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Abstract

The paper considers initial boundary value problems for the non-
linear Boltzmann equation with large L' initial data and for the lin-
earised Bolzmann equation with L? initial data. Particular problems
under analysis describe flows in a domain consisting of two subdomains
connected through a joint part I' of the boundary which can have a
complicated fractal geometry.

The presence of interaction between these two parts of such a flow
and the possibility to reach a uniform stationary state when time goes
to infinity depends on initial data and on the Hausdorff dimension of
the contact set I'.

Geometrical conditions for the existence of such a global stabilisation
for the nonlinear Boltzmann equation and for the linearised Boltzmann
equation are studied and found to be different. Renormalised L' so-
lutions can in general penetrate I' only if its 2-dimensional Hausdorff
measure is positive. Solutions to the linearised Boltzmann equation in
L? can go through much thinner "holes” that have Hausdorff dimension
larger than 1.



1 Introduction

The initial boundary value problems for the Boltzmann equation were consid-
ered for more than 30 years. Solutions to the linearised Boltzmann equation
and solutions to the nonlinear Boltzmann equation close to a global equilib-
rium were first studied by C. Cersignani, J. P. Guiraud, S. Ukai, K. Asano,
N. Maslova, A. Heintz and by other, see references in [7], [17].

The existence of solutions for problems with large L' initial data was con-
sidered in a DiPerna-Lions setting in several papers by O. Hamdache [10],
L. Arkeryd and C. Cercignani [2], L. Arkeryd, N. B. Maslova [3], L. Arkeryd,
A. Heintz [6]. S. Mischler has recently announced [19] an important result
that reflection boundary conditions for renormalised solutions to the Boltz-
mann equation are satisfied with equality.

The long time asymptotics of solutions to the nonlinear Boltzmann equa-
tion and the stabilisation to a uniform Maxwellian for initial boundary prob-
lems were considered in papers by L. Desvillettes [8], L. Arkeryd, A. Nouri [4],
L. Arkeryd and A. Heintz [6].

For strongly nonlinear problems the convergence to the stationary equilib-
rium state is shown [5], [6] in the case when the temperature on the boundary
is constant and the reflection on the boundary is of the Maxwell diffuse type.

Corresponding questions for the linearised Boltzmann equation are much
less involved and in contrast with the strongly nonlinear case are usually con-
sidered in L? space, see [7], [17], [23] and references therein.

In the above mentioned papers the spatial domain where the flow takes
place is assumed to be an open connected set.

Questions concerning boundary value problems for kinetic equations in
domains with irregular boundaries were considered by A. Heintz in papers
[12]-[15] and by L. Arkeryd and A. Heintz in [6]. In these papers the boundary
is supposed to have finite two dimensional Hausdorff measure and satisfies a
cone condition.

The behaviour of kinetic equations in domains with “fat” fractal boundaries
(“fat” meaning that the Hausdorff dimension is larger than 2) is still unclear,
because the classical kinetic boundary conditions use the notion of normal on
the boundary which is generally not defined in any reasonable sense for such
boundaries.

It is interesting to investigate instead a complementary problem of the
behaviour of solutions to kinetic equations in the case when the gas is inside
a domain which has “thin” fractal subsets.

In the present paper we consider initial boundary problems for kinetic
equations in a domain consisting of two distinct Lipschitz subdomains such
that intersection I' of their boundaries is a fractal set. This “contact set” is



a kind of fractal hole that connects two subsets of the flow. We investigate
here how large the Hausdorff dimension of this “hole” must be to guarantee
that solutions to a kinetic equation in one part influence solutions in another
part. In particular we establish conditions when both solutions tend to the
same uniform Maxwellian equilibrium function in both parts of the flow as
time tends to infinity.

The physical idea behind the constructions in this problem can be illus-
trated by the following example. Consider a unit cube divided in the middle
into two equal parts by a square with a set I' of holes. One can choose a
sequence [, of these holes such that each IT',, is the n-th step in the classical
construction of a fractal Cantor set or of the Sierpinski carpet in the plane. One
can pick a sequence of sets I'), that converge to a fractal set I' with arbitrary
Hausdorff dimension between zero and two [20].

We suppose that the boundary conditions on the surface of the cube and on
both sides of the square are of the Maxwell diffuse type with constant temper-
ature. Results from [6] imply that for each I',, a non-stationary renormalised
or mild L' solution to the initial boundary value problem for the nonlinear
Boltzmann equation converges to an equilibrium distribution. It is a spatially
uniform Maxwell distribution const - M (v).

A natural question is how fast this convergence can be if with ¢ tending to
infinity, the holes I';, tend to a fractal set. In one case, for any fixed ¢ > 0
there exists a time moment 7, such that the difference between the solution
and the equilibrium state becomes less then ¢ uniformly with respect to n after
the time 7,. One can say in this case that a gas governed by the Boltzmann
kinetic equation can penetrate these fractal holes. In another case it might
take an infinitely long time to get close to equilibrium when the set I, of holes
tends to a fractal set. It means that in this case the gas cannot go through
fractal holes.

Such kind of problems were considered for elliptic and parabolic equations
in the paper [22] by Zgikov where also a useful in this context notion of p-
connected domains was introduced. It is established there that solutions to
the heat conduction equation with Neumann boundary conditions tend to a
constant limit solution as ¢ — oo for arbitrary initial data from L'. Expressing
the result in [22] in physical terms, it is shown there that heat can penetrate
holes with the Hausdorff dimension larger than one.

It is apriori not evident what kind of behaviour a rarefied gas has with
respect to fractal holes in a membrane. Locally on short distances there are
almost no collisions between molecules. The fine fractal geometry of holes
means that this local behaviour of the gas governs its interaction with the
boundary close to the holes.

Physical reasons imply that such a flow can interact via small holes only



if their Hausdorff dimension is equal to two or equivalently, if their area is
nonzero.

A mathematical answer to this question in two particular cases is the main
result of the present paper. It differs from what intuition says and also differs
from the case with the heat conduction. The behaviour depends on the regu-
larity of the initial data and the corresponding regularity of solutions. Strong
L? solutions to the linearised Boltzmann equation converge to a global spa-
tially uniform Maxwellian if the holes have Hausdorff dimension larger than
one. Renormalised L' solutions to the nonlinear Boltzmann equation converge
to such a global equilibrium only if the set of holes has Hausdorff dimension
equal to two.

Our analysis uses results from [22] on p - connected domains but their
application to kinetic equations depends on specific issues.

2 Equations and boundary conditions.

We consider a set Q from R? consisting of two disjoint open domains ; and €2,
having Lipschitz boundaries 0€2; and 0¢2; and also including a “contact” set I
which belongs to the intersection 0€2; N 0€2. Initial boundary value problems
for kinetic equations with reflection boundary conditions on (92, U0$22)\I" are
considered. We are interested in how large the contact set I' should be to let
the part of the solution in €2; influence the solution in €2,.

Let f(t,z,v) be the mass density distribution function for molecules in the
phase space Q x R? at time ¢ > 0, where z is in €, and v is in R3.

One of the equations under analysis is the nonlinear Boltzmann equation:

af 3

a%—v-vzf:Q(f,f), te (0, 7), z€Q, veR. (2.1)
The conservation of mass, momentum and energy of molecules in collisions
and natural symmetries of collisions imply that [7]

[ QU P v [0 v =0, (22)
and the equation
Q(m.m) =0 (23)
has a unique solution
m(t, z,v) = p(t, z) exp{—a(t, z)|v — u(t, z)[%}, (2.4)



where p(t, x) is the mass density of the gas, u(t, z) is the macroscopic velocity,
and a(t,z) is proportional to the mean internal energy density of the gas at

the time ¢ in the point x.

1 3/2
The function M = M(v) = (2—> e7I"72 is an equilibrium distribution
T
function corresponding to the macroscopic velocity u(x,t) = 0 the density

p(t,x) = 1 and constant temperature.

The linearisation f = M + MY2f of (2.1) gives the linearised Boltzmann
equation for the deviation f of the distribution function from the equilibrium
M. We use for simplicity the notation f instead of f also in the formulation
of the linearised equation:

of
ot

The collision operators Q(f, f) and L(f) have the following structure:

+v-Vof =L(f), t€(0,T), z€Q, veR. (2.5)

QLN = [ / — v w) f f — f . dv, dw, (2.6)
R3 J]w|=1
M'Y? - L(f) = Q(Mmf M)+ Q(M'*f, M) (2.7)

with f = f(t,x,'l)), f* = f(t,x,v*), fl = f(t,l',’l)l), f>sl< = f(t,fL',U,lk), where
t >0, and z, w, v, v, v,, v. € R®. The velocities after collision v, v are
functions of the velocities v, v, before collision and of w € {w € R? : |w| = 1}:

vV =v—w(w,v—u,), vl = v, + w (w, v — v,). (2.8)

The kernel B(|v —v*|, w) in the collision operators Q(f, f) and L(f) is a func-
tion depending on the physical model of collisions between molecules. We
assume that for A(z) = [, -, B(|z[,w)dw the following estimate is valid:
A(z) < Clz|*%, 0 < ¢ < 2. This requirement is satisfied for hard poten-
tials with an angular cut-off [7]. In this case operators Q(f, f) and L can be
splitted up to a sum of positive and negative part, gain term and loss term:

Qf, f) = Q+(f,) Q" (f, f)=v(f) - £,
// B(v — v, w) f' f! dv, dw,

/ / — Vs, w) fi dv, dw, (2.9)
and correspondingly

L(f) = K(f) = A(v) - f. (2.10)



The following properties for the operator L in L?(R®) take place. The
operator is defined for functions f such that A\}/2f € L?(R?).

Ldjj = 0’ ] = 1a 2; 31 4’ (dJJ’ ¢i)L2(R3) = (S'L,ja (211)
o = MY% opy = MY 25, 5 =1,2,3; by = MYV267Y2(u]? = 3).  (2.12)

L is symmetrical and not positive in Ly(R3). If P, is the projection in Ly (R?) to
the subspace builded on 9;, 2 = 0, ...4 and P is the projection to the orthogonal
subspace then

(LS, Prawey < —kIPfllLy sy, &> 0. (2.13)

Projections in L*(R?) to ¢;, j = 0,1,2,3,4 are deviations of density, velocity
and energy from the their equilibrium values corresponding to M (v). Operator
K is symmetric and compact in the space Lo(R?), A(v) is a continuous function
such that )\0 < )\(’U) < )\1(1 + |’U|), )\0,)\1 > 0.

The initial conditions are

f(0,z,v) = Fy(z,v), €, veR?, (2.14)

Boundary conditions on 0Q\I" are of the Maxwell diffuse type corresponding to
the equilibrium distribution M (v). In the case of the full nonlinear Boltzmann
equation (2.1) they are

[Tt z,v) = R(f) = \/Q_WM(U)/ [z, ") [ - n(z)| dv',  (2.15)

v'-n(z)<0

t>0, x€dO\Tl, ve R

with relation / V2rM(v)|v - n(z)|dv = 1 giving mass conservation for
v n(z)>0
collisions of particles with the boundary.

Boundary conditions of this type corresponding to the linearised equation
(2.5) are

[t z,v) = \/%Ml/z(v)/ M2~ (t,z,0") |v" - n(z)| dv’, (2.16)

v'-n(z)<0

t>0, x€oO\Il, ve R

The outgoing and ingoing distribution functions f~ and f* on the boundary
are

0, ifxe o, vn(x)>0
[t z,v) = f(t,z,v) — f (¢, 2,v) if z € 0O\T .

f‘(t,x,v):{ flt,z,v), ifxe o, vn(r)<O0



Here n(z) denotes the unit inward normal to 0Q\I" at the point z. In the case
of Lipshitz domains €2; €25 it exists almost everywhere and a cone condition is
satisfied for €2; and €2,.

In the case when both directions of the normal n(z) in the point z, are
inward with respect to {2 we set two boundary conditions of the type as above
at both sides of 0f2 in such a point z.

The product of linearised collision operator L(f) with A(v)~" acting on
on an L? function is an L? function. It makes possible considering traces of
solutions and boundary conditions almost everywhere on the boundary. The
corresponding analysis of existence, uniqueness and stability for solutions in
the case of smooth domains is given in [17], [23]. The case with irregular
domains was investigated in [12] and further generalised in [14]

The lack of summability of the nonlinear collision term Q(f, f) implies that
in the nonlinear case one needs a special analysis of traces. We use below the
following notations: D = (0,T) x Q x R, V = Q x R?;

Y =(0,T) x (OQ\I') x R? with v-n(z) > 0; X~ = (0,T) x (0Q\TI') x R3,
with v - n(z) <0; v = (¢,z,v) € D.

Define forward stay time as ¢t (v) = inf ({s>0: (t+ s,z + sv,v) € ¥ })
and a related quantity s~ (v) = min{T—t,¢t (v)} with v = (¢, z,v). Introduce
a parametrisation of the distribution function

f#(t, tb) = f(tb + 1,z + tU,U), Ty = (tb,xb,v) €D,

for 0 <t <t (vy), and zero otherwise.

For mild solutions f to the nonlinear Boltzmann equation discussed later,
it is convenient [6] to obtain traces f* on X* as a limit of mean values along
segments of collisionless trajectories inside the cylinder [0, 7] x

f*(r) = lim l/OEO fH(Fe - sT,v)de (2.17)

e0—0 g

1

The analysis of an integral form of the nonlinear Boltzmann equation [6]
shows that such traces of solution satisfy boundary conditions with inequality

>Ry (2.18)
Equality takes place if the collision term Q(f, f) is integrable.

Definition 2.1 f € L'(D) is a mild solution of the problem (2.1), (2.14), if
f has the following properties: f >0, Q*(f, f)* € L*([0,s7]) and

Fi(rre) = frn) = [ QUL FF(ear (219)

for 0 < 1,7 < s (v) for o - almost all v € ¥* and for L™ - almost all
(x,v) € V, where v = (0,z,v). The traces 2.17 of the solution f exist and
satisfy (2.18) for o - almost all v € X.



Exponential, renormalised solutions and solutions in iterated integral form
[3] are defined similarly. The equivalence relations for this case are proved in
[14] and use arguments from [9], [3].

3 Notion of p-connected domains.

Studying the questions we have declared in the Introduction needs adequate
analytical tools for characterisation of geometrical those properties of the joint
set I" that influence the asymptotic properties of solutions.

In the context of potential theory and elliptic equations the notion of ca-
pacity corresponding to a given equation or a given class of functions serves
as a tool that helps to classify such subsets that influence the behaviour of
solutions [1], [18].

In the paper [22] a useful notion of p-connected domains was introduced for
purposes similar to ours. Let Q be a bounded domain and W'?(Q) be a closure

of C®(Q) = {ulp,u € C*(R?)} in the Sobolev norm / (Jul? 4+ |VulP)/Pde.
Q
Let = Q;UQy where 2; and €2; are disjoint domains and I' = 0€2; N 0S),.

Let W'?(Q) be a closure in the Sobolev W' norm of the set of functions u,on
Q such that u € C*°(R?),i=1,2.

Definition 3.1 Two disjoint domains 0y and 2y are p-connected ( through
the contact set I ) if

u€W(Q), Vu=0 aeon Q= u=const ae on .

The following useful criteria for p-connectedness were proved in [22]. They
use the p-capacity c¢,(I') of the contact set I' with respect to a sphere B such
that I' C B.

cp(F):inf{/B|Vq5|pdx, peCP(B), ¢=1 near F} -
3.1

We use below the following result from [22].

Theorem 3.1 Let )y and Q9 be Lipschitz domains. € and Sy are p-connected
if and only if the p -capacity c,(I') of the contact set I' is not zero.

A well known connection between Hausdorff measure H* and p-capacity
implies that inf(p) such that €; and €2, are p-connected is equal to 3 —dim(T).
In the case when p =1 ; and Qy are 1-connected if and only if H?(T') > 0.

One can find such and similar results and useful references in [1], [18].



4 Convergence to equilibrium. Linear case.

We consider here the long time asymptotic of solutions to the linearised Boltz-
mann equation on a set () consisting of two disjoint Lipschitz parts €2; and €2,
and the contact set I'.

We formulate results in terms using Hausdorff dimension instead of capacity
because it is geometrically more tractable. We denote by dim(I") the Hausdorff
dimension of I'.

Theorem 4.1 Let Fy € L?(Q2 x R?).

Then there is a unique solution f(t,z,v) € C((0,00), L*(Q x R?) to the
problem (2.5), (2.14), (2.16).

If the contact set T" between 2y and Qy has the Hausdorff dimension dim(I")
larger then 1 then f(t,x,v) tends to CMY?(v) in L*(Q x R®) whent — oo ,
where C' = [q, 10, Fo(z, v)MY2dzdv is the initial deviation of the mass of the
gas in the whole €.

If dim(T) < 1, then the limit stationary states in 2y and Qo can be different.

Proof. A proof for existence of a unique weak solution f in L?(Q2 x R3)
for an open connected set 2 with regular boundary is given in [23], [11], [17].
The case when the set €2 is open, connected, and has irregular boundary 0f2
with dim(0€2) = 2 and satisfying a cone condition was studied [12], [13].

The existence part of the proof in [12] is valid in the present case. It is
based on the statement that the operator —vV,f 4+ Lf with boundary con-
ditions (2.16) is dissipative is the space L*(2 x R?) and generates a strongly
continuous semigroup of operators which in turn gives a weak solution to the
initial boundary value problem. The integral form of the problem gives the
regularity properties of solutions.

The asymptotic properties of solutions when t — oo depend on the spec-
trum of operator —vV,f + Lf with the corresponding boundary conditions.
The case with smooth boundaries is classical, see [17], [11], [23]. The case
with irregular domains was studied in [12]. There is a a half plane Re z >
—7rg, o > 0 in the complex z - plane such that there are no eigenvalues to
—vV,f+ Lf except zero. The asymptotic of non-stationary solutions depends
on the multiplicity of this zero eigenvalue.

Multiplying the equation for the corresponding eigensolutions f(z,v)

WV f+Lf=0 (4.1)

by f, integrating over Q0 x R?® by parts and taking into account boundary
conditions and (2.13 ) one gets that Pf = 0 and therefore f = 3%, a;(z)1;(v)
with a; € Ly(£2). In the linearised problems f having this form is a substitution
for the local Maxwellian distribution in the nonlinear case.



The boundary conditions imply that a; = 0 on OQ\I fori =1,2,3,4. The
linear collision operator L acting on f gives Lf = 0, and (4.1) implies that

4

||)\—1/2 . Uvz Z ai(ﬂJ)?sz’(U)H%z(QxR:*) =0

1=0

Therefore € Ly(R2), and for all v € R3

Oa;(x)
0

m

L2 da;(x) da,
Z Z @bﬂﬁjvﬂ)m A a‘ai';v) . a](x)

4,7=0 [,m=1

= 4.2
o1, dz =0 (4.2)

Setting v = |v|e; and v = |v|(e; + €;) into the last equation with e; - vectors of
the orthonormalised basis in R3, we get
Oag(r)  Oay(x) da;(z) N Oam, ()
0t,  Oxm 0, ox;

=0,

(i,m=1,2,3)  (4.3)

almost everywhere in 2.

The last equations together with boundary conditions relations a; = 0 on
OO\T for ¢ = 1,2, 3,4 imply that ay = a; = ay = a3 = 0 almost everywhere in
Q.

If the contact set I' has Hausdorff dimension larger than 1 then €2; and €
are 2-connected [22].

Then ag must be constant in the whole €2 and the zero eigenvalue is simple
with the eigenfunction agy. For the non-stationary problem it implies that
non-stationary solutions converge to agyy when ¢t — oc.

The mass conservation laws for collisions in the volume and for reflections
from the boundary imply that a¢|Q2| = [ gz Fo(z,v)dzdv.

If the contact set I' has the Hausdorff dimension less then 1 then 2; and
()5 are not 2-connected and ag can attain two different constant values C'; and
C5 in Q¢ and €2,.

Then the limit solution is C14y in ©; and Ca)g in .

5 Convergence to equilibrium. Non-linear case.

In this section we study the asymptotic behaviour of non-stationary solutions
to the nonlinear Boltzmann equation on a set 2 = €; U {), consisting disjoint
domains €2; and €2, with Lipschitz boundaries and having a contact set I' =
00 NS

We recall the following existence result from [6] where it is proved for a
domain 2 with even more general boundaries.

10



Theorem 5.1 Assume that Fy(1+ v?) € L'(Q x R?), Fyln Fy € L'(Q x R3),
Fy > 0. Then there exists a mild solution to (2.1), (2.14), (2.15) in the sense
of Definition 2.19 satisfying

fec (0T, QxRY), f=0, Aj@mmzﬁﬁmm,

(1+27) f* € L'(5%), (5.1)
and uniformly with respect to t satisfying

sup (110 70, + 10+ 02) ] +lelPllinpy <€ (52)

Let pg = [oxrs Fodzdv/|Q| be the initial mean density of the gas in . We
assume here that the kernel B in the collision operator is nowhere vanishing.
The main result of the section is the following theorem.

Theorem 5.2 Let f be a solution in the sense of Theorem 5.1.

If dim(T") = 2 for the contact set T' between 2y and Sy then f converges
strongly in L'(Q x R3) to pyM (v).

If dim(T") < 2 then f converges strongly in Li(Q x R®) to a function that
is equal to pyM(v) in Q and poM(v) in Qo with some in general different
constants py and py such that p1|Q| + p2|Q| = pol€|.

Proof. It is enough to show that for every sequence t; tending to infinity
there is a subsequence ¢;, such that f;, (¢,z,v) = f(t +¢;,,z,v) converges in
LY(D) to e¢M for all T > 0.

The weak L'(D) convergence of a subsequence follows from (5.2). The
argumentation as in [5] or [16] gives that the limit is of strong L' type and
that it satisfies the Boltzmann equation in the mild sense. The limit is a local
Maxwellian m(t, z, v),

x)|v — u(t,z)|} (5.3)

m(t, z,v) = p(t, x) exp{—al(t,
%) € Li(2 x R?), (5.4)

m(t, z,v)(1 + |v

since the collision kernel is nowhere vanishing.
The function m(t, x, v) satisfies the equation

0
am—i—vvmm =0

because Q(m, m) = 0.

11



Having boundary conditions satisfied with inequality
_|_ —
i = B, (5.5)
on the boundary, we get that the limit m also satisfies the same inequality
m* > Rm~ (5.6)

The collision term @(m, m) being zero for m, implies that the inflow of mass
on OS2 over the time interval [0, 7] is equal to the corresponding outflow, and
that m satisfies boundary conditions with equality for a.a. (¢, z) on [0, T] x 012,
[4], [6].

The uniqueness up to a multiplier dependent only on (¢, ) for the Maxwellian
distribution satisfying the boundary conditions (2.15) implies that the veloc-
ity u is equal to zero u(t,z) = 0 and the temperature corresponding to the
Maxwellian m is constant and is equal to the temperature of the boundary
corresponding to the distribution M (v).

Functions p(z,t), u(z,t) and a(x,t) satisfy the following classical macro-
scopic conservation equations [7]

dp
ot +uV,p=0
ou
2V.p + 2paa +2pauV,u =0

that together with v = 0 and a = const imply that V,p = 0 almost every-
where in 2. We have that p € L'(Q2). The further properties of p depend on
dim(T"). The density p is constant in the whole  if dim(I') = 2. The mass
conservation for the Boltzmann equation and the boundary conditions give the
normalisation for m.

When dim(T") < 2 domains §2; and 5 are not 1-connected [22]. It means
that densities can be different constants in {2; and 25 in the limit stationary
solution.

6 Conclusions

The asymptotic with ¢ — oo behaviour of solutions to the linearised and the
nonlinear Boltzmann equations on a set consisting of two disjoint domains
and a fractal contact set is investigated. It depends essentially on regularity
of solutions and on the the Hausdorff dimension of the contact set that can be
interpreted as holes in a boundary surface between these domains.

The relatively simple analysis of the problem here is based on the indepen-
dent of the boundary conditions convergence of non-stationary solutions to a

12



locally equilibrium distribution having simple form and smooth with respect to
the velocity variable v. The advantage of that is that the space dependence of
this limit is governed by the classical macroscopic equations for density, tem-
perature, and velocity of the gas. These equations together with the boundary
conditions imply that the gradient V,p of the density is equal to zero almost
everywhere, temperature is constant and velocity is equal to zero. Different in
linear and nonlinear case integrability properties of these macroscopic variables
cause the difference in asymptotic properties of solutions.

A difficult open problem is the analysis of similar questions in the case when
the temperature of the boundary is not constant and a possible stationary
solution has more complicated structure.
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