BEREZIN TRANSFORM ON REAL BOUNDED SYMMETRIC
DOMAINS

GENKAI ZHANG

ABSTRACT. Let D be a bounded symmetric domain in a complex vector space V¢
with a real form V and D = G/K be a real bounded symmetric domain in a
real vector space V. We construct the Berezin kernel and consider the Berezin
transform on the L2-space on D. The corresponding representation of G is then
unitarily equivalent to the restriction to G of a scalar holomorphic discrete series of
holomorphic functions on I and is also called the canonical representation. We find
the spectral symbol of the Berezin transform under the irreducible decomposition
of the L2-space.

INTRODUCTION

The main purpose of the present paper is to calculate the spectral symbol of the
Berezin transform on real bounded symmetric domains. To explain our results and
motivations we let D be the unit disk in the complex plane with the Lebesgue measure
dm(z). We consider the weighted Bergman space H” (v > 1) of holomorphic functions
on D square integrable with respect to the measure (1 — |2|?)2dm(z). It has up
to some positive constant the reproducing kernel K, (z) = K(z,w) = (1 — zw)".
Moreover the group G, = SU(1,1) of fractional transformations of D acts on the
space H" via f(z) — f(gz)g'(z)2 and it forms an irreducible unitary (projective)
representation. Consider the subgroup SO(1,1) consisting of transformations of the
form z ~— 242 with ¢,b € R and o®> — 5> = 1. Thus it is of interests to study
the irreducible decomposition of the weighted Bergman space under the subgroup
G = SO(1,1). For that purpose we consider the unit interval D = DNR = (—1,1) as
a trivial symmetric space G/K = SO(1,1)/{£1} and the restriction of holomorphic
functions in H” to the interval D. More precisely, consider R : H” — C*(D),

Rf(z) = f(z)(1 —2%)>, z€D.

Let L?(D, du,) be the L? space on D with the SO(1, 1)-invariant measure dpg(z) =
(lf—;), whose decomposition under SO(1,1) can be done via the Mellin transform (see
below). The restrction R is a bounded operator from H” into the space L?(D, du)
with dense image, and intertwines the respective actions on SO(1,1), see Section

7. To get a unitary intertwining operator we consider the polar decomposition of

Key words and phrases. Real bounded symmetric domains, Jordan triples, Siegel domains,
Berezin transform, invariant differential operators, unitary representations of Lie groups, irreducible
decomposition.
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R, R = |R|U. Thus U = |R| 'R is a unitary intertwining operator from H" onto
L?(D,dpuy), with |R|?> = RR* given by

Bt () = g [ LI

- 2uflr(%)2 (1 _ $y)2a

which we call the Berezin tranform on D.
1_
iz

to the half line (0, 00), can be decomposed under SO(1,1) via the Mellin transform,

felL?)D)— f(\) = /Ooof(x)ex(x)d%,

Now the L?(D,duy), after performing the Cayley transform z mapping D

with ey(z) = z* and A € iR. On the half real line it becomes

L(v) [*® z2%y: dz
Bl/f(‘/'v) = v / o
T2 Sy ry)r s
on the space L?(R", dm—m) B, is then a function the self-adjoint operator L = ix%. In

terms of the eigenfunction ey(x), Byex = b,())e,,

b, (A) = rG +P)\()UF)(2% — )\);

2

b, () is obtained by calculating the integral B,ey(z) at x = 1. Thus B, = f(L) with
f(s) =b(—1is).

One can formulate the above problem for any bounded symmetric domain, where
the operator L is replaced by a system of generators. The intertwining operator R
for a general bounded symmetric domain was introduced earlier in [12]. The main
purpose of the present paper is to find the symbol b,. Moreover we prove that the
Berezin transform defines bounded operator on the LP-space (1 < p < 0o) on D with
the invariant measure when v is in certain interval, and thus justify the operator
theoretic meaning of the symbol. In particular this implies that the intertwining
operator from the analytic continuation of the holomorphic discrete series to the L2-
space on D. The exact interval of v depends on different root system. For type BC
and C the interval of v is so that H" is a discrete series of ID; however for other types
of domains the range of v is large than the holomorphic discrete series, but still above
the reducible points.

Before explaining our methods of calculations we make some general remarks and
put our results in perspectives. The problem of finding the irreducible decomposition
of a unitary representation (7, G) of a Lie group G under a subgroup H C G has been
studied for a long time, both in mathematical physics and in representation theory,
and is called the “Branching rule”. We can also put the Berezin transform on the
unit disk on D, originally introduced by Berezin [2] for any complex Kéhler manifold,
in this context. Consider the tensor product H” ® H” of the weighted Bergman
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space on D with its conjugate realized as functions f(z,w) holomorphic in z and anti-
holomorphic in w. It forms an unitary representation of the group G x G. Then G can
be considered as the subgroup {(g,9) € GXxG; g € G} of GXG. To find the irreducible
decomposition of the tensor product under G we consider also the restriction map of
function f(z,w) to its diagonal f(z, z); more precisely Rf(z) = f(z,2)(1 — |z[*)”. In
this way we also obtain the Berezin tranform on D, B, = RR*,

(0.1) B,f(z) = /D (1—=12»)"(1 = |w[*)” dm(2)

(T —zw)? (1= [2?)*

See [13]. The symbol of the Berezin transform for a general bounded symmetric
domain was found by Unterberger and Upmeier [17]. The spectral symbol of the
Berezin tranform then gives the spectral decomposition of the tensor product H* ® H”
of G for large v. (See also [21] where the tensor product H”® HF for different v and & is
considered and the corresponding Berezin symbol is calculated.) The exact formula
plays a decisive role in decomposing the tensor product for small v. Interestingly
there appears discrete parts in the decomposition; cf [14] for the case of unit disk
D = SU(1,1)/U(1) and [6] for the matrix ball SU(p, q)/S(U(p) x U(q))-

We proceed to explain the methods of our calculations. We will use the idea of
Unterberger and Upmeier [17], applying the theory of Jordan triples and Gindikin
Gamma, function. Let V = V5, & V; be the Peirce decomposition of V' with respect to
a maximal tripotent e. The Jordan algebra V5 has further a Cartan decomposition
Vo, = A®@ B. The Harish-Chandra ey-function has then a rather explicit form, in terms
of the determinant function on V53; see (2.6). The symbol b, () is then an integral on
the Siegel domain. The integral reduces further to one integration on V;, one on B
and one on the symmetric cone €2 in A. In the case of the complex Siegel domains,
B = iA and the integration on B can be obtained directly by the Laplace transform
on 2. However for real domains B is not very much related to A, and we calculate
the integral by using a method of Shimura [16], writing the integral as one on the
cone ) in A; see Proposition 3.1.

The symbols of the Berezin transform have also been calculated previously by
Neretin [10] for classical domains, and by van Dijk and Hille [18] for classical rank
one domains. As will be seen in the paper, the integrals involved are generalization
of the classical Beta-integral. For certain special cases they had been also studied
earlier by Hua [7].

The Berezin transfrom formally defines a positive operator, namely (B, f, f) > 0
for all f € C*°(D). Thus the problem of finding the irreducible decomposition of the
tensor product under G can also er formglated as finding the decomposition defined
(1—|‘Z(|122%)—V\|1§| )

representation, introduced and named by Vershik, Gel’fand and Graev [20].

by the positive definite kernel . In this context it is also called canonical
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Finally we remark that even though our main goal is the symbol of the Berezin
transform, some results in this paper are of independent interests. In particular our
Propositions 3.1 and 4.1 generalize the formula (2.13) in [16]. The exact value of
those integrals is critical in studying the analytic continuation of Bessel functions
and Eisenstein series; see loc. cit.. We hope to study applications of our results to
Bessel functions in future publications.

The paper is organized as follows. In Section 1 we introduce real bounded symmet-
ric domains and the Berezin transform. In Section 2 we consider the Harish-Chandra
e-function defined abstractly in terms of the Iwasawa decomposition G = NAK. We
give explicit formulas Lie algebra n of positive root vectors, and thus give a formula of
the e-function in terms of the conical functions. The symbol of the Berezin transform
is calculated in Sections 3, 4 and 5 for the different root systems. In Section 6 we
prove the LP-bounded properties of the Berezin transform, therefore justifying the
operator theoretic meaning of the symbol b, of the Berezin transform.

After this paper was finished the author received a preprint [19] by van Dijk and M.
Pevzner, where they also found the symbol for real tube domains by slightly different
methods.

Acknowledgement. I would like to thank Professor Goro Shimura for drawing his
paper [16] to my attention and for his encouragement. I am grateful to Professors
Yurii Neretin and Bent Orsted for some helpful discussions.

For the reader’s convenience we list the main symbols used in the paper.

1.D = G./K,, an irreducible bounded symmetric domain in a complex vector
space Vo = C*, V a real form of Vo and D = DNV a real bounded symmetric
domain in V.

2. g = £+ p, the Cartan decomposition of g, a C p a maximal abelian subspace of

p.

D(z,w)v = {zwv}, the Jordan triple product;

B(z,w) =1—- D(z,w) + Q(2)Q(w), the Bergman operator;

(z,w), normalized scalar on V' so that a minimal tripotent has norm 1.

p the genus of domain D and py the genus of D (see Definition 2.2)

h(z,w) an irreducible polynomial on V¢ x Vg, and det B(z,w) = h(z, w)P.

e

V =V, & V; Peirce decomposition with respect to a maximal tripotent e, V5 =
A® B the Cartan decomposition of V5 with respect to the involution z — Q(e)Zz;

Ne

. A the determinant function of V;, and § the determinant function of A.
10. S the Siegel domain realization of D
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1. REAL BOUNDED SYMMETRIC DOMAINS AND RESTRICTION OF HOLOMORPHIC
FuNCTIONS

We recall first some preliminary results on real bounded symmetric domains and
fix notation. Our presentation is mainly based on Loos [9].

Let D = G./K, be an irreducible bounded symmetric domain in a complex vector
space Vg = C". The space V has then a Jordan triple structure. We denote {zgz}
the Jordan triple product. Let V be a real form of V¢ and 7 be the conjugation with
respect to V. Suppose 7(D) = D, namely, 7 fixes the bounded symmetric domain.
The the real form D = DNV will be called a real bounded symmetric domain. In this
case the triple product D(z,y)z = {zyz} restricted on V defines also a triple product
on V. A complete list of real bounded symmetric domains D is given in [9]. As a
Riemannian symmetric space, D = G/K, where G is the subgroup of G. consisting
biholomorphic transformations of D which keep D invariant. The coset space G./G
is called a causal symmetric space a complete list of the pairs (G, G) can be found
in e.g. [11], [5] and [6].

We describe briefly some algebraic and geometric structures of the domain D.

Let g = p @ ¢ be the Cartan decomposition of the Lie algebra g of G. The Lie
algebra of G, will be realized as completely integrable holomorphic vector fields on
D. The elements in g can then be written as g = {&,(2) = v — Q(2)7;v € V} where
Q(2)v = 3{zvz} is the quadratic operator.

We fix a K-invariant inner product (-, -) on V' so that a minimal tripotent has norm
1, and let (-,-) be the corresponding Hermitian inner product on Vg. (A minimal
tripotent of V¢ has norm 2 if the root system is of Type BC or C, otherwise it is of
norm 1; see below.) We let dz be the corresponding Lebesgue measure.

Denote further B(z, ) the Bergman operator

B(z,y) =1 - D(z,y) + Q(z)Q(Y).
The Bergman kernel of D is up to a constant h(z, w) ? where h(z, w) is an irreducible
polynomial and p is the genus of D. For simplicity we write h(z) = h(z,z). The
Bergman metric of D is
(B(2,2)""u, )
The domain D is a totally real and totally geodesic submanifold of D and its

Riemannian metric is
(B(z, z)’lu, v);

with this metric it is also a Riemannian symmetric space, D = G/K. The G-invariant

measure on D is
h(z)~2dm(z),

and G acts unitarily on L?(D, h~%dm) via change of variables.
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Consider the weighted Bergman space H”(D) of holomorphic functions on D so

that ()
/‘f PR S

The group G, acts unitarily on H”(D) via the following
T f(2) = Jy-1 (2)% f(97"),

and it forms a projective representation of G.. Let R be the restriction map R :
HY — C*(D) by

(1.1) Rf(x) = f(z)h(z)>.

Consider the restriction of the group action 7, of G, to its subgroup G. Then R is an

G-intertwining map, as one can easily checks from the transformation properties of
h(x,x). Consider its formal conjugate operator R* from L?(D, du,) to H” and form
the operator R*R on L?(D,w). It is of the form, up to a constant,

. h(z)zh(w)? w dm(z)
3“‘&@ oy R

where the constant ¢, is a constant normalized so that B,1 = 1.

We note that the kernel h(z,w) actually is positive, so there is no ambiguity about
its power h(z,w)”. Indeed by the transformation rule of h(z,w) on D x D

1 I
gz, gw) = Jo(2)7 h(z, w)Jy(2)”
for ¢ € G, and (z,w) € D x D, and that h(0,w) = 1 we know that h(z,w) is not

vanishing on D x D. Moreover h(z,w) on D x D is a real-valued functions. Thus
being a continuous non-vanishing real-valued function on D x D, it must be positive.
Consequently we can write B, as

. h(z,2)2 h(w,w)?
Buf(z) —CV/D |h(2,’lﬂ)%|2

2. SIEGEL DOMAIN REALIZATION OF REAL BOUNDED SYMMETRIC DOMAINS AND
THE HARISH-CHANDRA e)-FUNCTIONS

The complex bounded symmetric domain D can be also realized as a Siegel domain
in V¢ via Cayley transform. The Cayley transform in the same time maps D into a
unbounded domain in V', which will be its Siegel domain realization. The advantage
with the unbounded realization is that the Harish-Chandra functions e, have explicit
form.

Let {e1,--- ,e,} be aframe of V and e = e; +- - - +e¢,; e is then a maximal tripotent
of V and V. Let

(2.1) V=V,eW
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be the Peirce decomposition of V' with respect to e, where
Vi={2€V;D(e,e)z =2z}, j=1,2.

The space V5 is a Jordan algebra with the product z o w = i{zew} with unit e.
Denote z7! the inverse of z € V, with respect to this product. The Cayley transform
is defined by

Ye(x) = (e + x3) 0 (e — 22) L & V2{(e — x3) ez}

To describe the image of v, we consider the involution Q(e) : x — z* = Q(e)z. Let
A and B be the eigenspaces of the involution with eigenvalues 1 and —1, respectively.
The subspace A is a Euclidean Jordan algebra. We will write R(x) the A-part of an
element x € V,. Let Q be the cone of positive elements in A. Denote F(x1,21) =
D(e,é)x;. It maps V; into A. The image of D under 7, is the unbounded domain

1
S={z=2:014 EV:%®‘G;x2+x;—§F(x1,x1) € Q}

We observe that the differential of v, at z = 0 is

2 0
6 %)
under the decomposition of V =V, & V.
We will denote the conjugation of the group G also by G. Thus § = G/K with
e € S being the base point. We will hereafter fix this realization of G/K. Let
g = £ @ p be the Cartan decomposition of the Lie algebra g of G. The elements

D(ej,e;), 7 = 1,...,r span then a maximal subspace a of p of dimension r. Let
7; € a* be the linear functional on a defined by

Vi (D(ek, ex)) = 265,

where J; is the Kronecker symbol. Then the root system X(g, a) is of the following
type:

(Ar): X(g,a) = {£;, sz{%};

(Br): E(g, a) = {i%’ %:%Wk};

(Cp): B(g, a) = {£;, LY,

(BCT-): E(g, a) = {:i:f)/], :i:’y?], 'YJ:;'Yk},

(Dy): (g, a) = {152}

We arrange an ordering of the roots so that

T<Y2e < <Yy

For type C and BC we further let ; > 0. The root space decomposition can be
explicitly done in terms of the Peirce decomposition of V. We present below formulas
for the positive root spaces, which willbe sufficient for our purposes. For the complex
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bounded symmetric domain D and its Siegel domain realization, the corresponding
root spaces are calculated in [13] and [17].

Let
,
V=Y e 3
1<j<k j=1
be the joint Peirce decomposition with respect to ey, - - - ,e,, and

Vie = Ajr © By,

the Cartan decomposition of Vi, 1 < j < k under the involution z — Q(e)z. With
the notation in (2.1) we have

Vo= Z Vijo V1=ZV0j
j=1

1<k<j

and Vo, = AP B,

A: Z Ak:j; B: Z Bk:j-

1<k<j 1<5<k
We give the explicit formulas for the positive root spaces, in the bounded realization,
it is essentially in [9] Propositions 11.18 and 9.19.

Proposition 2.1. The positive root spaces are given by
8y, = Bijj,
gy = {v+ D(e,v);v € Vy},
B“Yj;"rk ={D(v,er);v € Ay}, >k
G+ = Bkja ] > k.
2
The type D, is somewhat special and will be treated separately in Section 7. For
all other types we define the following invariants
(22) Lt = dim V}ja a = dlmA]k, b =dim ‘/;'0,
where 0 # j # k. They are independent of j, k£ and choice of the frame. Observe that
dimA;; = 1 and dim Bj; = ¢ — 1; dim Bj;, = dim Aj; = a for type BC, C and D,
(r > 3), and dim Bj, = 0 for type A. Also ¢ =1 for type B, and D, (r > 3). The
dimension of A, B, V5 can then be calculated in terms of those invariants

(2.3) na=dimA=r+ gr(r —1),np=dimB=7r(—1)+ gr(r -1)
and ny = dimV, = nus 4+ ng. Recall that the genus p of the complex bounded

symmetric domain D is defined

p=pD) = L(277/2 + 1)

r(D)
where (D) is the rank of D.
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Definition 2.2. The genus py of D is defined by

1

Note that the genus py = p(D) = %p(]D)) if it is of type A, B or D, and p(D) = p(D)
if it is of type BC or C. (The rank of the complex domain D is 2r if D is of type BC
or C.)

For ) € (a*)€ we write

A= Z i
j=1

and we will identify A with its coordinates (A1, ..., A;).
We let p = Z§:1 p;7; be the half sum of positive roots. Then

1 b
(2.4) pi=5(=1+a(j -1 +5), 1<j<r
for type B, BC, C, D, (r > 3), and
a., . .
(2:5) by =225~ (r+1)

for type A.
Let G = NAK be the corresponding Iwawasa decomposition of G. The Harish-
Chandra ey on § = G/K is defined by

ex(z) = e@tnA)

where g € G is such that z = gK and A(g) is the a-part of g € G in its Iwasawa
decomposition: g = nexp(A(g))k.

We will need an explicit formula for the function ey. For that purpose we introduce
the conical functions. Let 2 the symmetric cone of positive elements in A. Then the
Harish-Chandra e-function on {2 can be expressed in terms of the conical functions
on A. So let 6(x) be the determinant function of the Jordan algebra A. Put ) =
e1 + -+ + e, and consider the Peirce decomposition of A with respect to eV), A =
Ag(e)) @ A1(e9)) @ Ag(el?)). Let §; be the determinant function for the Jordan
algebra A,(el5)) with identity ) and extend it to a polynomial function to A via
the projection from A onto Ay(el). For @ = (ay,---a,) € C", we denote

0o (z) = 61(z) 72 - - 5077 % (1) 8, (2)*, =z €.

The 0, is the Harish-Chandra e-function on 2. To find the e-function on S we let A
be the determinant function of Jordan algebra V,. On Q C A C V5, A = § and has
degree r if ¥(g, a) is of type A,, B, or D,; A = §? and is of degree 2r for type BC,
and C; see e.g. [8]. We define similarly the functions A, on V5.
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Lemma 2.3. The Harish-Chandra ey-function on S s given by
(2.6)
ex(2) = BalR(z) — TF(a1,2) = MalG (o2 + 5) — 5Flen,2)), z=2@m €S
with
(2.7) a=A+p
if X(g,a) is of type A, B, or D, and
(2.8) o= (3+))
for type BC or C.

Proof. Indeed the function A, (R(22) —3F (21, 21)) and e, coincides on A-e = exp(a)-e
To prove that they are the same we only need to know that Ay (R(22) — $F(21,21)) is
invariant under N. By Proposition 3.1 it is clear that the function is invariant under
the subgroups exp(g,;) and exp(ngyk), since R(2z2) — 5F (21, z1) does not depend on

B-part of z,. We consider now g j > k. In view of Proposition 2.1, we see that

=k
the elements in the space, when considered as elements acting on V =V, @V} =
A & B & Vi, annhilate V| keeps the subspace A invariant. When restricted to A,
the elements are in the Lie algebra of the corresponding Iwasawa N-group of the

symmetric cone . and thus exp(g keeps the conical function A, (z) invariant

’YZ';’Yk)-
(see [3], Chapter XIL. Section 2). Consequently A, (R(22) — $F(21,21)) is invariant

under exp(g Finally consider an element v + D(e, ?) € g~ 15 € Vp;. It follows

i 'Yk)
from [9], Lemma 10.7 (and its proof) that
1
exp(v + D(e,v)) = exp(v + §F(v, v)) exp(D(e, v))
where the element exp(v + 3 F(v,v)) acts on vectors in V via translation, and that
exp(D(e,7))(2e @ 21) = (22 + F(21,v)) ® 21.
Thus 1
exp(v + D(e,v)) (22 ® 21) = (22 + F(21,v) + §F(v, v)) ® (21 + ).

From this formula we see that the action exp(v + D(e, 7)) on (29 @ 21) keeps R(zq) —
sF(z1,2), and consequently Ay(R(22) — $F(21,21)), invariant. This completes the
proof. O

The Berezin transform on S is then of the form
C / f §RZQ IF(Zl, Zl)) A(§Rw2 - %F(wl,wl))
(A(5 (22 + ws) — 5F (21, w1)))”

(M

dpo(w)

where d(un)
mlw
d,U,()(’U)) = 1 D)
A(?}E’LUQ — §F(w1, wl))z




BEREZIN TRANSFORM 11

is the G-invariant measure on S. Here C), is a constant normalized so that B,1 =1,
its exact value will be given in the following sections.

As will be proved in Section 7, the operator B, is a positive bounded operator on
L*(8, dup) when v is in certain interval. The the Harish-Chandra e-function e, is an
eigenfunction of B, with eigenvalue b, (), is the sense of spectral calculus. Namely

(2.9) Byex(z) = b,(A)ex(z).
Taking z = e the base point we get formally b,(\) = B,e,(e). Denote

A(?R’LUQ — —F(’U)l, wl))

(2.10) I(v,a) = / ex(w) dpg(w).
s (Az(e +w3)))

Here o and ) are related as in (2.7) and (2.8). Then b,(\) = C,I(v, ). So our main

goal is the calculation of the integral I(v, o). Note that the normalization constant

C, = I(v,0)7!, and will be found at the same time.
We will prove that the integral is convergent for ) in certain domain in (a*)C.

However the function e, is N-invariant and transforms under A by the character e?
and NA acts transitively on §. Thus if the integral (2.10) is absolutely convergent,
that is if the integral defining the Berezin transform B,e,(z) at z = e is absolutely
convergent, then by a simple change of variable argument we know that the integral
B,e,(z) is absolutely convergent for all z € S, see [1].

We recall finally the Gindikin Famma function on symmetric cone; see e.g. [3],
Chapter VII. Consider the Laplace transform of the function 6, (z)d(z)~ + dz,

/ e~ () (5Q(:v)(5(:r)’nTAd:v,
Q

for u € 2. The integral is convergent where the integral converges if and only if
R(aj) > (j —1)a/2 for j=1,2,---,r. Moreover,

2.11) [ & 9 a(@)3(0) *ds = Ta(@)3; o),
o o
where
La(a) = (2m)™ = [ [ T(e; - (7 = Da/2).
j=1
and @ = (—ay, ..., —a1) and §5(x) for B = (B4, ..., B3;) is the conical function defined
via Peirce decomposition with respect to e,,e, +€,_1,..., e, +€,_1 + -+ -+ €1.

3. CALCULATIONS OF THE SYMBOL: TYPE BC AND C

The type C root systems can be viewed as special cases of the type BC with the root
multiplicity of %J being 0 (and the other types can be viewed as degenerate cases).
So we consider the type BC. Notice that the genus py = ¢+ a(r — 1) + g
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The determinant function A of V5 when restricted to the Jordan subalgebra A is
the square of the determinant function of that of A. To differ them we write 6(z) the
determinant function of A. Thus

Az) =6(z)?, z€A
We present first some integral formulas.

Proposition 3.1. Suppose 3 > 1—2+ (14 a(r —1). The following integral formula
holds

dn (2v—(t—2)—24)

. T,
I v :/ I :471A—rﬂ\/7__r7'(b 2)—1—2nA ,
"y 3= Lol )lalv — )

and the integral is absolutely convergent.

Notice that
(31) Ale—m)* =Ale —m)A(e+n) = Ale—7°) = Ale+no7")
' =Ale+non’) =d(e+non’)
The integral Iz(v) is now
dn
3.2 )= [ o
(3-2) ») Bdo(e+non)

To prove the integral formula we need the following result; see [3], Chapter VII,
Ex. 5.

Lemma 3.2. Suppose 3> (1 +a(r —1)). The following integral formula holds

_ d?'] __ gna—rp nAFQ(2ﬂ_ nTA)
'MM‘AM@HMW‘4 AR

and the integral is absolutely convergent.

The integrals I4(f) and Ig(v) above can also be written as an integration on the
symmetric cone €) in A; by comparing the two formulas we will then be able to
calculate Ip(v).

Indeed, we write |d(e + it)[* = (e + it)d(e + it) = d(e + it)d(e — it) = 6(e + t?),
and use the Gindikin Gamma function formula (2.11)

/ e_(e“z’“)é(u)ﬁ_nTAdu;
Q

e =8 = L
dle+1t7) E)

dn 1 (eis? _n4
I — — (e+1?,u) B—=
al0) Awwwmw m@@ﬁﬁe Ow)™ dudt
1 2 ny
- —(ew) o=(%1) § (2 \B~ 5 dtd
(& e u Uu.
nﬁmﬁﬁ ()

(3.3)
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Namely

(3.4) [a(8) = —— / G a(w)e= ) §(u) 3= dtdu
I'a(28) Ja

with

Ga(u) = / e @Wdt, uwe
A

being a Gaussian type integral. Let u = Z;Zl

ujc; be the Peirce decomposition of u
with ¢; being minimal orthogonal tripotents, and u; > 0 since u € . Let A =) Aj;
be the joint Peirce decomposition and write ¢ = > ¢;;. Then we find that, by the

Peirce rule (see [9], Theorem 3.15, Corollary 3.16)
U; + Ug
(P u)=>» - 5 (i k) + > ugltisiti;)

i<k J
Thus
Ga(w) =[] / G| / o 25 +u)(E)
(3.5) j=174jj j<k Ak
' r+2r(r—1 . _ U; + Uk —a
:\/7_1. 27 ( )(Huj) I(H 12 ) )
J=1 J<k

We start now to prove Proposition 3.1

Proof. Using (3.2) and performing the same caluclation as above (with A replaced by

B) we get

(3.6) Io(v) = —— / Gp(u)e ©Ws(u)+ didu,
La(v) Jo

with

Gp(u) = / et = / e~ W) gy
B B

Consider as in the above the Peirce decomposition of v and B. We can then calculate
Gp(u) and obtain

71— Lyr(r— . _(— i+ _
(3.7) Gp(w) = v ([ Tug) O =5

j=1 j<k

Therefore, comparing Gg(u) with G 4(u) given in (3.5) it follows that
Ga(w) = va " P ([[u)2Galw) = va" ?5(u) G a(u).
7j=1
Subsituting this into (3.6) we find

In() = /a2 / =€) 5 ()" 5 ()~ s () .
Q
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Comparing this with (3.4) we find that the integral I5(v) is of the same type as 14(3)
with 3 = v — (1 — 2); more precisely

r-29) La(v — (¢ = 2))
I =
B(V) ﬁ FQ(V)
which again by Lemma 3.2, is

IB(I/) — 4nA7rﬁ\/%T(

Is(v—(t—2))

—2)t2n, L2V — (1 —2) = B4)

To(v)Ta(v — 52)

We can now calculate the integral I(v, a).

Proposition 3.3. Suppose v > py — 1 = p — 1. The integral I(v, a) is absolutely
convergent if
1 a , 1 a . .
—5((V—P0+1)+§(7‘—J)) <a; < 5(1/— 5(7“—])), 1<j<r

and its value is given by

To(v—po+ % +20)To(v +po+ 1422 — 2+ 20%)

b
I(]/7Q) = 22”‘1’1’27]' IB(]/) F (2]/ nB)
Q -

Proof. We write w = ws + w; and we = = + y according to the Peirce decomposition
of V.=V, @& Vi and the Cartan decomposition Vo, = A & B. We perform the change
of variables £ = z — F(wy, wy), Thus S is parametrized by the product Q x B x V4.
In terms of the new coordinates, wy = z +y = £ + $F(wy,w;) + y and w} = £ +
5F(w,w1) — y. The integral can be rewritten as

2rv A(&)%*%
’ /valeAg( )A(e +&+ %F(wlawl) )

(Here the constant 2% appears because A is of degree 2r, and A(H%) =2""A(e+
w3).) We consider first the integral with respect to y. Denote temporarily v =
e+ &+ 3F(wy, w) € Q and note that

—dy dw d€.

Ale+ &+ %F(wh wy) — )
(3.8) = Afu—y) = A(P(ub)e — P(u)(P(u"%)(y))

= A()A(e = P(u2)(y)) = 8(u)*Ale = Plu2)(y)):
Change variables n = P(u"2)(y). Then dm(n) = 6(u)~ "+ dy since dim B = ny—n.
The integration with respect to y becomes,

() 54 2 / Ale — n)"dn = §(u) 5T ()

and Ip(v) is given by Propostion 3.1.
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We consider now the integral with respect to w;, which appears in u. We have

masrA g L @O ()2
807 = g ¢ OO Pk
and (u,) = (e +&,¢) + 5(F(wr, w), ). Thus

00

1%

1 —(e -1 w1 ,w u__
(39) = F(QV — nz—nA) /‘; /Qe ( +£’O6 3 (F (w1, 1),C)5(C)2 ddel
T 1

1 ng—mAp 1
- - (&0 5\ 2v——54 —3(F(wi,w1),0) g d
T — =) fLeeresto (fv ‘ )

and the change of the order of integration will be justified on our way of calcula-
1 1

tions. Writing (F(wy, w1),¢) = (F(wi,wy), P(¢2)e) = (P(¢2)F(wy,wy),e) = (F(C2 0
wy, (2 owy, e) = by [9], Propositition 10.11. Here (row, = %D(C%, e)w, is the Jordan
product on V. Performing change of variables v = (2 o w;, we have dv = (5({)gdw1

/ L (F(wiw1),¢ dw1 _ 5(C)_%/ e—%(F(v,v),e)dv;
i

4
the last integral is of Gaussian type and can be easily evaluated, observing %(F (v,v),€) =
s(D(e,v)v,e) = 3(v, D(v, €)e) = %(U,D(e, e)v) = £(v,v), so that

/ e 2 (PO gy = /o ’
Vi
Continuing the formula (3.9), we find it is, disregarding the Gamma factor,

\/—7'/ —(e+£,0) § 2u———§d€-’

—21/dw1

and

which is integrable if

ny b a
-2 2521
v-T oyl

namely if v > %2 b+ 2(r — 1) which is satisfied by our assumption of v. This conse-
quently Justlfies the change of order of integration in (3.9).
Our integral in question is

QTV\/ﬁbF(QU — nA / / (0= (EOA (g)A(f)gfgé(c)m/f%,gdgdg'

We calculate the 1ntegral with respect to . Recall the formula (2.11) and that
A(§) = 6(8)%,

/Qe(f’C)Ag(g)A(g)ggdé Foa+v—p+ —)5;‘a utp A 4 (6)-

which is absolutely convergent if

n a, . .
(3.10) 2gj+u—p+7“‘>§(g—1), i=1,...,m
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The remaining integral, disregarding the constant, is then

b

—(e * y—"20 * U
/Q € 08 yna(Q8(Q™ 7 2 =Ta(2" +v+p— " —3),

But since p = %2 + g, the above is I'g(2a* + v). Moreover the above integral is
absolutely convergent if

(3.11) Q(Q*)j—l/<g(j—1), j=1,...,r

The inequalites (3.10) and (3.11) combined give our condition . This finishes the
proof. O

4. CALCULATIONS OF THE SYMBOL: TYPES B, (r > 1) AND D, (r > 3)

In this section we calculate the integral I(v, «) for type B, (r > 1) and D, (r > 3).
The type D, (r > 3) can be viewed as a degenerate case of type B, with the root
multiplicity of %’ being 0. The method of calculation is basically the same as in
the previous section. So we will only indicate the necessary changes needed in the
calculations.

Proposition 3.1 in this case takes the following form; we remark that, as we did for
the function h(z, w) in Section 2, the function A(e — n) is positive on B.

Proposition 4.1. Suppose v > a(r — 1) — 1. The integral
dn
Ig(v) = / NP
B Ale —n)”
15 absolutely convergent and its values is given by
Ta(5)Ta(5 + 3)

The value of the integral I(v, ) is given in the following; we note that in compari-

Ip(v) = /7" 4r =G+

sion with Types BC and C, the convergence region of v improves to v > p — 2. (The
discrete series are for v > p — 1.)

Proposition 4.2. Suppose v > 2py —2 =p — 2, that is § > py —1 =5 — 1. The

integral I(v, ) is absolutely convergent if
(=2 +2) +alr—j) <y < S —olr—j)), 1<j<r
and its values is given by
Tslv,0) = VER a0 T A (e )
(¥ — =

2 T

Example 4.3. We consider the simple case of the unit disk D in R?, considered as a
real bounded symmetric domain in the unit ball D of C2. It is of type B; with roots
+7. The ball D is a realization of the Hermitian symmetric space SU(2,1)/S(U(2) x
U(1)), and the real disk of SO(2,1)/SO(2). The genus p of D is now 3 and the
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weighted Bergman space H” considered in Section 2 has now reproducing kernel

(1 — (z,w))™ with v > p — 1 = 2. The Berezin transform on D is now

R
T Jp (1—(z,9)) (1 —[J[*)2

where x = (z1, z3) and (x,y) = 21y1+22y. However the unit disk D = SO(2,1)/S0(2)

in R? itself has a complex structure defined by the Lie algebra of SO(2), and in this

realization it s not the standart complex structure on R? defined by (u,v) — (—v, u).

Y

However those two structures are equivalent; denoting the the unit disk in C = R?
with the standard complex structure by D¢, a biholomorphic mapping from D¢ onto
D = 50(2,1)/SO(2) is given by the Hua transformation
, 2

z=u+1w— W(u,v).
See [4], Chapter X, Exercise D2. The corresponding Berezin transform on Dg¢, ob-
tained from (4.1) by conjugating the transformation, is then

Byf(Z) — 2(V — 1) / (1 B ‘z‘z)u(l__u |;w|2)y(1 + | Z = ’U)_ |2)—1/ dm(Z)Q -
T De |(1 — zw)"| 1— 2w (1—12?)

The symbol of B, in this case is, with Ay identified with A
-2+ 0rE-1-X

NCINCEE)

2 2 2
It is interesting to see that the Berezin transform so obtained is quite close to the

by(A) =

classical Berezin transform (0.1), whose symbol, after normalization, is

Tv—3+3)Tv—3-3).

I'(v)I(v—1) ’

see [17] and [15].

5. CALCULATIONS OF THE SYMBOL: TYPE A AND D,

The integral I(v, ) for Type A is very simple. The real Siegel domain & = Q, and
our integral is

v

A 2
2@/%@)(W du_
S A(e+w)” A(w)i
which is Beta-type integral. The result is now

Proposition 5.1. Suppose v > p — 2 = 2py — 2. The integral I(v,q) is absolutely
convergent if
1 1
Sw—ali-1) << w-alr-j), 1<j<r
and its value is given by
'I‘I/FQ(% + g)FQ(% + Q*)
To(v)
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We now consider type D,, the Jordan triple is denoted by IV,5™ (2 < m < [2]) in
[9]. So we introduce the necessary notation. Let V' = R", and consider the quadratic
operator Q(z) on V defined by

Q(x)y = q(z,y)r — q(x)y

where ¢(z) = 2% +-- -+ 22, —zl,,, —---— 22 and ¢(z,y) is its polarization ¢(z,y) =
q(z +vy) —q(z) — q(y). The involution T of z is T = (21, , Ty —Timt1, -, —Tn)
Let e; = 3(1,0,---,0,1) and es = $(1,0,---,0,...,—1) and e = ¢; @ e5. Then ¢

and e; form a frame of tripotents and e is a maximal tripotent. The joint Peirce
decomposition of V is V = Vi1 @ Vo ® Vi with V;; = Re;, j = 1,2. The Cartan
involution z — Q(e)Z gives a decomposition of V, V = A®B with A = V11 ® VB A1,

Ap={zeViz,=21=29="-++= 2y =0}
and
B=Bp={ze€Vix;=xm ==z, =0},

dim Ay = n—m—1, dim By = m—1. The determinant function A(z) = z¥+- - -+z2.
In terms of the notation in Section 2, the positive roots are %, 21 with root
multiplicities m — 1 and n — m — 1 respectively, and

1
p= Z((Qm —n)y + (n—2)7).
The symmetric cone in A consists of all elements z = (21,0,...,0,Zyy1,...,Zy) SO
that ¢(z) = 23 —22,,, —---— 22 > 0 and z; > 0, namely it is the forward light cone.

Observe that with our normalization of the Jordan triple system, we have ||z||* =
2(x? + -+ - + x2). Correspondingly dz = V2"dz, ... dz,. Also the genus p = n The
integral I(v, a) is, after the change of variables as in Section 3,

102 = [ 8080 ([ gmrn) de

The integration on B can be evaluated directly. Observe that A(z—vy) = A(z)+A(y)
if z +y € A® B. Performing change of variable n = A(e + £)"2y we have

1 m—1 1
. _@y=A it [ L
/BA(Hs—y)v y=Aak+) /BA(e—mv L

1

= V2" A(e+ &)

/Rm-l (05 + -+,
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Eventually we find that

10,2 =va ) [ A ©A@ Ta + o
(5.1) Q

m-1D(v — 2 Po(a+ % — 2 + =280 Pg(a + & + 2 — 2=24)

Proposition 5.2. Suppose v >p—2 =2py — 2,
1 1
—i(y—m—i-l) <oy < i(y—n+2m+2)

and

1 1
—§(V—n)<a2<§(u+m—1).

The integral I(v, c) is absolutely convergent and its value is given by
m-1T (v — "N Tola + % — 2D\ (o + ¥ + ™1
I, = var ) Tale 5 = %5 Malar 5+ 77 )

I'(v) Po(v —=3%)

—

6. THE LP-BOUNDED PROPERTIES OF THE BEREZIN TRANSFORM
We let C, = I(r,0) !, which is the normalization constant. Denote
(6.1) b(d) = CoI(v, ).
Recall the definition of the genus py of D. We see that, after simplifying,

S e e e )

=1

bI/(A) = r — —
Hj:l I'(v — 2 -+ pi)L (v — pOTl = pj)

if it is of type BC or C,

G DG — 25 + A0 - 25— )
[T TG — 25+ )T — 25— )

for other types except Dy. So that b,(A) has a rather general form in terms of py. For

type Ds it is

2 v — v —
[ D5 =22+ D5 — 222 = )
Hj:l F(% - % + PJ')F(% - n742m - pj)
Proposition 6.1. Suppose v > p—1 = 2py — 1 for type BC or C and 5 > py — 1

for other types. The Berezin transform B, defines a bounded positive operator on
LP(D,dug) for all 1 < p < oc.
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We recall that the functions ey, transform under a character of NA. Observe that
by change of variables in the formula B,e,(z) = b,(A)ex(z) for z = e one obtains

Byex(z) = b,(A)ea(z)

for all z € S; see [1].
In particular taking A + p = 0 we get

A(R2)5 A(Rw)?
6.2 C,,/ dug(w) =1
o2 s A(5Gen + ug) — 1P () P00
Proof. We use interpolation. For p = 1 we have, in view of (6.2),

1.1 < € [ [0 52 S ) )

(63 = [ (6 [ g A (@) dutw

Zo + wh) — %F(zl, wy))¥

_ / £ (w)|dpo(w) = || flzs,

that is, B, is L'-bounded. However B, is a formally self-adjoint operator thus it is
L*> bounded. By interpolation we see that it is bounded on all L?, for 1 < p < oco. O

We summarize our main results in the following

Theorem 6.2. Suppose v > p—1=2py — 1 for type BC or C and 5 > py — 1 for
other types. The Berezin transform B, is a positive bounded operator on L*(D,dpuy)
and its spectral symbol is given by b,(A\) under the decomposition of L*-space into
wrreducible representations of G.

Remark 6.3. Recall the definition (1.1) of the restriction operator R. The operator
B, = RR* is a bounded operator, which in turn implies that R is bounded when v
satisfies the condition above.

There are various implications of our results. We plan to persue them in the future.
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