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Abstract

Solutions to the spatially homogeneous Boltzmann equation can
never loose energy, but it was recently discovered that in the
general case there are solutions for which the energy increases.
This paper shows that the same holds for all hard potentials (i.e.
even without angular cutoff assumptions), and that the energy
may increase continuously in time at quite arbitrary rates.

1. Introduction

The spatially homogeneous Boltzmann equation,

0

& (Uat) = Q(fa f)(U,t) (Uat) € R’ x (0700) ) (1)
describes the time evolution of the velocity distribution of a spatially homoge-
neous dilute gas of particles. We look for positive solutions f € C([0, 00), L}(R?)),
of equation (1) such that for all ¢ € [0, 00) is a density. In (1), @ is the collision
operator acting on functions of velocity v :

QN = [[ | Bo- w01 - (@@ @)

which describes the rate of change of f due to a binary collision ( Q(f, f)(v,t)
means Q(f(-,1t), f(-,1))(v); the time enters only as a parameter in (2) ). Here
v, v, are the velocities of two particles before they collide, and v, v, are their
velocities after the collision. Leaving the details for later, we only note here that
strictly hard potential interaction is the only case considered in this paper. This
is not only for technical reasons: the results depend strongly on the fact that
the B(v —v.,w) grows unboundedly with |[v —v,|. In the general case considered



here, B(v — v4,w) also may be unbounded as a function of w, but that does not
have any impact on the result.

In the following section all details about the collision operator, as well as
the concept of weak solutions for eq. (1) will be discussed. The remaining part
of this section contains a short discussion and a background.

In a gas, each binary collision conserves the total mass, momentum and
energy of the participating particles, and it is natural to expect from the so-
lutions of the Boltzmann equation that the total energy should be conserved
throughout the evolution (this is of course a very non-mathematical statement;
one essential property of the Boltzmann equation is that, even though the mi-
croscopical dynamics is reversible, the Boltzmann equation itself is not). Under
suitable conditions, the energy actually is conserved. It is known that in the
case of hard cutoff potentials, there is a unique solution to eq. (1) that con-
serves energy. It is also known that there are no solutions for which the energy
is decreasing ([MW],[Lul]).

However, still under the cutoff condition, it is shown in [W3],that under very
general conditions, there are always solutions for which the energy jumps, at
time ¢t = 0 or at any other time.

Clearly it is then possible to construct a solution with an arbitrary number
of jumps, and one can quite arbitrarily also choose the size of the jump (always
with the restriction that it be positive).

The purpose of this paper is two-fold: first to show that the energy behaves
in the same way for weak solutions to the non-cutoff equation, i.e. that it
is non-decreasing but may increase; secondly to construct solutions for which
the energy increases continuously with time. The main results are given as
Theorem 2, Theorem 3 and Theorem 5.

It is in its place to say that the solutions constructed here, and in [W3] are
not the first examples of solutions to the Boltzmann equation where energy is
increasing. In [TM], so-called homo-energetic solutions are constructed. These
are special solutions to the full (spatially dependent) Boltzmann equation, for
which the temperature is space independent. There are examples of homo-
energetic shear flows, for which the temperature is increasing.

The paper is organised as follows. First, in Section 2, the Boltzmann equa-
tion is presented in the generality needed for our purpose. This includes a precise
definition of the collision operator, the definition of weak solutions to (1) and we
include some known results concerning such solutions, including a weak stability
result.

In Section 3 we prove that the energy of the weak solutions may not decrease,
just as in the case of mild solutions to the Boltzmann equation with cutoff,
and this implies the existence of solutions for which the energy is conserved.
Contrary to the case of cutoff potentials, however, this does not entail uniqueness
of solutions, as we only deal with solutions which are weak limits of solutions
to truncated problems. For this particular class of solutions, we also prove that
moments are generated, as in the cutoff case.

Section 4, finally, contains the construction of solutions for which the energy
is strictly (and continuously in time) increasing at quite arbitrary rates. This



shows in particular, that without additional assumptions, the solutions are not
unique.

2. The Spatially Homogeneous Boltzmann Equation

The spatially homogeneous Boltzmann equation, (1) has been studied thor-
oughly for a long time, and we give here only the results that are relevant for
the subsequent sections.

In the collision operator in (2), the velocities before and after a collision are
related by

o= v — (v — v, ww,

2
v, = v+ @w-uv,ww, weSsS,

where (-, -) is the inner product in R? , [v]? = (v,v) and S? = {w € R?; |w| = 1}.
This implies that v’ + v}, = v +vs, [V'|? + [v}]* = |[v]? + |vs]?, i.e. mass and
energy are conserved in each collision. The rate at which each possible collision
occurs is given by the collision kernel B(z,w), which is a nonnegative function
of |z| and |[{z,w)| only. For the interaction potentials of inverse power laws,
B(z,w) takes the form (see, e.g., [CIP] or [TM]):

B(z,w) = b(0)|z|ﬁ, 6 = arccos(|z| '|{z,w)]), (3)

where the exponent f is related to the potentials of interacting particles. For
the so-called soft potentials (—3 < 8 < 0), for pseudo-Maxwellian molecules
(8 = 0), and for the hard potentials (0 < 8 < 1) and the hard sphere model
(8 =1, b() = const.cos(8)).

Except for the case of hard spheres, the angular function b(f) has a non-
integrable singularity at 8 = w/2:

bO) = O((m/2-6)~C=07) (4)
as § — /2. In general, however,
/2
0 < / b(#) cos®(0)sin(§) dd < oo. (5)
0
The so-called cutoff-assumption means that b(6) is truncated so as to make
w/2
/ bO)sin(0)db < oo .
0
For hard potentials with the cutoff assumption, the collision operator can be split

into two parts, QT (f, f)(v), and Q@ (f, f)(v), corresponding to the positive and
negative part of (2), and solutions to (1) satisfy the mild form of the equation:

t
fo) = fo+/0Q(f,f)(v,T)dT, £>0;

this holds in f € C([0,00), L' (R3)). For these solutions it is known that



o Jgs f,t)dv = [R5 fo(v) dv (mass is conserved, so that f(t,-) for all ¢ is
a den51ty)

o Jrs F,B)|v>dv > [zs fo(v)|v]? dv (energy is non-decreasing).
e There is one and only one solution for which energy is conserved

o [rs f(v,t)1og(f(v,t))dv < [gs folog(fo(v))(v) dv (the kinetic entropy is
decreasing)

A rather complete discussion of this, including numerous references, can be
found in [MW],[Lul].

In the non-cutoff case, the two parts of the collision operator are not defined
separately, and one is restricted to the study of weak solutions to eq. (1). These
can be defined in different ways depending on the singularity of the collision
kernel B. There is always a singularity in w, as described in (4), but for soft
potentials there is also a singularity where [v — v.| = 0. For very soft potentials
(8 < —1) the latter singularity is the more severe. A concept of weak solutions
for this situation has been considered by Goudon ([Go]), and by Villani ([V]).
As our main object here is the study of hard potentials, we give the definition of
weak solutions as given by Arkeryd ([Ar2]), which is suitable when —1 < 8 < 1:

Deﬁnition 1: A non-negative function f : [0,00) — L!'(R?) is a weak solution
to (1) if it satisfies

‘ B
/ fo. el t)dv = RSf(U,O)cp(v,O)dv+/0 Rsf(UaT)ESO(v,T)dvdr
+ /0 ///R3><R3><S2 B(v — vs,w) f(v,1) f(0s, 1) (0(v', 1) — (v, 1)) dw dvs dvdr,
(6)

for all ¢ € C1:*°.
Ch>® = {p € C™([0,00[xR?) ;
ol = sup (Je(v, )] + [0ep(v, )| + V(v t)]) < 00}
Note that any mild solution to the Boltzmann equation with cutoff satisfies
eq. (6), which guarantees the existence of weak solutions in that case. Arkeryd
used a weak stability result to prove that weak solution exist also in the general

case. Here, and always in the sequel of the paper, we assume that the initial
data satisfy

/ fo(v) (1 + v)? + logfo(v)> dv < o0. (7
R3
We also define the weighted L'-spaces L! with norm

Il = [ @I+ R) 7 .



Theorem 1 (weak stability and existence of solutions): (Arkeryd [Ar2])
Assume that the collision kernel B(v — vy,w) satisfy (8) and (5), and let

B, (v—w.,w) be a sequence of cutoff kernels converging pointwise to B(v—uv,,w)
and satisfying By, (v —v.,w) < B(v —v,,w). Assume that fJ(v) is a sequence of
initial data for the Boltzmann equation with kernel B, (v—uv,,w), and let f™(v,t)
be the corresponding (weak) solutions that conserve mass and momentum, and
that satisfy

sup S, t) (1 + v + [log(f" (v, 1)) dv < o0,
n>1,t>0 JR3

fo = fo weakly in ~ L'(R®) .

Then there is a subsequence f™ such that for all t, f™i(-,t) — f(-,t) weakly
in L' (R®), where f(v,t) is a weak solution to the Boltzmann equation with the
kernel B. This weak solution conserves mass and momentum, and

/ fw,8)log (f(v,8) dv < Timinf [ £ (v, 8)log (/% (v,8)) dv, (8)
R3 n—o0 R3
/ flo,t)vPdv < liminf/ (v, )] do . (9)
R3 n—oo R3

Remark: The statement about the weak lower semi-continuity of entropy, i.e.
about

HC) = [ fw.0g (7w.0) do

is proven in [E2]. This together with the bound on the energy,

E(f(,1) = / fo D dv < ¢,
RS
implies that the entropy is bounded from below.

For the remaining part, we restrict ourselves to the case 8 > 0, i.e. to hard
potentials.

3. Energy and moment estimates for weak solutions.

Moment estimates for the Boltzmann equation are usually obtained by the
use of a type of estimates that were first obtained by Povzner; later more elab-
orate versions have been obtained in several contexts. See e.g. [MW] or [Lul]
for references. The first statement in Lemma 1 below is quoted directly from
[W1], and the second statement is a small modification of the same result:



Lemma 1: Let b(0) be positive, symmetric and such that [, b(6) cos®(8)dw is
convergent, and let s > 2 be an even integer. Then, for some positive constants,
Cy and K,

(e ol = [un]?) b6) o (10)
52
< Calol* ol + 0. o]) = Ko (fol* + ou]?)

And denoting (y)T = max(0,y),

[ (1o wtle=lol® = o) b(6) (1)
S2
< Cu(ol*ou] + 02 o)

The constants depend on n and on the kernel b(0), but the estimate holds for
cutoff potentials as well as for non-cutoff potentials.

The proof of this lemma is easy: It relies on writing

2 . .
' =r?cos® §+r2sin @ + 2rrr, sinfcosfcos ¢,

riz = rZsin? §+r2 cos®> 0 — 27rr, sinf cos  cos ¢,
(where r = |v] etc.) for a suitable parametrisation of the sphere S?, and using
the binomial theorem. For example, expanding

s/2
P = ([r2 cos® 0 + r2 sin” 0] + [rrr, sin 6 cos 6 cos ¢]> )

as indicated by the square brackets yields the negative term in eq. (10) by
keeping the terms not involving ¢; the sum of these is negative by a convexity
argument. The remaining terms have varying signs, but also integrating the
modulus gives the bound C; (|v|*~* |v.| + |v«|*7|v]), hence the second estimate
follows trivially.

In eq. (10) replacing |v|® by (1+ |v|2)8/ 2 essentially only changes the negative
term on the right-hand side; this becomes

—Kn<(1 + o))" + (1 + |v*|2)") :

In [MW] and [Lul] it was proven that the energy of the mild solutions to the
cutoff hard potential Boltzmann equation is non-decreasing. Here we use the
approach of Lu to extend this result to weak solutions, but still only for hard
potentials.

Theorem 2. Let the initial data to the Boltzmann equation satisfy 0 < fo €
Li(R3), and let the collision kernel B(v—v,,w) satisfy eq. (3) and (5) with 0 <



B < 1. Then for any weak solution f € L>([0,00), L3(R?)) of the Boltzmann
equation (1), the energy is always non-decreasing on [0,00):

E(f(-,1)) = E(fo)

t
+ lim dr // F, ) f(ve, T) K (v, v4)dvedv, t>0
e=0+ Jo R3xR3
(12)

where

e (o' Ploal” ~ |v|2|v*|2)+)dw

1
K.(,0.) = — | B(v—v.,w)log 1+
o) = g [ 300 = wwrton (14 S

S2

and (y)* = max{y,0}. In particular it follows from Theorem 1 that there is a
solution to eq. (1) that conserves energy.

Proof: For e >0, § > 0, let

elof”

1 2
m), pe(v) = E log(1 + £|v|?).

1
Ve, 5(v) = - log (1 +

It is easily seen that .5 € C1>° : . 5(v) < 1/8 and |grad ,¢es(v)| < 1/4/E so
that for ¢t > 0,

/fvt%a )dv /fo V)pe,5 (v (13)

+—/ dr /// F. 5(v, v, w, T)dwdv.dv
2 0 R3xR3x52

where

F. 5(v,v4,w,T) =
B(v — 04, w) f (0, 7) f (0s, T) [0,6 (V') + ,5(V) — @c,5(v) — e,5(0)].

The expression within square brackets is smaller than

2
_|<U_U*7w)|

NG

t
/ dT/// B(v — vy,w) f(v,7) f (s, T | (v — va, WY |dwdv . dv
0 R3xR3xS2 \/—
2 ¢ 2
<4 [ d 1+ o214+ /24
< Zeao [Lar( [ toma i) <o



Moreover . 5(v) < @:(v), @es(v) = pe(v) (§ = 0+), and so the dominated
convergence theorem implies that

t
/ dr/// |E- (v, v4,w, T)|dwdvedv < 00,
0 R3xR3x52

/f(v,t)gog(v)dvz/ Jo(v)pe (v)dv (14)
R3 R3

1 rt
+ —/ dr /// F.(v,v4,w, T)dwdv,dv , (15)
2 Jo R3xR3xS52?

where F,(v,vs,w,T) = F. o(v,vs,w, 7). Next using the conservation of energy,
|v'|2 + [0 |> = |v]|? + |v.|? and the fact that ¢. is a logarithm, we can write

and that

@ (V') + @e (vy) —0e (V) — e (vs) (16)
21120 12 10210 12+
 Liog 1+ SLEILE e
€ (1+£lv2)(1 + g|va|?)
> (Jvl*|va]* — |U'|2|Ui|2)+>
(L+epP)A +elvf?) /)7

1
——10g<1+
€

thus splitting the bracket in a positive and a negative part.

The first of the terms in the right-hand side of eq. (16) is positive, and the
second one tends pointwise to zero as € — 0. It remains to find a uniform
bound, so as to allow using the dominated convergence theorem again.

Using the identity |v|?|v.|* — [v/[*[v,> = S(|v'|* + |[vL]* — [v|* — |v«]*) and
the inequality, £ log(1 + £?Z) < eZ we find that

1 e2(Jv*lva > = [o'Plos]*)*
J(wv) = — | Bw-w.,w)log(1 : d
(v, v:) 38 [ P 00w) Og( T A P e )™
is bounded by
1 (vl los]® = WPl *
= [ Bw-u., d 17
3 LB i e {an

v — v.]?
<
2(1+e(|v]? + |vs

sy [ DO+ ol = ol [on]*) " do
) /s

and using (11) with s = 4 gives the bound
Cloffullo = vl < CA+ )L+ [os]?) (18)

for some new constant C, that depends only on the integral in (17) Therefore

t
/ dT/ f(vﬂT)f(U*aT)JE(U,U*)dU*dU < o0,
0 R3xR3



and so by (13)

/ [, t)p:(v)dv = /Rg fo(v)pe(v)dv

R3

+ /Ot dT//RsXRs F(0,7) f (00, VK. (0, 0)dvudo (19)

B /Ot dr //R3><R3 (v, 7) f(vi, 7) Je (v, vs ) dvsdv.

Since lim. 04 J:(v,v4) = 0, for all (v,v,) € R?® x R?, it follows by the domi-
nated convergence theorem that

¢
lim dT// Fo, ) f(vi, T)Je (v, v4)dvedv = 0,
R2xR3

e—=0+ Jo

and

lim [ fv,)p-(v)dv = E(f(-1))
e—0 R3

for ¢t > 0. Therefore (12) follows from eq. (19) by letting ¢ — 0+.

An early result on moments of solutions to the Boltzmann equation is that of
Elmroth [E1], who showed that all moments that are initially bounded remain
bounded. It was then shown, first by Desvillettes [D], that solutions of the
Boltzmann equation for hard potentials gain moments. His result was then
improved upon in e.g. [W2]. Here we use the estimates from the latter paper
together with the weak convergence result from Section 2 to prove that also in
the non-cutoff case, there are solutions that behave similarly.

We begin by choosing a sequence of truncated collision kernels, and a se-
quence of truncated initial data as follows:

Bu(jv—vi|,w) = v —v.|’ min(b(6),n),
i) = e fw).

Assuming that the full initial data fo satisfies the estimate (7), the same holds
for all f§*, uniformly in n. In addition, all the functions fJ' satisfy bounds on
higher moments, ||f¢'||z: < Cfy,n,s-

Let f™(v,t) be the mild solutions of the Boltzmann equation with these
initial data and collision kernels. From the results in [MW], those are unique in
the class of solutions with given energy. The results from Section 2 imply that
there is a subsequence (which we still denote by f™(v,t)) that converges weakly
to a weak solution f(v,t) of (1), and the estimate in Section 3 shows that the
energy of f(v,t) is conserved, i.e.

B0 = [ f.0lP o = B(f).



We also know that the entropy of the solutions f”(v,t) is bounded uniformly in
n, and because of the weak semi-continuity of the entropy (see e.g. [E2]),

H(0) = [ Fw.0los fw.0)do < liminf H(F"(.0)

From this we may draw the conclusion that all constants depending only on
mass, energy and entropy of the solutions can be chosen uniformly in n.

Thus given a sequence of functions f™ that converge weakly to a weak so-
lution of the Boltzmann equation, (1), we now wish to prove that the limiting
function f at any positive time possesses moments of all orders. The method is
the same as in [W2], we only need to verify that all estimates can be obtained
in a uniform way with respect to n. And this in turn relies on the fact that
Lemma 1 is independent of the truncation b,,.

We begin by multiplying equation (1) (with kernel B,(v — vs,w)) by (1+

|v|2)s/ 2, where s > 2 is an even number, and then integrate. That gives
d n j—
a”f ()l =
Ji P00 0l = @ (1 0P) 7 5 (1410
R3 xR3x 52
-1+ |1)|2)5/2 -1+ |v*|2)s/2) dwdv dv,

which by Lemma 1 (and the remark just after) together with an obvious sym-
metry argument implies

d n
S D)

- n n _ Jéi 2\8/2
KS//R3><R3f (0, ) f™ (vs, t) | — 0P (1 + [0]?) 7" dv dvs (20)

r <

wC [ @Ol = vl o dode,
R3xR3
The uniform bound on the energy and on the entropy implies that
[ 5wt =0lfd 2 Cupali+oP)2.
R3

(see e.g. Arkeryd [Arl]). Hence the negative term in (20) is bounded from above
by

—KCuppllf )l
< =K Crmsll /Ol I Gl

the last estimate follows by the Holder inequality. The positive term in (20) can
be estimated by

Cull £ G Dl rallf™ G Dl

10



and hence, using the uniform bounds on the energy (N.B., uniform in n and
in t), we obtain the differential inequality

D160l < all 6l = &GO, 10
The conclusion that can be drawn from this is that
"Gl £ Wi ms(t), (21)
where
a, (s—2)/8
We.ms(t) = 21— eXp(—s%as D , t>0. (22)

Through a and a, this estimate depends on the entropy and on the energy of the
functions (but these are uniform in time and in for all f™ in the sequence), and
on the moment s. For this construction we use the fact that all moments are
bounded for the initial functions f§', but in the final estimate, the dependence
on the initial data disappears, except through the entropy and the energy. The
construction here has been made only for moments of even integer order, but
by interpolation one directly obtains the same estimate for all real s > 2. Note,
however, that if one needs optimal values of the involved constants (as s — 2),
then a more precise Povzner inequality is needed [Lu2].

Theorem 3.Let the kernel B(v—wv,,w) satisfy (3) and (5) for 0 < 8 < 1. Then
the Boltzmann equation (1) has a weak solution that conserves mass, momentum
and energy. Moreover, for all s > 2 we have the estimate

IfC 0y < Wit E(fo), H(fo)) t>0.

4. Solutions with continuously increasing energy

We begin this section by proving that equation (1) allows for solutions for which
the energy makes an arbitrary number of jumps (but always increasing). This
is an extension of the result from [W3] to weak solutions of the non-cutoff
Boltzmann equation. Then we go on to proving that the energy may increase
at an arbitrary rate, in a way to be formulated precisely in Theorem 5.

Theorem 4. Let the collision kernel B(v — vi,w) satisfy (3) and (5) with
0 < B <1, and let the initial data satisfy (7). Then for any positive integer N,
and any set of times

O=to<t1 <ta <---<ty_1 <tn,

11



and any set of numbers (“energy jumps”)
0<er<ex<---<en<ent1,

there is a weak solution to the Boltzmann equation (1) with initial data fo such
that mass and momentum are conserved, the entropy is non-increasing,

H(f(-t) < H(fo),

and such that the energy jumps at the given times ty,

E(fo) for t=0
E(f(-,t) = E(fo) + ek for tp_q1 <t <ty
E(fo) + ent1 for tn<t.
Proof : For any n > 1, let
Un0) = el S xguny, 73 0) = Jo(w) + 1 Yn(v).

Then for all @ < 2, lim,, o || fg* = follzz = 0, and

E(f2) = B(fo) +e1, (23)
sup [ 31+ o +[log )i < oo,
n>1JR3

By Theorem 3, there exist weak solutions f™ of (1) with f"|;=0 = f§ satisfying:
1. f™ conserve the mass, momentum and energy;
2. H(f"(-t)) < H(fg) ;

3. for any s > 2,

17" )l

o < WGBS H(D), V>0, Va> 1 (24)

By weak stability, there exist a subsequence {f"}32; and a weak solution
f1 of (1) having the same bounds as the initial data, (7) and conserving the
mass and momentum with initial datum fi|¢=0 = fo, such that f™(-,t) —
fi(5t) (j =& o) weakly in L'(R?), Vt > 0. Because lim,_, o H(f&) = H(fo), it
follows from the weak lower semi-continuity of the entropy that f; also satisfies
H(fi1(-,t)) < H(fo), t > 0. Moreover, by weak convergence and because of the
indentity (23), we obtain from eq. (24) that

IAGDI < Wit E(fo) +e1, H(fo)),  VE>0,  s>2. (25)

Next by the equality (23), the moment estimate (24) and by the weak conver-
gence, it follows that

E(fi(t) = E(fo) +e, VE>0. (26)

12



Replacing f(v,0) and e; by f(v,t1) and e2 — e, respectively, and using the
same argument, we see that there is a weak solution f, on [t1,00) with the
initial datum fs(v,¢1) = f1(v,t1) and conserving the mass and momentum and
satisfying H(f2(-,t)) < H(f1(-,t1)), (t > t1), such that

E(fa(1) = E(fi(vt))+e2—er=E(fo) +ea  t>1
and, for all s > 2,
If2(, D)Ly < Ws(t—t1; E(i(t0)), H(f1(t)),  t>t.
Now for the solutions fr (k=1,2,--- ,N + 1), we define
fG1) = fHi(ht),  telte-,te],  k=1,2,---,N; (27)

Then by the integral form (6) of weak solutions of eq. (1), it is easily verified
that f is a desired weak solution having all properties stated in the theorem.

Remark: Note that this construction does not set any effective limit as to
what energy could be reached in a finite time. Take a sequence ¢,, = T and a
sequence e, — co. Then the above construction can be carried out for any for
any set t; < ty--- < t, and corresponding energies. Then one can go on for
larger and larger n.

The estimate in Theorem 3 is not so useful when the interval lengths are
allowed to shrink, and this poses a problem when trying to construct a solution
with continuously increasing energy. Hence we construct here a solution for
which the energy is a Cantor function, where the energy is constant in many
intervals of ¢t. Before formulating the theorem, we first recall the construction
of a general symmetric Cantor set (see e.g. [Be]); the set we are looking for
here has finite measure, and hence the corresponding Cantor function is well
behaved as compared to the usual example used in the theory of integration.
The only difference between the set we use here and the usual Cantor set, is that
rather than removing “middle thirds”, we remove smaller and smaller fractions
of the remaining intervals: at step n, the fraction removed is (1 — 2£,), where
&, tends to 1/2 sufficiently fast to guarantee that the remaining set has positive
measure. Apart from that, this Cantor set has all the usual properties: it is
perfect, totally disconnected and so on.

Let £ € [0,1) and {&,}22, C (0,1/2) satisfy

n—oo
First the half-open interval |0, 1] is subdivided as

0,1 = 1 = JPurPugd

13



where
Jl(l) = (03 €l]a Il(l) = (§1a 1- 51]3 Jz(l) = (1 - Ela 1]

The removed part, 11(1) has measure ,u(Il(l)) =1—2¢£,. We denote by u(A) the
Lebesgue—measure of a set A C R. Again , let

IS R P PSR

where 1.1(2) and I§2) are middle subintervals of Jl(l) and Jél) respectively. Each

of these middle intervals have measure & (1 — 2£53), and so
w( U B [u(KP VBV RY) = (- 26)
and (from left to right)
10,1 =JP urPuJP oM usP o ua®.
Inductively, each set J}} is decomposed as
Ro= R uRR U,
where all three sets are left-open, right-closed, and where
p(IEY /(IR = (1 - 26).

Next, at each level we let

0 = G,
Jm = g g and
Ce = N, Jm.

It follows directly from this construction that

o
o ) = 1 (M) _ i 9 £y £ —
u(Ce) = lim p(J™) T}gr;o;u(J, )= lim 2"616 - 6n =€
and that

u(U,‘;O:NI(")> - 0 as N — oo.

The set C; is the Cantor set we are looking for; this is a set of positive
measure (i.e., £ > 0 ), and the corresponding Cantor function (which we shall
denote by ©) is defined by

ow = ¢ [ " o) dy (28)
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This Cantor function O is (Lipschitz—) continuous and satisfies
O(x) = (2k—1)27" for all x € I,g") 1<k<2ont n>1.

Here 1 4 is the characteristic function of the set A. We also note that any
non-decreasing function © that agrees with © on all intervals I ,E") must be con-
tinuous; this is a direct consequence of the fact that C; is totally disconnected,
and that the set {(2k — 1)27"} is dense in (0, 1).

Theorem 5. Let the collision kernel B(v — vi,w) satisfy (3) and (5) with
0 < 8 <1, and assume that fo satisfies (7). Take any T > 0, and let ® be a
continuously increasing function on [0,00) with ®(0) = 0. There exists a weak
solution f of the Boltzmann equation (1) with f|i=o = fo for which the mass
and momentum are conserved, H(f(-,t)) < H(fo), and such that the energy
grows as

E(f(-1) = E(fo) +®(©Or(), te[0,00). (29)

where O7(t) = TO(T1t), and where © is the function defined in (28)

Proof : For convenience, in the following we denote E(f(t)) = E(f(-,t)), and
without loss generality, we may suppose T = 1. Let I ,ﬁm) = (l,(cm), rkm)] ,J." be
the left-open and right-closed intervals constructed in above.

Using Theorem 3 we may, for each n > 1 construct a weak solution to eq. (1)
with f"|t=0 = fo, such that mass and momentum are conserved, and such that
H(f"(-,t)) < H(fo), t > 0, and such that

n 2m-!

E(f"(1) = E(fo)+ . Y B0 )xyom (1) (30)

m=1 k=1

o
+ kz @(@(r,(c"+1)))]1J’(cn) O+ My, o)(t) >0
=1

On each interval T, ,gm), Ji(n) and (1,00), f™ satisfies moment estimates as in

Theorem 3. For instance, for any s > 2,1 <k <2™~1 m > 1 and any n > m,
1ol S Walt =™, te I = ™, ™) (31)

and
NGl < Ws(t—1), > 1. (32)

The function W (1) is defined as i eq. (22). Since there are uniform bounds on
the energy and on the entropy for all the involved functions, we may safely omit
the indices E and H. The same uniform bounds imply that a subsequence may
be extracted that converges weakly to a weak solution f of (1) with f|1=0 = fo
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By (8) and (9), the H(f(-,t)) < H(fo) and the energy E(f(t)) is non-decreasing
on [0, 00) because of Theorem 2.
Now we prove that the solution f satisfies (29). We first prove that

BE(f®) = E(f)+20O@), teUx, B I U(l0). (33)
Lett €1 ,Em). Since © is constant on I ,gm), we have O(t) = @(r,(cm)). Then by
(30), for any n; > m, E(f" (t)) = E(fo) + ®(0O(t)). Since f™ converges weakly

to f, E(f(t)) < E(fo) + ®(©(t)). On the other hand, for s > 2, the estimate
(31) implies that for all M > 0,

/ [, ) |v]? Dy <pry dv = [E(f""(t))—/ I (0, ) o] Ly >y do
R3 R3

> B(fo) + #(0(1)) ~ 1ol (D)l
> B(fo) + $(0(1) — 1oy Ws(t — ™).

Thus first letting j — oo and then letting M — oo we obtain E(f(t)) >
E(fo) + ®(O(t)). Therefore E(f(t)) = E(fo) + ®(0(t)), t € I'™. With the
same argument ( using (31) ), we also have E(f(t)) = E(fo) + ®(O(t)), t > 1.
This proves (33), and hence Theorem 5, at least for this set of t. But the energy
of any weak solution is non-decreasing, and hence, by the comment just before
the statement of Theorem 5, the energy must take the correct values for all ¢.
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