Monge-Ampere currents
over pseudoconcave spaces

P. Dingoyan®

1 Introduction.

This paper is an attempt to understand growth of Monge-Ampere masses
along pseudoconcave directions in a complex manifold.

This problem arises in differential geometry when studying compactifi-
cation of complete Kiahler manifolds under certain curvature conditions (see
e.g. articles of Mok-Zhong [27], Nadel-Tsuji [28], Siu-Yau [35]).

In complex analysis, bounds on Monge-Ampeére masses of a closed positive
current near a pluripolar set implies an extension of this current through the
set (see e.g. works of El Mir [26], Sibony [33], Skoda [37]).

In this direction, the L?—Riemann-Roch inequality of Nadel-Tsuji (see
[28]) implies that a complete Kdhler Hodge metric on a pseudoconcave man-
ifold is of finite volume.

Our first result is obtained in the framework of pluripotential theory. Let
M be a complex manifold, dimM = n > 2, and let w be a closed positive
(1,1)—current. Assume that w admits local locally bounded potentials. To
each open subset U of M is associated an extremal admissible function ¢*,
which is defined on a suitable pseudoconvex hull U; of U. It satisfies the
Monge-Ampere equation (w + dd®p*)” = 0 on U; \ U, as current of order
zero. We deduce the following comparison between measures (we work in
the relative topology of Uy).

Theorem. In the above situation, let X be a connected component of U; \ U
which has a compact boundary. Assume that {¢* < ¢} N X is relatively
compact in U; for any ¢ € R. Then

/ w" < / (w+ ddp*)" < +o00 .
X X
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Here, to check the hypothesis we restrict ourself to domains on projec-
tive manifolds. It allows us to obtain a complex analytic treatment of the
problem. Related methods appear already in [12, 29]. For a more differential-
geometric point of view, we refer to papers cited below.

We obtain the following applications. Let V' be a projective manifold,
dimV =n > 2, and let H be a complex hypersurface in V such that V'\ H is
pseudoconcave in the sense of Andreotti (see Definition 7.1). Let X CC M
open neighbourhoods of H. Then the following Hartogs’ theorem for currents
holds.

Theorem. In the above situation, let w a closed positive (1,1)—current de-
fined on M \ H which admits local locally bounded potentials. Then

/ w" < 400,
X\H

and w* extends through H as a closed positive currents, k =1,... ,n.

If X =V and w is a smooth complete Hodge Kéhler metric on V'\ H, then
the above result is a variation of the L2—Riemann-Roch inequality of Nadel-
Tsuji (see [28]). In general, the difficulty in establishing the above finiteness
estimate is that neither pseudoconcavity nor completeness assumptions are
made on M itself. To overreach it, we used line bundle convexity and alge-
braic properties of pseudoconcave spaces (see [16]).

Next, we try to derive similar estimate for more singular closed positive
currents. We are able to work with currents (on spread domains W over V)
such as pullback ¥*wpg, where ¢ : W — PV is a meromorphic map from W
to a projective space and wgg is a Fubiny-Study form on it.

Our technique is to produce, by mean of the L? theory of ideals (see
Skoda [36]), positive currents wy linked to 9*wrs but with Lelong number
globally shifted by —k (see Demailly [13] for other methods in the compact
case). These currents are pluricomplete (see Def. 6.7). This is a convexity
condition on wy and A, the non-smooth locus of wy, which allows to work
on M =W\ A.

As an application, we deduce that global Hartogs’ extension phenomena
occur in projective manifolds for meromorphic maps.

Theorem. Let U be an open subset of the projective manifold V' such that

V\ U is a pseudoconcave domain in the sense of Andreotti. Assume U = U.
Then any meromorphic map v : W(0U) — PV define on a neighbourhood
of QU extends as a meromorphic map to U.



These results give some understanding of global and compact singularities
for meromorphic maps or currents. We note that there exists hypersurfaces
H as above which may not be blow down to lower dimensional spaces. Hence,
even for meromorphic maps, the situation may not be reduced to local ex-
tension results similar to results of Ivashkovich [23]. Moreover, note that non
compact complex singularities of strict positive dimension are already local
essential singularities for Monge-Ampere currents.

Many interesting points are not yet explored or stated. In particular,
in the inequality above, an estimation of the measure (w + dd“p*)" 1sx is
needed and also the extension properties of currents through a divisor H
with pseudoconcave complement. We will return to these problems later.

The paper is organised as follow.

In section 2, we recall background on pluripotential theory and Monge-
Ampere currents following works of Bedford-Taylor [7, 9.

In section 3, we introduce the class P, (M) associated to a closed positive
(1,1)—current w on M (see also [8, 21]). We define Monge-Ampere currents
such as dp A d°p A (w + dd°p)F and state a basic comparison lemma.

In section 4, we introduce various almost well known pseudoconvex hulls
and study elementary properties of them. In particular, we recall that the
subset where a family F C P,(M) is locally bounded from above is an open
locally pseudoconvex subset in M. For an open subset U of M, we defined
two kind of extremal functions on a suitable pseudoconvex hull of U. We
study their properties by mean of techniques in pluripotential theory (see
[6, 7, 9]). When w is a Chern current of a line bundle E — M, we give an
interpretation of these extremal functions in term of hulls of holomorphy in
E*.

In section 5, we prove the above inequality and make some comments.

In section 6, we study a hypersurface Z in a pseudoconvex spread domain
W over a projective manifold V' = (V,O(1)) by mean of L? techniques. We
prove the existence of [; € N (which depends only of the canonical bundle of
V') such that O(kl,) ® [Z] is spanned by its global sections away of {p € W :
vp(Z) > k+ 1}, where v,(Z) is the multiplicity of Z at p. We introduce then
the notion of pluricomplete currents and, essentially, construct the currents
wy above.

The last section is devoted to applications of the preceding results for
Hartogs’ extension properties in projective manifolds for meromorphic maps
and Monge-Ampere currents.

The starting point of this paper is the classical result that a hull of holo-
morphy in the trivial bundle over a domain in C" is a geometric counterpart
of a complex Monge-Ampeére equation in that domain (see Bremermann [10]).

Part of this paper was written during a stay financed by a European
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2 Quasi-continuous functions and
the class G(M).

We recall some definitions which appear in [7, 9].

Let M be a complex manifold, dimM = n. If an open subset U of M is
biholomorphic to an open subset U’ C C", via a biholomorphic map h: U —
U’, then, for any subset E of U, the relative capacity C'(E,U) is well defined
and equal to C(h(E),U’). A subset F' in M is pluripolar if F' read in any
open chart is pluripolar.

Definition 2.1 Let Q be an open subset of C".

(1) A function f : Q — {—o0,+0cc} is said to be quasi-continuous if, for
any € > 0, there ezists an open subset O of Q with C(0,) < € s.t. f is
continuous on Q\ O.

(2) A function f: M — {—o00,+00} is said to be quasi-continuous if f read
in any open chart of M is quasi-continuous.

(3) A sequence {f;}jen of functions is said to converge quasi-everywhere to a
function f on M, if there exists a pluripolar set F' in M such that f; — f
on M\ F.

(4) A sequence {f;}jen of Borel functions on Q is said to converge quasi-
uniformly to f, if it is uniformly bounded, it converges almost everywhere to
f, and, for any € > 0, there exits an open subset O of Q such that C(O,) < e
and f; — f uniformly on Q\ O.

(5) A sequence {f;}jen of Borel functions on M is said to converge locally
quasi-uniformly to f, if there exits a covering of M by coordinate charts {U,},
such that, the sequence {f;}jen, read in these coordinate charts, converge
quast-uniformly to f.

Quasi-continuous functions form an algebra which, according to [6], The-
orem 3.5, contains plurisubharmonic functions. Note that if f is quasi-
continuous on M, then for any continuous function x : R — R, x(f) is
quasi-continuous on M. The following was shown in [6].

Lemma 2.2 Let {p;};en be a sequence of plurisubharmonic functions which
converge monotonically almost everywhere to the plurisubharmonic function
. Then the convergence is locally quasi-uniform.
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Definition 2.3 ([9]) We denote by G(M) the class of currents on M which
locally are represented by currents in the exterior algebra generated by

- smooth forms,
- locally bounded plurisubharmonic functions,

- du, d°u, dd“u where u is a locally bounded plurisubharmonic function.
That s of the form
T =xP(r1,...,m)0us A ... \du, Addwy A ... A ddw, (2.1)

where x s a smooth form, P is a polynomial, the 7;, u;, w; are locally
bounded plurisubharmonic functions, and each occurrence of § is either d or
de.

Note, that these currents, for non smooth functions, are defined as limit
of smooth ones, where each occurrence of the plurisubharmonic functions is
replaced by smooth plurisubharmonic functions which converge, monotoni-
cally, to the given plurisubharmonic functions. This definition is justified by
the fact that, for smooth function (and so, a posteriori, for non smooth ones)
the above currents put small mass on set of small capacity (see [9], Lemma
2.2).

It follows from [9], that currents in the class G(M) are of order 0, that the
expression (2.1) is continuous under monotone, uniformly bounded, almost
everywhere convergence in the plurisubharmonic functions 7;, u;, w; and in
the weak topology on the space of currents of order 0.

We state in a weak form Theorem 2.6 of [9].

Theorem 2.4 Let T;,j € N and Ty be currents in G(M) which are locally
of the form

o 60D N A6 AddoaT) AL A ddoo? (2.2)

where, each occurrence of & denotes either the operator d or the operator
de, a,(c]) = ug) - v,(f), the ug) and v,(gj), j € NU {oo}, are locally bounded
plurisubharmonic functions such that

(4 ()

U k—t)}—oo Uso s (23)
() (4) 2.4
Vg k—)_—>|—oo Uso s ( : )



and the convergence is monotone in k. If {¢;}jen is a sequence of quasi-
continuous functions which converges locally quasi-uniformly to the quasi-
continuous function ¢ then

lim ¢;T; = Ty

j—+oo

as currents of order 0.

3 The class P,(M).

Let M be a complex manifold, dimM = n. Let w be a closed positive
(1,1)—current on M. It is known (see [20], p.387) that w admits local poten-
tials. For an open subset X biholomorphic to an open Euclidean ball in C”,
there exists a € PSH(X) such that dd°a = w. We will refer to this situation
by saying that a is a local potential for w on X. In this paper, we make the
following assumption.

The current w admits local potentials which are locally bounded.  (3.1)

Hence we assume that there exists a € PSH(X) N L*°(X,loc) such that
dda = w.

Definition 3.1 A measurable function ¢ : M — R U {—oc} belongs to
P,(M) if there exists an open covering W = {W;}ica by subsets biholo-
morphic to FEuclidean balls in C*, and local potentials a; € PSH(W;) N
L>*(W;,loc), such that a; + ¢ is plurisubharmonic, i.e. a; + @ is upper semi-
continuous and its restriction to any complex line in W; is a subharmonic
function.

We note that ¢ € P, (M) if and only if, for any open subset W biholomor-
phic to an open Euclidean ball, any local potential a € PSH(W )N L*> (W, loc),
the function a + ¢ is plurisubharmonic. For, two local potentials for w differ
locally on there common definition set, by a pluriharmonic function. More-
over, any function which belong to P, (M) is quasi-continuous. For if a is a
local potential for w on an open set U, and ¢ € P, (U), then a and a + ¢ are
plurisubharmonic. Hence ¢ = a 4+ ¢ — a is quasi-continuous.

Upper regularization with respect to w.

Definition 3.2 (1) A function ¢ : M — [—o0, +oo[ will be said upper semi-
continuous with respect to w, if, for any p € M, there exists an open neigh-
bourhood W of p, a local locally bounded potential a € PSH(W) N L (W, loc)
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for w, such that a+ @ is upper semicontinuous on W. A function h on M will
be said lower semicontinuous with respect to w if —h is upper semicontinuous
with respect to w.

(2) Let ¢ : M — [—o0, 400 be a function which is locally bounded from
above. Define ¢*, the upper regularization of ¢ with respect to w, as follow.
If a s a local locally bounded potential for w on an open subset W, then

'=(a+¢) —a (3.2)

where (a + ¢)* stands for the usual upper reqularization of a + ¢ on W in
the classical topology (a + ¢)*(p) = limsup(a + ¢)(2).
Z—p

We note that these definitions are well posed since two local potentials
for w differ locally by a pluriharmonic function.

With this notion of upper regularization w.r.t w, we will have, e.g., classi-
cal stability properties of P, (M) with respect to upper envelope (see Lemma
4.5). Note that Choquet’s lemma is valid.

Lemma 3.3 Let {ug}aca be a family of real valued functions on a complex
manifold M. Assume that a + u, 1S upper semicontinuous for any local
potential a of w and any o € A. Assume this family is locally bounded
from above on M. Then there exist a countable subset B C A such that

(sup ug)* = (supug)® (upper regularization w.r.t. w).
acA a€B

Proof.  Let {W;};en be a countable open cover of M, such that on W,
w admits a local potential a; € PSH(W;) N L*(W;,loc). Applying Cho-
quet’s lemma (see [25, 24]) to each family of upper semicontinuous functions
{a; + ta}aca on W;, there exists B;, a countable subset of A, such that
(sup(a; + uq))* = (sup(a; + uy))*. Let B = U B;. Then B is countable
acA €B;

o

ieN
and (sup(a + uq))* —a = (sup(a + u,))* — a for any local potential for w.
acB acA
By definition, (sup uq)* = (sup uq)*.

acA acB

Definition of Currents of order 0.

Let w;, 1 <4 < r, be closed positive (1, 1)—currents which satisfy the con-
dition (3.1). From Theorem 2.4, if ¢; € P, (M)NL*>®(M,loc) then expression
of the form

T=06p1 Ao Nowg A (w1 + dd@ri1) A ..o A (wp + ddCg;), (3.3)



where ¢ is either d or d°, defined a current which belongs to the class G(M).
T is the unique current which is locally equal to

T=06(ar+¢p1)—a))A... AN ((ag + pr) — ag) A
dd®(ags1 + ©r41) A .. Add(a. + @), (3.4)

where a; denotes a local locally bounded potential for w;, 1 <17 <.
For these currents, usual calculus rules are satisfied. We state in particular
the following lemma.

Lemma 3.4 Let ¢ € P,(M) N L>*(M,loc), x € C*°(R,R). Then for any
0 € C3° (M), the following algebraic identity holds

/ Ox () (w + ddp)" = / Ox(p)w"

- / (d8)x(0)d0 P () — / Ox ()dp A d°oP(g),  (3.5)
where

Pp)= Y (w+ddp)*w’. (3.6)
i
Proof.  First, it is enough to check the above formula locally. Assume,
suppf CC B, where B is the Euclidean unit ball in C", w = dda, with
a € PSH(B) N L*(B,loc), so that a + ¢ € PSH(B) N L*(B,loc). Let
(@ + @)e, ae, 1 > € > 0, be family of smooth plurisubharmonic functions
defined on B, which decrease, as ¢ — 0, to a + ¢ and a respectively on an
open neighbourhood W CC B of supp#.
Let M = [[(a + ©)1llwoo + latllwoo + la + ellwe + llallwe < +o0.
From [6], Theorem 7.2, for any n > 0, there exists {2, an open subset
of W, such that C(W,Q2) < n, and the above convergences are uniform on
W\ Q. Define ¢ = (a + ¢)c — ae, then

(@) = x(P)lIwrnco < (max Dt = ellwrne =0 (3.7)

Since the 1. and ¢ are uniformly bounded on W, for any x € C*(R,R),
X () converge quasi-uniformly on W to x(¢). But for smooth functions

/ Ox(be) (dd°(a, + b.))" =
/ O (1) (ddar)" + / Ox(L)dd oy P(b) ,  (38)



where

Pp) = Y. (dd°(ac+ )" (dda.)’ . (3.9)

a+pf=n—1
a,3>0

Hence,

/ Orc(abe) (dd(ac + )" = / O () (ddea,)"
- / (d0)X ()P (1) — / Oy () dpd v P(6).  (3.10)

Letting € — 0, we have that x(t.) and () converge quasi-uniformly
to x(¢) and x'(p) respectively, on W. By definition, d“i). P(1).) converges to
d°oP(p), (dd°(ac + 1¢))" converges to (w+ dd°p)"™ and (dd°a.)" converges to
w™. Since the hypothesis of Theorem 2.4 are satisfied, we obtain the formula
(3.5) above.

We state next our basic lemma.

Lemma 3.5 Let M be a compler manifold, and let X be an open subset of
M with compact boundary. Let w be a closed positive (1,1)—current which
admits local locally bounded potentials. Let ¢ € P,(X) N L*(X,loc) such
that

(1) there exists a neighbourhood W of 0X, with pwnx >0,
(2) lim SUp, ,ox ¥ = 07
(3) Vpe X, {9 <¢(p)} cc M.

Let x : R — R* be a positive smooth decreasing function. Then

X

400> [ M@+ ddor > [ (@)
X
where ¢ denotes the extension by 0 of ¢ to M.

Proof. First, we note that ¢ belongs to P, (M) N L*(M,loc). For

@ ze X\ W
p=< max(p,0)=¢ z€ XNW .
0 ze M\ X



Hence, for any local locally bounded potential a of w on an open charts W,
we have

a+o ze (X\W)nw'
a+¢p=1¢ max(a+p,a)=a+¢ z€(XNW)NW
a ze(M\X)NW'

which is a plurisubharmonic function in W' (see [24], p.69).

Hence, we will assume that ¢ € P, (M) N L*(M,loc) and that it vanishes on
M\ X. Let W, be a relatively compact open neighbourhood of 0X. Let 6 be
a smooth positive function with suppfd C X UW;, # = 1 on a neighbourhood
of X.

Assume first that ¢y = supy ¢ is not a maximum. Then, for any ¢ € R,
c<cy = {p<ec}nNX CcC M. If ¢y is a maximum, then X is a compact
subset in M. Hence, it’s enough to prove the Lemma under the following
technical assumption.

(3’) There exists an increasing sequence { X }ren of smooth positive decreasing
functions such that suppxx(¢) N X is a relatively compact subset in M and

lim xx(¢) = x(¢) on M.

k—+o00

Since supp Oxx () is a compact set in M, Lemma 3.4 gives

/ Oxx(p) (w + ddp)" = / Oxx(p)w"

- / (d0)xk(@)d“pP(p) — / Ox;(@)dp A doP(p), (3.11)
where

Pp)= > (w+ddp)*w’ (3.12)
a+ﬁB:>nOfl

Note that dp Ad°pP(¢p) is a positive current on M. But X}, is negative, hence
- / Oxi(p)dp A d°pP(p) > 0.

Since ¢ is vanishing on a neighbourhood of supp df, the second term of
the right hand side vanishes. Hence

/ Bk () (w + ddp)™ > / Orcn(0)” (3.13)

The above integrals being finite, letting first 6 decreasing to the characteristic
function of X; and then £ — +o00, as the sequence x; is increasing in k, we
get the result.
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We give the following example. Let M = C*, X = B(1), where B(1) is
the unit ball, and let w = dd®||z||* the standard Kahler metric. Then 1 —
||z]]* belongs to P,(X) and satisfies the conditions of the above lemma. Its
extension by zero is (1 — ||2]|2) = max(0, 1—||z||?) so that ||z]|>+(1 — ||2]|?) =
max(||z||?,1). Lemma 3.5, for xy = 1, says

/ (dd® max(1, ||2]|*))" > / (dd°||z||>)" ,
dB(1) B(1)

which is in fact an equality.

4 Pseudoconvex hulls.

Let M be a complex manifold, dim¢M = n > 2, and let M; be an open
subset of M.

We recall that M; is said to be locally pseudoconvex in M, if there exists an
open cover W of M by Stein open subsets W such that M; N W is Stein, for
any W € W.

It follows, from Oka’s theorem [30] and Docquiert-Grauert’s theorem [19],
that M, is locally pseudoconvex in M if and only if, for any Stein open subset
X of M, M; N X is a Stein manifold.

The above definition being local, any connected component of the interior of
an intersection of a family of locally pseudoconvex open subsets of M is a
locally pseudoconvex open subset of M.

Definition 4.1 Let U be an open subset of M. Then there exists U, the
smallest locally pseudoconver open set in M which contains U. We say that
U is the pseudoconvez hull of U in M.

We list elementary properties of pseudoconvex hulls.

Lemma 4.2 i. let f : M — Y be a holomorphic map between complex
manifolds, Y; an open subset of Y such that U C f~1(Y;) then U C f~1(Y}).
1. Let a group G acting, on the right, on M by holomorphic transformations,
such that Vg € G, Ug=U, thenVg e G, Ug="TU.

Although the properties of the boundary of Uin M , if it is non empty,

may be expressed, away of U, in the language of uniform algebras (see [22, 7]),
we will only state the following elementary lemma.
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Lemma 4.3 Let (W', (2)) be a holomorphic charts, with W' a relatively com-
pact Stein open set of M \ U. Then, for any open relatively compact subset
W in W', and any polynomial P in the complex coordinates (z),

max P = max P.
wnalU awnal

Proof. ~We argue by contradiction, and prove that if the above condition
is not satisfied, we may push a hypersurface in U which is disjoint from U.
Denote K = OU. Assume there exists a polynomial P such that || P||gqw =
|P(z)| =1 for some zg € K NW and ||P||gxrow < 1.

K NOW being compact, there exists 0 < € < 371d(zy, 0W) s.t. |[P| < 1on
Se={ze€W,d(z, KNOW) < €}. Let Wy-1, = {z € W, d(2,0W) > 271},

1
and let Ay, ={z€ W, P(z) =1+ %}, k € N*. Ay is an algebraic hypersur-

face in W\ K U S,,
+o0

and | | Ay N 0Wyre cC W\ K US..
1

+oo
There exists ag > 0 s.t. U(A’C + Ben (0, 09)) NOW, CcC W\ KU S..
1

+oo
wW'nU being a Stein open set and U A D 2p, there exists a sequence of

1
integers ki, ko, . .., and irreducible component C}, of Ay, such that
Cy, "W, € W\ U and Jim_d(z0, Cy,) = 0.
1—+00

_ Feo
Hence (Cy, + Ben (0, ap)) NOW, C OW, \ U. U A N W, is a compact subset
1

of W, \ S, hence there exists iy > a; > 0 such that
+oo

U(Cki + Ben (0,0)) N W, CC W\ S,. Take i big enough such that

1
d(z,C;) < 2 0y, take 21 € C, N B(z, 2 ), 22 € U N B(z0,2 ay).
Then (Cy, + z723) N W, N U is non empty and

(Cr, + 78) N O(W.NU) C AU NW,,

since A(W, NU) c (W, NU) U (8U N'W,) and

U NW, = (08U N W,) U (8U N oW,.).

In particular, H = (Cy, + z125) N W, N U is a hypersurface in U which

does not intersect U. However U \ H is locally pseudoconvex, contains U
and is strictly smaller than U, which is a contradiction.
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Remark. The proof of the above lemma shows that, if dimM = 2, then, for
any open Stein subset of M\U, W\0U is Stein. Hence dU is a pseudoconcave
set in the sense of Oka in M \ U (see [32], p. 88).

Lemma 4.4 Let W be an open set in M and let K be a compact subset in
W. Then the pseudoconvex hull of (UN (W \ K)U(WnNU) is WNU.

We may define other kinds of pseudoconvex hulls with respect to the class
P, (M) which are constructed by the following procedure.

Lemma 4.5 Let {pg}aca C P,(M). Then, the open set

X={peM :p=supy, is locally bounded from above at p}
aEA
15 locally pseudoconver in M. Further, on X, ¢* the upper reqularization of
@ w.r.t. w belongs to P,(X).

Proof. Let W be an open subset of X such that w admits on W a local

potential @ € PSH(W) N L*(W,loc). For any a € A, a + ¢, € PSH(W) N

L*>*(W,loc). So does (a+ ¢)" = (supa + ¢,)*, where x stands for the clas-
a€A

sical upper regularization (see [25], Theorem 5). Hence ¢* = (a + ¢)* — a
belongs to P, (W). Next, we prove that X is locally pseudoconvex in M.

Let h : A™ — M be a biholomorphic map from a neighbourhood of the
n—dimensional unit polydisc to M (dimM = n > 2). Denote

H={pe A" : ;< |mp <1}U{peA” : z(p =...=
zno1(p) = 0, |za(p)| < 1}. Let a € PSH(W) N L*°(W,loc) a potential
for w on W, a neighbourhood of A(A™). Assume h(H) CC X. By con-
struction, (a + ¢q)(p) < maxyzy(a + ¢)* for any p € h(H) and o € A.
Since the holomorphic hull of any neighbourhood of H contained A", we
have (a + ¢q)(p) < maxyg)(a + ¢)* for p € h(A™) and o € A. Hence, by
definition, h(A™) C X since a € L (W, loc).

We will use the following lemma, which gives a property of the preceding
hulls, not realized for general pseudoconvex open subsets.

Lemma 4.6 Let M be a compler manifold, and let w be a closed positive
(1,1)—current in M. Assume there exists an analytic subset B in M such
that w admits local locally bounded potentials on M \ B. Let {@Ya}acn C
P,(M\ B). And let X denote the open set in M \ B where this family is
locally bounded from above. Then, the interior of X U B in M is a locally
pseudoconvex open subset in M.
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Proof. The lemma is local, hence we assume M is the unit ball. Let {¢q }aca
be a set of plurisubharmonic functions on M \ B, and let U be the maximal
open subset of M\ B for which this family is locally uniformly bounded from
above. Let ¢ be the upper envelope of this family, and let ¢* denote its
upper regularization, which is a plurisubharmonic function in U.

Write B = By U By, with codimB; = 1 and codimB, > 2. First, we
prove that, in M \ By, the interior U’ of U U By is locally pseudoconvex. Let
h: (H,A™) — M \ B; be a Hartogs’ frame (as defined in the above proof)
such that h(H) CC U’ and h(A™) CC M \ B;. Since codimB; > 2, each
plurisubharmonic function ¢’ in M \ B admits a plurisubharmonic extension,
which we denote ¢', to M \ B;. ¢ satisfies that for any relatively compact
open subset X in M \ By, supy ¢ = SUp x\ g, ¢'. This fact applies to *.
Hence for any «, MaXF,( ) p* > SUDp( 1) Pa > SUP (AR Pq- In particular, any
point of h(A™) \ B, belongs to U, so h(A™) C U'.

Next, by using the disc characterisation of pseudoconvexity, it is classical
that if X is an open pseudoconvex subset in M \ Bj, then the interior of
X U By is pseudoconvex, when B is a complex hypersurface.

Remark. In particular, this set X may be thought as a kind of bimeromor-
phic invariant.

The following lemma gives a key property of the class P,(M).

Lemma 4.7 Let W be an open subset of M biholomorphic to the unit ball
in C*. Let D CC W be a strongly pseudoconvex open subset of W. Then,
for any v € P,(M), there exists a unique function 1 = Tp(¥) € P,(M) such
that ) =1 on M\ D and (w+ dd°@)" =0 on D. Further ¢ > 1.

Proof. Let a € PSH(W) N L*°(W,loc) be a potential for w on W. From [6],

—~——

Proposition 9.1, a unique function a + 9 exists such that

(dd(a + @))" = 0 onD
at+p=a+¢ onW\ D

andm2a+tp on W. Note thatm—a:won W\ D and we define

& = max(¢Y,a+v—a)=a+v—a zeW
(G z€ M\W
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Definition 4.8 A family A C P,(M) is stable with respect to an open subset
U C M, if, any point p € M\U admits a pair of open neighbourhoods (W, D)
as in Lemma 4.7, with W C M \ U, such that, for all u € A, the function
Tp(u), deduced from u by the above Lemma 4.7, belongs to A.

Fix an open subset U of M and a family A C P, (M) which is stable
with respect to U and the max operation. Assume that the open subset X

where A is locally bounded from above contains U. Denote ¢* = (sup ¢)*,
PEA
the upper regularization (w.r.t. w) of the upper envelope of this family, which

belongs to P, (X).

Lemma 4.9 Under the above hypothesis, the positive measure (w + ddp*)"
has support in U.

Proof.  Notice that there exists an increasing sequence {u;};en C A such
that (lim;, . u;)* = ¢*. Indeed, A being locally bounded from above on
X, from Choquet’s Lemma 3.3, there exists a countable subset {9, }nen C A
such that ¢* = (sup,cy ¥n)*. Define u; = max,<; ¢,. By hypothesis u; € A.
Moreover sup, ey ¥n = lim; o uj. Let (W, D) be open neighbourhoods of
z € X \ U as in Definition 4.8. Replacing each u; by @; = Tp(u;) € A as in
Lemma 4.7, we have

the sequence {@,};en is increasing, since #; may be obtain by a Perron
method,

it increases to ¢* outside a pluripolar set, since p* = (_lir+n 4;)* and the
j—+o00

Jj—+o00 j—+o00

negligible set {(.lim @;) < ( lim 11])*} is pluripolar.

Applying [6], Theorem 7.4, we see that (w + dd®di;)™ is weak™ — convergent
to (w + ddp*)™. Since the former measures are vanishing on D, the later is
vanishing on D. Since this property is valid for any such pair (W, D), with
W NU = (), the assertion is proved.

4.10 Some extremal functions.

Let w be a closed positive (1,1)—current on the complex manifold M. As-
sume that w admits local locally bounded potentials near every point in M
(see (3.1)).

Definition 4.11 Let U be a domain in M, and let h be a function on U
which 1s locally bounded and lower semicontinuous w.r.t. w. Define

15



X(hyw)={peM o= sup o is locally bounded from above at p } ,
YEPR, (M,U,h)

where P,(M,U,h) = {¢ € P,(M) such that ¢y < h}.

Let ¢* be the upper reqularization of ¢ (w.r.t. w) in X(h,w) and call it
the extremal function associated to U, w and h. Define U(h,w) to be the
connected component of X (h,w) which contains U.

By assumption, P, (M, U, h) is locally bounded from above on U, hence
X (h,w) contains U. When h = 0, and M is a pseudoconvex domain in C*,
we obtain the usual hull of holomorphy of U with respect to M. For M a
projective manifold, A = 0, our hull is similar to the hull introduced in [21].
We refer to this article for further properties when this hull is assumed to be
compact in some locally pseudoconvex domain.

We note that this family is stable by the the max operation and with re-
spect to U (see Definition 4.8). Hence the extremal function ¢* € P, (U(h,w))
satisfies the interesting property quoted in Lemma 4.9. Moreover, in U, we
have (w + dd°¢™)" = 0 on the open subset {¢* < h} (see [6], Corollary 9.2).

Another interesting hull is obtain by the following balayage procedure.

Definition 4.12 Let U be a domain in M and ) € P,(M). FizD = {D,}ien
an open cover of M \ U by open strongly pseudoconver subsets D;, which
are relatively compact in complex holomorphic charts f; : W; — Bea (0,1).
Assume that each D; is repeated infinitely often in the sequence D. Define
by induction, ¥_1 = ¥, and ¥; = Tp, (Y1), for i € N. Let X(¢) denote
the open subset where the family {1;}ien is locally bounded from above, and
let U(y) be the connected component of X () which contains U. Define

B() = (sup;en ¥i)*, which belongs to P,(U(v)).

Note that this family is an increasing sequence w.r.t. ¢+ € N. By construc-
tion, it is stable with respect to U. Hence B(v)) satisfies (w + dd°B(v)))" =0
on U(y) \ U. Moreover, B(¢)) > 1 on U(3). Although B(¢)) depends in
general of the cover chosen, we will not indicate this dependence.

Remark.

i. Assume w is strictly positive in a neighbourhood of a point p € M, e.g. there
exists an open set W in M which is biholomorphic, through the holomorphic
map h, to the open unit ball in C", and s.t. w > ch*(w.), where ¢ > 0 and
we is the usual Kéahler metric on C". Let # € C*°(M) with compact support
in W. Then 6 € P, (M) for N € N large enough. In particular, if (M, wo)
is a Kédhler manifold, P,,,(M) and P, ,,(M,U,0) are non empty sets.
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ii. Under the above hypothesis (i). Apply Lemma 4.7 to the open set W
(for some strongly pseudoconvex D CC W) and the function ¢ which is
identically equal to zero on M. We obtain a function 1 which is zero on
M \ D, strictly positive on D, and satisfies (w + dd°))" =0 on D.

iii. In particular, the balayage procedure, as defined in Definition 4.12, when
applied to the zero function, gives a positive function which is strictly positive
in points where w is strictly positive.

iv. Let X be a relatively compact domain in M with smooth boundary. As-
sume for simplicity that w is smooth and strictly positive. Then applying
the Green formula for X with respect to the Kihler metric w (see [5]), we
see that a family F C P,(M) is locally bounded from above in X if it is
bounded for the L! norm induced on 0X.

4.13 The case of a Chern class.

In this section, we interpret our results when w is a Chern current of a line
bundle. First, note that a closed positive (1,1)—current w is the Chern
current of a hermitian line bundle L over a complex manifold M if it lies in
H?(M,Z) via the De-Rham isomorphism.

Let (E,h) — M be a complex hermitian line bundle with positive (singular)
metric curvature. Denote 7 : E* — M the bundle map from E* to M, the
dual line bundle of E, and denote |¢|? the norm of ( € E* induced by h. In a
local trivialization, tw : By, ~ WxC, |(|> = aw,(7(C))[l0t(()|* where ay, is
a logarithmic plurisubharmonic function in W, with dd®In(aw;) = iC(E, h).
Here |l o ¢(¢)| is the complex modulus of the image of ¢ by the natural
projection Ej, — C.

Let A be a subset of M. Denote Ta(a) = {¢ € EJ;, (| < a}, and denote

T4 = Ta(1). In this section we will study more closely TE, the pseudoconvex
hull of Ty in the complex manifold E*.

Lemma 4.14 7/}\] is a disqued pseudoconvex subset of E*.

Proof.  Here we are concerned with the action of C*, in the fibre of E,
(A\,¢) = A.(. Let A be a non zero complex number, X7y C ATy, hence

—

Ny C ATy But Ty € A *\Ty, hence ATy, € ATy So ATy = M. This is a
classical result that if W is a pseudoconvex domain in C"*, H an irreducible
hypersurface in W and K a compact subset in W, with HNK non void, then
the pseudoconvex hull of (W \ H) U K is W. Hence Ty contains 0.7y since
it contains 0.7y. As for any complex number A in the unit disc, ATy C 7/’;,
we have X1y C Ty
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Since Ty C 7 1(U) and 0.7y ~ U, from the above lemma, we see that Ty
is a twisted pseudoconvex Hartogs’ domain over U. Moreover Ty C Tp(1).
In particular, when we assume that iC'(E) admits local locally bounded po-
tentials, there exists an u.s.c (w.r.t. iC(£)) function ¢ € Py )(U ) such
that Ty = {¢ € E*, In|¢|> + ¢ < 0}. Indeed, let ¢, : By, =~ Wi x C be a
local trivialization of E* over the open subset Wi. Since ¢; is a morphism
of vector bundle, t; (TU‘WI) is a Hartogs’ locally pseudoconvex domain with
base Wi. Assume that W is biholomorphic to an open ball in C" and write
t1(Tow,) = {(z,p) € Cx Wy, In|z> + ¥ (P) < 0} with 1)1 a plurisubhar-
monic function in W;. Define ¢ = 9; — Inaw,+,. Let t3 : E‘W ~ Wy x C
be another trivialization of E*, with Wy biholomorphic to an open ball in
the complex Euclidean space, and let 1), the corresponding function de-
fined as above. On Wy N Wy (if non void), t; o t;' : (Wo N W;) x C ~
(W1NWs) x C is an isomorphism of holomorphic line bundles with transition
function g; 5. We have In|g;2(p).z|? + Inaw, +, (p) = In |z|? + In aw, 4, (p) and
In[g12(p).2|* + ¥1(p) = In|2[* + ¢»(p) hence Y1 — Inaw, s, = Y2 — Inaw,,.
Hence ¢ is well defined on U. By construction iC(E) 4+ dd‘¢ > 0 on U.

Note that ¢ is maximal in the following sense.

Let W be an open set in U\ U, and let i € Picmy(W). If W' is a relatively
compact open subset of W and if hmalvrvlf(p( z) —P(z) >0 then ¢ > in G.
2—=O0W'

For the function

, | max(p, ) zeW'
LA ze WA\W
belongs to Piom)(U) and is zero on U. Hence { ¢ € Er :In|¢PP+¢ om(() <

0} is pseudoconvex, contains 7y, hence contains Ty. So ¢’ = .
In particular, we have the following property for .

Lemma 4.15 Assume that iC(E) admits local potentials which belongs to
PSH(M) N L*(M,loc). Then, the positive measure (iC(E) + dd°p)" as sup-
port in U, the closure of U in U.

Proof. Let D, W be domains as in Lemma 4.7 with W N U = . Since ¢ is
maximal in the sense as above, Tp(¢) = ¢. However, (w+ Tp(p))™ vanishes
on D, by construction.

Next, we look to the class Pic(g)(M,U,0) and to U(0,w).

Lemma 4.16 Let Ty;(0,0) denote the hull of Ty with respect to globally de-
fined plurisubharmonic functions on E* (see section 4.10). Then Ty(0,0) is
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a disqued subset over U(0,w) which contains the image of U(0,w) by the null
section. Moreover Ty (0,0) = {¢ € E*, In[¢|> + ¢*(7(¢)) < 0}, where ©* is
the extremal function associated with U and w (see section 4.10).

Proof. By definition Ty (0,0) € {¢ € E*, In|(]* + ¢*(7(¢)) < 0} = A.
To prove the equality, we argue by contradiction. Let {, € A\ Ty (0,0).
A being open, there exists a neighbourhood W of (, in A, a non constant
plurisubharmonic function ¢ on E*, such that {¢) < 0} contains Ty but
does not contains W. 1 being upper semicontinuous, {1 > 0} is the closure
of {1p > 0}. Hence there exists (; € W N {¢ > 0}. Let us replace ¢ by
Y =log|C|* + Nv. Then {¢' < 0} contains Ty and for N large enough, still
not contains (;. That is Ty C {¢' <0} N A g A. Hence,

Ty C ﬂ e?{y' < 0}NAC A. However ﬂ e?{y' < 0} is a twisted
0€[ 0, 2x] # o€l 0, 2]

Hartogs’ pseudoconvex domain over M, i.e., it contains the image of M by

the zero section of E' (this is why we change ). It contains Ty, hence, it is

defined by a function ¢’ € Picg) (M, U,0).

5 Bounds of Monge-Ampere masses.

Recall that if M is a complex manifold, a non relatively compact connected
component of M \ K where K is a compact set in M, is called an end of M.
Let w be a closed positive (1,1)—current on M, which admits local locally
bounded potentials. Let F C P,(M), and let X (F) denote the open subset
in M where this family is locally bounded from above.

Definition 5.1 An end of X(F) will be called a pseudoconcave end with
respect to F.

Note that X (F) may be not connected. We may prove finiteness theorem
for Monge-Ampere integrals on pseudoconcave ends with respect to F, if F
is rich enough. To avoid generality, we will restrict ourself to the following
situation. Let M be a complex manifold, let U be an open subset of M, and
let 7 = P,(M,U,0). Let U(0,w) as defined in section 4.10. Working in the
relative topology of U(0,w), we assume that U(0,w) \ U admits a connected
component X with compact boundary. That is X is a pseudoconcave end
with respect to P, (U, M,0), if it is non relatively compact.

Let ¢* be the extremal function associated with U(0,w). Recall that ¢*
is everywhere positive and restricted to U is identically vanishing. We make
the following assumption
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For any p € X, {¢* < ¢(p)*} N X is a relatively compact subset of U(0,w).

Let M; = UUX. We have O, X = Op(0w)X. Let Xe = {z € M; : d(z,X) <
€}. For e small enough, this open subset has a relatively compact boundary
in M;, and ¢* satisfies all hypothesis of the Lemma 3.5. Hence, from it, we
obtain (for small €)

+oo>/_ X(gp*)(w+ddcgo*)"2/_ x(¢") w"

X Xe

for any positive smooth decreasing function y : R — R*.

The integrals are finite since on X, the positive measure (w + dd“¢*)" has
support on X.NU, which is a compact set. Letting € going to zero, we obtain
the following Proposition (we work in the topology of U(0,w)).

Proposition 5.2 Let U(0,w) be as above and let X be a connected compo-
nent of U(0,w) \ U with compact boundary. Let o* be the extremal function
associated with U(0,w). Assume that {¢* < @(p)*} N X is a relatively com-
pact subset of U(0,w) for every p € X. Then, for any positive decreasing
smooth function x : R — R, we have

/ x(p* )" < /ax X(") (w + dd°¢p™ )" < 400 . (5.1)

In particular

/ W' < 400 . (5.2)

X

Remark.

i. Let M be a complex manifold and let w be a closed positive (1,1)—current.
Assume that ¢ € P,(M) is exhaustive and satisfies the Monge-Ampere equa-
tion (w + dd°¢p)™ = 0. Then Lemma 3.4 implies that w™ = 0.

ii. We want to point out that the conditions we impose on pseudoconcave end

to obtain finiteness of Monge-Ampere masses is global in nature.
First, we recall results obtained by N. Sibony in [33].

Recall that a closed subset L of a domain U in C" satisfies the condition (C),
if, for any point z € U, there exists a strictly pseudoconvex neighbourhood
U, CC U of z, a smooth plurisubharmonic function ¢ on U such that ¢(z) >
1 and ¢ < 0 on a neighbourhood V' of QU; N L. For a closed subset L which
satisfies this condition N. Sibony proved the following theorem.
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Theorem Let u be a plurisubharmonic function on U which is of class C? on

U\ L. Then for any compact subset K in U, / (ddu)" < +o0.
K\L

We notice that, by definition of the condition (C'), L is not a pseudocon-
cave set in the sense of Oka, that is, for a Stein domain B in U, s.t. BNL # (),
B\ L is not a Stein domain. In particular, any point z € L belongs to the
pseudoconvex hull of a relatively compact open subset W in U \ L, (x).
Condition (x) is weaker than condition (C). Indeed, let C* equipped with
coordinates zi, ... ,z,. Consider the line Z = {25 = ...z, = 0} and denote
B(r) the ball of radius r. If n > 3, then the hull of B(1) N {}_1, |z[> > 3}
contains a neighbourhood of the origin. But, Z being complex analytic does
not satisfy condition (C').

iii. However, for a closed set L, the above condition (x) is far from being
sufficient to have finiteness of Monge-Ampére masses near x. Indeed, B.
Shiffman and B. A. Taylor constructed a plurisubharmonic function v in the
unit ball, which is smooth on B(1) \ Z, such that fB(T)\Z(dd%ﬁ)" is infinite
for 0 < r <1 (see [34]). Hence the global condition to be a pseudoconcave
end in order to obtain finiteness result on Monge-Ampére masses may not
be removed, even locally, without other hypothesis.

For compact singularities in the unit ball, we obtain the following well
known fact (see e.g. [33]).

Corollary 5.3 Let u € PSH(B(1)), such that its polar set L = {u = —oo}
is a compact subset of B(%), and u is locally bounded on B \ L.

Then / (dd°u)" < +00.
B(3)\L

Proof. We work in M = B(1)\ L. The pseudoconvex hull of U = B(1)\ B(3)
is M. Now, —u € P,(M), where w = ddu, and this function satisfies that
{—u < ¢} N B(3) is relatively compact in M for any ¢ € R. So does —u — C
for some constant, chosen such that —u — C' is negative on a neighbourhood
of B(3). Let ¢* be the extremal function associated to w and U. But
@* > —u — C, hence from Proposition 5.2,

/ w" < / (w+dd°p*)" < 400 .

B(3)\L 9B(3)

1
2
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6 Pluricomplete currents.

As we have seen, we may obtain bounds of Monge-Ampere masses, associ-
ated to a closed positive (1,1)—currents w, on pseudoconcave ends, under
the assumptions that w admits local locally bounded potential and that an
extremal function associated to it is exhaustive along these ends. In this sec-
tion, we explain a way to deal with a more singular current w on a manifold
M which satisfies the first condition on M \ B, where B is an analytic subset
in M. If B may be written as intersection of hypersurfaces (e.g. an indeter-
minacy set of a meromorphic map with value in a projective manifold), we
are able to construct a function ¢ € P, (M \ B) which goes to +oo near B.
Hence, under suitable pseudoconcavity conditions, we will be able to prove
a bounds on Monge-Ampere masses of w. To avoid numerous hypothesis, we
will essentially restrict ourself to spread manifolds over a projective manifold.

6.1 Spread spaces and distance to the boundary.

Definition 6.2 Let (M, wy) be a Kdhler manifold. A complex manifold 7 :
U — M is spread over M if the map 7 is a local biholomorphism. We said
that m: U — M 1is locally pseudoconver over M (with respect to ©), if there
exists an open covering W of M by Stein open subsets W € W such that

71 (W) is a Stein manifold for any W € W.

We say that 7 : U — M is a domain over M, if U is connected. Examples of
spreading are

the canonical injection ¢ : U — M of an open subset U of M,

a covering map 7 : U — M of M,

the restriction my : U' — M of a covering map 7 : U — M to an open
subset.

In the first case, 2 : U — M is locally pseudoconvex over M if and only if U
is a locally pseudoconvex open subset of M.

We recall a generalisation of Oka’s theorem concerning the plurisubhar-
monicity of —logdyy, for U a pseudoconvex domain in C*. First, we recall
the notion of boundary distance for a spread space. Let m : U — M be a
spread space. We still denote wy the pullback by 7 of a Kéhler metric wy on
M. For Q € U, let dyy(Q) = sup{r > 0, s.t. expg : B(0,7) — U is defined}.
Hence dyy (@) is the infinitum of length of geodesics (parameterised by arc-
length) emanating from @ which are outside any compact subset of U in
finite time. This function is either identically oo or Lipschitzian.

Theorem 6.3 (Takeuchi [38]) Let (M,wy) be a Kdihler manifold and K a

compact subset in M. Then, there exists real constants 6 > 0 and «, such
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that, for any locally pseudoconver spread domain m : U — M, subject to
the condition m(U) C K, the function —logday (if U admits some boundary
points over M) satisfies dd® — logdgy > —awy for any point p in U such
that daU(p) < 4.

Although, we will not really used it, we want to point out that « (and J) does
not depend on U, that is the default of plurisubharmonicity is a differential
one and depends only on bounds on the curvature tensor of wy.

As an application, we will state some spannedness theorems. We restrict
ourself to the case of a spread manifold over a projective one’s.
We fix notations.
Let V be a projective manifold of dimension n > 2. Denote O(1) the line
bundle over V which gives the projective embedding of V. If 7 : U — V is a
spreading, we still denote O(l) for the pullbacks 7*O(l) of O(l) by 7. Also
we still denote wq for the pullback by 7 of a Kahler metric wg on V. If sis a
section of some line bundle on a manifold M, we denote ord,s its vanishing
order at a point p, if ¥ is a complex hypersurface in M, we denote mult,}
its multiplicity at p. For a divisor D on M, we denote v,(D) its multiplicity
at p. If s is a meromorphic section of a line bundle over M, we denote (s)
its divisor and Z, its zero set.

Theorem 6.4 Let (V,O(1)) be a projective manifold. Then there exists l; €
N, such for any l > 1y, for any locally pseudoconvex domain w : U — V owver
the projective manifold V', any hypersurface Y — U, and any p € U, there
ezxists an § € H'(U, O(1) ®[Y]) of minimal growth (in a sense precised during
the proof of the theorem) and such that ord,s < mult,Y — 1.

Proof. ~ We will only give the main arguments of the proof, since similar
methods appears already in great details in [4, 31| for the univalent case and
in [17] in the above case.

Since V' is compact and O(1) is strictly positive, there exists a real number
3 such that iRicci(wg) > —iBC(O(1)). Let ly = Ent(1 +n + () + 1, where
Ent(r) denotes the integer part of a real number r.

Let 0 and « denote the real constants which appear in the above Theorem
6.3. Let - > ¢y > 0 such that ey < 1. Let l; = Ent(max(daep +1+n —
1+8,14n))+1>1. Let I > l.

First, note that there exists a finite number of square integrable holomor-
phic sections of O(l) over U which give an immersion of U in some projective
space, see [18]. Hence, if p ¢ Y, one of those sections satisfies our require-
ments. Now, let p € Y.

Let t4,...,t, be sections of O(1) which give local coordinates centred in
m(p) and denote by the same letter their pullback by w. Let W be some
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small open neighbourhood of p in U, biholomorphic by 7 to some coordinate
open set. Let s; be a smooth section of O(l + 1) with compact support in
W, holomorphic and non zero in a neighbourhood of p.
Let k =€+ n—1, with 0 < € < €. For [ > Iy , we solve the d—equation
0s; = 0sy with weight exp —(k + 1) log ||¢||? by L? methods (see [11]).
Hence the holomorphic section s3 = s; — so on U, is non-vanishing at p.
Moreover, from the L? estimates, we deduce

2 .
I = |31 - 52| f(f4elogm1n(6,d3U\Y

)
. Ww dVUJO < +00 y

since [|t]|2(p) = ([t1|* + ... + [ta]?) (p) > C1d3 sy (P) In a neighbourhood of
p. Hence for [ > [y, from Skoda [36], the section (s3)y is in the range of the
morphism induced on global sections by the bundle morphism

Ol)@C* = O +1),(hy,...hn Hth

There exits hy, ..., b, € H'(U \ 'Y, O(1)) such that

||h||2 —4elog min(4, dau\y
v [t

AV, < +00. (6.2)

From the growth condition, the sections hi, ..., h, define sections §; of
H(U,0(l) ® [Y]). Let f be a minimal local equation of Y at p and write

h; = %. Then, fs;= Zg, Hence, s3(p) # 0, one of the g;’s has a

vanishing order lower than ord,f —1 = mult,Y — 1. Next the sections g;
globalize as sections §; of H(U,O(l) ® [Y]), and one of them satisfies our
requirements.

Remark. Since V is compact, max ||t||?* exists, hence

/ ||h||2€—(—4elogmin(5,daU\Y))deo S max ”t”%I (63)
U\Y v

So, rescaling the sections h; by a linear factor, we may assume that the right
hand side is lower than one.
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Corollary 6.5 Under the hypothesis of Theorem 6.4, letl > 1. Let E — U
be a line bundle, and let s € H*(U, E) \ {0}. Then, for any k € N and any
p € U, there ezists § € H'(U,E ® O(kl)) such that v,((§ = 0)) < (y,(s =
0)—k)".

Proof. First, we prove the corollary for £ = 1. If the point p does not belong
to Zs, since O(l) is very ample, the corollary is true. Assume p € Z, and
let Yi,...,Y, be its global irreducible (reduced) components which contain
p. Write Y/ = YU ...UY,. Let ¢,...,¢ be minimal local equations at
p for Yi,...,Y, respectively, so that mult,Y’ = ord,t; + ... + ord,t,. Let
§ € H'(U,O(l) ® [Y']) a section as in the Theorem 6.4 and let us write s’
for the corresponding meromorphic section of O(I) over U. We may assume
that the polar divisor of s’ is Y7 + ...+ Y, with 7' < r. By hypothesis, there

exists strictly positive integers ny,...,n,, such that s = ¢*...t""e where
!

e € E, is a local non vanishing germ at p. In the same way, s’ = "
T

where ¢’ € O(l), is a local non vanishing germ at p, and ord,g < multle’ -1
Hence, 5 =s'®s € HY(U,E® O(l)) and 8 ® s = gt~ " ...t ' ®e. So
ord,s' ® s < mult,(Y') — 1+ ord, (17" ... 7 ~1) = ord,s — 1.

Next, assume the corollary is true for some integer £ > 1. Let §; denote
the corresponding section of EQ O(kl). We apply the step £ = 1 to EQO(kl)
and 3 to conclude.

Remark. If we apply this corollary to the line bundle [D], where D is an
effective divisor, and to its canonical section, we see that O(kl) ® [D] is
globally generated outside the analytic subset {p € U ; v,(D) > k}.

6.6 Pluricomplete currents.

Definition 6.7 A closed positive (1,1)—current on a complex manifold M
will be called pluricomplete current if there exists a closed set L on M such
that w admits local locally bounded potentials on M \ L, a function ¢ €
P,(M\ L) with liminf ¢ = 4o0.

M\L>p'—L

If P* is a projective space, we will denote wgg its Fubiny-Study form
without indication of the dimension.

Lemma 6.8 Let E — M be a line bundle, with smooth hermitian metric
and positive Chern curvature wy. Let sq,...,s;, € H'(M,E) \ {0} be holo-
morphic sections of E. Let A denote their common zeros locus in M. Let
Y be the associated meromorphic map from M to P*, given in homogeneous
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coordinate by p — [si(p)]o<i<k - Then, the function p — —log||s||*(p) belongs

0 Pyrypgtwo (M \ A) and satisfies A/[1\1/11g11)/n_fm1/; = +00.

We give the following example over a projective manifold. We keep notations
of the preceding paragraph.

Proposition 6.9 Let U — V be a locally pseudoconver domain over V and
E — U a line bundle over U. Let sq,...,sy € HY(U, E) \ {0} and denote
B = ﬂ Zs, their common zero locus. Let ey, 0 < a < N', be global
0<i<N

sections of O(1), 1 > 1y, without common zeros. Let 1 : U — POVHDN'+1)-1
be the meromorphic map given in homogeneous coordinate by p — [eqSila,i(P),
which is holomorphic on U \ B. Considers the closed positive (1,1)—current
w = ¢Y*wrg. Then, there exists ¢ € P,(U \ B) with Ul\i}rgging o(z) = +o0.

Proof. Denote B, the indeterminacy of v. Hence B = By U By with B; an
hypersurface and codimBy > 2. 1) is holomorphic on U \ By. The associated
bundle morphism U x CV+DIV'+1) — O(]) @ E gives an induced hermitian
singular metric on O(l) ® E whose curvature is w = ¢*wpg. By construction,
it is smooth on U \ B. To prove the proposition, it’s enough to prove the
following claim.

For any 2y € U \ B, there exists real strictly positive constants C,, and ¢,
such that, for any p € B, there exists ¢, € P, (U \ B), with

lim inf = 4

Jim inf psop(Z) +00 (6.4)

VpeB, sup ¢, <Cy, (6.5)
B(20,€z)

where B(zg,2¢,,) is a ball in a complex analytic chart centred at z, and
disjoint from B.

Indeed, if this claim is proved then, ¢ = (sup ¢,)* will be well defined on
pEB

U\ B due to (6.5). It belongs to P,(U \ B) and satisfies liminf ¢ = 4o0.
U\B>z—B

First, we construct the function ¢, € P,(U \ B), p € B. Note Y; the zero set
of the section s;,7 = 0,... , N. Recall that for each integer 0 < i < N, p € Y.
From Theorem 6.4 and the remark which follows it, we may construct section
BF e HY(U,0()®[Yi]), k =1,... ,n, subject to the following conditions

$p = Bt (6.6)
k=1
/ ”ﬂi||2€_(_210gmin(6’daU\Yi))deo <1 (6.7)
\Y;
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where, s, € H(U, O(l; + 1)) is non vanishing at p, the section t1,... , %,
belongs to H(V, O(1)). We denote by the same symbols their pullback by
and they give coordinates centred at p. Moreover, we consider the sections
BF as meromorphic sections 8 of O(1) over U, and ||3i]|? = Y_r_, |3F[%.
We note that ¥ ® s; € H(U,O(l) ® E) and define

pp=log | Y BFes?]|, (6.8)

1<k<n
0<1<N

where the norm of the sections is the induced one. Hence, ¢, € P,(U \ B).

To show that liminf ¢, = 400, we have outside B
U\B3z—p

Siptesp - Zel2Al el (69)
515, Btusil?
S SATA (610
12
Zz‘|5p®3z| (6.11)

>k [t ?

where the sum is over 1 < k <n and 0 <4 < N. Line (6.11) is due to (6.6).
Assume eg(p) # 0. Recall that s, € H°(U,O(l + 1)), hence write locally
Sp = s; ® eg. Next, in each charts egs; # 0, 0 < i < N, say epsg # 0, we
have

2 b 2ilet]?
Y sy @si = s} ﬁ (6.12)
0<i<N €0S0
P 80\2 Z, a2
EAR
= (6.14)
Za 30‘2

The last expression is strictly positive at P, say greater than equal to
2¢ > 0, does not depend on %, so

(6.13)

wp > —log([[t]]*) +loge (6.15)

in a neighbourhood of p.
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Next, we prove the uniform bound in the ¢,. Let zp € U \ B, and let W
be an open chart centred at zy. Denote B(zp,¢€), € > 0, the induced ball in
W, and assume B(zg,1) CC W. Let 5 > € > 0, such that B(z,2¢) CC U\B
and such that, say, eq is non vanishing on B(zp, 2¢). Let ¢ be a holomorphic
section of E, on B(zp, 1), non vanishing there. Then

k.
ikt |
Z\@ksﬂz = ZZ’ 3‘2 (6.16)
ki a,i | eot

Here, only the 8%, 1 < k < n, 0 <i < N, depend on p € B. In the
left hand side, the norm symbol represents the induced hermitian metric, in
the right hand side it represents a modulus of a holomorphic function. Let

m = MaXp(z,e) Zk,i |ﬁzksi|2(< +OO)’ 0 <m = minB(ZO,f) Za,i %P’ and
0 < My = ming,, o |€o|”. Then
ﬂ’“sz
< 6.17
m S o
< G"Z/ ﬂs”dv (6.18)
- 20,26 60t e
(e,n
< | Z12av,, (6.19)
Z/ 20 26 \Y;, ( )
Cle, il

ma 20,2¢)\Y; |€O‘2

with 7; = min(d, dyn\y;) and w, is the usual Kéhler metric on C*. Next,

1
there exists a constant A such that |?|2 < A on B(z,2¢) \Y; for any i,

7
since |%|* is lipchitzian and vanishes on Y;. Hence

Clem) i) a x (N + 1) (6.21)

mi.meo

<

where C’(e) bounds the ratio of the Euclidean volume form and the Kéhler
one and N + 1 appear since the vector (3! , B') belongs to the unit ball
of L*(U \ Y;,v:dV,,) by (6.7).

R
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Corollary 6.10 Let U — V be a locally pseudoconvexr domain over the pro-
jective manifold V., dimV > 2. Let Y be an effective divisor on U. Then
Y] ® O(kly) is spanned by its global sections outside Ex1(Y) ={p € U :
v(Y) > k+1}. If k> 1, it admits a singular hermitian metric of positive
curvature, which is smooth away from Ex(Y) and is a pluricomplete positive
current in U.

Proof.  The first assertion is the content of Corollary 6.5 (in particular
[Y] ® O(kly) admits a singular hermitian metric with a positive Chern cur-
rent which are smooth away from Ejy.,(Y)). Next, let £ > 1. By a Baire
argument, we select N + 1 >> n + 1 sections in H*(U, [Y] ® O((k — 1)I1)),
which together span [Y]® O((k —1)l;) away from B C Ei(Y). When apply-
ing Proposition 6.9 to this set of sections, we obtain a singular metric for the
line bundle [Y]® O(kl;), which is smooth away from B, and is pluricomplete.

Remark.

i. In the construction of Proposition 6.9, we may select the sections e, such
that the holomorphic map given by them is biholomorphic onto its image
(see [18]). In particular, the current *wpg obtained is strictly positive.
Moreover, adding some pullback by 7 of elements in H°(V, O(l;)), we may
always assume that ¢*wrgs > Cwgy, where C' is a strictly positive constant.

ii. Let D denote the fixed part (as a divisor) of the linear system generated by
S0y,--- ,SN- Then ¢*O(1)P(N+1)(N’+1)71 ~F & O(ll) & [—D] over U \ BQ. Via
this isomorphism, the sections give a hermitian metric on £ ® O(l;) @ [ D]
which is smooth away from B,. Let Y;; denote the polar divisor of 5F. Then
Fs; defines a global section of E® O(l1) ® [-D]®[Y;]. This may be a short
way to understand that the function ¢, is non bounded near p. However, we
need the full precision of equation (6.6) to deduce that Ul{m inf ,(2z) = +o0.

B>z—p

iii. Let Y be an effective divisor on U. In general the set {p € U : v(p) > k}
is not of codimension at least two. However, let U; be a relatively compact
domain in U. Let Y; denote the largest divisor such that ¥ > Y; and
suppYa NU; = (). Denote Y = Y] + Y5. Since U \ suppY; is pseudoconvex
in U, the function —elog(min(é, dyi\suppys)) belongs to P, (U \ suppY?), for
€ > 0 small enough. In particular, hulls of U; with respect to some current
w > wg, will not contain suppY,. Then, there exists ky € N such that
{peU : (Y1) > k} is at least of codimension two for k£ > k.

iv. Let w be a closed positive (1,1)—current on a complex manifold M. As-
sume that it admits local locally bounded potentials on M \ B, where B is
an analytic subset of M. Assume that for any p € B, there exists a function
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FP,(M\ B h th lim inf = . F lativel
¢, € P,(M \ B) such that M\llgglzl_rngBwp +oo. For any relatively compact

open subset U in M \ B, let U; denote the interior of U(0,w) U B, which
is locally pseudoconvex in M (see section 4). Then by definition of U(0,w),

there exists ¢ € P,(U; \ B) such that liminf ¢ = +oc.
Ui1\B>z—pEB

v. Let E — U be a line bundle which admits a singular metric with a positive
current curvature. Let Z denote its Nadel multiplier ideal sheaf (see [14]
for a definition). Using standard L? methods (see [15], prop. 4.2.1 in the
compact case), we see that £ ® O(ly) ® Z is spanned by its global sections.
Hence, let us assume that £ ® Z is spanned by its global sections. Let s
be a global section. To each p € Z;, we may associated the meromorphic
sections 3% of O(l1), which are holomorphic on U \ Z, (i.e. associated to
sections G¥ € HO(U, O(l,) ® [Z,]) and which satisfies the usual ideal relation
(6.6)). We obtain then new sections ¥ @ s € H(U,O(l;) ® E). Making
this procedure for any s € H°(U,E ® Z) and any p € Z,, we obtain a set
of global section Gy of O(l1) ® E. Let Z; denote the coherent ideal sheaf it
generates. Then 7 = 7, C Z;. Working with GG; as before, we obtain a set
G+ of global section of O(2l;) ® E' which defines an ideal sheaf Z,, and so on.
This procedure gives a sequence of coherent ideal sheafs 7o, C Z; C Z,. ...
By Notherian properties, this sequence become locally stationary equal to
the structure sheaf O (as was shown). For a point p € U, we may define
m(p) to be the least integer such that (Z;), = O, for any k > m(p). By
construction the set M; = {p € U : m(p) > [} are analytic subsets in
U. Summing up our results, the line bundle F ® O(kl;) admits a singular
hermitian metric with a positive Chern current which are smooth away from
My, (due to spannedness). If k& > 1, the line bundle F ® O(kl;) admits a
singular hermitian metric, with a Chern current wy, which are smooth on
U\ My_1 and wy is pluricomplete. There exists ¢ € P,, (U \ My_1) with

lim inf ® = +00.
U\Mk_l D2—pEMp_1

7 Some Hartogs’ phenomenon in projective
manifolds.

We recall the definition of pseudoconcave manifold in the sense of Andreotti
[2] and some properties of them.

Definition 7.1 Let X be a normal complex space of pure dimension n > 2.
For' V.C U open subsets of X, we define the hull of V in U by

Vo={zeU :|f(x)| < sup f],Vf € O(U)} -
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An open subset Y C X is said to be pseudoconcave at the boundary point
P € 0xY (topological boundary) if there exists {Wy}a, an open basis of P in
X, s.t. P s an interior point of Wiﬂ\YWa. X is said to be pseudoconcave
in the sense of Andreotti, if there exists Y, an open relatively compact subset
of X, which is pseudoconcave in each of its boundary point.

Remark. No boundary condition on X is assumed.

In [16], the following proposition, which may be thought as a geometric
version of the Hartogs’ theorem, is proved.

Proposition 7.2 Let ) be an open pseudoconcave subset of the projective
manifold V. Assume that Q is locally pseudoconver in V', then 0yS2, the
topological boundary of Q in 'V, is a compact hypersurface. Hence if ) is a
pseudoconcave open subset of the projective manifold V', then V' \ ' contains
a mazimal compact hypersurface H (which may be empty). Moreover, if
dimcV = 2, then H may be blow down onto points.

Notice that for dimV > 3, there exists example of hypersurface H as
in the proposition below (that is V' \ H is a pseudoconcave domain in the
sense of Andreotti), such that no irreducible component of H may be blow
down. Indeed, let V' be a projective manifold of dimension n > 2, and let
(L,h) — V be a hermitian line bundle with curvature form w. Assume w
has one strictly positive eigenvalue and another one strictly negative. Then,
the real hypersurface, in L — P(L & C), given as {( € L : h({) = 1} is
pseudoconcave, but the zero section (or the hyperplan to infinity) does not
contract to a lower dimensional analytic set in general.

The purpose of the section is to prove the existence of a Hartogs’ phenom-
ena in projective manifolds for meromorphic maps with value in a projective
manifold (see Corollary 7.6 below). However before to state it, we want to
prove an extension theorem for currents which implies, in the projective case,
a result of Nadel-Tsuji [28]. In our opinion it explains the main arguments
of the Hartogs’” Theorem below. For meromorphic maps (or more singular
integral currents), there is an indeterminacy locus. We have explained, in the
last section, a way to deal with if the target space is a projective manifold.
We hope to return to this problem for a general meromorphic map later.

Theorem 7.3 Let V = (V,0(1)) be a projective manifold, dimV" > 2. Let
H be a hypersurface in'V such that V\ H is pseudoconcave in the sense of An-
dreotti. Let U be an open neighbourhood of H in'V. Let w be a (1,1)—closed
positive current on U\ H which admits local locally bounded potentials. Then
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/ w" < 400, (7.1)
K\H

for any compact set K in U. Moreover, if 1 < k < n then w* estends as a
closed positive currents through H.

Proof. 'We may assume that U does not intersect Y, the subset which gives
the pseudoconcavity condition on V' \ H (see Definition 7.1). Let U; be a
relatively compact subset in U which contains H U K. From proposition 7.2,
write H' = H U H; for the maximal compact hypersurface contained in Uj.
Next, we may assume that K is a compact subset in U; which contains a

neighbourhood of H' and that K = K. Let wy be the Chern curvature of the
line bundle O(1), and denote w; = w+wp. Let X be the open subset of U\ H'
where the family P, (U \ H',U; \ K,0) is locally bounded from above (see
4.10). From Lemma 4.5, X is locally pseudoconvex in U \ H' and contains
Ui\ K. Note that (V' \ K)UX is locally pseudoconvex in V. Since it contains
Y, it is pseudoconcave in the sense of Andreotti. Hence, from proposition
7.2, V\K)UX =V \ H', for H' is the maximal compact hypersurface in K.
From Takeuchi’s theorem 6.3, there exists d, ¢ > 0 and a constant C, such that
Y1 = —elog(min(d, day\gr)) — C belongs to P, (U\ H',U, \ K, 0), since w; >
wp. In particular, the extremal function ¢* associated to P, (U\H',U;\ K, 0),
being greater than 1y, satisfies {¢* < ¢} N K is a relatively compact subset
of K\ H' for any ¢ € R. We are in the situation describe in Proposition 5.2,
hence

+o0 > / (w1 + dd*)" > / (w+wy)". (7.2)
oK K\H'

We deduce that the closed positive currents w®, k = 1, ..., n, have finite trace
measure near H. Hence they extend as closed positive currents through H
(see e.g. [33, 37]).

Corollary 7.4 Let H be a hypersurface in a projective manifold V, dimV >
2. Assume that V' \ H is pseudoconcave in the sense of Andreotti. Let U be
a neighbourhood of H. Let f : U\ H — M be a holomorphic map into the
compact Kahler manifold (M,w1). Then f extends as a meromorphic map
through H.

Proof. Theorem 7.3 applied to w = f*w; + wp, implies that the graph of A
is of finite volume near H x M. Hence it extends through it.
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We state the following extension theorem for currents defined by divisors,
which will yield as a corollary a Hartogs’ extension theorem.

Theorem 7.5 Let V be a projective manifold, dimV > 2. Let H be a com-
pact complexr hypersurface in V. Assume that V' \ H is pseudoconcave in the
sense of Andreotti. Let U be an open subset of V' which contains H. Let
7 : Wi =V be a locally pseudoconver spread domain over V which contains
U\ H. Then any complex hypersurface Z of Wy extends through H.

Proof. Denote O(1) the line bundle which gives the projective embedding
of V. As usual, we will denote by the same symbols pullbacks by 7 of the
line bundle O(l), I € N, and of wy, the Chern curvature of O(1).

In the following, we assume that H is not a subset of W;. Shrinking U if
necessary, we may assume that H is the maximal compact hypersurface in U
(according to Proposition 7.2), that OU the topological boundary of U in W;
is relatively compact in Wy and that U does not intersect Y (the relatively
compact open subset in V' \ H which gives the pseudoconcavity condition on
V'\ H, see Definition 7.1). Let Z — W a (reduced) complex hypersurface in
Wji. Let X be a relatively compact open neighbourhood of OU in W;. We may

assume X = X. Let m = max,cx mult,Z. From Corollary 6.10 (see the proof
of the second assertion), sections sy, ... , s, € H (W, O((m+1)l1)®|[Z]) exist
such that

- the meromorphic map ), from W; to P", given by z — [s;(2)]o<i<r has base
points B contained in E,,1(Z) = {z € Wy, mult,Z > m + 1},

- the current w = ¢¥*(wpg) is strictly positive, and pluricomplete in W;.

Moreover, by adding a non trivial section of O((m + 1)l;) =~ O((m + 1)l;) ®
[Z] ® [—Z], we may assume s, is vanishing on Z. Let X denote the pseudo-
convex hull of X in W;. Then X contains U \ H. For, (V \U)U (X NU) is
a locally pseudoconvex domain which is pseudoconcave and H is the maxi-
mal compact hypersurface in U, see Proposition 7.2. Next, let X (0, w + wp)
the pseudoconvex hull of X in W; \ B with respect to w + wy (as defined in
section 4.10). We claim that X (0,w 4+ wo) NU = U \ (H U B). Indeed, by
Lemma 4.6, X' the interior of X (0,w + wg) U B is a pseudoconvex subset in
W, which contains X. Hence X’ contains X. From the description of X,
we deduce X (0,w +wo) NU = U \ (H U B). In particular, those connected
components of X \ X which meet U are pseudoconcave ends (with respect
to Puyw,(W1 \ B, X,0)).

Next, we look to the extremal function ¢* € P, ,,(W; \ B, X, 0) associ-
ated to X. We claim that U N {p* <t} cC U\ (HUB), for all t € R.
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Since w + wy > wy, from Theorem 6.3, there exists strictly positive con-
stants J, € (small enough), and C (large enough), such that the function
@1 = (—elogmin(6, dav\rr) — C’)+ belongs to P,.,, (Wi \ B, X,0). Recall
that to show that w is pluricomplete on W7, we have constructed the function
¢y € P,(W;\B) in Proposition 6.9, which satisfies liminf ¢,(z) = +o0. It
Wi\B3>z—B
"
gives us a function ¢y = <g0'2 — max <,0'2> which belongs to P,(W;\ B, X, 0)
and satisfies liminf ¢, = +o0, since E,,;1(Z)NX = 0. Hence max (1, ¢2)
Wi\B3p—B
belongs to P,.., (W1 \ B, X,0) and satisfies the exhausting condition re-
quired above. So does ¢*.
From Proposition 5.2, we obtain

/ (w+w)" < / (w~+wpo + ddp)" < +00 . (7.3)

U\(XUBUH) OXNU

In particular, all the Chern numbers / wkw(’f*k are finite. Hence
U\(XUBUH)

the graph of the meromorphic map 1 is of finite volume near H x P'. So %
extends through H. Hence Z C Z,, extends through H.

We obtain the following Hartogs’ Theorem type which strengthened re-
sults in [16].

Corollary 7.6 (Hartogs’ Kugelsatz) Let U be an open subset of the projec-
tie manifold V, dimV > 2. Assume that V\U is a connected pseudoconcave

e}

open subset of V, and assume U = U. Let H denote the mazimal compact
hypersurface in U, and let FF — V be a holomorphic vector bundle over V.
Then any meromorphic section s of F defined on a neighbourhood of the
boundary of U extends to a meromorphic section of F' on U. Moreover, any
holomorphic section s of F' extends to a meromorphic section on U which is
holomorphic on U \ H.

Proof. The first part of the proof appears already in [16]. There the

arguments needed are developed. Hence, we will only sketch this first part.
«) We recall the meaning of the topological condition. As in [3], from the

exact sequence

0— H°(V,0) - H (V\U,0) = H. . (U O)— H(V,0) = H'(V\U,0O) ,

comp

and since V \ U = V \ U, we deduce that the last arrow is injective. As
C = H°(V,0) = H*(V \ U, 0O), we deduce that each connected component,
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of U has a connected topological boundary. We may assume U connected
with connected topological boundary.

Next, we recall that it is enough to work with meromorphic functions and
fix some notations. Let W be a connected neighbourhood of the topological
boundary of U. Let W; denote the domain of holomorphic existence of any
holomorphic section on W of any holomorphic vector bundle over V. Since
over open ball in V', any holomorphic vector bundle is trivial, W; — V is
locally pseudoconvex. From [17], W; — V is the domain of holomorphic exis-
tence of the algebra @H %(W, O(n)). Let Wy denote the hull of meromorphy

neN
of W with respect to any meromorphic section on W of any holomorphic vec-

tor bundle over V (see [17]). Any meromorphic section of F' on W defines

a meromorphic map from W to P(F € C). For any such vector bundle F,

P(F @ C) is projective, hence W, — V' is the meromorphic hull of W.
Using Proposition 7.2, we proved the following theorem (see [16]).

Theorem Under the hypothesis of the theorem, let A — V be a locally
pseudoconvex domain over V' which contains W. Then A contains U \ H and

Ww;.
Hence

If H is the empty set the corollary is proved.

B3) Assume H is non void. It is enough to prove that, if 7 : W, — V' is
a locally pseudoconvex domain over V', which admits a section along U \ H,
then any meromorphic function in W; extends meromorphically through
H. We will prove that its graph, in W; x P! extends through H x P!
(see however remark below). First, note that H x P! is a hypersurface
in V xP!'st. (V\H) x P! is pseudoconcave in the sense of Andreotti.
Indeed let Y denote the open subset in V \ U which gives the pseudocon-
cavity condition (see Definition 7.1). Then Y x P! has a pseudoconcave
boundary in the sense of Andreotti. Let p € 9Y, Wiy C W, open neigh-
bourhood of p in V such that W; C Y/ﬂwng. Let A denote the unit
disc in C. For any h € O(W, x A), and any point (z,t) € Wi x A, we

have |h(z,t)| < sup |h(.,t)| < sup |h|. Hence Wi x A is in the hull of
WanY (WanY)x A

(WeNY) x A with respect to Wy x A (see Definition 7.1). Next, we notice
that W, x P! — V x P! is a locally pseudoconvex domain over V x P! and
that it contains (U \ H) x P'. Hence, from Theorem 7.5, we conclude the
proof.
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Remark.

i. Another way of proving the corollary goes as follow.

In the above situation, any hypersurface of W; extends through H (this
is the main point). Hence, any meromorphic function f on W; satisfies that
any of its level set extends through H. So we may find a point p € H, which
admits a neighbourhood W, in V' such that W; \ H does not meet the polar
set, the zero set of f nor its level set {f = 1}. By shrinking W), if necessary,
in suitable coordinates on W), we may write, W, = (H N W,) x A, where
A is the unit disc in C. We apply then the big Picard’s theorem (see [1])
to the holomorphic function fjw, restricted on each slice {p'} x (A \ {0}),
p' € HNW,. These restrictions are holomorphic functions on A\ {0}, which
omit two values, hence they extend to A. By Hartogs-Levi theorem, our
meromorphic function extends to (U \ H)UW, and by the Thullen extension
theorem, it extends through each irreducible component of H which meet
Wp.

ii. We used that (V'\ H) xP* is pseudoconcave in the sense of Andreotti. How-
ever, pseudoconvex hulls behave functorialy under fibre product. The last
corollary still holds under the technical assumption that the pseudoconvex
hull of a neighbourhood of OU contains U \ H.

iii. We know, using results of S. Ivashkovich [23] and result from [17] that,
in the above situation, if f : W (0U) — M is a meromorphic map from a
neighbourhood W (9U) of U to a complex compact Kahler manifold (M, wy),
then f extends meromorphically to U \ H. However, we do not know at that
time if wy + f*w; is a pluricomplete current.

8 %k
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