Abstract “Discrete form” means here that we deal with a given time-interval
of length 1 which we call unit time and divide it into equal intervals At = ¢;,; —
t;, At = 27" 2" At = 1. Then we introduce physical concepts in the following
order, velocity v road s (strata)-distance with the relations s = vt, As = vAt.
However, we deal with As as vectors vAt, i.e., distances with directions. So we
get vector-curves of different form. They can be a straight line. But a distance
on a line can be uniformly mapped onto a circle as follows. Divide the given
distance into four equal parts and form a square with center 0. The corner-points
are on a circle. From the square we get a regular 23-polygone with sides of the
same length and all its corners on the same distance from the center. So we can
go on until we have a 2"-polygon with sides of equal length. Hence there exists
a one-to-one mapping of the regular 2"-polygon onto a distance on a straight
line. By uniform convergence we get a one-to-one mapping on a distance onto
a line. However, if the distance from the center to the corners of the polygons
is 1, then the length of the circle is the irrational, even non-algebraic number
27, the most interesting number, since the circle is the most important curve in
our universe. Circles determine elllipses and the other curves of second degree
as conical sections and spheres of any dimension and we get all these curves by
uniform convergence of regular 2"-polygons. Energy is given in potential form
and kinetic form and the translation from one form to the other form by the
gravitational force, which produces a work determined by an integral, which is
the uniform limit of a sum, which is jumps of enerales, i.e., changes of velocities
during time-intervals. That is what can be observed.

The most well-known relativity theory is Einstein’s special relativity theory.
We can visualize it by a cage translated by the velocity of light (in vacuum).
The cage could be our whole solarsystem. Information of motions far away are
transported by the velocity of light to the stationary observer. The problem is to
transform these observations to correct motions far away. The relativity theory
gives the solution of this problem.

In Einsteins general relativity theory also gravitational forces in the trans-
lated cage may be regarded and movements of planets and other satelites in our
solarsystem can be determined.

In the following we let relative time At be given by stationary time At and
velocity of light through a simple formula, given by 2"-polygons for moving and
the stationary coordinate system. Then we must avoid accelerations in points and
only deal with changes of velocities for time-intervals. However, we get continuous
relations by uniform convergence of discrete systems to continuous systems also
in different finite dimensions. This is a form of transformations.

The applications given here are demonstrations of the method, not carried
through in all details.




The relativity theory in discrete form

Harald Bergstrom

1 Time

Consider a timeperiod as a unit (second, hour or year) and divide it into equal
intervals of length At = 27" 2"At¢t = 1. Denote the set of these points on all
intervals [i,i+ 1], =0,1,... by C(n) for given n and i. We say that At belongs
to C(n) if At = 27" and ¢ and t + At belong to C'(n) and call C'(n) a partition
of order 27", and the endpoints of the intervals a chain in C'(n) on any given
interval. We claim that it is sufficient for our problem to deal only with the ¢ in
a finite set C'(n).

Usually we consider time on a time-interval, but we may as well consider
points on a circle, exactly as the points t;,¢;,11 = t; + At, At = 27" all these
points with the distance 1/27 from the central point. So we get time-points ¢;
on a clock, whose pointer jumps At = 27" and turns round during the time-unit.
The points ¢; on the circle form a regular 2"-polygon. When n tends to infinity,
the circumference of the 2"-polygon tends to 1, but it should be an impossible
clock if we tried to use all limit points of the polygons on the circle as time-points
though these points are countable, but then in a strange order (if the distance to
the corners from the central point is 1, then the circumference of the circle is in
the closure of succesive squareroots, i.e., as limits.

The time introuduced here is a form of what is called space-time. But man
has an experience of duration, time equal to duration of movement. The mathe-
matical relation is

s=uv-t, (1)

s distance, v=velocity, ¢t duration of the movement. Here s, v and ¢ are numbers,
but represent physical concepts for the movement, say of a particle from a point
P(t) at time ¢ to a point P(t + At) during At. Denote the distance between the
points by As. Then by definition

As = vAt, v = As/At (2)

and (2) implies (1) for any ¢, provided that v is constnat. Otherwise As represents
a change Av of the velocity during At. If this change is constant = a > 0, we



have
v =at, s = at*/2, s = v*/2a (3)

so that s and v are determined by ¢ for given a. What we usually can observe
are distance and time.

2 Points and vectors determined by time in a
space

The elementary concepts in the space, that we live in, are points lines (straight
lines) and planes. A line has a direction. An interval on the line is determined
by two points P and 0 and between these points is a distance (length). Thus in
our space we have an interval determined by its direction and length. It is called
a vector. For it we use the notation P — 0.

Clearly all observations are discrete with a time-interval between them. We let
t in C(n) determine points P(t) and connected vectors P(t;) — P(t;+1), {read
P(t;) to P(t;y1)} of length < aAt, t;41 —t; = At,a > 0 a constant, this is a
3-dimensional Cartesian space R3. The coordinates determine the points

P(t) = {z(t),y(t),2(t)} (1)
Then for the unit vectors ej, es, e3 on the axis in R?,

eie; =0fori# jee; =1,i<j <3, P(t)=x(t)er,y(t)es, 2(t)es (2)
P(tiv1) — P(t;) = (Az)er(Ay)ea(Az)es (3)

where Az = z(t;+1) — z(¢;) and so on. The squared length |As| of the vector (3)
1s

[P(tis1) — P(t:)|" = |As]” = (Az)” + (Ay)” + (Az)” (4)

A chain t; in C(n),t; = t; + At, determines a chain of connected vectors, P(t; +
At — P(t;). They represent movements and thus curves in the stationary system
R3? from t; to t; + At. We may choose our clock such that At = 27", and thus
time is a distance. A vector can have different length and thus be a number d
of time-distances 27" so that Az = (27")d, and Ay and Az in the same way
in (4). Do observe that these relations hold for any vector and hence for any
configuration of connected vectors. Further the relations (2)-(5) hold for any
Cartesian coordinate system and thus for orthogonal transformations. A vector
is determined by its length and ints direction, both determined by the coordinates



Az, Ay, and Az, according to (1)-(5). Note that At is a positive constant, which
we, however, may choose. Further we may represent the coordinates in (3) by

Az = (At)tgh, Ay — (At)tgBAz = tg33 (5)

all beta bounded, not all zero. So t has almost lost its meaning of time when we
deal with vectors.

We extend the R? to a four-dimensional R* by introducing a fourth coordinate
axis u with unit vector e, and thus represent the point P(¢) by

P(t) = l‘(t)@l + y(t)€2 + Z(t)@g + U(t)€4 (6)

and have the corresponding relations (1)-(4) added by Au and (Au)es. Note that

we get a three-dimensional space when we put one of the coordinates z(t), y(t), z(¢),
u(t) equal to 0, a line if we put two of them equal to 0. So we visualize our re-

lations. In the same way we introduce Cartesian coordinate systems RF of any

finite dimension k.

Any two connected vectors P, — Py and Py — P; of the same length but
different directions determine a circle, in which the vectors are chords, and thus
determine a circle, in which the vectors are chords, and thus determine the center
0 of the circle and the length r of its radius, r=distance 0 to P, and 0 to P.
In the circle we may inscribe a regular 2"-polygon of length d,, where its sides
have the length d,27" and P, is a corner of the polygon. As n tends to infinity
d, tends uniformly to the circumference of the circle. By the mapping r —
1/27 this circle is mapped onto a circle with center 0 and circumference=1.
The inscribed polygon is correspondingly mapped. Connected configurations of
connected vectors represent movements in R? and in R* k > 3. They may be
complicated particularly for large k.

3 The relativity theory

We shall deal with vectors and they remain the same, even when they are trans-
lated. As a matter of fact our principle for introduction of relative time in a
moving system (we call it cage) is that any configuration of connected vectors,
also called vector-curves, in the moving cage should satisfy the conditions that the
length and the direction between connected vectors in the stationary cage remain
unchanged in the moving cage, transported by the velocity ¢ of light as in Ein-
steins relativity theory. We may have different Cartesian coordinate systems for
a cage. But the vectors and vector-configurations remain the same. The observer
in the stationary cage wants information about motions and this information is
transported by the velocity ¢ of light. A motion some time ago is determined
by a vector As and a timeinterval A#', which may not be the same as At¢. The
As can have different directions, but the A#' and thus ¢ must be independent of



the vector-configurations in order that information about these to the stationary
observer be correct. Then we let our cage be translated by the velocity c of light
in a direction that is orthogonal to the coordinate system R3, i.e, we extend R?
to a four-dimensional Cartesian coordinate system R* by adding a time-axis for
t' orthogonal to R?, and let the cage have the same R'> when it is stationary and
when it is translated by the velocity ¢ of light, but we add a (') to mark that we
deal with this translated coordinate system. Note that if the axist ¢’ is orthogonal
to R? then is orthogonal to any straight line in R3. Any two connected vectors
are in a plane Pl and there keep their length and the angle between them when
the plane is translated in the direction of the axis for #'. Let us now consider
one vector As in the stationary cage. Let it have the length vAt¢. Note that v
then is a velocity by definition. We may choose R?® such that the vector is along
the z-axis and then put As equal to Az. For the stationary observer, a point
P at t has moved the distance cAt during At to a point P'. But a motion in
the moving cage is a vector Az and this during a time A#' which an imagined
observer on the moving cage should establish. The esential observation for the
stationary observer is the vector Ax, hence in the actual situation the distance
|Az|. So he concludes that during his observed time At a particle has moved cAt
from P to P’ and thus there has been a motion represented by the vector Az in
the cage, and during A#' the cage has moved the distance cAt’ in the direciton ¢’
orthogonal to the xz-axis. Hence we have the relation

cAt = {|Az|? + (cA”}? (1)

When At is given by this relation the staionary observer get the ocrrect value of
the length of the vector Az. However, we have already found that any vector Ax
and the angle between two connected vectors remain unchanged when the cage
is translated by constant velocity and in a direction orthogonal to R3. Hence in
order that the observer in the stationary cage shall get correct information about
the motions, represented by vector configurations in the moving cage, he must
require the fundamental relations

(cAt)? = (eAt)? + (A2, AL = (A {1 — (v/e)?} /2, vAt =v'AY (2)

The last relation (2) follows since |As| is the same in the stationary and the
moving cage and |As| and At determine v in the stationary cage and |As| and
At' determine v in the translated cage.

The cage may contain our whole solar system or only some molecules. But
in both cases information is transported by light through the fundamental time-
formulas (2) to the real observer in the stationary cage. However, then it turned
out that the formulas (2) are not only a communication instrucment but an
important physical reality, a carrier of energy such as fission and fusion.



Of interest is here to observe that we simultaneously deal with two motions:
a) motion in the cage, b) motion of the cage, the last orthogonal to vectors in
the cage. By the relativity theory we separate these two motions.

The only condition for application of this relativity is that we only permit
such motions in the stationary cage that are represented by vectors and vector
configurations and movements of the cage such that we have the one-to-one map-
ping, described above, between vector-configurations in the stationary and in the
moving cage. We also require that the fundamental relations (2) are satisfied,
as they are when the cage is translated by the velocity of light. However, they
may hold when the motion of the cage is combined with other motions. Hence
we have to do with vector curves and one-to-one mappings between such curves.
The cage can be a cartesian R* of any dimension k. Note that then any vector
is on a straight line and a vector configuration may be in one R? but also pass
over from one R® to another R3. Thus the relativity theory can be used very
generally.

In the following sections we apply relativity. There we give applications to
well-known dynamics in physics, astronomy, etc., where we can verify the con-
ditions given about connected vectors. However, our main purpose is to point
out the use the relativity theory in different situations. We also discuss models
for light and other radiation, but most of these are imagined and not founded on
experiments.

4 Acceleration, mass, force, and energy relative
mass as energy

From the classical mechancics we have so far only introduced the conceptions
way (distance) s, time t and velocity v and the relation s = vt... for a moving
particle. However, we have also used vectors, which represent distance (length)
and direction. Usually the velocity depends on time. Inorder to acclerate the
velocty of a moving particle, a force F' is required, where

F =ma (1)

and m is a factor, called the mass of the moving particle whose velocity is changed
by the acceleration a. Here we consider the case when F' is uniqeuly determined
by the velocity. By the relativity theory we have

mv = m'v' (2)

for any velocity v and the corresponding v’, where m' need not be equal to m.
These products, called moments, are then equal in R? and R". By 3(2) and 3(3)



we get

m' =mu/v' =m{l —v?/P}/? (3)
m! (v')?/2 = {mv?/2H{1 — v?/} 2 (4)
m' = mc*{1 —v?/?} 712 (5)

In the next section we show that mwv?/2 is a kinetic energy called force live for
any velocity v. Hence we may consider also mc? as energy and by (5) also m/c?
as energy.

An essential condition in Einsteins relativity theory is that light (in vacuum)
has the velocity c¢. By (5) m' > m and we get a surplus

m'c®> — mc? (6)
The Taylor expansion gives us the estimation
(m' —m)c® = mv?/2 (7)

with an error of order v?/4¢?, which is small if v is small compared with c.

The relativity theory is given as a communication instrument by the formulas
3(2), founded on the relative time ¢' and used to transform information about
occurences in earlier time to present time. However, when it changes mass to
larger relative mass and so to energy, since mass becomes energy and then the
surplus (m' — m)c?® of energy is large even if m is small.

The energy mv?/2 is called “force live” since it forces a vector to change its
direction. This change shall be described in the next section. However, this
energy also appears when a particle has been accelerated by a force to a certain
velocity v in the direction of the force and then has produced an energy called
“work”. If a force F' acts upon a particle and during the time ¢, has moved it a
distance s, then by definition F' has made a work F's during ¢y. (A car can be
accelerated during different time-periods to a given velocity v). Observing that
force acting on the particle with mass m is F' = am for constant acceleration a
of the velocity of the particle, we find that its velocity at t is at and aty equal to
v by definition. Integrating at from 0 to ¢y, we so get by 1(3)

Fs = ams = ama(ty)?/2 = m(aty)?/2 = mv?/2 (8)

We visualize these relations on a right triangle as follows. Let time be on eth
z-axis from origin ¢ = 0 to t = tp, v(t) = at on the hypotenuse and s on the third
side. The relations are obvious, i.e., the integration is obvious.

5 Gravity, rotation and force live. Movements
of satellites and planets

According to Newton’s laws a particle moving with given velocity in a given
direction, i.e., on a straight line, continues in this direction. In order to change
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its direction a force is needed. We shall consider the problem when a mass is
forced to move on a circle with constant vecocity v. In Section 1 we have pointed
out that the circumference of the circle has a given length determined by the
radius and that there is a one-to-one-mapping of the circleline onto an interval
on a straight line. Thus a point has a constant velocity v on the circle, when
there is a constant velocity on this line. Since we in the relativity theory have
bounded us to motions defined by vector configurations and time (¢'), we should
also remember that a circle does not change by translation with the velocity of
light since the 2"-polygons do not change.
The gravity force F' is given by

F = Mm/s* (1)

where M is at a fixed point (), m a mass in a point P on the distance s form Q).
Usually the right-hand side is multiplied a constant dependent on units, but we
let the constant be equal to 1.

Consider the situation when P rotates with constant velocity v. The work
done by F' to bring P from infinity to the distance s from @) is equal to Mm
multiplied by the integral over 1/r? to s. Hence this energy, given to the rotating
m, is equal to

mv? /2 = Mm/s (2)

The kinetic energy mv?/2 has been called force live since it forces m to move
on the circle. Note that s is the distance between M and m and Mm/s is a
potential energy, also that the motion of m is bounded by the relation (2) since
F' is orthogonal to the circle and cannot give any energy to the moving m nor
obtain any energy from the moving m.

As an application of the formula we consider satellites. When at the time
t = 0 a satellite with mass m is shot out from a point P(0) on the surface of the
earth and in the direciton Q — P(0), where @) is the center of the earth, P(0) in
the plane P, determined by the line ) — P(0), and the axis of rotation of the
earth on the distance s from (). Let the satellite be shot at £ = 0 in a direction
which forms an angle 3,0 < 8 < 7/2, with its axis of rotation and in the plane
PI. This plane rotates as the earth. By the shot, the satellite at ¢ = 0, obtains a
kinetic energy F and it is retarded by the gravity force. On a plane orthogonal to
the direction @ — P(0) and on the distance s from P(0), the satellite rotates on
a circle, where s is the distance belonging to the force Mm/s?. The satellite has
the force live mv?/2 for velocity v, according to (2) and the energy E given the
satellite by the shot. Note that the point () and the circle determine an infinite
cone with the axis from @ in the direction Q) — P(t).

Consider now the situation when the satellite at ¢t = 0 is shot in a direction
P(0) — P(t) so that this direction for ¢ > 0 forms an angle 3,0 < 3 < 7/2
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with the plane PIl, and that it then is given a kenetic energy E. We also assume
that the direction of the shot is in such direction that it increases the velocity
given the satellite by the rotation of the earth. The force F'is independent of the
direction of the shot, it only depends on its distance s from @ to P(t) and thus F
has the potential mmM/s at s. At the point P(t) the satellite is repelled by F' in
the direction P(t) — @ and the satellite will loose energy. There F' attracts the
sattellite. At last it arrives at a point P(t) where F in the direction P(t) — Q
has no component left. But the satellite may have some part of its energy E left
and can still move on the plane PI’ orthogonal to the line @Q — P().

Further it moves by the motion of the earth as a point in the plane Pl and
hence on a circle and there already has the forth live m(vg)?/2. By surplus of the
rest of E the satellite continues on this circle and get a larger velocity v and thus
the force live mv?/2. This circle determines a cone from @ as in the first case but
its axis forms an angle p with the axis of that one. This axis determines a plane
at P(0) orthogonal to the axis, the horizontal plane. Let this plane through P(t)
cut the cone, which P(t) determines. On this plane we then get an ellips and on
this one the circle determined by P(t) is inscribed with the center in one focus of
the ellips. The relation (2) holds with constant v and s on the circle, but variable
v and s on the ellips. The velocity v changes according to the obvious relation
that the radius vector from the common center and focus during the same time
intervals At of rotation on the circle sweeps over equal areas of the circle and
also sweeps over equal areas of the ellips. Keppler did this observation, when he
studied the movements of the planets.

We have considered the motion of a satellite under influence of the gravity
force from the center of the earth. The earth is satellite of the sun and so are all
planets. We may consider the mass of the sun as concentrated to its center and
the mass of a planet concentrated to its center. We let the sun together with all
its satellites be a cage. Applying relativity theory we let the cage be translated
orthogonally to the R? of the cage. By the relations given above, the earth moves
on an ellips and so do the planets. We also proved that there is a one-to-one
mapping of an ellips on a circle. Hence we may only deal with circles. A circle is
determined by 2"-polygons hence of configuratins of vectors. They do not change
when R? is translated in a direction orthogonal to R®. The motions in the cage
are determined by the vectors and the time. In the satationary cage we have the
time t and applying relativity theory we have the time ¢’ in the cage, translated
by the velocityc of light, where t' is determined by ¢ according to 3(2). So an
observer on the earth in the stationary cage gets information about existence and
movements of planet far away.



6 Refraction of light. Models for light

According to Newton’s corpuscular theory, light consists of minute particles, cor-
puscular, shot out from the luminous body. However, it has been argued that
this theory cannot give explanation of refraction since the velocity of light by
refraction between two media should be in inverse proportion to the refraciton
index, not proportional as in the wave theory. Hence the corpuscular theory has
been condemned in this case and only the wave theory accepted. It seems to me
that the corpuscular theory could be accpted also fo refraction. The essential
measurable property of a rang of light is that it has a direction and is a carrier of
energy. Its capacity to carry energy may be different for different colours of light
and for other rays of the same nature as light.

In the corpuscular theory, the corpuscular are called photons. The fundamen-
tal question is what a photon is in this model. It should carry energy, since so
do rays related to rays of light, and it It should have a given direction in a given
optic media, and its refraction may be different in different optic medias.

We now consider the actual problem. Let rays of photons, all with the same
direction, hit a plane with the normal 0 — N in a R? as in the figure below, where
w ehave a coordinate system with 0 as the center and the z-axis along 0 — V.
Parallel planes to the (z,y)-plane through the points z = 0,21 < 0,29 < 21
separate R® into three parts with different medias. We regard one beam as a
point moving in the (z,z)-plane from P to 0 in media 1 and then in media 2
from 0 to P’ and then eventually further into media 3. There is a road parallel
to P — 0 in media 1 and parallel to 0 — P’ in media 2. Here P — 0 makes the
angle #; and 0 — P’ an angle ' with the normal. The quotient sin 3/sin /3’ is
called the refraction index. It is this index that is observed.

The neighbour parallel rays behave in the same way, but an essential difference
in the situation is given by the two right triangles, both with hypotenuse OP’ of
length Az, one triangle in media 1, the other in media 2. We have (3, and (3, also
in the traingles so that

sin 31 = Asy/Ax,sin By = Asy/ Az, Asy/As; = sin B/ sin 3 (1)

Here we consider media 2 as the material (say water) optic denser that media 1
(say air). Assg is shorter than As; so that velocity v, of light in media 2 is smaller
than velocity vy of light in media 1 and (for light in air, we have

vo/v1 = Asy/Asy = sin B/ sin By (2)

where sin 3;/sin 35 is the refraction index. It is this that can be oserved. It is
different for different coulers, different wave-length according to the wave-theory,
different smallest distance between neighbour beams according to the corpuscular
theory. However, when we consider ; and (3, as angles between the normal,
we get the refraction index sin 3;/sinf, and so we get a contradiction. The
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figure, presented here with the essential traingles, is in practice the same used by
Christian Huygens in the first wave theory. He is considered as the founder of
the wave-theory.

media |

media 3

Figure 1.

To explain this contradiciton, it is necessary to find a model for the motion
of light. It is not possible to find the real nature of light by observations, since
we get information of occurences of light by light. However, we may use the
relativity theory. The axis for the relative time ¢’ is orthogonlal R? translated by
the velocity ¢ of light (in vacuum) along the time-axis for ¢'. All vectors, hence
all directions, and thus the Figure 1 remain unchanged in the translated R'.
Note that the motions in the moving R, hence velocities v, are determined by
vectors and time ¢'. The relative energy m’'c? and the relations (4) — 4(6) vill not
be used here since we now only deal with the beams in refraction. But they are
of interest in problems in connection with refraction.

In an experiment, described by the figure, parallel rays are observed. It is
required that the rays are parallel both in media 1 and media 2 and that this can
be observed. Straight lines orthogonal to the rays in media 1 cuts the rays in
media 1, correspondingly in media 2. Thus the traingles used for the relation (2)
should be applied. Note that also wave theory determines rays and that a result
of an observation often is a vector As during a time At, reduced to As and At
in the relativity theory.

Since we cannot get the real nature of light, different models, particularly the
corpuscular model and the wave model. Both are used but the question has been
asked, if there can be only one model. What we observe may depend much on
our experiments. Hence we may in some situations find the best explanation by
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using the one or that one. Can they be joint by relativity theory? Thus apply
relativity theory. This means that we use relative time ¢ in the moving R"> and
consider only motions determined by vectors and time ¢'. Hence we first consider
such motions in a stationary R3.

In Section 5 we have found that a satellite with a point mas m can move on
a circle round another point mass M by the gravity force Mm/s? and then the
distance s between M and m is determined by the relation

mM/s = mv?/2 (3)

We have this situation in mascrocosmos. We may have the same model in micro-
COSIMOS.

On the left-hand side of (3) we have the potential energy corresponding to
the work that the gravity force has produced to bring m (from infinity) to the
distance s. This force is a vector P(m) — P(M), where we consider m and M as
point masses. The relation (3) is only dependent on the length s of the vector,
not of its direction. Light has beams in all directions and thus the circle for m’s
rotation can be a circle on any plane that cuts the sphere with radius s.

At our obsrvations we give the light a direction and sometimes also a plane.
Hence when we observe refraction in the plane as in the figure, we can only regard
circles on the plane {the (y, z)-plane in the figure}. Note that we here consider
photons as corpuscler but as corpuscler complicated as atoms. It is clear that
these photons cannot move simultaneously into all directions. However, when we
apply relativity theory, we permit motions that do not change vectors and vector
configurations. Hence we permit translations and rotations.

At first, we deal with the situation in the figure. The direction is given by a
straight line through the centers. We call it the centerline. This line cuts the circle
into two points P; and P, and P, — P, is a vector. We now introduce relativity
theory and the relative time ¢'. All motions in the translated R'® are determined
by ¢’ and the vector configurations, and the circle is a vector configuration and
they are the same in R? and R'®, so for them we can use with or without the dot
("). We get a wave when we let the circle roll as a wheel on a horisontal straight
line parallel to the centerline and on the distance s below it. the point P(t) for
m on the circle then moves on a wave curve given by

P(t) = (2s) sin 2nt/T (4)

Here t = jT/2,5 = 1,3,5,... are the points where the centerline cuts the curve
and the tangents have the same direction (the wave has the same phase). The
distance 2s is called the wave-length.

Let j(t) be the largest uneven integer smaller than ¢. Then

P(t) = (2s)sin2n(t — j(t)/T (5)

describes a standing wave, i.e., the centers do not move.
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When we consider a ray in the sapce, we deal with rotation and translation as
above and thus tarnslation in the direction of the centerline. But we also permit
that m rotates on the circle on a plane orthogonal to the centerline with the
same radius s and the same centerline as in the motion considered above. This
rotation, called a spin, also satisfies the relation (3) and this independent of the
rotation on the circle in the plane through the centerline and orthogonal to the
plane orthogonal to the centerline. Indeed, the actual forces in the two rotations
are orthogonal two each other and thus the work they perform are independent.
When rays are observed in a given direction, it may be as energy mv?/2 in quanta,
arriving with time differences. Electrons carry energy transported during time
differences. T'(T") hence as quanta by velocity v (v = ¢ in vacuum).

In the next section we deal with beams of atoms and molecules taht carry
both mass and electrons and also discuss models for light.

7 A relation in Bohr’s Atomic Theory

By Rutherford, Bohr and others, an atom consists of a nucleus with mass and
an electric charge and of electrons on orbits round the neucleus. Later more
complicated nuclei have been considered. Atoms bounded to each other form
molecules. The hydrogen atom, has been studied by Nils Bohr in his quantum
theory. He has used the formula

1/A = R{1/(n2(*~1/(m)*}

for the wavelength in his Atomic Theory.

From Encyclopaedia Britanica, 1964, Volum 2, p. 709, I quote: “In seeking
to explain such relationships with the help of the quantum hypotheses, Bohr first
adopted a quite consciously native and even questionable approach as follows:

Suppose that an electron, initially free and stationary is drawn into a circular
orbit of radius r around anucleus of charge +e (e.e., a hydrogen nucleus). Let
the mass of the electron be denoted by m and its orbital speed by v. To balance
the electrical and centrifugal forces, the relation

(e/r)* = (mv*)/r (1)

is required”.

What seems to be questionable is just this relation. There the left-hand side
is the electric force, according ot Coulomb’s law. Hence also the right-hand side
must be a force. The left-hand side is the force between the positive charge e
and of the nucleus (the proton), considered as a sphere with mass M and with
the electrical charge e at the center of the sphere and the electron with negative
charge e~ and mass m in the same way. By Newton’s law there is the force
kmM /r? between m and M. Here we introduce a constant k since m and M are
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different. At electron on a straight line from infinity to 0 cuts the circle in a point
P(T). The forces kmM/s? and e/s* then give the velocity v and the potential
energy at P(T),

kmM/r = mv?/2 = € /r (2)

(Compare 5(1) and 5(2) and the corresponding relations for the electric force).
Note that the electric force and the gravitational forces are independent of each
other. However, when we give them in this simple form the units must be chosen
suitablly.

Let now L be the z-axis from infinity through P(T") and consider points P(t;),
on the circle, t;;1 —t; = At = 27" time-points. At the points P(¢;) = on the
distance vAt from each other, 2”7 in number, draw the tangents in these points.

When the electron is drawn by the proton to the orbit (circle) with the proton
in its center along a straight line, the forces €2 /s and kmM/s? together produce
the potential energy

e2/r + kmM/r = mv? /2 + mv?/2 = mv® (3)

by Coulomb’s and Newton’s laws, the same potential energy at any point on
the circle, but together with the charge e then the mass m of the electron has
been drawn by the forces €?/s? and kmM /s? from infinity to points on the orbit.
Consider the case when P(T) is on the z-axis at origo (0,0) and the proton at
(—7,0). Then the y-axis is tangetn to the circle at the point P(T’). Let the
electron be drawn along a straight line from infinity to P(T") by the force

e’/s” + kmM/s” (4)

These two forces are independent of each other for given s. Hence we let the
component €?/s*> be along the z-axis and the force kmM/s*-along the y-axis.
It is then the electric force e?/s? that thas drawn the electron to P(T) and
thus produced the energy e?/r at P(T). Then it has also drawn ints mass m
from ininity to P(7) and there the gravity force kmM /r has given the electron
an additional energy mwv?/2 by motion of it on the circle by velocity. In this
meaning the drawing of the electron to the orbit by e?/s has given the energy
mv? according to (3). Indeed, the potential energy, at any point on the circle,
produced by the force (4) when the electron is drawon from infinity to the circle
is given by (3). But the component kmM/r? is in the directionof the y-axis
given the electron the potential energy mv?/2 and thus the velocity v is given
the electron at P(7T) in the direciton of the y-axis, i.e., along the tangent.

Now according to Newtons laws the electron should go on in the direction of
the tangent and this by the velocitty v, if there isn’t a force that changes the
direction. The only force that can change the direction is the force (4). But a
change of (4) should change (3) which is given by the energy mv?. Here mv?/2
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belongs to the movement of the electron. We have the same situation at all points
on the circle. (We let P(T") be any point on the circle with the corresponding
coordinate system). Thus it is the potential energy mv?/2 that forces the electron
to move on the circle by velocity v. Inf act a force is necessary to change this
potential energy. Since this energy is determined by a force. It is appropriate to
call it “force live” (force vive en francais). The drawing of the electron to the
orbit is done by the electric force €?/s? which then has produced the energy €?/r.
But since then the mass of the electron has also been drawn to the orbit and by
mM /s has produced the enrrgy mv?/2. Tt is by the elctric force that the electron
has been given the potential energy mv? so that we have the relation

62/r=mv2,

which is Bohr’s relation in a slightly changed form. Of course, it is the proton that
has done all work, but may be that is the work, produced through the electric
forces that are observed.

In order to separate the forces, we could also use relativity theory and consider
the orbit in an R? in a cage moving with velocity of light in a direction orthogonal
to R3. Then

v'At',€?/r not changed , e*/r = mv?/2 = m/(v')/2 = mwv' /2 (5)

(Compare 3(2) and 4(2)). So we have separated the electric force and its work
form the gravity work, which is the gravity work M'm/r produced by the proton
that brings the electron to the orbit, hence to the point P(7T’) where the electron
has the velocity v in the direction of the tangent. But as above we conclude that
it is the electric force that has forced the electron to move on the circle.

8 Beams of atoms and molecules

We consider now beams of atoms H, molecules H? and along a straight line
through the center, also center in the circular orbit. We consider the nucleus as
in (7) as spheres with the electrical charges in the centers. The model can be
used more generally for molecules and also in macrocosmos.

We shall use Bohr’s relation in the form 7(5)

e?/r = mv? (1)

There the orbit, i.e., the radius of the circle is given, but several orbits are
possible and some molecules can have several electrons on orbits with different
radii, balanced by suitable mass M and suitable positive electric charge. Thus we
must deal with different r and different velocities v. The problem is to determine
r by v. Then we use the wave model in 6(4) when we now let the circle with
radius 7 be in the (z,z)-plane and roll on a line in this plane on the distance
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z = —r by the velocity v. Then the centers of the moving circle are on the z-axis.
An electron at a fix point of the circle describes the sinuswave determined by the
formula

x(t) = 2rsin 2nt/T (2)

where T’ is the time for the electron to rotate one turn round the circle and thus
vT = 2mr. Here the radius r is given by the distance 2r between the electrons in
the beam.

It may be possible to observe the number N of atoms that pass a given point
x(t) during the time 7" > 0, and then the number of atoms leaving z(7') is also
equal to N since it takes the time T for the electron to move the distance 2r on
the z-axis. Hence the mean velocity of the atoms is

v = {2(NT) - (ty)}/NT (3)

This observation gives us a value of v in (2), however we have here an uncertainty.
We do not know 7 or v which satisfy the relation (2), since there can be more
than one such relation, i.e., the atom can be in different shapes so that the radius
r is different and the electron can move on different orbits it may not be possible
to measure both terms in (2) simultaneously. Say that we observe differences

{z(tiy1) — 2(t:)} = vAt (4)

The difference may depend not only on errors in the observations but on un-
certainty about the size of the radius (velocity). Then we introduce probability
and let the velocity be a random variable, which we denote by v’ and hence v'At
is also randomv ariable. (It is close at hand here to change At to At' and use
relativity theory but we shall not do so here.) Consider now the translations 2r
of the electron n the z-axis for the time 7. Let v; be a random variable with
mean value v and variance

E{v; —v}* =9 (5)
Then v;T = 2r and

z(NT) —z(0) = Y v (6)

0<NT

Remember that a distribution function F' for a random variable X has the fol-
lowing implicit definition.

Probability for the occurence X < p = F(u) for any real number u. A classic
Central Limit Theorem of Lindeberg-Lévy (see Lévy Calcul des Probabilités,
Paris 1925) states
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Theorem 1 If zq, 25, 23, = ldots are independent random variables with the same
distribution and mean value 0 and variance 0%, then the distribution function

7y Y e (")

1<i<n

as n tends to infinity, converges to the normal distribution G(u/d), determined
by its derivative

07 (2m) 7% exp —(1/2) (u/0)? (8)

We apply the theorem to the sum (6) but change the terms v; to (v; — v) and
put

zi = (v; —v) 9)

and observe that the sum of such terms is N in number. It follows by the
theorem that the sum (6) of random variables converges in distribution to G'(u/0)
determined by (8).

Remark. The theorem above is only given in the form with 0 = 1. But in the
paper in my references I have proved it in more general forms. It may have been
given in these forms earlier.

Note that there is one term v;, for any unit time interval, this also in the limit.
Thus

G{(vi —vp)/0} < G(vi —v)/0} < G{(vi —v)/0
for any p > 0. By Taylor expansions we get the term
07 (2m) " exp —(1/2){(vi — v)} /)’ (10)

This is the Bolzmann-Maxwell relation.

The method described here can also be used for beams of molecules. These
beams behave as waves when they in certain experiments are influenced by heat
or pressure. Their movements, called Brown motions depend on attraction of the
molecules in parallel beams. Hence the density of molecules on an interval, say
on the interval considered in (6). However some physical constants have to be
introduced for applications.

9 A general relativity theory

We have considered realitivy theory above under two conditions, where we called
R3 a cage and let it either be stationary or translated by the velocity of light in
a direction orthogonal to R®. The conditions where:
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1. The vectors and the connected vector-configurations remain unchanged in
the moving cage.

2. We only permit translation of the cage (by the velocity ¢). We have
found that two kinds of elementary motions are of particular importance: a)
motions on a straight line, b) rotations. However, the vectorcurves determine
very complicated motions from one point to another point and they are recurrent.
We can extend the theory as follows.

We let the cage be R¥*2 of any finite dimension k + 2, where RF, with axis
e, = 1,2,...k, rotates round the axis ey,; through the center of R**!, this by
constant angular velocity v;, which means that any plane in R* rotates round this
axis so that vectors and vector-configurations are defined and remain unchanged
by this rotation. Then we let R¥*! be translated by constant velocity v, along
the axis e;,2. This means that any R*¥*! in RF¥*2 is translated along ey ;. At
last we introduce a time-axis ¢’ for the relative time.

As in R? we deal with vectors As = P(t) — P(t + At) in R* and configu-
rations (vectorcurves) of consecutive connected vectors. Here we describe these
configurations as follows. Two consecutive connected vectors detrmine a plane.
The vectors are determined by their length and the angle between them and this
angle is determined in their plane. So any vector configuration is given. When
RF*1 is translated by constant velocity in the direction ej 9, hence orthogonal to
RF*L the configurations do not change. Indeed, any two vectors are in a plane
orthogonal to exio and the vectors in the plane keep their length and theangle
between them when the plane is transported in the direction ej 5. Our cage R*+2
is now transported in the direction of the time axis for ¢ and with the velocity
c. The motions in R*¥*? are given by the vectors and the time ¢. Hence we may
apply relativity theory and introuce the time t', defined in Section 3 and so get
the motions in R*¥*? by the vectors and the time . Hence we may apply relativity
theory and introduce the time t', defined in Section 3 and so get the motions in
RF*2 by the vectors and the time t'. Already k = 3 gives a quite interesting
generalization s.

For large k we can have several translations and rotatations in spaces R* for
different order in the cage and so that the movements are independent of each
other but have connvected vector congigurations. Note that all motions described
in this general form are visualized in some R? or even on a plane or on a straight
line or simply by a vector.

From Einsteins book, THE MEANING OF RELATIVITY, Forth Edition
1950, I quote:

“A little reflection will show that the theorem of the equatlity of the inert and
the gravitational mass is equivalent to the theorem that the acceleration imparted
to a body by a gravitational field is independent of the nature of the body. For
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Newton’s equation of motion in a gravitational field, written out in full, is

(Inert mass)(Acceleration) =
(Intensity of the gravitational field)(Gravitational mass).

It is only when there is a numerical equality between the inert mass and gravita-
tional mass that the acceleration is independent of the nature.

Here Einstein seems to consider a very general field, even if he disregard
masses from bodies far away. Locally we have such relations, as 5(2) for our solar
system.

Einstein applies the Riemann geometry. In this theory it is required that any
two points on a manifold have transformations of one given point to any other
point and that these transformations form a group. I think the vector curves
has this property in any R*. In these manifolds we have only finite many points
belonging to the timeintervals At = 27" for given n, but when we let n tend
to infinity, we so get uniform convergence of movements on straight lines and
circles and hence also on ellipses and on parts of these curves, hence for different
movemetns between any two points.
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