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Abstract: The purpose of this paper is to prove the LP(R™,dvy) boundedness, for p > 1, of the non-centered

Hardy-Littlewood maximal operator associated with the Gaussian measure dy = e~ 1217 dg.
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Let dy = e~17dz be a Gaussian measure in Euclidean space R™. We consider
the non-centered maximal function defined by

1
Mf(z) Sup (B /B |[fldv,
where the supremum is taken over all balls B in R" containing xz. P. Sjogren
[2] proved that M is not of weak type (1,1) with respect to dy. A more general
result was obtained by A. Vargas [3]|, who characterized those radial and strictly
positive measures for which the corresponding maximal operator is of weak type
(1,1). However, these papers leave open the question of the L?(dvy) boundedness
of Mforp>1andn > 1.

The main result in this paper is

Theorem 1 M is a bounded operator on LP(dvy) for p > 1, that is, there erists
a constant C = C(n,p) such that for f € LP(dy),

IMfllLo@r) < Cllfllzo(ay)-

We denote S7 ' = {r € R" : |z| = r} and S*! = SP"!, and write do for the
area measure on S™ 1. The spherical maximal function

. _ 1
M) =sup TR < B

[, 1fE)Nde(z),  hes,
|z'—h|<R
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is bounded on LP(do). We extend M€ to functions defined in R™ by using polar
coordinates = pz' with 2’ € S"~! and applying M¢ in the z’ variable. Then
M€ is bounded on LP(dy).

In order to prove Theorem 1, we need the following technical lemma, proved later.

Lemma 1 Let B be a closed ball in R™ of radius r. Denote by q the point of B
whose distance to the origin is minimal. Assume that |q| > 1 and that r > 1/|q|.
Then for all z, y € B

e ld” ly — o/’ T
1B 2 (“ (\q|<|x\va\—\q|>>> | @)

Here and in the sequel, we write C for various positive finite constants and denote
a A b =min(a,b) and a V b = max(a, b).

Proof of Theorem 1: We assume that n > 2, since the case n = 1 is well

known, see e.g. [2|. Take 0 < f € LP(dvy) and x € R". For any ball B containing
1

x, we must estimate the average Af(B) = ~(B) /B fdy. Let r and ¢ be defined
as in Lemma 1.

We first consider small balls B, and denote by M, f(z) the supremum of Af(B)
taken only over balls B containing x and verifying r < 1 A |¢|~!. Split R" into
rings Ry = {z : vk — 1 < |z| < Vk}, k =1,2,... . The width of Ry, is no larger
than 1/v/k, and so the Gaussian density is of constant order of magnitude in
each Ry. Using Lebesgue measure arguments, one can easily estimate the L?(d~)
norm of My f in Ry in terms of the L?(dy) norm of f in U{Ry : |k’ — k| < C}.
This takes care of small balls.

Consider now balls B with » > 1 A |q|~!. Observe to begin with that the case
lg| < 2 is simple, since then v(B) > C and thus

Af(B)<C [ fdy < CI| f o -

The corresponding part of M f thus satisfies the L?(dy) estimate.

It remains to consider M f(z) = sup Af(B), the supremum taken over balls B
containing z and with the property that r > |¢|~! and |¢| > 2. Let B be such a
ball, and observe that it satisfies the hypotheses of Lemma 1.

For each p > 1 such that S;’}_l intersects B, let y, € Sp”_l N 0B be such that
ly, — | = SUD ¢ grgn-? |z — x|. Write 2’ = z/|x|.
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For each 2’ € S ! such that pz’ € B we have

1
o' =2 = ;|P~T'—PZ'| (2)
1 !
< ;[\$—0Z|+\p—|ﬂﬁ|\]
2
< ;‘yp_x‘Q

and trivially |2’ — 2/| < 2.
Because of (2) and the definition of M,

ate) = [ [ o ol o e dp

lgl+2r 1 , o
/ql ~(B) /|z,_m,|52(1/\|_y,,p_x|) f(pz')do(2') p" e dp

c/“”{“W”f)H}AMﬂ

ql v(B)

< o[ gee {1y (Ve ) RO AN AT
N ql |z — y,/? p

MEf(pa')p"te " dp, (3)

where we applied Lemma 1 with y = y, to get the last inequality.
Write M = pV |z| and m = p A |z, so that |¢| < m < M.

pz')p" e dp

Lemma 2 For |q| < p < |g| + 2r and some C,

"T_l . n—1 . nT_l
6|‘1|2 1V M 1A M < C€m2 (L v U) .
|z — y,|? p m? m

Assuming this lemma for the moment, we conclude from (3) that

Af(B) < C’/loomem2 (i Y% U) ’ MEf(pz!)p" e dp.

m2 m

n—1

We split this integral into five integrals taken over the following intervals

|x|] <|x| 1 1 1

Il = [17_ ) 12: ,‘£C|—— ) I3: |.T‘— ,|.T‘+— )

2 2 || || ||
15 5

I = —_—, — I = — .

: Qﬂ+uvﬁﬂy 5= (5 lal,+o0)

3



Let fori=1,...,5

/me (L M) B M f(pz")p" e dp.

m2 m

Then Mf < C'Y2 M, f.

Bound for M, f(z).
One finds that

&

Muf(z) < |z* | MCf(pa') dp

»—\\w|

Hoélder’s inequality and the L?(do) boundedness of M® imply

+00 3 P
|| My f ||]£p(d7) < / / (sn/Mef(p:E’)dp) do(x')sn—1€_82d8
1 gn-1 1
< //np/|Me ,033 |p n—1g,=p dp(/,l) - peipzdp) da(xl)sn_16_52d8
1 8n—1

+o0
_342
< (/ s dS) | f ”LP(d'y <Ccl|r “LP (dv) -
1

Bound for M,f(z).

t
Making the change of variable p = |z| — Tl we get
2|~ 3
n+1 n—1 e
Mof(z) < Cla [ (o] = p)"3 Mef(pa') d
|z/2

P2, ¢,
< C/1 55 Mef <(|x|—m)x> dt.



(From Minkowski’s integral inequality and the LP(do) boundedness of M¢, we
obtain
c [T me Ly
| v ((al - oD% ) Xpcest,

— oo nT_l oo _E ,>p n—1_—s2 I:|p
= 0/1 t [/Sn—l/\/Z_t f((s S)ac s" e Tdsdo(2')| dt.

We now make the change of variables s — p = s — t/s, observing that s < 2p
and —s? = —p? — 2t +¢?/s* < —p* — 3t/2 and dp/ds > 1. Thus

dt
L (dv)

| Mo fllr(ay)

IN

(ST

oo 4 +o00 , el —p? ,
Mo fllLe@y < C/l tz [/Snl/\/ﬁ—zlf(px) Pp"te= e 3 2 dpdo (z )] dt

T n_1 3t
< Ol ([ ¢ Bat) <O 1o,

Bound for M;f(z).
Let du = p"'e=*" dp in Ry. We have

jal+1/lo] ,
Maf(a) < Clal [ M f(oa')dp
, flel+lel
< Clullal = /lal,lal +1/la)™ [ 7 M F (o)),

Let M* denote the one-dimensional centered maximal operator defined in terms
of u, acting in the p variable. Then

M;f(z) < CMPMEf(|zlz’).

But M* is known to be bounded on LP(du), see [1] or [2]. The LP(d7y) bounded-
ness of M3 follows.

Bound for M,f(z).

t
Making the change of variable p = |z| + T’ we have
T

ntl 2 %|$| 1 2

Maf(e) < Cla" e [T (o= Ja)"™ M (pr') 7 dp
LI Tl

m|2

4 n-l e L —2t *t—zz
2 — |z
o/1 5 M f<(|a:|+ |%')J;) =2 ¢ TP df.

IN
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Minkowski’s integral inequality implies

t2

But M¢€ is bounded on LP(do), so that

| MafllLeay) < 0/ e 2dt.

Lr(dy)

2

€ t +5
1M f((|x|+ﬂ) )e P x{l«l 2112y

2

< C/ /s" . x)e s \pda( "s"le™* ds.

Almost as in the case of My, we make the change of variable p = s + t/s

and observe that s < p and —s* = —p? + 2t + t?/s? and dp/ds > 1/2. Since

e Pt/ gt 1, it follows that the above double integral is at most

+00 )
C/Sn—l/l |f(p$')|ppn_1€_p d,OdO(xl) eZt < C||f||1£p(47)€2t
Thus

+
|IMafller@y < 0/1 ||f||LP(d7 e ?dt < C||f]lLecay)-

Bound for M;f(z).
Observe that

+o00
Msf(z) < [af 2" el / MEf(pz') p™% p"e ™ dp.
Szl
We take the L? norm and then apply Holder’s inequality, getting
P

2

| Ms fII%. dv) M f(p") T e - dp | do(z')s" '™ ds
(

<[]+

Sk

1)) g Pdp | do(z')s™ e *ds

/IMef )P e dp

»>|°‘\—|—

+o0o
N gy ([ 57000 as)
< Ol ary



To finish the proof of Theorem 1, it now only remains to prove the two lemmas.

Proof of Lemma 1.

Consider the hyperplane orthogonal to ¢ whose distance from the origin is |¢| +t,
with 1/(2|q|) < t < 1/|q|. Its intersection with B is an (n — 1)-dimensional ball
whose radius is at least Cv/rt > C\/r/|q|. Integrating the Gaussian density first
along this (n — 1)-dimensional ball and then in ¢, we get

1/lal ) >
+(B) > / o (gl +0)? gy e Py,
(B) 1/(2lal) v|<C/r/ld]

where v is an (n — 1)-dimensional variable. The inner integral here is at least
C'min(1, (r/]g])"9/?) and e~(4+9” > Ce~19 for these t; therefore

e la? r\ T
1B 2 O (M(H) ) (4)

To estimate r from below, we let z be the center of B and w the projection of
x onto the line passing through 0, ¢ and z. Write h = |z — w| and a = |w — ¢.
Applying the Pythagoras Theorem twice, we get

\x—z|2—(r—a)2:h2:\:r—q\2—a2.

Since |z — z| < r, we conclude that 2ar > |z — ¢|?. Clearly a < |z| — |g| so that

z—q? z — ¢|?
r> > )
2(|z) — lql) = 2(|z[ V |yl — lal)

Since x and y are arbitrary points of B, the same argument also implies

ly — qf?
— 2(|z| Vv |y| — |q])

From the triangle inequality we conclude that 2|z — ¢| V |y — ¢| > |z — y| and so

_ 2
> z —y _
8(|z| Vv y| — lql)

Combining this with (4), we obtain the inequality of Lemma 1. The proof is
complete.




Proof of Lemma 2.
We write LHS for the left-hand side of the inequality to be proved. Assume first

that o
lq|(M —q))\ *
( [z =y, ) =t ®)

Then LHS < el9”(|z — y,|/p)"!. The angles at ¢ of the triangles Ogz and Ogy,
are obtuse, so that |z > |g|* + [z — ¢|* and |y,[* > [q|* + |y, — ¢/*>. But
|z —y,| < |z —q|+ |y, — q|, and this implies

|z —y,|? < 4max(|z—g?, [y,—q|*) < 4max(|z*~|q?, |y, —|g[*) = 4(M>—[q|?).
If |z| < 2p, this last quantity is at most 16p(M — |q|), and then
M— N
LHS < Celd’ (J> . (6)
p

In the contrary case |&| > 2p, we simply observe that LHS < Cel?” whereas the
right-hand side is at least Ce™. This case of the lemma is thus trivial.
Assume now that (5) is false. Then

g2 (gl (M = lg))*=
pnfl

LHS <e

and we arrive again at (6).
It thus only remains to see that (6) implies Lemma 2. This would follow from
the estimate

el (M — |g))*T < C((1/m) V (M — m))*T. (7)
To prove (7), we use the fact that
(M —[q))*T < C((M=m)*T +(m—|g))*T)

and when m — |¢| > 1/m also

n—1"*

C

pla?=m® _ g~ (m—la)(m+la)) <
T (m—g)) T m>

Now (7) and Lemma 2 follow.
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