On the stationary Boltzmann equation in R"

Leif Arkeryd*

1. Introduction

Let Q C R™ be a strictly convex domain with C! boundary and inward normal
fi(z). Consider in Q2 the stationary, non-linear Boltzmann equation for hard and
soft forces with Grad’s angular cut-off,

vV F(z,v) = Q(F, F)(z,v), z € Q,v € R". (1.1)

Solutions F' € L% (Q x R™) are understood in renormalized sense, or an equivalent
form (mild, exponential, iterated integral, etc., cf [7], [1]). Constants are denoted
by c.

Given a total mass M, solutions are sought with [ Fdzdv = M and with a
given indata profile on the boundary 0f2

F(z,v) = %fb(a:,v), x € 0, v-i(x) > 0. (1.2)

The constant ¢ > 0 of the indata profile and the total mass M > 0 are not
independent.

The collision operator () is the classical nonlinear Boltzmann collision opera-
tor,

Q) = [ o [ doBlolo— (1~ 1) =
=Q (1) =@ (F.)= Q1) — fulh),

where @+ — @~ is the usual splitting into gain and loss terms, S™~! the unit
sphere in R*, and

fo=fl@v), f1=fz0), fi = fz,0),

V=0 —[(v— ) ww, V. = v, + [(v— v,) - w]w.

For simplicity the kernel B is taken as B(w,|v — v,]) = b(w)|v — v,|%, with
—n < B <2andbe LS 1) with a strictly positive lower bound. Let n > 0 be
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given (fixed and small) and let x, (v, v.,w) be the characteristic function of the
subset of R* x R* x S™! for which

vl 2, [v] 2 n, V] 20, Vi =,
and set B, = B - x;,. The weight function
Y(v) = (1 + [of)meP

is used throughout. Define M, My, and Mg for 0 < 8 < 2 by

/dx/ (z,v)dv = My, /dx/ F(z,v)dv = Ma,

/de /n(1+ v )PP (z, v)dv = My,

Theorem 1. Suppose f, >0 and [, _,dz [, AoV i(z) foz,v)dv =1,

/ dx/ [v i(x)(1 +v* +log" fo(z,v)) + 1] fs(z,v)dv < oo.
€N

Consider the problem (1.1-2) with collision kernel B,, and boundary value f,. The

equation (1.1) has a family of solutions (Fi,)m>o satisfying (1.2) with ¢ = ¢, > 0,

and with the property M;(m) > 0, together with lim0 M;(m) =0 for j =0,2,
m—r

lim My(m) =00, lim Mgy(m) = oo when —n < 3 <0,
m—ro0

m— 00

and lim Mg(m) = oo when 0 < 3 < 2.
m—r0o0

In the present proof, the parameter m of the theorem has the value of the
y-moment of certain approximations (cf. (3.2) below). Those approximations are
then split into two pieces, one 'decoupling’ in the limit, and the other defining
the solution F' of the theorem, this latter possibly having a smaller 1-moment
than m.

In the close to equilibrium case, there are a number of results concerning the
non-linear stationary Boltzmann equation in R™, [9], [10], [11], [17] and others.
Here general techniques such as contraction mappings can be utilized. Stationary
problems in small domains can be solved in a similar way, [15], [13]. The unique
solvability of interior, stationary problems for the Boltzmann equation at large
Knudsen numbers is established in [14]. Existence results far from equilibrium
for the stationary Povzner equation for bounded domains in R” are obtained in
[4]. In the slab case, results on boundary value problems with large indata for
the BGK equation are presented in [16], and for the Boltzmann equation in a
measure sense in [2] and others, and in an L'-sense in [5-6].

In the Povzner and 1D Boltzmann papers [4-6] the entropy dissipation term is
used to obtain weak L' compactness, necessary for applying the techniques from
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the time-dependent case. However, for (1.1-2) in several space dimensions, the
compactness properties from the Povzner and 1D Boltzmann cases are no longer
available. Instead, a careful analysis of the entropy dissipation term reveals that
the approximations split into a bounded and a singular component - with, in the
limit, the latter ’decoupling’ and the remaining component by itself satisfying
(1.1-2) in the sense of Theorem 1. The decoupled component may carry part of,
but not all the original )-moment. However, that latter possibility (i.e. the whole
t-moment disappearing) cannot be excluded by the arguments of the present
paper, when the cut-off factor x, in @) is dropped. In this paper the study of
the decoupling uses nonstandard analysis, which has a number of advantages
in terms of simplicity and available techniques. Similarly, the author has earlier
used a nonstandard approach to get initial insights into kinetic mechanisms (later
usually followed by detailed standard studies of the problems). In connection with
the present paper, work has also started on a second, standard proof.

In the following sections, we seek to present a reasonably coherent sketch of
how the proof goes. The first step is standard and uses the same type of initial
approximation that was introduced in [4-6]. But quite different arguments are
required to conclude the proof. After the removal of a number of parameters from
the initial approximation by standard arguments, the remaining approximation
((2.4) below) is taken, via transfer, infinitesimally close to its measure limit. A
splitting is introduced for this approximation. The analysis of the splitting makes
extensive use of the entropy dissipation control. This is where nonstandard anal-
ysis is brought in to carry the proof through. A relevant form of the averaging
lemma connects nonstandard averages to corresponding standard ones in a limit
at Lebesgue points. Finally, the gain and the loss terms of the nonstandard
approximation in iterated integral form are shown to be infinitesimally close to
those of the standard candidate for solution.

For clarity of exposition the proof is presented for R?.

2. A first approximation

The proof of Theorem 1 starts from an approximation for (1.1-2) of the same
type as in [4-6], namely

acF(z,v) 4+ cv -V, F(z,v) = / dv*/ dwx"x""
RS s2

cl’ f*o,

f*o
B —(z, 0" SR o
s 1+—de( (1+—f*fp

cF(z,v) = fyz,v) Nj, x€ 0Qv-i(x)>0. (2.1)
In (2.1) the notations are as follows. We assume in this first step that b € C*°,

that [v — v,|? is replaced by a C> approximation of max(i,min(,u, v — v, |%)).

(z,v.) |, (z,v) € Q x R,

(z,v) — cF(x,v)
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The functions x" (v, v.,w) and x?"(v, v, w) are taken invariant with respect to the
collision transformation J(v, v,,w) = (v',v., —w), invariant under an exchange of
v and v,, with
XX e 0%, 0< X, <1,
N (0,00,w) = Tif o] > 7, 0] > 7, o] > 7, ol > 7,
<

X" (v, vy, w) = 0 if |v| g, or |v,| < %, or [v'| < g, or |vl| < g,
21 — 1 1
Xpn(v7v*iw):1ifv2+vf§n_7_S R 'WS]-__a"U_U*‘Z_a
2°p " |lv—wv p p
X (0, vy, w) = 0 if v + 02 > n?, or

UV — Uy 1 vV — Uy 1
W<, 0 W >1==—, or [v—v, |<
|\v—v*\ w|_2p r||v—v*\ wl 2p rlv—u 2

Moreover, r > 0, 0 < a < 1, p,p,n,j, ;. € NT, where N* denotes the set
of strictly positive integers. The functions ¢, are mollifiers in z, defined by

©o(2) = pp(pz),0 < @ € CP(R?), o =0 for [z| > 1, [ ¢(x)dz = 1.

Define the map T by T'(f,¢) = (F, ) on K x R, where

K:={f eI (Qx R3);/1/)M(v)f(x,v)dxdv —1),

and cF solves (2.1) with ¢ so chosen that F' € K. Here v, (v) = min(y, ¢ (v)).
E.g. by a monotone iteration scheme applied to (2.1) it is easy to see that
T is well defined. The uniqueness in L} of (2.1) follows by considering the
difference between an arbitrary non-negative solution and the iterated one. By
the iteration scheme any such difference is non-negative, and so uniqueness follows
from Green’s formula.

Characteristics in 2 x R? are of the type {(z + sv,v);s € R,z + sv € Q}, and
in Q| for v € S? given, of the type {z + s7;s € R,z + sy € Q}. There is a lower
bound ¢q > 0 for ¢, only depending on f, but not on ¢ > 0. Namely, from the
exponential form of the problem obtained by integration along characteristics,

cF = fye 7 +c/€ny+,
it follows that F' is bounded from below by the ingoing value f, along the cor-

responding characteristic times the negative exponential of a collision frequency
integral along this characteristic. And so

c= /cwu(v)F(x, v)dzdv > ¢y,

where ¢y > 0 is a certain integral of fj.



Following the line of proof in [4-6] one shows that the map 7" is continuous
and compact on K X [0, %] with the strong L' topology for K. Green’s formula
gives for @ > 0 that the solution ¢F of (2.1) for ¢ = 0 has finite mass, hence
% > 0. So by the Schauder fixed point theorem, there is a function f € K and
d € (0, %] with ¢ = 1 and

f n J* Pp '
af(z,v) +vVef(z,v) = / x’"x””Bu<7cﬂ(w,v)T(x,v*)
1+ N 1+ —;.‘0

7('0[)(:5, v))dv,dw, (x,v) € QX R3,

cf(z,v) = fo(z,0) Nj, z €I u-ii(x) >0,
with

c> co,/wu(v)f(x,v)dxdv =1.

Again following the proof in [4-6], we can pass to the limit when p — oo using
a strong L' compactness argument. For each j € N the solution f7 satisfies
[ < j% By Green’s formula ac [ fi(z,v)dzdv < ¢, with ¢, depending on f,
fi

1447

. . J
gives that « [ f/log f/ < C, with C}, depending on f, but not on j. And so
the weak L' limit when j — oo follows as in the time-dependent case, giving a
solution f to

af(z,v)+ oV f(z,v) = /XTXI’”BH(f(ac, V') f(z,vl) —

—f(z,0) f(z,v.))dvedw, (z,v) € Q x R,
cf(z,v) = fo(z,v),x € 0, v - 7i(x) >0, (2.2)

but not on j. By computations similar to [4-5], Green’s formula for f7log

with
co<c< @, and /¢u(v)f(x,v)dxdv = 1.
o
By Green’s formula, the solution f of (2.2) satisfies ¢ [ v?f(z,v)dzdv < ¢; for
a small enough, and with ¢; only depending on f,, but not on p,n, u, . Write

QUf,f) —af =Q1(f,f) —v(f)f, where QT is the gain term and the collision
frequency v includes the parameter a. Then the exponential form implies

e 1v0 <cf <el"Def,,, (2.3)

along characteristics, where f,,; is taken on the outgoing boundary along the
characteristic. This in turn implies that ¢ [ f(z,v)dzdv > ¢, with the constant
co only depending on f;, but not on p, n, u, a. It follows that

et /UQf(.T, v)dedy < ¢! < eyt / f(z,v)dzdv,
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and that ¢!, [ f(z,v)dzdv, [ v*f(x,v)dzdv have strictly positive lower and up-
per bounds independent of p,n,u (but depending on f, and with the upper
bounds independent of «).

Also by Green’s formula for flog f, it follows that « [ flog fdzdv < C} with
Cy depending on f;, but not on p,n,u. The previous weak L' limit first in-
troduced in the time-dependent case, can now be repeated with respect to the
approximations of B and to the parameters p, n, i, giving a solution to

af (2,0) + vVof (2,v) = / X B(f (2 0) (. 0!)

f(z,v)f(z,v,))dv,dw, (z,v) € Q2 x R?,
cf(z,v) = fo(z,v),z € 0N, v -7i(x) >0, (2.4)

with [¢(v)f(z,v)dzdv = 1, as well as strictly positive upper and lower a priori
bounds of ¢!, [ f(z,v)dzdv, [v?f(x,v)dzdv. The bounds depend on f, and the
upper bound is independent of c. In the same way, letting x" converge to x, for
r =1, the result of (2.4) holds with x,, instead of x". Also for some finite constant
ce depending on f but not on «,

I'f
fr

The previous limit procedure cannot be invoked to remove the term af in
(2.4), since we have no a-independent entropy estimate but only the entropy
dissipation estimate (2.5). Instead the subject of the rest of the paper is a study
of the a-limit with the help of (2.5).

[ B s 1) tog S drdvdv.do < c. 25)

3. Splitting the limit

For the rest of the paper the results (2.4-5) will be employed after transfer to a
nonstandard context with 0 < o = 0 fixed, and with x, for 0 < n € R; fixed. The
values of ¢, and the bounds for ¢™', [ f(z,v)dzdv, [v?f(z,v)dzdv remain the
same. The convention will be followed of not putting stars on standard objects
in the nonstandard context, except for clarity. We refer to [12] for all notations
used from nonstandard analysis. In particular, ”st” denotes the standard part of
a hyperreal number.

The collision frequency v still includes the parameter «.. Define the standard
measure o on {2 x R? by

C’C(QXR3)9g0mst/

*(QxR3

fro*drdv =: / wdo(z,v).

QxR3

Split o into a Lebesgue absolutely continuous and a Lebesgue singular component,
do = F,dxdv + do,. For A\ € R, st ff<)\1/1(v)fdxdv < 1, and the value of this
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integral increases with A. Recalling (2.3), there is a limit M’ when A\ — oo with
0 < M'" < 1. Hence, by spillover, for some A € *R°,

V() f(z,v)dedv — M’ ~ 0.

<A

For z € Ry, set a1(2) = logz,a;(z) = max(1,loga;—1(2)),9(2) = (ai(2))ien+-
Then *g(\) has a;(A) € *RY for i € N*, and so by spillover for all i < i for
some ig € *N*. Set n’ = a;,(\). By (2.3), for |[v| < n’ along all characteristics
outside some set S, of infinitesimal measure, n'~' < f < n'. A slightly larger
internal infinitesimal set S, will now be constructed in a particular way and used
to define a subsequent splitting f = f. + f; related to do = Fydzdv + do.

Given v € *S5?, let 7, denote a plane in *R® orthogonal to 7. Let €, be the
projection of € into 7. By Green’s formula,

/ dx/ \v fi(x)| f(z,v)dv < = / dx/ v-ii(x) fo(z, v)dv < cp,
€N €N v-ii(z)>

where ¢, is finite. It follows that after

i) taking into S, the union of all characteristics (z, = {(z + tvy,v);v =
Ylv|,z + ty € *Q} for a suitable internal infinitesimal set of y €* S?;

ii) for all other v € *S?, taking into S,y for a suitable y-dependent internal
infinitestimal set of = € €2, all characteristics (g, for all v = y|v|;

iii) for all v € *S? not removed in i), for all z € 2, not removed in ii), taking
into S,y for a suitable internal infinitesimal set of |v|, the characteristics (g,
with v = 7y|v|;

then at the outgoing boundary point (z,v) of each remaining characteristic,
f(z,v) <n'.

After taking into S, an analogous, internal, infinitesimal union of of charac-
teristics, on the ingoing boundary point (z,v) of each remaining characteristic
fol@,v) > 0t Given v € *S2, if z € *0Q and |y - @i(z)| < n' V%, then let
Cew C Sy for all v parallel to . For |v| < n' take (g, into S, if

/ ds/ B, f.dv, > n L.
Czv [ve|>n’

/1/J(v)f(x,v)da:dv =1.

Recall that



Then for 0 < 3 < 2 and v € *S?, after taking for a suitable internal, infinitesimal
set of x € (2, all characteristics (s, with v parallel to v, into Sy, it holds for all
other z € ,, and near-standard v = 7|v| that

/dS/X"‘U — vl f(z+ SU;U*)dU*/b(w)dw <n'.

Since [ w<rer ¥ () fdzdv = 0, it also holds given v € *S?, that outside a suitable
internal, infinitesimal set in €.,

/dS/ Xnlv = vl f(z + sv, U*)dv*/b(w)dw ~ 0.
n'<f<A

All characteristics parallel to 7, through z from the above infinitesimal set in (2,,
are taken into S,/. Finally let (5, C Sy, if (g(—y) C Sp.

Thus, given v € *S? and x € *0Q, elther for all |v| < n’', the characteris-
tic (gyjs) C Sp or this holds for at most an infinitesimal set of such |v|. Also
n' e < f < n'e" holds along all characteristics with lv| < n' not in S,. To
obtain the same structure for —3 < 8 < 0, due to the singularity in |v — v, /%, the
three steps i)-iii) above may be performed once again.

Set fs(z,v) = f(z,v) for (z,v) € (4 if (4 C Sp or |v| > n', fs(z,v) = 0 oth-
erwise, fi(z,v) = f(z,v) for f(z,v) > A, foa(z,v) = 0 otherwise, and f.(z,v) =
f(z,v) = fs(z,v). Then

— >0 /1/1 — fr)dzdv = 0. (3.1)

Obviously f. only contributes to Fy (not to o). Define F(z,v) < Fy(z,v) by

C.OUxR) >0~ st/ fro*dedv =: / Fodzdv).
*QIXR3 OxR3

The study of fs is by (3.1) reduced to a study of fy. It immediately follows
from an a priori estimate of the outgoing entropy flow that the integral of f, is
infinitesimal when restricted to the set of those characteristics where [vds < n'.

Consider the set O¢ of those = € Q for which [ 4(v)frdv < l For p € *N*®
it follows that foc dxfw frdv =~ 0. Given i,p € N* and € Op, suppose the

set of v € S? Wlth Cew NSy = ¢ for all v parallel to v (except possibly an internal
infinitesimal subset) has measure > 47”. The set of such z is denoted Of,.

By construction n'"'e™™ < f(z + sv,7|v|) < n'e" along the corresponding
characteristics.

Lemma 1. Fori,p € N it holds that

= /weoi dx/w(v)fAdU ~ 0.



This is proved, using local estimates from the entropy dissipation integral. An
essential ingredient is that the range of f(z,-) when z € Of), for a large part of
velocity space has f < n', whereas obviously f > A for the domain of integration
of fi. A number of geometrically different cases have to be considered separately.

Given p € N* | by spillover, the lemma holds for some iy € *N°° with 7;, ~ 0.
Given v € S?%, for z € Q,, if fm+8760f,° ds [ () fa(z + sv,v.)dv, > nilo/Q, then for
all v parallel to v, move to S, the characteristic (,, and change the definition of
fe and f,, accordingly. Obviously for 0 < # < 2 along characteristics not in (the
new) Sy, fi(x,.) for all z € O only contributes infinitesimally to the integral
of the collision frequency along the characteristic. For —3 < # < 0, the same
follows after moving as before, for an infinitesimal set of v, all characteristics into
Spr-

Finally consider z € O, \ O.

Lemma 2. Define A, as the (internal) set of those x € O,\ O with at most an
infinitesimal set of characteristics with |v| < n' through x in direction y belonging
to Syr. There then exists an (internal) infinitesimal subset I, of S?, such that given

v e 52 \ IP;
[47 dx/lﬁ(v)fA(x,v)dv ~ 0.

The proof is reduced via approximation to a problem where the result is a
simple consequence of the fact that, when an infinite sum of positive terms takes
a finite value, then at most a countable number of the terms are noninfinitesimal.
Here those terms correspond to an infinitesimal set of directions v € S2, contained
in an internal infinitesimal set of directions.

The lemma holds for all p € N*, and so for all p < p, for some py € *N*°. For
p = po, all characteristics with v € I, are moved into S,/, and f,, fs are changed
accordingly.

For v € 5%\ I,,, there is an internal infinitesimal set .J, of z € 2, so that for
all other z € €1,, it holds that

[ as [ene+snowo
T+sYEA,

All characteristics in the direction v through z € J, are moved into S, and f., f;
are changed accordingly.

It follows that S, consists of characteristics of the following types. For an
infinitesimal set of v € S?, all characteristics in direction v are in S,,. For all
other v € 52, the set of z € O,, that for all |v| belong to a characteristic for
Sy in direction v, has infinitesimal projection into €2,. For such v the integral
[ydz [ (V) fr(z,v)dv ~ 0, where A is the set of those z € O,, for which (z,v)
with v = 7|v| outside an infinitesimal set of |[v| < n’, belong to characteristics
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parallel to v and not in Sy.. It follows that [v(f)ds = [ v(f.)ds along charac-
teristics with f. #Z 0.
The previous discussion for

/w f(z,v)dzdv =1

can be repeated with an arbitrary finite m > 0 in place of 1, giving corresponding
fa fcv fsa f)\; F and os. For

/1/1 flz,v)dzdv =m

/w F(z,v)dzdv = Mg(m), /F(x,v)dxdv = Mo(m),/v2F(a:,U)dacdv = Mjy(m).(3.2)

Let ¢, denote positive constants depending on f, but not on m.

Lemma 3. M;(m) > 0 form > 0, lim,,_,o M;(m) =0 for j = 0,2, lim,,_,o, Ma(m) =
00, limy, oo Mo(m) = oo for —n < f <0, lim,, oo Mpg(m) = 0o for 0 < B < 2.
Proof. The property lim Mo( ) = 0 follows from [ F(z,v)dzdv = st [ f.(z,v)dzdv <

J ¥(v)f(z,v)dzdv = m. Denote by ¢, the constant ¢ of (2.4) when [¢f = m.
Using Green’s formula on (2.4), it follows that ¢, [ v fdzdv < Cy with Cy, finite
and independent of 0 < o < oy for some oy with st ay > 0.

Moreover,

2 2
o> 2 _my
/Qdaﬁ/Rav fdv > 55 de R3¢7(v)f(ac,v)dv o

with ' = maz(3,0), and so

My(m) = /UQF(.Z',U)d{EdU < st/Uch(x,v)dacdv < /UQf(:v,v)dxdv < %, (3.3)

m

’ ﬂl

2 2
mey, = cm/dx () f(z,v)dv < —20m/112f(x,v)dxdv < —Ch,
Q R3 n n

1 mn?
—_ > 3.4
Cm 26101,1 ( )

Given d € R,0 < d < 00, it holds that

/Qdac A)Sdl/(f)dv <mC(d) < oo,
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since

/Q da [ w)f@v)dv =m.

Using (2.3), it now follows that

m > fo(z,v)dzdv > ¢, 'c(m),
lv[<d

where st ¢(m) > st ¢ > 0 for m < myg, mq finite. Hence, also using (2.3), for m
finite it holds that

:/dx/ F(z,v)dv >st/dx/ fe(z,v)dv > 0,
o Jre Q v|<100

and also using (3.3),

0 < lim My(m) < hm%zﬁ
m—0 m—0 Cm,
But F satisfies (1.1-2) (as will be proved in next section), hence also (2.3). Sup-
pose (Mg (m)) is bounded for some sequence m — co. Then it follows from (2.3)
for F, that Mo(m) > 2=, and so by (3.4) that lim My(m) = oo. This contradicts
the hypothesis, and so limy, oo Mg (m) = 00, limy, ;o Ma(m) = co. O

4. End of proof of Theorem 1

The part of Theorem 1 concerned with estimates for the M-moments is con-
tained in Lemma 3 of the previous section. It remains to show that F' solves the
boundary value problem (1.1-2). This is here carried out for m = 1. Test func-
tions are functions ¢ € L*®(Q x R?) with vV, in L®(Q x R?*) and continuous
along characteristics, with supp ¢ compact, and ¢(z,v) = 0 for z € 9Q with
v-ii(x) < 0.

Lemma 4. For test functions o,

/dx|/fc*<pdv— */ngdm ~ 0. (4.1)

Proof. The proof of (4.1) uses a nonstandard consequence of the following in-
equality from the proof [8] of the averaging lemma

/ / 9@ =90 )00 < CllglalloVaglr,  (42)
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where
g(z) = /g(x,v)dv.
For i € NT define f! along characteristics where |v| < 7 and
i < felw,v) <
by

vV fi =Qt —ofl x € *Qv e ‘R
cfi(z,v) = folw,v) Ai, © € O, v - fi(x) > 0.

Here 7 = v A j and the integrand of @7 is the integrand of Q% multiplied with
the characteristic function of the set of (x,v,v,,w) such that

ol [ou <0, fUf <iffe, £ <5

Since 0 < f: < f. < i is finitely bounded together with Q*,7, obviously
oV fi fi € *L*(Q x R®), and f! := f. — f! satisfies (for a suitable sequence

(4;)) lim st / fidzdv = 0.
71— 00

To prove the lemma it is enough to prove (4.1) for f} and a corresponding
standard Lebesgue function F,. Set f, = [ fidv. For 0 < s € Ry

.

3 - ~
o st/mssdh/gd:dfn(x—l—h)—fn(:v)| <

fn (x + h)dh — fn(x)

dz <

3
Ams” Jin<s

<

f _f 2
< 031/2(s1;/ fnlz + hi)# IO gy < cs2 o,

when s — 0.
But f! defines a standard Lebesgue integrable function F;, by

Na% O/fé *pdrdy = /anodxdv.

Set F, = [ E,dv. For °s > 0, f|h‘<s fn(ac + h)dh only changes infinitesimally,

when z changes infinitesimally. Moreover, for z € Q a Lebesgue point of F,,

3 . -
t n h)dh — F,(x),0 < °s — 0.
el Wsz (x + h) (z) s

Hence st f,(z) = F, ost(z), Loeb a.e. z € *Q.
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Analogously, for every test function ¢,

st/f,i(x,v)*(p(x,v)dv = /Fn("m,v)go(ox,v)dv,Loeb a.e. v € "L

This concludes the proof of (4.1). O

¢From here a proof can be given that F is a L' solution to the problem (1.1-2)
in iterated integral form.

Proof. Let x; be the characteristic function of the set of characteristics along
which F' < 7. It is enough to prove that for any test function ¢, the product
Xip = @; satisfies a weak form of the problem

/ Fv -V pidxdy + / xnByi(F'F, — FF,)
QxR3 R3xQOxR3x 52
1
dvdzdv,dw = — dx/ v - 7i(z)p; fodv. (4.3)
°c Jaq v-ii(z)>0

We let xi denote the characteristic function of those characteristics along which
fe Z0,f < k. Then f satisfies a corresponding nonstandard version of (4.3)
for the test function x; *¢; and with the extra term « [ fx; *¢;dzdv ~ 0. For
k € *R% with k < ', the first integral in (4.3) for F'is infinitesimally close to the
corresponding nonstandard one for f. The same holds for the boundary term.
So it remains to study the gain and the loss term.

An analogous result will now be proved for those terms, when £ € *N* is
sufficiently small. For convenience we write B for X, B. For the loss term it holds
for £ € N that

/ *0ixk B f fedzdvdvu,dw = / *0iXk B fefesdrdvdu,dw, (4.4)

since supp Xxf C supp fe, xxf < k. By spillover, this holds for £ < ky for some
n' > ky € *N*°. By Lemma 4, ky may be chosen so that, moreover, (4.4) is
infinitesimally close to

/ *oixe B[ Fidxdvdv,dw =~ / *0; B*F " F,dxdvdv,dw =
/gijFF*dxdvdv*dw.
The desired result is thus proved for the loss term

/*SDiXkaf*dedvdv*dw%/goiBFF*dxdvdv*dw.
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For the gain term, we start with an estimate from below, and then give
an estimate from above. Together they imply equality for the gain term. For
ko > k € *N* it holds that

/ *oixgBf' fldxdvdv,dw = / *Oix B[ frdzdvdv,dw
> / *OiX4 B fe ferdzdvdv,dw (4.5)
Set f.r = fo A R, and define Fr by
% mst/fcR*godxdv = /FRgod:vdv.
Using (4.1), for R € R, the last member in (4.5) can be estimated from below by
[ 6B on v
z/ *0iXp B fer * Fudzdvdv,dw
~ / *¢i B* Fp F dzdvdv,dw
= /aprFRF*dxdvdv*dw
— /(p;BFF*d:cdvdv*dw (4.6)

when R — oo. For the opposite inequality, let x;, be defined in the same way as
X, above. Then, for h € N,

of = Xl / o fudv,dz ~ / X foudlu,d,
and so using (4.1)

*OixeXxnBf fedzdvdv,dw

—~—

~
~

*(P;X;thchfc*d.Td’Ud’U*dw

QA

QA
— — — —

*OxnBf.* Fydrdvdv,dw
*0iB*F *F.dxdvdv,dw

@;BFF,dzdvdv,dw. (4.7)
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In (4.7) a comparison between gain and loss integrand, together with the entropy
dissipation estimate, was invoked to handle large velocities. For k finite fixed, for
h sufficiently large and finite, the first member of (4.7) is arbitrarily close to the
same term without the x; factor. And so the inequality between the first and
the last member in (4.7) holds without x4, i.e., for k € N*

/ *0ixBf frdrdvdv.dw /gprFF*dxdvdv*dw.

By spillover, this also holds for & < kg for some ky € *N*°. Together with (4.6)
this implies

/*(piXka'fidxdvdv*dw ~ /gpiBF'FldxdvdU*dw.
It follows that F' satisfies (4.3). O

Remark. The previous discussion can be carried through also in the case of B
without the x,-factor. But in that case, the present proof does not seem to rule
out the possibility that 4 = o,, F =0, and 1 f, = 0.
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