Pic (A).

It is a well-known fact that for Dedekind domains Pic (A) = Cl(A) ([A-M],
cf. below). Hence KyA = Z @ Pic (A) and Pic (A) = KyA ([M], pp. 10-15).

Let A be a local ring. If M, N € Pic (A), they are finitely generated and
projective ([M], p. 15). Suppose N is inverse to M. By Lemma 1.1, M @ N =
A™ @ A" =2 Al. Thus m = n =1 and Pic (4) = 0.

Assume A is the ring of algebraic integers in an algebraic number field (A
is Dedekind). Then CI(A) is finite. The order of this group is called the class
number of the algebraic number field ([A-M], p. 98; [I-R], p. 178).

1.4 Milnor’s Construction of Projective Modules

Now let us return to the Cartesian square (x). We assume that at least one of
j1 and 7, is surjective. Our purpose is to construct projective modules over A,
using projective modules over A; and As.

First, let f : A — A; be a ring homomorphism, and M a left A-module. As
above, the A;-module A; ® 4 M is denoted by fxzM. Then we have an A-linear
map

f* M — f#M
fe(m) :=1®4 m.

fuM is free over Ay with basis { f.(aq)} if M is free over A with basis {a,}.
Basic construction: given projective modules Py over Ag, k = 1,2, how do we
construct a projective module over A?
One now has

it Pe — A" ®a, Py
Jex(Pk) =1 @, Pr, k=1,2.

The two A'-modules j14 P, = A'®, P, and jou Py = A'® 4, P» must be isomorphic.
Thus take a fixed isomorphism

h:g1xPr — JouPo
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over A’. Set

M :M(Pl,PQ,h,) =
= {(p1,p2) € Pi X Po|h(j1+(p1)) = jox(p2) }-

Clearly there is a commutative square

M >Pl

L Lhojl*

P2 —\]2* jQ#PZ

where M is isomorphic to the product of P, and P over jouPs.
M becomes a left A-module if we let

a- (p1,p2) = (i1(a) - p1,i2(a) - p2); a € A

(M], pp. 19-20).
The following result is valid.

Theorem 1.2. a) The module M = M(Py, Py, h) is projective over A. Fur-
thermore if Py and Py are finitely generated over Ay and Ay respectively,
then M is finitely generated over A.

b) Ewvery projective A-module is isomorphic to M(P{, Py, h) for some suitably
chosen h and projective modules P|, Py over A; and As respectively.

¢) The modules Py and Py are naturally isomorphic to 1M and isx M, re-
spectively. ([M], p. 20).

1.5 K;A and the Mayer-Vietoris Sequence

We let GL(n, A) be the general linear group of all n x n invertible matrices over a
ring A. GL(A) is the union of the sequence GL(1,A) C GL(2,A) C GL(3,A) C
..., where each GL(n, A) is embedded in GL(n + 1, A) by the injection

A0
A < 0 1 ) .
A matrix in GL(A) is called elementary, if it coincides with the identity ma-

trix, except for a single off-diagonal entry.

Lemma 1.4. The elementary matrices in GL(A) generate a subgroup E(A) C
GL(A). E(A) is precisely equal to the commutator subgroup of GL(A).



Due to the properties of the commutator subgroup, we can say that E(A) is
normal in GL(A) and the quotient GL(A)/E(A) is an abelian group. The abelian
group GL(A)/E(A) — called the Whitehead group — is denoted by K; A ([M], p.
25).

Now suppose A to be commutative. Then the determinant is defined. Let A*
denote the multiplicative group of units of A. The composition

A* =GL(1,A) C GL(A) & A*
is an identity map.
If SL(A) C GL(A) is the kernel of the determinant homomorphism, we get a
direct sum decomposition

KA~ A* @ (SL(A)/E(A))

(compare KgA = 7 & KyA). Here U € SL(A) & detU = 1.

In applications SL(A) is often generated by elementary matrices, i.e. K;A =
A*. This is true for example if A is a local ring or the ring of integers in a finite
extension of Q ([M], pp. 27-28, 159).

We start with the diagram (x) in 1.1, satisfying the same conditions as before.
It is now possible to construct the following exact sequence called the Mayer-
Vietoris sequence

KAS KA @ KA B KA 2 KA S KyA, @ Kody 28 KA

Here o, n = 0,1, is induced by the homomorphisms i;, : A — A, for k = 1,2,
ﬁl (.Z', y) = jl* (x)jQ*(y)_l and ﬂO(a'a b) = jl* (a) - j2* (b)

The crucial part is to constuct 0 : K1 A" — KA.

Let us represent x € K; A’ by a matrix in GL(n, A"). Then z is an isomorphism
from the A’-module j14(A}) = A} ®4, A" =2 (A")" to the A'-module jou(AY) =
Al ®4, A" = (A")". Hence, by the basic construction described above, we can
form the projective module

M = M(A?, A, x)
over A. Set
d(z) := [M] — [A"] € KA.

Write for simplicity 0(z) = M — A™ € KyA. One can show that 0 is well defined.
We summarize:

Theorem 1.3. The Mayer-Vietoris sequence is exact.



([M], p. 28). A proof can be found in [C-R], Vol II, pp. 106-108. Here we
will reproduce the exactness at KyA.
The image of 0 is the set

(M(AT, A, z) — A"z € K A"} = {M(A", AT, ) — M(AT, A% 1)|z € K, A"}

in a simplified notation.
We also have

Qg : K()A—>KOA1®KOA2
M(Py, Py,x) & Py @ P,

whence
M (A}, Ay, z) = M(A}, A3, 1) = (A} — A7) & (43 — A3) = (0,0),
ie.,
Im 0 C Ker «y.
But

Ker (K()A 03 KOA1 D K()AQ) = {M(Pl,PQ, h) — M(Pl,PQ,g)|Pz S K()AZ} =

for some isomorphisms h, g, hq, g1 ([M], pp. 22-23). It follows
Ker ag C Im 0

and
Ker ay = Im 0.

Therefore the sequence is exact at KyA.

1.6 Integral Group Rings

Let G := {g1,92,---,9x} be a finite group. Form the ring ZG := {a191 + ... +
argk|a; € Z} with operations

D aigi+ Y bigi=> (a;+bi)g and O aig)(O_big;) =Y aibjgig;.
i i i i J 1]
We now assume that G is a cyclic group of order p”. Then

G:=Cp:={1,9,6°...,9" g" =1} =2 Zyp =Z/p"Z.



The ring homomorphism Z[z] — ZCp» sending = to g shows that ZCpn =
Z[z]/(2P" —1).

As before (, = ezm/pnﬁ, n = 0,1,.... The number (, and all its powers
satisty 27" —1 = 0. Hence
P 1= ()@= G) e (= ),

Form the polynomial

X
® n+1 = _ ey — _
pe@= 1 @@= e e ey
1<a<p™t!
a;'pn+1 -1 xpn+1 1
) - 1 =1).
(.fC - C”_l)(x - Cz—l) et (,Z‘ — ',(Llftl_l))(x _ 1) " — 17 (put C 1 )

This is the so-called p"*!-th cyclotomic polynomial. It is irreducible in Z[z] ([I-R],
p. 195). Consequently ®,»+:(x) is minimal polynomial for ¢, over Z. Consider
the ring homomorphism

¢ : Z[z| — Z[(n]
such that
x = (.

By above, Ker ¢ = (®,n+1(z)). Hence

2] = 2/ (@ () = 2le] / (—_‘11)

We would like to prove that KyA 2 Pic (A) for A = ZCpn.

Any projective A-module M defines a function rank;,; : Spec A — 7Z which
can be defined as follows: Let v be a prime ideal of A and R(A/v) the fraction
field of A/v. MY := (M ®4 (A/v)) ®a4/» R(A/v) is a finite dimensional vector
space over R(A/v). We set ranky (v) = dimp(a/y)M". A subset V' of Spec A is
called closed if there exists an ideal a C A such that V consists of those prime
ideals p such that a C p. This defines a topology on Spec A called the Zarisky
topology . It is well known that rank,; is a continuous function with respect to
the discrete topology on Z and the Zarisky topology on Spec A (see [B]).

Corollary 1.1. If Spec A is connected, then rankys is constant.

We shall also use the fact that Spec A is connected if A has no non-trivial,
orthogonal idempotents (that is, non-trivial e; # 0,e; # 0,€2 = ey, €2 = ey, €1 +
€y = 1,6162 = 0)

Theorem 1.4. ZC)» has no non-trivial idempotents.



Proof: Induction over n. .
Consider the diagram (**) in 1.1 with A = Z[z],a = < =l ), B =

g
(z?"" —1). First, the case n = 1: Here « = (£=1), 8 = (z — 1). It is eas-
ily checked that aN g = (2 — 1), a+ 5= (p, z — 1).

Therefore, we have the following Cartesian square:

n—1

Zlz)/ (2P — 1) = ZC, —— Z[G] = Z[x]/(Z=L)

z—1

Zz)/(x —1) X2 —7/pZ = Zx]/(p,x — 1)

Here i1(z) = z € Z[z]/(E51), io(z) = z € Z[z]/(z — 1).

Now Z and Z[(p] are integral domains and every element in ZC, can be
represented as a pair (a, b), where a € Z[(y] and b € Z. We get: (a,b)? = (a,b) =
(a®,b%) = (a,b) = a*> =a, > =b=>a=0o0ora=1and b=0or b=1. Using
that a and b have the same image in Z/pZ we get that (a,b) = (0,0) or (1,1).
Thus all idempotents are trivial.

For general n, we have a N § = (27" — 1). Further w:if_ll =142 +
4P = p gy (22" — 1) for some polynomial t; € Z[z]. Thus
a+ 3 = (p, A 1). Analogous to the case n = 1, we have the Cartesian

square
ZCp ———— T[]

| |

ZCyn-1 ——— (ZCyn-1)/(p)

Also here, every element of ZC)p» can be represented as a pair (a,b) with
a € Z(p—1], b € ZCpn-1.

Clearly Z[(,-1] has no non-trival idempotents and ZCpn-1 has no non-trivial
idempotents by the induction assumption. Using exactly the same considerations
as in the case n = 1, we obtain the desired result. O

Consequently, Spec ZC)» is connected and rank,, is constant on this space
for any ZCpn-module M. Since the Krull dimension of ZC)j» is 1, it follows

KoZCypn = Pic (ZCpn)

([B], Ch. 4, Cor. 2.7 and Ch. 9, Prop. 3.7). The relationship between Ky- and
Pic- groups can be considered as follows. Let

AléAQ

|

A3QA4



be a Cartesian square of rings. By [B], pp. 466-467, we have determinant surjec-
tions:

det() : K()AZ — Pic (A,) and
det; : K1 A; — U(4;) := {units in 4;},

for i =1,2,3,4. For det; and U(A), see [M], §3. The discussion above and Ch.9,
Prop. 3.6 in [B] yield two exact Mayer-Vietoris sequences, the (K, Kj)-sequence
and the (U, Pic)-sequence.

Ki A — K1As @ Ki1A3 — Ki1As — KoA — KoAs [S5) KoAs — KoAs

1 dety I dety I dety 1 dety I detg I detg I detg | detg
U(Al) — U(AQ) (&) U(Ag) — U(A4) — PiC(Al) — PiC(Ag) (&) PiC(A3) — PiC(A4)
In our particular case it follows that dety : K¢ZCyn — Pic(ZCpn) is an epimor-

phism with kernel Z.

1.7 Rim’s Theorem
In [M], p. 29, a variant of Rim’s theorem is
KoZC, = KoZ[Gy).

If we decompose both sides, in accordance with previous paragraphs, and drop
the Z-components, the formula reads

Pic (ZC,) = CU(Z[()),

or
P —1

r—1

Pic (Z[z]/(x" — 1)) = Pic (Z[x]/( )-

Here we shall prove the generalization of this.

Theorem 1.5.

) . 2" =1
Pic (ZCy) = Pic (Z]x]/( T ))-
Proof: Start with the square
ZCm = Zz]/(z*" — 1) i Zlz)/(Z=)
T—11] L z—1 (mod p")

1—1 (mod p"
—

D 2 2] (o - 1, 2=1)

z—1

7= Zz)/(z 1)

10



n
P —1

T denotes the coset of z. If we set A := (—), p:= (¥ — 1), one gets easily for

these ideals
ANp == (2" —1)
and
Adp=@ -+ @ ' +...+z+1)=(z—1,p").
Furthermore,

Zlzl/(A+ ) = Z[z]/(z = 1,p") = Z/(p"),
as in the figure, where the maps also are indicated. Thus, there is a Cartesian

square of type (%) in 1.1.
This fact and the already discussed theory yield a (U, Pic)-sequence

U(ZCy) - U(Z) ® U(Z[ﬂ/(ifﬁ)) 2

% U(Z)p"Z) S Pic (2Cy)

Y - . P —1
— Pic (Z) & Pic | Z[z] o —
— Pic (Z/p"Z).
Here U(Z) = {—1,1}. The ring Z is a principal ideal domain, hence a Dedekind
domain ([A-M], p. 96). Therefore, Pic (Z) = CI(Z) = (0).
Now, Z/p"Z = {0,1,2,...,p"—1} is alocal ring with maximal ideal generated

by p.
We have earlier seen that Pic-groups for local rings are 0, hence Pic (Z/p"Z) =

0.

Take k € U(Z/p"Z). Then (k,p) = 1. There exists r,s € Z,r > 0: k-s+
p"-(—r)=1, thatls k|(1+p" - 7).

Consider (9—2 € Z[z]/ (‘”p 1). Evidently,

(@) =1 (@)~
z—1 (Z)k -1

=1,

because (a‘c)p" =z + (wp —1)

Zlz) /(= ar” ) This implies

2 oo (22)
@1

The homomorphism c, in the (U,Pic)-sequence above, gives a(%—) =
a((@)F 1 +...+Z+1) =k since a(z) = 1. It follows that « is surjectlve

1+ (Z2=1) = T and both fractions belong to

z—1

Since the sequence is exact, Im o = U(Z/p"Z) = Ker 5. Hence Im g =
0 = Ker v and v is injective. Thus, Im v & Pic (ZCp»). But 7 is surjective
(Pic (Z/p"Z) = 0 = Pic (Z)), from which Im v = Pic (Z[z]/(%5)). O

11



§2 Some General Results on ZCy»

Let us look at some papers which deal with the problem of calculating Picard
groups of ZCy». Most of these essays are written about 15-25 years ago.

2.1 Results of Kervaire and Murthy

The article [K-M] gives a very clear introduction to the subject. It circulated as
a preprint in the late 1960s, but was published in 1977.

A prime p is said to be regular if p does not divide the class number of Q({p),
where (p is a p-th root of unity. By [B-S|, cor. p. 377, this is equivalent to
0, = 0, where 0, := number of Bernoulli numbers among By, By, ... , B,_3 whose
numerators (in reduced form) are divisible by p. Recall that Bernoulli numbers
B,,(m > 1) are defined by

t B .
] _1+mz_1 e,
A prime p is said to be semi-regular if it does not divide the order of the ideal
class group of Q({p+¢;") (the maximal real subfield of Q((p)). It is conjectured
that every prime is semi-regular. However, J, # 0 for infinitely many primes p
([B-S], pp. 381-382; [I-R], p. 241).
The authors of [K-M] essentially start with the Cartesian square

ZX)/ (X7 = 1) 2 Z[C]
ZIX)/(X7 1)~ o)/ — 1)

where i3(X) = (p, j2(¢) = z and j1(X) = z. Note that F, := Z/pZ and
ZLG] = ZIX)/ (X5 ), (see 1.6).

X" —1

Set R, := Fy[z]/(z"" — 1) and write t = x — 1. Then 2" — 1 =" (mod p),
that is, R, = F,[t]/(t?").

Every element in R, \ (¢) is of the form ag+ait+...+apm_1t7" "1+ (#"); ag # 0.
These elements are units in R, because ag -+ (##") is a unit in R,, and the ¢-terms
form nilpotent cosets in R,. Hence R, is a local ring with maximal ideal (t).
Thus, by Lemma 1.1, KoR,, = Z which implies that Ko(R,) = (0).

R,, local implies K;(R,) = U(R,), (see 1.5). Since det : K1A — U(A) is
(split) surjective for a commutative ring A with identity, the (U, Pic) version of
the Mayer-Vietoris sequence gives us the exact sequence

U(ZCy) @ E, — U(R,) — Ko(ZCpn1) — Ko(ZCpn) ® Ko(Z[C]) — 0,
where E,, := U(Z[(,]); (1.6).

12



Denote by j and ¢ the following maps
jU(@Cy) & Fy — U(Ry)
i : U(Ry) = Ko(ZCpyntr)
and let V,, be the cokernel U(R,)/Im j of the map j. We can define a map
1V — f(o(ZCan)

by sending the class of € € U(R,,) to i(¢). It is easy to see that ¢ is injective and
that the sequence

0 =V = Ko(ZCpnt1) — Ko(ZCo) ® Ko(Z[C]) — 0 (1)

is exact.

Now, let G,, := Gal (Q({,)/Q) be the Galois group. It is well known that
Gn X7y ®Zyn. If s € G, then s((,) = ¢ for some k = k(s) € U(Z/p""'Z).
This defines an isomorphism

k:Gn—UZ/p"'7).

Hence 2*(*) is well defined when x is the generator corresponding to X in
ZIX])(XP" = 1) = ZCpuir, ZIX]/(XP" — 1) = ZCpn or F,[X]/(XP" — 1) = R,.

The formula s(z) = 2z turns G, into a group of automorphisms of the
rings ZCynt1, ZCpn and R,. All the maps in the diagram at the beginning of 2.1
commute with the action of G,,.

If we view Cyn+1 as the group {1, ¢y, . . ., ¢P""'=1} we hence get that Aut (Cpnr) =
Zip—1 @ Ly, Where the action is, again, given by ¢, = (R, s € Zy_, @ Zyn. Note
that (p,k(s)) = 1.

This action of G, on the rings above induces an action on the groups in (1)
that hence turns into an exact sequence of GG,-modules.

If we let ¢ € G, be complex conjugation, then, since ¢(¢,) = (, = (!, we get
that the action of ¢ on ZCpyn+1, ZCyn and R, is given by c(z) =z~

If M is a multiplicative G,-module, define M+ := {v € M|e(v) = v}, M~ :=
{v € M|c(v) = v~'}. Obviously, if M is a finite abelian group of odd order, then
M = M* & M~. We also define Char (M) as Hom (M, p1), where p is the group
of roots of unity in (J,sq Q(n)-

A principal part of [K-M] is devoted to a proof and discussions of the following
theorem:

Theorem 2.1. Let U, = U(R,,), and let X,, C U, be the cyclic subgroup gener-
ated by x = 1+1t, where R, = F,[t]/(#*"), n > 1. ThenV,, =V,F &V,", and there
is a surjective map of V,, onto U, /(X - U}).

If p is semi-reqular, we have

V, 2U/(X,-Uf) and Char (V) € §H(QG1)) = SQGu 1)),

by a canonical injection, where S(Q((,)) is the p-primary component of the ideal
class group of Q((,)-
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Remark to Theorem 2.1: It is asserted that V- = U, /(X,, - U,}) if p is semi-
regular. However, the latter condition is not necessary. This will be clear from
the proof later on. The isomorphism is thus valid for all odd primes.

Define W,, to be the kernel of the map

i+ Ko(ZCpnn) — @7_o Ko (Z[S),
which is induced by the inclusion
i Lt — Z & (D7 Z[G))
of ZCpn+1 into the maximal order of
QU+ = QS (B)-R(¢))
([B-S], [C-R]).

Using Theorem 2.1 we can now prove the following theorem.

Theorem 2.2. Let p be a reqular prime. Then there is an exact sequence
0= Wy = Ko(ZCpntr) 2 @7 Ko(Z[(,]) — 0,
where W,, is an abelian p-group with o filtration
W,=HD>DHy,>...OH,DH,,; =0,
such that Hy,/H 1 = Vi, as given by the above formulas.
Sketch of proof. Define
Pm : Ko(ZCpnt1) — Ko(ZCym),

to be the homomorphisms induced by the obvious projections form =1,... ;n+1
and put H,, := W, NKer (p,).
The exact sequence (1) shows that all maps in the sequence
Ko(ZCyn1) = Ko(ZCpn) ® Ko(Z[(,]) —
— ... = Ky(ZCym) ® Ko(Z[(]) @ (2)
® Ko(Z[Gn11]) @ - - - & Ko(Z[Gn])
are surjective.

The surjectivity of 7, follows from Rim’s theorem and the case m = 1. This
also gives W,, C Ker (p,), i.e., H; = W,,. From

Ko(ZCpn+1) — ko(ZCpm+l) — Ko(ZCpm) b RO(Z[Cm])

14



we see that
H,1 =W,NnKer (ppny1) C W, N Ker (p) = Hp,.
Now consider
¢ :=pmi1|Hm : Hp — K()(Zcpm+1)
and
a1 Ko(ZCymi1) = Ko(ZCyn) ® Ko(Z[Cm)).-

Since H,, = W,, N Ker (py,), it is clear that ¢ maps into V,, = Ker «.
Take v, € V.. Then a(v,,) = (0,0). In the sequence of surjective maps (2)

n—m

vl = (Um, 0, ... ,0) € Ko(ZCpmt1) ® Ko(Z[Cmin]) @ - - - ® Ko(Z[())

(only the first term remains if m = n). There is an element y € Ko(ZCpn+1)
mapping on v,.. Of course, y € W,,. Further, p,,1+1(y) = v, so y € Ker (a0
Pm+1) C Ker (pr), e, y € Hy. & = ppy1|Hp 2 Hyy — Vi is surjective.

Finally,

Ker ¢ = {x € H,|¢

—~

z)=0}=

= H,, NKer (pm+1)
=W, NKer (pn) NKer (pma1) =
= Wn N Ker (pm+1) = Hm+1

It follows:

Let |M| = #M denote the number of elements in a finite set M. We want
to determine |W,|. For this purpose one first needs to calculate |V},|. Since p is
assumed to be regular in Theorem 2.2, it follows from Theorem 2.1 that

Vo=V 2U,/(X, -U}).

So
Val = Ul /(1Xn] - U ))-
Now
U] = |U(Rn) = n n
=#{ao + a1z + ax® + ...+ ap 17 a; € Fpap # 0,27 =1} =
=(p—-1)-p" L
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By definition

US| = #{ag + a1z + ...+ apm_12?" ' =
=wtar 4+t ap“flxi(pnilwai €Fy,a0 # O,xpn =1}.

Here, we have z7¢ = 27"~ 50 a; = apn_;, i = 1,2,...,p" — 1. Therefore |U,| =
(p—1) -p2@"~1)_ Finally

|Xn| = #{1,$,$2, ‘e ,.Tpn_l} :pn

Hence |V, | = p with v, = Z(p" — 1) — n.
It now follows that

\Wh| = |H\| = |Hy| - |Hi/Hy| = |Hs| - |Hy/Hs| - |Hi/Hy| = ... =

:|Hn+1|'|Hn/Hn+1|'|Hn—1/Hn|'---'|H1/H2|:1'|Vn|'|Vn—1|'---'|V1|:
=p"",
where
1 n 1 n—1
w, = E(p —1)—n+§(p —1)=(n=-1)+...+
1, 1
o =) =2+ o(p-1)-1=
_ pr=1 0 on ne+l)
T 2p,-1 P77 2
1 pn+1_p )
= (% _ 1 1):
2( — (n+1)°+
1 pn+1_1 9
- (= 4t )
2( p—1 (n+1)

Next, observe that U(R,,) splits as a direct product
U(R,) =TF;® U,

where Fy = T, \ {0}, and U is the subgroup of U(R,) consisting of units
congruent to 1 mod tR,,. Let us set T := tR, := (t), the maximal ideal of R,,.
The subgroups Ud =1+ Tt i > 1, define a filtration on U(R,). Define
maps 7° — 1+ 71" by f — 1+ f. Then the homomorphism
T — UD Ui,
$(f) = 1+ HULD
is suriecti — i (i+1) _ prl+1)y _ itl i il o
surjective and Ker ¢ = {f € T*|(1 + f)Un "~ =Un '} =T, so T /T =
Ur(f)/UéHl) fori > 1.
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We now make a slight change of notation and put U, := US". Since # + T+!
generates T* /T it follows: Any set of elements & € U(R,),i=1,...,p" — 1,
satisfying

& =14t mod TP,

is a set of generators of U,.

The rest of the notations are preserved analogously: For ¢ : R, — R,, with
a generator x, we have c(z) = z!. If ¢c(u) = u for u € U(R,), u is called a
symmetric unit. U, is the subgroup of U, consisting of symmetric units. X,
means the subgroup of U,, generated by x = 1+ t. Note:

Un/(Xn - U) 2 U(Ry)/(Fy @ (Xn - Uy)).

Set a; := 1+t"fori =1,...,p"—1, and let y; be the class of o; in U, /(X,,-U;}).
The structure of this group is now given by

Lemma 2.1. Ifp is a prime > 3, the elements Yo, 1, with 1 < i < %(p" —3) and
2i + 1 prime to p, form an independent set of generators of U,/(X, - U;}). The
order of Yy y1 15 p%, where a; is uniquely determined by the inequalities

pnfai S B+1< pnfai—}—l.
Regard p = 3,n =1 as a trivial special case.

Outline of proof. Consider s .=z + 2 ' —2 =z € Ul and 0; := 1+ s €
Uf,i=1,...,1(p" = 1). Now agis1 = 1+ ¢*™ and 0; = 1 + t¥ mod T%*,
whence by a remark above, the set {aw;41,0541/i =0,1,...,2(p" — 3)} generates
Up. But oy =1+t € X, and 0541 € U, s0 {y41]i = 1,...,3(p" — 3)} generates
Un/(Xn - Uy). Further, apit1)p = (aois1)?. Hence {yoip1]i = 1,...,5(p" — 3)
and 2i + 1 prime to p} suffices to generate U,/(X, - U,).

We have (qgip)P" = 1 4+ tZ+DP% = 1 where p"~% < 2 + 1 < p"~%*t! 50
a1 has order p% in U,. Therefore the order of 7y, divides p%.

If U,/ (X, -U;)| = [, p*, where the product is taken over i = 1,... , 3(p"—3)
with 27 + 1 prime to p, then it follows: The order of ;41 is precisely p* and
Y3, V5, - -, Vpn—2, With indices prime to p, form an independent set of generators
of U,/ (X, - U}).

Earlier we saw that |U,/(X, - UF)| = p2®"~D-n,

But for given a, the set {i[p" * < 2i+1 < p" *"} = {iJa; = a} has ;(p—1)-
p" ¢ integers for a < n and £(p — 3) for a = n(2i + 1 > 3). Among these, there
are %(p —1)-p"~! multiples of p, except if a = n, in which case there are none.

All this gives [ [, p* = p™ with

n—1
r=Y a-s(p=17p" 40 =(p-3).
a=1
It is easily verified that r, = v, = (p" — 1) — n O



Corollary 2.1.

2

1
Un/(Xn : Urj_) = 692;11_(73 - 1)2pn71j71 : Z/puz ©®
1
(p—3)-Z/p"Z, p > 3.

© 2
Here N - Z/p*Z is the direct sum of N copies of the group Z/p*Z.
Recall that E, = U(Z[(,]), R, = F,[t]/(t*"). If z is a generator of Cyn, then
(@) =34(6) =1+tCp ={1,z,... ,2"" '} and j : U(ZC,, ® E,) — U(R,).
Now it is proved that Imj C F; @ (X, - U;"), with the new notations of this
section. We need

Lemma 2.2 (Kummer’s Lemma). Let u € E,. Then for some integer i, the
unit Ctu is real, i.e., c(Ciu) = (tu, where ¢ is complex conjugation.

This lemma extends to our group rings: Let ¢ : ZCy» — ZCy» be the auto-
morphism induced by ¢(z) = z!, where z is a generator of Cpn.

Lemma 2.3. Let u € U(ZCy). Then, for some integer i, one has c¢(z'u) = z'u.

The proofs of the last two lemmas are sketched in [K-M], with references to
[He], 3.4 and [Hig] (Higman’s theorem).

Lemma 2.4. With our new notations, we have

ImjCF,& (X, Ub);p>3.

Proof: The conjugation c operates on U(ZCyn), E,, and U(R,). The map
j:U(ZCy) & E, — U(Ry)

is a map of C-modules where C' is the cyclic group of order 2, generated by c.
Lemma 2.4 now follows from Kummer’s lemma and its extension to ZCyn. O
No regularity assumptions on the prime p are done here. Thus the

Corollary 2.2. Forp > 3 and n > 0, there is a surjection
Vi =U(R,)/Im j — Uy, /(X, - Ul).

This is one of the statements in Theorem 2.1. It follows rather quickly from
Lemma 2.4. Here again observe that

Un/(Xn - Uy) 2 U(R,)/(F}, © (X - Uy))-

Recall V, = U(R,)/Im j, where j : U(ZCy) @ Eyp — U(Ry). Put jo : By, —
U(R,) and V,, :==U(R,)/Im jo. We get Im jo C Im j, whence

Vo, = (U(R,)/Im jo)/(Im j/Im j5) = V,/(Im j/Im jp).
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Thus V, maps surjectively on V,, and the same holds for V",V onto V', V. ",
respectively.

If v €V, maps to 1€V, vcan be lifted to u € U(R,,) so that c¢(u) = v !
and u € j{U(ZCp») ® E,} CF; @ (X, - Uyf). Then u € X, = {1,z,... 2" 7'}
Since j(¢,) = z, we have u € j(E,) = jo(E,), hence v = 1 (trivial kernel), so
VoV

Further in Theorem 2.1, one has Char (V,) := Hom (V,', u), i.e., the group of
homomorphisms from V, to . Here pu, the group of roots of unity in U,,>oQ(¢,),
is equipped with the discrete topology.

We also have S(Q((,)), the p-primary component of the ideal class group
CUZ[¢)]) of Z[(,], v € {0,1,2,...}. This means the direct sum of all direct sums
(Z)p*7)* = ay, - (Z/P*Z), k = 1,2,... (see Cor 2.1) in the decomposition of
CIl(Z]¢,)) into cyclic subgroups.

Now VI — V.t is surjective, so the dual map Char (V,/) — Char (V) is
injective. (Hint: i: A — B, iy : Char (B) — Char (A) and v € Char (B).

A% B Loy
N Vs :ig(y) € Char (A).
B0 ()

Thus 7 surjective < i injective.)

It follows that a canonical injection Char (V) — S(Q((u—1)) induces a
canonical injection Char (V,}) — S(Q({,—1)) as originally stated.

All this reasoning shows that it suffices to prove Theorem 2.1 with V), in place
of V,,.

By a remark before Theorem 2.1, we obtain V, = VI @V, (|V,| is odd ac-
cording to [K-M], p. 436).

Lemma 2.2 gives E, = ((,) - E;F. Therefore V,, maps surjectively on U, /(X -
U;") (this also follows from Corollary 2.2 and the fact that V), maps onto V;,). But
Un/(Xn-Uy) = (Un/ (X0 - Uy))™ because Uy /(X -Uy) = (U €Uy, )/(Xn-Uy) =
U, /X,. Hence there is a surjection

Vi = Un/(Xn - U).

Let v € V, map to 1 € U,/(X,, - U;"). Then v can be represented by a unit
r'u € U, with u, both symmetric and antisymmetric: v = z'u, c(u) = u, c(v) =
v =zl =gz "c(u) =2 ", ie., u ! =u,u?=1. Now |U,| = p*" ! is odd,
whence v = 1. Further, jo(E,) D X,(jo(¢n) = x), so v = 1. Thus for all primes
p > 3:

Vn_ = Un/(Xn ) Ur—:)

The more difficult part of Theorem 2.1 (as well as this counterpart for the
prime 2) is based on works by Iwasawa, about cyclotomic fields ([I1], [I2], [13]),
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and on class field theory ([A-T], [Hal, [L]). It would take us too far ahead to
develop these ideas. However, a couple of facts ought to be mentioned ([I1],
[13]): S(QG + ¢, 1) = ST(RQ(G)) for all n > 0. S(QG + ¢ 1)) = 0 =
S(Q(G+6¢1)=0,n2>0. S(Q(G)) =0= S(Q(G)) =0,n>0.

Hence: If p is semi-regular, i.e., S(Q(¢ + (') = 0, then S(Q(¢,)) =
S7(Q(¢,)) for all n > 0 (cf. Theorem 2.1).

Keep the notations, and assume for a moment that p is regular. By Theorem
2.1

UR)/(Fr® (X -UN) 2 U/ (X, - U) =
>V =V, =U(R,)/i({UZCpn) & E,).

Lemma 2.4 stated that Im j is included in F} @ (X, - U,}) for all primes p > 3.
In our present case we get,

J(U(ZCy) & E,) = F; & (X, - U,)), p regular prime > 3.

Recall the group W,, defined befor Th. 2.2. In [K-M] a formula for W,, for
regular primes is also deduced. This is done with the aid of theorems and theories
mentioned in this section. In a separate part a determination of V; is done in the
case when p is a semi-regular prime. This is carried through without appeal to
class field theory. The result is that V; = Coker j = (3(p —3) +6,) - Z/pZ. If p
is regular, i.e., 6, = 0, then V;" = 0;V} = V|7 & %(p — 3) - Z/pZ. Otherwise, for
p semi-regular, we get V;© 2 6, - Z/pZ.

2.2 Results of Galovich

Our aim to find the composition of KO(ZC’an) leads — as we have seen — to a
thorough study of W,,.

S. Galovich announced an explicit formula for W,, (p regular, odd) in an
article ([G1]) published in 1974. The expression contains direct sums of groups
like Z/p*Z, but nothing else. Unfortunately, a mistake was made in the proof,
so the general formula (in [G1], p. 369) is not correct.

The error, which is of a more serious nature than a calculation lapse, was
discovered by Ullom. He gave in [U1] a counterexample, using the cyclic group
7./3'7: Here n = 3,p = 3 (regular) and W5 = (Z/97)* & (Z/37)* instead of
(Z/9Z)® ® (Z./37)°, as predicted incorrectly in [G1]. Yet the order is 3'2 for both
groups. See also [G2].

However, in [G2]| and [U1] is noted that Galovich’s result for p regular, odd,
is valid for W; and Ws.

For the rest Galovich too uses Mayer-Vietoris sequences and algebraic K-
theory. A great deal of the article is devoted to units in cyclotomic fields and it
relies on theory from [He|, [Hil], and [Sel].

20



In a separate part in [G1], a formula of W; is deduced for properly irregular
primes p (cf. [K-M]). Such a prime is defined as: p is properly irregular if p
divides the class number of Q({p), but p does not divide the class number of
Q(¢ + ¢Y). The proof here for W, rests on cyclotomic field theory.

In a remark in [G1] it is stated that in the sequence 0 — W,, — Ko(ZCpn+1) —
@r_yKo(Z[(,]) — 0, p does not divide the order of Ko(Z[(,)) = CU(Z[(,)) for all

v if p is regular. Hence the sequence is split exact, i.e., Ko(ZCpnt1) = W, &
(D=0 Ko(Z[G])), p odd, regular.

2.3 Refinements and Other Important Results

As above, we start with cyclic p-groups and p odd. By a general theorem, con-
cerning p-groups ([C-R], Vol. II, p. 254) it follows that W,,n > 0 is also a
p-group and thus has odd order. Hence W,, = W, @ W, .

A result by Frohlich ([F], IT) implies |W, | = p“», all primes > 3, where
w, =1 ’% — (n+ 1)%}. If p is regular, we get V.t = W.F = 0 and |W,| =
W] =p“n, n >0, see [K-M].

For all semi-regular primes > 3,n > 1 and under certain conditions on the
so-called Iwasawa invariants, Ullom in [U2] proves: W\ = (&"_,Z/p'Z)°®) and
W | = p™, with m = d6(p) - @;5@) is defined in Part 2.1. See also [C-R],
Vol. II, p.290.

In [O], Oliver completely describes the structure of W, ~, viewed as an abelian
group.

Let

Q1 := Q& (B R(C))-

At the end of the preceding section it was pointed out that the map K (ZCpnt1) —
R’O(maximal order of QCpyn+1), n > 1, is split for p odd, regular. Ullom proves
([U1]) that this map is not split if p is a properly irregular prime.

However, in [U1] is described an algorithm, with help of which Pic (ZC,:) can
be determined, for p properly irregular.

Stolin sharpens this result to an explicit expression, valid for all odd primes
([St 1]). Moreover, by a different method he proves Ullom’s special case. The
formula here — for Pic (ZC)2) and p properly irregular — is expressed in terms of
Bernoulli numbers.

In [C-R), Vol. II — essentially pp. 282-291 — a good survey of many important
works on our subject can be found, up to the printing year 1987. Both Vol. I
and IT will also generally furnish the reader with several mathematical notions
and definitions used in the articles mentioned above.

Matters for this paper, but treating the cases for the prime 2, can be found
in some of the articles named above.
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2.4 Some Results from Class Field Theory

Put F, := Q). Let H, = H,(F,) be the so-called ray ideal group, i.e.,
the group of those principal, fractional ideals in F;,, which possess a generating
element, a, such that a = 1 mod 72", where 1, is the ideal generated by ¢, — 1
in F,,. Thus H,, = {(a)|a € F,,,a =1mod 42" }; a = 1 mod 2" signifies that the
Yn-valuation of ¢ — 1 is at least p".

Let K, /F, be the p-part of the ray class field extension associated with the
ray group H,, that is, K, /F, is an abelian extension with Galois group

Gal (Ky/F,) = (Io(F,)/Hy),p,

where Iy(F},) is the group of ideals of F},, which are prime to ,, and (Io(F,)/Hy),
is the p-primary component of Iy(F,)/H,.

No prime of F), ramifies in K,,/F,, except those dividing the conductor of H,
and therefore, 7, is the only possibly ramified prime in K,,/F,. See, for example,
[Ha], Fiihrer-Verzweigungs-Satz, page 136.

The other class field L,, we need is the p-part of the Hilbert class field of F,,.
It is also an abelian extension, with Galois group.

Gal (Ln/Fn) = (I(Fn)/P(Fn))p = S(Fn)a

where I(F,,) is the ideal group of F,,, and P(F,,) the subgroup of principal ideals.
Thus as above, S(F,) is the p-primary component of the ideal class group of F,,.
The extension L, /F, is the p-part of the class field extension associated with the
ray group P(F,).

Since H, C P(F,), we have the inclusions

QCF,CL,CK,.

Since K,/Q and L,/Q are Galois extensions, the group G, := Gal (F,/Q)
operates on Gal (K,,/F,) and its subgroup Gal (K, /L) via the group extension

1 — Gal (K,,/F,) — Gal (K,/Q) = G, — 1.
The following result unites class field theory with our topical problem.

Lemma 2.5. There is a canonical isomorphism of G,-modules
©: Gal (K,/L,) = U(R,)/jo(Ey) = Va,
where R, E, and jy are defined in 2.1.

This class field theory, and more above that, can be found in [K-M], [A-T],
[Ha] and [L].
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§3  On Pic(ZC,3)

3.1 Presentation of the Problem

Define
Ay = Za] / ("””f_‘f) Ay = Za] / ("””;3__11)

Our aim is to compute the kernel of the epimorphism Pic(A3) — Pic(Z[(]) &
Pic(A,) for odd regular primes, using a generalization of Kummer’s theorem.

As before, with (; = e*™/7°, one has Z[(5] = Z[JC]/ (wpzl

zP” -1

Set o := (22::1),,3 = (%) Then anN g = (f:_f) Further a + 8 =

D, wi‘”’:ll . It follows that Z[z]/(c + B) & Ay/(p) & Fplz]/(z — 1)P°~1 .= D,.

Thus with usual maps fa, go

Az —— Z[@]

2 e

142(1.»—>cz.tqri10/d1)l)2 (I)

this diagram is a Cartesian square (for N see Section 3.3).
The (U, Pic)-variant of the Mayer-Vietoris sequence applied to (I) gives:

0— U (D)
— CU(Z[(3]) ® Pic (Ag) — 0

— Pic (Ag) —

where E,, := U(Z[(,]). We have used that D, is a local ring and hence Pic (Dy) =
0. Note that Pic (ZCps) = Pic (A;3) by Rim’s theorem.

3.2 Structure of U(Dy)
With x — 1 = y one gets
Dy = Fplyl/(v" ™) = 2 2
= {a() +a1y+...+ ap2,2yp 2 + (yp 71)‘(111' € ]Fp}
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Hence D, contains p?’ ! elements.

All elements in Dy, with ag = 0, are nilpotent in Dy and ag + (prl) is a unit,
if ag # 0. Therefore U(D,) contains (p — 1) - p?*~2 elements.

Every finite abelian group is a direct sum of cyclic subgroups. This and
theorems by Lagrange and Sylow give

U(Dy) 2 F; & U(D,),

where U(D,) is a p-group and U (Dy) = (Z,)" @ (Z2)? @ (Zys)* & .. ..

Let us first consider the set {u € U(D,)|u? = 1}. Let us study the equation
(L4+by+ ...+ by oy?"~2)? =1 in F,[y] with y*"~! = 0. Coefficients containing
p disappear (p = 0 in F),). Further, b} = b; (Fermat). We see that

{ueUD)|u? =1} = {1+byy? + ... +bp_oy” 2y? "' =0}
and
#{u e UDo)|u? =1} = pP"—2-=1) = "1,
Now
(T4biy+ ... +byp oy? 2P =1+ by + ...+ b, 1P )P =1

in IF,[y] with "' = 0. This implies that every element in U (D,) has order at
most p?. Thus r3 =ry, =...=0.
However in

U(D2) = (Zzo)r1 & (sz)r2

there are p elements in Z,» of order at most p. From the preceding facts, it thus
follows that |U(Ds)| = p? =2 = p™ - (p2) and p?’ P~ = p' . p™2 which gives

T+ 2ry = p? — 2
rt+rg=p’—p—1[°

Hence r = p? — 2p, o, = p — 1 and we have proved the following:
Proposition 3.1. U(Dy) X F! & (Z,)"" % & (Z,2)P ..

In the sequel, we will need one more expression for U(D,): Let us interpret
D, as the set of polynomials in z — 1 over I, with the subordinate condition
(z —1)?"! = 0. First, we see that 27’ — 1= (z — 1)’ =0, i.e., 2 =1,s0 z is a
unit. Now
24 (z—1)

—
It follows that 2 + (z — 1) € U(D,). This implies the following lemma.

r—z'l=@-1) -2 (2+1)=(x-1)-

Le;nma 3.1. U(Dy) = {ag+bi(x—x7 ) +...+bp_o(z—z7 )" 2| a € 5, b €
F,}.
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3.3 Im {E;®U(Ay) — U(Dy)}

At one lower step than (I), there is an analogous Cartesian square:

/ ‘fl G

go:Co—

[Co]

(D)

Here N; is the usual norm map ([B-S], [C-R]), and A, := Z[x]/(zp 1), Z[¢] =
Zla) /(). ZUGo) = Zla)/(2), Di = ZUGo)/(p) = Fylal/ (@ — 1),

Lemma 3.2. The lower, right triangle in diagram (II) is commutative.

This is Lemma 1, p. 377 in [St 1], where a proof can be found. The lemma
and (II) give:

90(Mi(a)) = fi(a),  a€Z[], }
go(b) =bmod p € Dy, b€ Z[()-

Interpret A, as all possible pairs (a,b), where a € Z[(1], b € Z[(o], such that
90(b) = fi(a).
Let us consider the following chain of the natural norm maps:
Z[G) 3 Z[G) ™ ZGo)-
We can construct the map
N :Z[(] = Ay

by N(d) = (No(d), N1(No(d))), d € Z[(s], (see diagram (I)). Now Ny(d) € Z[(],
N1(Na(d)) € Z[(]- Since N(d) has to be in Ay, we must check that

1 (Nz(d)) = gO(Nl(NQ(d)))'

But, this is exactly what Lemma 3.2 tells us in the case a = Ny(d) € Z[(;]. Thus
N 1is well defined.

Since N; and N, are usual norms, it follows that N(uv) = N(u)-N(v), Yu, v €
Z[(5]. Further, Ni(1) =1, No(1) =1, so N(1) = (1, 1), the unit element in As.
Hence, if € is a unit in Z[(], we get

(1,1) = N(1) = N(ee ') = N(e) - N(e });

N(e) is a unit in Ay, and N(e) ' = N(e1).
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Proposition 3.2. The lower, right triangle in diagram (I) is commutative.

There is a proof of this in [St 2], pp. 448-450. Therefore we obtain the
following diagram:

€ € By = U(Z[())

/ f2

U(42) > iv\(f_),T) €€ U(D2)

Here

€ = foe) = g2(N(e)) (Prop. 3.2)
Corollary 3.1.

Im{E;®U(Ay) > U(Dy)} = Im {U(Ay) — U(Ds)}

3.4 The ¢ -map and Kummer’s Lemma

Let us introduce again a function ¢, which plays role of the complex conjugation
in Ay = Z[z]/(Z=1) and D; = F,[t]/(t — 1)?"~'. This function ¢ can be defined

z—1
by its action on generators: c(z) = 7%, ¢(t) =t~

We recall the following result (Kummer’s lemma) for E,, = U(Z[(,])-

Lemma 3.3. Any element of E,, can represented uniquely in the form (Fe, where
€ is a real unit.

As a corollary we obtain Kummer’s lemma for A,.

Lemma 3.4. Any element of U(As) can represented uniquely in the form ¥e,,

where c(€,) = €.

Proof: Take € = (e1,€65) € U(Ay), where ¢; € Ey, ¢y € Ey. By Lemma 3.3,
€ = Cz-k"ei,,, where 1 = 0,1 and ¢;, is real.
Since the action of ¢ commutes with the homomorphisms in the diagram

U(AQ) = El
‘ ‘Q—)t
Bo——77U (D1)
we see that €, = (€1,,€,) € U(Az), and is real, that is c(¢,) = €., while &k =
ko + ps, s € Z. Finally we get € = z¥1¢, and Kummer’s lemma for A, is proved.
O
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We already know that U(Ds) = F} @ U(D,) with U(Dy) = {14by(t —t 1)+
oo by o(t — 7P’ 2| b; € Fp} (Lemma 3.1). Observe that U(Ds) is a finite
abelian group of odd order (= pp2_2). By elementary group theory we hence get

U(Dy) =U(Dy)t @U(Dy)”, where
J(D2)* = {u € U(Dy)|c(u) = u},
U(Dy)” = {u € U(Dy)|c(u) = u'}.

Let us determine the structures of these two subgroups of U(D,). Obviously
ct—t7h) =t =t = —(t—t7"),c((t=t71)?) = (t—17")?, c((t—t71)%) = = (t—t7")°
and so on. Hereby, one sees that

UMDt = {1+by(t—t )2 +... 4 bpst—t Y 3|t —t )1 =0, b € F,}.

p2-3_ p—1 p2—p—2
2

~ 2_
Therefore, |U(Dy)"| = p" 2 . Further, there are p”z "z =p
the set

elements in

{u e ﬁ(Dg)ﬂup =1} ={14+b(t -t +. ..+
+ by g(t— )73 b € Fp ).
From Section 3.2, we know that

U(D2)" = (Zy)™ @ (Zyp2)™,

where s1, s9 satisfy the following equations

b 2_ = 51 + 259
pEE =t () pEE = p e p? o ,
2
pT—p—
5 =81+ S2
2 _92p—1 -1
ile., 51 = 1%, 89 = pT Finally using the structure of U(D,) obtained
in Section 3.2, we get
Proposition 3.3.
~ 2 _on_ _
U(D2)* = (2,)" % @ (Zp)'T
~ 27 —
U(D2)” = (2,)" % @ ()"

3.5 Structure of Im {U(A3) — U(D»)}

We start with the following version of Kummer’s lemma:
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Proposition 3.4. Im {U(Ay) — U(Ds)} C 3 <t > ®U(Dy)t, where < t >
is a cyclic group of order p* generated by t.

On the other hand, we have:
Lemma 3.5. Im{U(A) - U(Dy)} DF;d <t >.

Proof: Since < ¢t > is obviously contained in the image of U(Ay) in U(Ds),
we only have to show that I is contained in the image as well. Let k € ;. We

have Z=1 = k mod (z — 1). Then gg(””k_1 — k)p2 =0 and

z—1 z—1

k-1

$—1)p2:kp2:ka

92(

since k" = k mod p. O
One of our principal goals is to prove the following

Theorem 3.1. For p an odd reqular prime
Im {U(Ay) = U(Dy)} =Fi0 < t > U (Dy)".

It follows from Proposition 3.4 and Lemma 3.5 that what remains to be proved
is that go(U(A3)) D U(D3)™ if p is regular.
Consider the following diagram.

U(A2) ___U(Z[G]) = B

|

U(Z[G]) ———U(Dy)

Here N is the restriction of the usual norm map and F : E; — U(Ay) is
defined by

F(e) = (e, Ni(¢)), Ve € E;.

Observe that (e, N1(€)) € U(Ay) due to Lemma 3.2. We see that F' is a group
homomorphism. Clearly, F(¢) = (1,1) = ¢ = 1, i.e.,, ' is a monomorphism.
Hence E) is embedded in U(A,).

Take (61,60) € U(AQ);El € E, ¢ € Ey. Write (61,60) = (61,N1(€1)) . (1,60 .
Ni(e7Y) = (€1, Ni(e1)) - (1,7), where v = € - Ni(e]') € E;. By the above
embedding, (€1, N1(€1)) € E;. Of course, 7 is mapped on 1 € U(D;) because
(1,7) € U(As). One concludes: v = 1 mod p. The division of (e, ¢€p) into
products gives:

U(4:) = Ey & B,
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where B is a subgroup of U(Asz) of the elements (1,7) above.

We are going to show: gy(E1) D U(D,)", p regular. When this is done,
Theorem 3.1 will be proved since g2(U(Az)) O g2(E1).

Put U(4y) :={e € U(d)le =1+ ai(z — 1)+ as(z — 1)> + ... + ap2 o(z —
1)?"~2|a; € Z}. Tt is clear that U(A,) is mapped into U(D,). Similarly set
U(Z[¢1)) := {e € Fi|le = 1mod (1 —{)}. From the earlier embedding of E; it
follows

U(Az) =U(Z[G1]) ® B

for some subgroup B. Let U(Z[(1])* be the subgroup of real units in U(Z[¢1]).
The statement of Theorem 3.1 will follow from

Proposition 3.5. ¢o(U(Z[¢])1) = U(D2)* when p is regular.
We consider the map
mod

92 : U(Ay) "7 U(D2) = U(As/(p))-
A key step in the proof of Proposition 3.5 is the following
Lemma 3.6. Ker {E, — U(D,)} = {e € U(Z[¢1])|e = 1 mod (1 — Cl)ptl}.
Proof: Suppose (¢, Ni(¢)) = (1,1) mod p. Let Ay > (a,b) = (1,1) mod p.
Then one gets (a —1,b— 1) € Ay and

a =1 mod p in Z[(],
b =1 mod p in Z[({y];
pla—1,b—1), ie.,

-1 b—-1
<“ ,b—)eAQ.
p p

() 0(5) v o

(diagram (II) in 3.3).
For all z € Z[(;] we have

Therefore

f1(2) = go(N1(2))-

Hence gO(Nl(“le)) = go(%) in Dy. Since go(y) = y mod p, Yy € Z[(y], we
conclude

Ay 3 (a,b) = (1,1) mod p &

-1 -1
N1<a >Eb mod p.
p p
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Both quantities in the latter congruence belong to Z[(o].
Our special case gives

E; 3 (e, Ni(e)) = (1,1) mod p &

N1(6—1>EN1(6)—1m0dp (1)
p p

Repeat: N : Z[(1] — Z[(y] and

dim(Q(G)/R(G)) = [R(G) : R(Go)] = p-

Now take € € E; with ¢ = 1 mod p. That means € = 1+ pt for some ¢ € Z[(1].
By standard theory ([B-S], p. 404; [I-R], p. 173), we have

Ni(e) = [T v

v€G

Here G := Gal (Q(¢1)/Q(¢)) := the Galois group of Q((;) over Q((), and
y(u) = u, if u € Q(¢). Thus

Ni(e) = [[r@+pt) = [JA+pyv(®) =

Y€EG yeG
=1 +pt1) 1 +pte)-...- (1+pty) =
=1+ po; +p°os + ...+ ploy,
where
p
o1 = Zti, 09 1= Ztit]‘, 03 = Z tit]‘tk,... ,Op = tl -tz .. -tp
i=1 i<j i<j<k
are the so-called elementary symmetric functions in ¢y, ... ,t, and t; := (1), i =

1,...,p, i.e., the v;’s constitute the group G.

Further we see that

Tr(t) =Y () =01 € Z[{)-

veG

We claim that p|Tr(t).
Proof: 1,(1,¢2, ..., (" is a base for Z[(;] over Z[(,] because (P = (. Moreover:
Tr(l) = Z7€G v(1) = p. For fixed k € {1,2,...,p— 1},(F satisfies the equation

w2 - ¢ =0 But here 0= ,7(¢H) = Tr(c),
k=1,...,p— 1. By the above

t € Z[¢] = {ao + ar1&i + ... + ap 1P i € Z[(o)}
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Vr, s € Z[(1], u € Z[()] is as well:
Tr(r+s)=Tr(r)+Tr(s); T(ur) = uTr(r).

So Tr(t) = agp, some ag € Z[().
That fact implies at once:

Ni(e) = 1 mod p.

This, together with our basic assumption, (¢, N1(¢)) = (1,1) mod p, results via
the congruence (1) in

N1<6;1)50m0dp 2)

in Z|(ol.
I‘Ecii well known that if by € Z then (1 — (;)|by is equivalent to p|by. Hence
Z[¢]
(1-¢G)
In other words, I, is a complete system of residues (containing 0) of the ring
Z[¢;] modulo the prime ideal (1 —¢;). With A; := (1 —¢;) the A\;-adic completion
to Z[(1] will consequently be

A:={a0+a1(1—C1)+...+an(1—Cl)"+...|az~EIFP}.

We can regard our unit € as an element of A. Since ((1 — ¢;)P°~?) = (p) one sees
that the assumption € = 1 mod p is equivalent to ¢ = 1 mod (1 — ¢)?°~? in A.
But (1 — Cl)pQ_p = p - Kk for some unit &, so

= {bo mod plby € Z} = Z/(p) = F,.

o0

e—1
= ZaprHc ke (1= Cl)ka
k=0

p

where a; € {0,1,...,p—1}.
In the proof of Lemma 1, p. 377 in [St 1] is shown

Ni(a+b) = (N1(a) + Ny(b)) mod p.

Further, Ni(a;) = af = a; when q; € F),. It can be proved from the definition of
N1 that N1(1 — Cl) =1- Co.
All this applied to congruence (2), derived earlier, gives

-1 i
Nl(ep ) EZapz_p+k-N1(/£)-(1—C0)kE(]modp
k=0

in A. That the sum is divisible by p means a,>_,.y =0forall k =0,1,... ,p—2
because ((1—¢o)*™") = (p) in Z[Co] (N1 (%) a unit). Hence <+ =377 ape pip-
k- (1=¢)%in A, ie., e=1mod (1 —¢)? ! since (p) = ((1 — G)P*P) in Z[¢].

If conversely, we begin with ¢ =1 mod (1 — Ql)p2_1 in A, it is easily seen that
the original condition (e, V;(e)) = (1,1) mod p holds. O
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Supplement for Section 3.5

Let us first mention that the ring Z[(;] is everywhere dense in its A;-adic com-
pletion A (in the topology, defined by the \;-adic valuation and its metric),
A1 = (1 —¢;). This fact makes it possible to translate the congruences unaffected
between these two sets.

However, for future use we will state some basic theory regarding these mat-
ters.

Start with K := (Q({1) which is the quotient field of the Dedekind ring Z[(:].
Consider the prime ideal A\; = (1 —¢;) in Z[¢;]. For a fixed arbitrary ¢,0 < ¢ < 1,
define @y, (z) := @ Vo € K, where vy, is the usual exponential valuation
with respect to A;. @), is a metric on K.

The valuation ring R := {x € K|y, (z) < 1} is local with a maximal ideal p,
and quotient field K = Q(¢;). Since R is a principal ideal domain, R is a discrete
valuation ring (DV R).

Let K,, denote the p;-adic (here A;-adic) completion of K and let @), be the
valuation on K, corresponding to ¢,,. The valuation ring R in K,, is also a
DV R with a maximal ideal p;.

It is a fact that the p;-adic (A-adic) valuation on @Q is equivalent to the p-adic
valuation on Q.

The p-adic completion of Q is Q,, the field of p-adic numbers. Let O, C Q,
be the ring of p-adic integers. We see that the A;-adic completion of Q is Q.
Moreover, K,, = Q,(¢1) and R = O,[¢y] (Z[¢1] is dense in O,[¢y]).

In Q,(¢1) and O,[¢1] we have representations

Qp(C) ={ao+ar(1—C) + .. a1 (1= )P P € Q)
2 g5

Op[Cl] = {b() =+ bl(l — Cl) + ...+ bpz_p_l(l — Cl)p p 1|bz € Op}

and every nonzero element in K, can be uniquely expressed by
(]. — Cl)r(S() +$1(]_ —Cl) —+ ... +Sn(1 - Cl)n-f- ),
where 7 € Z,s; € S,s0 # 0 and where we may set S = {0,1,... ,p— 1} = F,.
The power series, in the brackets above, is a unit in R (so # 0). Clearly
R={so+s(1=C)+... 45,1 =C)"+...|s; € F,}.

A comparison shows that this set is our ring A which was introduced earlier in a
slightly different manner. Hence A = O,[(3].

For proofs and further discussion see for example [B-S|, Ch. 1 and Ch. 4; [J],
Ch. II and [Se 2], Ch. II.

3.6 A Variant of Kummer’s Theorem

Theorem 3.2. Ifp is an odd regular prime, and € € Ey = U(Z[(1]) satisfies € =
1 mod (1 — ¢)?°"1, then e = ~? for some unit v € Fy withy =1 mod (1 — {;)P*.
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Proof: We start with the following statement:

Lemma 3.7. Letq € Z[(u_1], where (", = 1. Let also g = 1 mod (1 — Coy)?" !
and (q) = I? for some ideal I in Z[(,_1]. Then ¢ = 1 mod (1 —(,q)P", n =
1,2,...; p an arbitrary odd prime.

This is Lemma 2, p. 377 in [St 1], where a proof is given.
In Theorem 3.2, n=2,9g=¢ € E;. Assume e =1 mod (1 — Cl)p2_1. Clearly,
since € is a unit, (¢) = Z[(1] = (Z[(1])P. Lemma 3.7 implies
e=1mod (1—¢)” (%)

Lemma 3.8. The unit € in (x) is real.

Proof: Lemma 3.3 and (x) give e = ¢¥F -0 = 1 mod (1 — ¢;)?° for some k €

Z;c(0) = 0 = 6. Since C1 = 1 we may assume k£ > 0. Let us work on Z[(;].
Writing e = 1+ (1 — Cl) -t, t € Z|(1], one has for the complex conjugate:

E=1+(1—-C) t=1+(1— )” 4 =14({—1)""-1. Soalsoe =1 mod (1 — )**

From this we clearly have (e ) =1mod (1 — ). But (€)' =¢F-6 1, whence

% —¢.(6)'=1mod (1-¢)”

Now it is obvious that (1 — C)P*|(1 — () = (1= ¢) - 5. If (2k,p) =
1, (1 —¢2)/(1 = ¢) is a unit. Then, (1 — ¢;)?’|(1 — (i), which is absurd, since
1 — ¢; is not a unit. Therefore k = p - ko, ko € Z (p odd).

Now we have, (1—¢;)?°|(1—¢2%) in Z[¢1] because ¢? = (. The ideal relation
((1 = &)?°?) = (p) implies that p|(1 — ¢*°) in Z[¢;]. Thus there is £ € Z[¢1]
1 — ¢ = ¢-p. Further, £ = (1 — (Z*)/p € Q(() is an algebraic integer, i.e.,
le Z[Co] Recall that ((1 — ¢p)P™") = (p) as ideals in Z[(y]-

One gets for instance, (1 — (o)?|(1 — ¢Z™) (p > 3) and so 1 — (o|(1 + ¢ +

+C2k° ) = 2ko mod (1 — p) in Z[(y). Hereby p|2ko ([B-S], p. 158, Lemma 2)

and p?|lk = p- ko. Finally € = 0, a real unit in Z[{]. O

Of course, 1 + (; = _gi is a unit in Z[¢,]. But, ( — G = (G - 1) - Clarl’
whence ¢; — (! and ¢; — 1 are associates. They generate the same maximal ideal
in Z[¢].

Following the technique in 3.2 and 3.4 for U (DQ) we get from the congruence
(#): e = 140, (G — Y +bpega (G — GHP*H 4+ ..., b € Z. Since e is real,
€ — € =0, and all coefficients with odd indices vanish. Hence

e=1mod (¢ — ¢TH” !
or equivalently,
e =1 mod (1 - Cl)p2+1 (**)

Proposition 3.6. Suppose that € € Fy and e = 1 mod (1 — (,)?°"L. Then /e €
Op[Cil.
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Proof: One has € € Oy[(1] (see supplement at the end of Section 3.5). Recently
we saw that e must satisfy (xx) and be real. Therefore,

e=14ap(G— GV T +apps(G -G P+ =14+ 801,

where a; € O, = ring of p-adic integers, A := ( — (;' € O[¢1], B := ape1 +
ay243(C — (T2 + ... € Op[¢1]. Accordingly study the quantity

e/ — (1+ 5)\;02—1—1)1/10 —

= - il 1_ . . 1_ Y (P*+1)v ]
_1+;[V! p(p 1> (p 1/+1> B .

Employing the relation ((¢; — ¢()?°?) = (p), one arrives at

= T1
P =1 + Z - v )\(p2+1).1/ . ,Yl/}:| _
—~ [V
o0 r
1
=1+ Z Voo )\(p2+1)-v—(p2—p)-1/} -
v=1 '
oo r
1
=1+ Z Y+ "k )\(:0+1)-V} ,
v=1l "~ '

where 7,7, € Op[(1]. Here we recall that the set of rational numbers {7|s #
0 mod p} forms a subring of O, ([B-S], p.22). This indicates that we have to
examine whether the p-factors in v! will be sufficiently “compensated” by the
A-factors in the numerator.

Let k, be the number of p-factors in v!. Then /7 = 14 3% [6, - ],
where 6, € Op[¢1] and e, := (p+1) - v — (p? — p) - k,. Since v increases linearly,
it is clear that we need to control only the most critical points v = p", n =
1,2,.... If for z € R, [z] is the biggest rational integer < z, a well-known
formula gives kyn = [”%] + [f}—’;] +...+ [z—Z] =p"l+p*2+4+...+p+ 1. Hence
epn = (p+1)-p" = (P> —p)@" ' +...+p+1) =p" +p.

Let us now refer to the supplement of Section 3.5. With our definitions we
have A = (; — ;! and the ideal A\; = (1 — ;) = (¢, — ¢ 1), both in Z[¢;] and
O,[¢1]- The partial sums s, =14+ > _ (6, - A*), n =1,2,..., are of interest to
us. Since 0, € Op[(1] and epn = p™ + p, our analysis implies that the general term
and so also the partial sums lie in O,[¢;] = R.

From the supplement is obtained: @, (Jyn - A%") = @y, (Gpn) - " TP < 1P —
0, n — oo because 0 < ¢ < 1. Our reasoning gives the same limit for the general
term in s,. It follows that {s,} is a Cauchy sequence in K, which is complete
in respect of the valuation ¢,,. Therefore {s,} converges to an element in K.
This element was denoted €'/?, the existence of which thus is established.
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Now R = O,[¢1] is a closed set in K,, ([B-S], p. 254). In fact, R is compact.
Since {s,} lies in R, it is a consequence that its limit €'/? = /e is an element in
R = 0,[G]. Proposition 3.6 is proved. O

Again, studying the proof of Proposition 3.6, one easily checks that e, > p+1
for all v. Hence we get

Corollary 3.2. In Proposition 3.6, ¥/e = 1 mod (1 — ()P is valid in O,[(1].

Consider the finite, separable, algebraic extension K = Q({1) C K(€'/?); ¢
as before. Let Z be the integral closure of Z[(;] in K (e!/?). Then Z is integral
over Z[(;] and we can to a given prime ideal « of Z[(;], find a prime ideal § of
Z. such that SN Z[(1] = a.

Suppose a # (0) # [ and form the completions K, of K = Q(¢{;) and
(K (e/?))4. The valuation rings (Z[(1]), and (Z.)s are DVRs, i.e. principal ideal
domains with a single nonzero prime ideal which is also maximal.

Thus « corresponds to a principal ideal (a) in (Z[(1]), and § to a principal
ideal (b) in (Z.)s. All nonzero ideals in the two rings are powers of the respective
maximal ideals. But (a) C (Z[G])a C (Z¢)s so (a)(Ze)g = (b)™ for some n €
{1,2,...}. Hence (a) is ramified in (Z,)s if n is bigger than 1 and non-ramified
if n = 1. The ramification indices e(3/a) and e((b)/(a)) = n are in fact equal by
[C-F], p. 18 or [J], p. 106. We are going to show that the extension K C K (¢'/?)
is non-ramified.

Example: Put o = Ay = (1 — (3) and let € be as in Proposition 3.6. Take
B C Z : B prime, B3N Z[¢] = a = A;. Complete the fields K and K (e'/?)
with respect to o and [ respec:cively. In this case, we get for the corresponding
tings: (ZIGi])a = (21D = B = 0,lG] € Qp(G)(Q, = {p — adic mumbers})
and (Z¢)s = (Z[C1])p, (€/7) = (0,[¢1])(€/?). By Proposition 3.6, €'/ € O,[¢1] C
K, = Q,(¢1). Hence K, = (K(e'/?))5 = (Q,(¢1))(¢'/?), and so the rings — with
their induced maximal ideals (a), (b) from «, § respectively — coincide. Using our
theorem about ramification indices, we get e(3/a) = e((b)/(a)) = n = 1. It
follows that o = A\; = (1 — (1) is not ramified in Z..

Consider all bases of K (¢'/?) over K = Q((;) that lie in Z,. The corresponding
discriminants lie in Z[(;] and generate the so-called discriminant ideal A of Z
over Z[(1]. So A C Z[(y]-

Lemma 3.9. The prime ideals of Z[(1], which are ramified in Ze, are those con-
taining the discriminant ideal, A ([C-F], p. 22; [J], p. 35).

Lemma 3.10. The ideal A — in the extension K C K(e'/?) — contains (pPeP~!) =
(1) = (1= GPe ) = X0\ = (1= ) ([CF], p. 91 [J], pp. 39-40).
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Proof of Theorem 3.2: Take a prime ideal w in Z[(;]. Suppose that w is

ramified in Z.. We get w D A D /\’1’2(1’ ~Y. Since w is a prime ideal, it follows
w D A1. Hence there is an ideal 7 C Z[(1] : A\ = w7 because Z[(;] is a Dedekind
domain. But )\ is also a prime ideal, whence w = A\{(7 = Z[(1]). So A; is the
only prime ideal in Z[(,] that possibly ramifies in K (¢'/?). Now we saw from the
example, recently given, that \; does not ramify, either. The finite, separable,
algebraic extension K C K (¢'/?) therefore is a non-ramified extension.

Now € € By = U(Z[¢1]) € K = Q(¢1). The polynomial 2? — € lies in K|[x] and
K contains (¥ = (p, a primitive p-th root of unity. If L is the splitting field over
K for 2P — ¢, then €/? € L since €'/? is a root of 27 — . Clearly L O K, whence
K C K(¢t/?) C L. By a theorem ([A], p. 61) now is valid, either 1) L = K and
aP — € is split in Klz|, or 2) zP — € is irreducible over K.

Let us consider the second case. Then, by definition €'/? is algebraic of degree
p over K. By elementary theory, the degree of K (e!/?) over K equals p. Point 2)
above and the preceding analysis, accordingly imply — under the hypothesis about
¢ in Theorem 3.2 (and Proposition 3.6): K C K(¢'/?) is non-ramified of degree
p. But now we also assumed p to be regular. However, by theories developed by
Iwasawa, it is known that K = QQ((;) has no non-ramified extensions of degree
p, if p is a regular odd prime. Consequently, if all the conditions of Theorem
3.2 are fulfilled, then 1) above must hold. This implies K = K(e!/?) and so
vi=€e? € K.

Further, we have ¢ = ? € E; C Z[(1] and Z[(;] is the ring of algebraic
integers in K. From this it follows easily that v € E;. Finally, also recall that
v = 1mod (1 — ()P by Corollary 3.2. This completes the proof of Theorem
3.2. ]

Now we can finish the proof of Theorem 3.1. Define U, := Um(Z[Cl]) =
{e e U(Z[¢G1])]e = 1mod (1 —¢)"}, m =1,2,.... Then U; DUy, D Us D ...
are subgroups of Uy, = U(Z[(1]) = U. Recall that E; = U(Z[(,]) was embedded
in U(A4,) and Uy in U(A,). Further, let Ut be the subgroup of real units in
Un, m =1,2,.... We observe that g, maps U;" into U(Ds)" because g, and ¢
(conjugation) commute. Finally we see that what is left to prove is that go(U;") =

U(D,)", when p is an odd regular prime. By elementary group theory

. U Ut
gQ(Ul—i_) = AT - - + = ~_|_1
Ker {U;" — U(D,)*} Up2_1

The last equality holds by Lemma 3.6.
p2

By Dirichlet’s unit theorem Ey & 7, & Z" 7 .
If E; is the set of real units in Fy, then

Ker {U}t = U(D,)*} = Ker {E} — U(D,)"} (L. 3.6)

By By

Br|,|OF
IR

and |go(EY)| = o
]J2—

< 00, because go(E;) C U(Dy)* and

7+
p2-1 1
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lg2(Ef)| < |U(Dy)*| < oo. Thus ‘5—{‘ < oo. It is clear that the complex

2_ ~
component disappears for real units, so Bt 7 =2 '~ U},
Obviously,

Ut Ut | |G| |G
‘~+1 :‘~i ‘ . Tl < 00 (a)
Up271 UP*1 Up+1 Up271

This partition is a trick in the proof. First, it follows:

~ 2_
Ur =751 for k=p—1,p+1,p°—1.

2

o . - U !
Theorem 3.2 easily implies: U;;_ (Up+1)p. Hence =#t- = L — =
2

p’=p p2—
Zy* ! because Z o7 = Lyp. The last factor in (a ) thus becomes p“ =z 1.

Let us pay attention to U+

» . We may write U | ={e € E1le=1+a,_1(¢1 —

P

GO ey (G -G+ Y and O = {6 € Bile=1+4bp1(G -G )P +
bpra(Cr — TP+ L Of course, a;,b; € Z. However, put a, ; = a},_; + pt
with t € Z so that 0 < a, ; < p—1. Usep = ¢ - (1 — (7P P, where
€0 = co+ (¢ — (Y% + ... is a real unit in E; and p { ¢o. Then (7;11 ={ee
Eile=1+a) (=GP +apr- (G-GOP T+ +et(G-G P+ )
fe=1+a, (¢~ ¢ HPt 4+ ... is a unit in [7;_1 with a;,_; # 0, one gets
(€)= 14ka,_(¢1—¢ )P~ +. .., and the numbers ka},_; range over a complete
residue system modulo p when k runs through the set {0,1,...,p—1} or the set
{1,2,...,p}. For ka;_, # 0 mod p, we see that (e ke U+1, but (¢')* ¢ U =

U, Further, it is clear: (€')P € U+p_1) c U1 Thus the element (coset) Up+1

% = p. It remains to be proved that
p+1
a unit € with the above properties actually exists:
p’+1 241 _p’+1
Setn—(1 . Then p? = '™ = ¢ and e(n) = ¢ 2 = nl Put
np+17n—p—1 . . "2p+2 1 CP+171

p = T=—=L—. This gives ¢c(p) = pand p = 7" — =N " g 80

~+
generates the group 7 L of order p, i.e.,
+

+1_ +1_
Write 121 11 =4 Cflfﬁ =S = 1-i—l Also one has (¢;—1)? = (¥ —1+pty,

some t; € Z[(1], whence gl =(G-1)P 1+ 1pté1 = (G=1P (G —=1)P" P Lty
some ty € Z[(;]. Thus

C ol oin-a-alla-yts

F (G- ] = 1 (G - )P (G - )P+
+ (G — 1)p27p71 ‘135 t3 € Z[G1].
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Similarly, (f = (1 - (1-G))P =1 - (1= G)P +p-ta, 50 G =1+ (1-G)P+
(1= G)P*L - ts; ta, ts € Z[G1). This yields n7? = ((77)*7 =1+ %(1 —G)F +
(1 =GP - tg; te € Z[C).

Consequently,

P

o1

=1+ TGP (1= QP et [+ (L= G (L Gt =
=14+ (1= G+ (1= Q)P - ts; to, ts € Z[C).

p=n"-

Evidently, p is one of the assumed units €', described before (with a;, ; = 1).
Note: pe Ut |, pg Ut =U},,.

Finally, the first factor on the right-hand side of (a) must be determined.
Define W,, := Wi (Z[¢)]) := {€ € U(Z[¢o))|e = 1 mod (1 — )™}, m =1,2,....
Let W;,t be the subgroup of real units in W, m=1,2,....

Let k € Z, (k,p) = 1. Q(¢,) is the splitting field over Q({y) for 27 — (¥ which
is irreducible in Q((p). So Q(¢1) is a normal extension of degree p over Q({o)
([A], pp. 59-61).

Since ¢ = (p, ¢; and all its conjugates satisfy z? —(y = 0. Therefore N1((;) =
(—1)? times the constant term = (—1)? - (—(y) = (o ([B-S], pp. 401, 404; [I-R],
pp. 173, 186). Now (k,p) = 1; ¢F satisfies 2P — (¥ = 0. Put 1 — ¢¥ = y and we
have (1 —y)P — (¥ = 0 or (y — 1)? + ¢¥ = 0; note irreducibility in y — 1 and y.
Hence Ny(1— ¢F) = (=17 - (h — 1) = 1 — L.

If 7 is the natural surjection, we now see that

Wy

0 B 5
! LW,

(t)

is a well-defined transformation (Im N; C W;h).
Let us first show that the mapping N; in (t) is surjective. Here N; works as

a group homomorphism. Define wy := —C(ngrl)/Q, wp = —Cfpﬂw. Thgn ciof =
2me pri

P = ¢5 and Ny(w) = wo (Ni(=1) = (=1)? = —1). Writingwo = —e » 2 =

L wk —wy®  ekmilp — ekl gin(km/p)
one has =— —— =
’ wo — wy * em/p — e~mi/p sin(7/p)

. i
—eTt s

er =e , keZ. Set

J := {all positive real units in Z[(o]}

sin(km/p)
sin(7 /p)

course, J is a subgroup of Ey = U(Z[(p]). The trigonometric quotients clearly are
real and positive for the marked k:s. That they indeed are units can be seen from

-1
and Jy := group generated by the units ke {1,2,... ’pT} Of

. wh — wo* _ k1 G —1 _ p—1
above, since ———— =wy" " - >—— and (k,p) =1 for k € {1,2,... 55}
Wy — Wy Co—1
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So Jy is a subgroup of J ([B-S], pp. 360 and 362). Raising these units to (p — 1)-
th power will give — as we have seen — principal ones, i.e., units in Wf’ . An
analogous construction with (y exchanged for {; produces real principal units in
Z[(1], that is elements in U;". The connection between the two kinds of units is

naturally
s((f=m) )
-k —
N —k;-|—1 glp+1) -1 p—1 B
C‘p+1 _ 1 -
( ) Ny (g 1))”‘1 _
Ny(¢PH —1)

)-k
— —k+1 Cop—i—1 —1\"" ' —
- e

sin(kw/p)\*~" p—1
= , k 1,2,...,—1.
(Sm/p) e 2.,

The generators of (Jy)P~! thus are elements in Im Ny, which clearly is a group.
This results in (Jp)? ' C Im N;.

Recall the class number h := #CI(Z[(y]) for the ideal class group of Z[(y]
(Section 1.3). Now h = h(p) can be written h = hg - h*, where hy and h*
are natural numbers. As usual hy stands for the class number of the subfield
Q¢ + ¢ "), which is of degree (p — 1)/2 over @ ([B-S], pp. 358-359). Theorem
2, p. 362 in [B-S] tells us that ho = |-Z|.

Let z € WfL be arbitrary. Since z is real, 22 € J. In this proof we assume
p to be regular, i.e., p t h. Then it follows (|Ji0|,p) = 1. Hence there is s €
Z,(s,p) = 1:(22)° = 2% € Jyp. So 22~V € (Jy)P~' € Im N;. But z € Q(()
gives Ni(z) = 2P, that is, 22 € Im N;. For the latter exponents of z one can
find u,v € Z:2s(p—1)-u+p-v =1, because (2s(p — 1),p) = 1. This implies
z = z' = 2=ty — (2(p=1))u . (,P) € Im N;. Here is used that Im N, is a
group. The surjectivity of N; in (t) is proved.

However, much more information can be extracted from the chain (t). That
moNy is surjective is immediate. The kernel of this group homomorphism interests

. W .
us. An element in 74— may be written as
p—1

(L +b1(1—Co) +ba(1 = (o) + ... )WLy, b € Z.
This equals the unit element (= W;’,l) iff p|b; for 1 < i < p—2, by the definition
of W,,. Again remember that (p) = ((1 — ¢o)P™!) in Z[(o]. If € is a unit in U,

it is enough to calculate N;(e) in Wi up to mod p. Then Nj is also — as known
— additive.
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Now take e € U,”; C U, e, e=1+a,1(1 — ()P L +ap(1—G)P+...,a
finite sum; a; € Z. Thus

Ni(e) = Ni(1) +ab_j (N (1= ¢G))P ' +

=14ap1(1 =G +ap(1 = Go)P +

= 1 mod p.
Of course, 1 by 7 is mapped on W;_l, the unit element of W++ , SO [7;_1 C
Ker (7o Ny). ) 3
Let instead ¢ € U \U,"; : €g = 1+ a,(1 — G)" + ... ;n € {2,...,p—
2}, p > 3,p 1 a, € Z. Hence Ni(e) = (1 4+ a,(1 — (o)™ + ...) mod p, but

the rlght side of this congruence is not mapped by 7 on the unlt element of
(moNy) = U:_l now follows. (If p=3, U;" = U, ,.)
The surjection o Ny in (t) in this way yields

Ui o W 6)
oW,

Take k € W," |, i.e., s = 1 mod (1 — (o)~ or & = 1 mod p. Since p is regular,
Theorem 3, p. 377 in [B-S] (Kummer) implies: k = §?; § a real unit in Z[(] (see
the proof). If § = ag+a1(1— () +...,a; € Z, one has 1 = k = o = aO =
ap mod p, that is, § = 1 mod (1 — ) or 6 € W;". Thus k = 6 € (W;")?; WJr
(W;F)P. The opposite inclusion is almost trivial and we conclude: Wpt (W1 ) .

We know that Ey = Z, © 7"3". The group of real units, Wﬁ , becomes
W=7 2. From the isomorphism (j) one finally gets

Uf | _ | Wit ‘ Wit |
U;_1 (Wl)p
75
— - (p=3)/2| — ,,(p=3)/2
(pZ)o-372| ~ ‘(Zp) IR
Equation (a) and 0[? > g,(U7) now gives
p2-1
2 _ ]12*3
02(U)| = p™T - p-p" T =p T
But go(U;") € U(Do)" and |U(Dy)t| = p®*=3/2. Theorem 3.1 is completely
proved. O

As a consequence of Theorem 3.1 we get the following exact sequence, origi-
nally obtained in [K-M]:

Corollary 3.3. The sequence
0 — (Z,) P 2P0/ @ (7.) P32 5 Pic (ZC,s) — CUZ[C]) @ Pic (ZC,2) — 0

1S exact.
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