On the complexity of the description of representations

of x-algebras by unbounded operators

Lyudmila Turowska

Department of Mathematics, Chalmers University of Technology,

412 96 Goteborg, Sweden

Abstract

The notion of x-wildness is extended to classes of unbounded representations of
finitely presented *-algebras using the notion of unbounded elements which gener-
ate a C*-algebra. Examples of x-wild unbounded representations are presented. In
particular, the problem of unitary classification of non-integrable representations of
C[z1, z2] is shown to be equivalent to the unitary classification of x-representations of
C*(F3), *»-wild classes of representations of the x-algebra C(z1,z | [z1, [z1,z2]] = 0,

z} = z;,4 = 1,2) and a *-algebra generated by idempotents are discussed.

In the theory of representations of algebras it was suggested to consider the representation
problem to be wild if it contains the problem of describing up to a similarity a pair of
matrices without relations. The complexity of the structure of representations of a x-
algebra by bounded operators in a complex Hilbert space H was discussed in [OS, KS, PS].
It was proposed to choose, for a standard x-wild problem, the problem of describing pairs
of self-adjoint (or unitary) operators up to a unitary equivalence. The representations of
such an algebra are treated as complicated ones for the reasoning that it contains as a
subproblem the problem of describing x-representations of any affine x-algebra. Often x-
algebras have no bounded representations at all, or the set of bounded representations has
uninteresting structure. In general, we have to deal with representations by unbounded
operators. The aim of this paper is to extend the notion of *-wildness to unbounded
representations or classes of unbounded representations of x-algebras. The complexity of
unbounded representations of some x-algebras have been already discussed in [ST1, NT].
In particular, it was shown that the problem of describing non-integrable representations
of the commutative algebra with two self-adjoint generators contains, as a sub-problem,



the problem of classification up to a unitary equivalence representations of a free x-algebra
with two self-adjoint generators, while any irreducible integrable representation is one-
dimensional.

Many *-algebras of interest are introduced in terms of generators and relations, i.e.
algebraic equalities imposed on the generators. Here we shall mostly concentrate our
attention to this type of x-algebras.

The paper is organised in the following way. For the reader’s convenience and to fix
the notations we remind first (Sect. 1, 2) some necessary definitions and results on *-wild
algebras and relations, and C*-algebras generated by a finite set of unbounded elements.

Section 3 contains basic concepts and statements of the paper. Developing [OS, KS, PS]
we give a definition of *-wildness of classes of unbounded representations for finitely pre-
sented *-algebras. Recall that proving that a unital x-algebra 2 is *-wild we construct
a *-homomorphism v¢: A — M, (C*(F,)), n € N, which generates a full functor from
the category of *-representations Rep(C*(F3)) of the enveloping C*-algebra C*(F3) to the
category of bounded s-representations of A. Here F; is a free group with two genera-
tors. In order to include unbounded representations we consider “x-homomorphisms” )
from 2 into the elements which are affiliated with the C*-algebra C B(H)®C*(F,), where
CB(H) is the set of compact operators in a separable Hilbert space H. We study two
properties of such mappings: (P.1) the corresponding functor F, from Rep(C*(F2)) to
a category of unbounded representations of 2 is full and (P.2) ¢(t),...,%(t,) generate
CB(H)®C*(F;), where 11, ... ,t, are generators of the x-algebra 2[. It is shown that the
second condition is stronger then the first one (see Theorem 3 and Remark 4). Moreover,
x-wildness of a unital x-algebra 2l is equivalent to existence of a “x-homomorphism” having
the property P.2. The condition P.2 is the cornerstone in the definition of *-wildness of
classes of unbounded representations. Using the general theory on C*-algebras generated
by unbounded elements (developed by S.L.Woronowicz) we derive different properties of
x-wild classes of representations.

Section 4 provides us examples of *-wild representations. Example 1 is devoted to
non-integrable representations of the commutative x-algebra C[z1, z5] with two generators.
Using the constructions from [Schm, ST1] we prove that there exists a x-homomorphism
¢: Clzy,z9]) = (CB(H)®C*(F2))" such that the corresponding functor Fy is full. Exam-
ple 2 deals with the %-algebra A = C(x1,x3 | [21, [21,22]] = 0,2} = z;,7 = 1,2). We prove
that already representations 7 defined on a domain formed by analytic vectors for 7 (z;) and
7(x9) is x-wild. In Example 3 we discuss a class of unbounded representations generated
by four idempotents with zero sum. For the basic definitions and notions of the theory
of representations of x-algebras and C*-algebras we refer the reader to [D, Ped, Schm)].



Throughout the paper H is a separable Hilbert space, CB(H) and B(H) denote the al-
gebra of compact and bounded operators respectively acting on H. For x-algebras A and
B the algebraic tensor product of A and B is denoted by A ® B. We write also Rep(%)
for the category of all nondegenerate x-representations of 2, with bounded nondegenerate

representations as objects and intertwining operators as morphisms.

1. x-Wild algebras and relations. We follow [OS] in introducing the notion of *-
wild algebras (see also [KS, PS]). Within this section we assume the following convention:
all x-algebras are unital and representations of x-algebras are unital *-homomorphisms into
B(H).

Let 2 be a *-algebra. A pair (ﬁl;(b: A — Ql), where 2 is a x-algebra and ¢ is a
unital *-homomorphism, is called an enveloping *-algebra of the algebra 2 if, for any *-
representation m: 2A — B(H) of 2, there exists a unique *-representation 7: %A — B(H)
such that the diagram

RS
2 s
1

is commutative.

Enveloping algebra of a C*-algebra is unique and coincides with the algebra itself.

Let 7 : 2 — B(H) be a representation of 2. It induces the representation id ®
m: CB(Hy) © A — B(Hy ® H) of the algebra CB(Hy) ® 2 on the Hilbert space Hy ® H,
dim Hy < oo. The representation id @ m determines the representation 7 of the en-

—~——

veloping algebra (CB(Hp) ©® 2, ¢) on the same Hilbert space. Now let ¢ be a unital
x-homomorphism of a x-algebra 9B into the algebra CB(Hy) © 2. Then 7o : B —
B(Hy ® H) defines a representation of B. We can construct a functor F,: Rep(2) —

Rep(B) in the following way:
e Fy(m)=mo1, for any m € Rep(2A),
e F,(A) =1® A for any operator A intertwining my, 7.

(I is the identity operator in B(Hj)).

A x-algebra B majorizes a x-algebra A (B > 2A) if there exist a finite-dimensional
Hilbert space Hj, an enveloping algebra CB(/H\O-)/@ A of the algebra CB(Hy) ® 2, and a
s-homomorphism v: B — C’B(/I:I\(;)/@ 2 such that the functor Fi,: Rep(2) — Rep(B) is

full.



It follows from the definition that two representations 7, o of 2 are unitarily equivalent
iff the representations Fy(m), Fy(m2) of B are unitarily equivalent, a representation 7 of
2 is irreducible iff the representation Fy(7) is irreducible. Thus the problem of unitary
classification of the representations of the x-algebra B contains, as a subproblem, the
problem of unitary classification of the representations of the x-algebra 2.

Example 1. 1. 6, = Cla,b |a=a*,b=b*) = &, = Ca1,...ap | a;=a,i=1,...,m)
foranym=1,2, ....

2. Gy = Uy = Clug, ..o yum,ul, ... ,u
m=1,2,3,....

3. Uy > &y (see [OS|[Theorem 38,39, Corollary 7]).

ol wul = e uiu; = eio = 1,...,m) for any

This result allowed, as a model of complexity for problems of unitary classification of
representations of x-algebras, to choose the problem of unitary classification of represen-
tations of the algebra iy or, which is the same thing, its enveloping C*-algebra C*(F3),
where F; is a free group with two generators.

Definition 1. A x-algebra A is called x-wild if A > C*(F).

Note that if A is *-wild we can always find a *-homomorphism ) of 2 into the C*-
algebra CB(Hy) ® C*(F,) (= M,(C*(Fp)) if dim Hy = n) (we take the completion of
CB(Hy) ® C*(F3) in a C*-norm, it does not depend on the choice of such norm). We also
would like to mention the following theorem ([OS]).

Theorem 1. A C*-algebra A is x-wild if and only if there exist a C*-ideal J C A and
n € N such that 2/J ~ M, (C*(F)).

For other results and examples on *-wild algebras we send the reader to [OS].

2. C*-algebras generated by a finite number of affiliated elements. The notion
of a C*-algebra generated by a finite set of unbounded affiliated elements was introduced
and investigated by S. L. Woronowicz ([Word|, see also [Wor2]). We remind here some
definitions and facts from [Wor4].

Let H be a Hilbert space, C*(H) the set of separable nondegenerate C*-subalgebra of
B(H), and A € C*(H). The set of all multipliers M(A) of A is defined by

M(A) ={a € B(H) | ab,ba € A, for any b € A}.

In particular, M(CB(H)) = B(H).
Let T be a closed operator acting on a Hilbert space H. We say that T is affiliated
with A € C*(H) if the z-transform zr = T(I + T*T)'/? of T belongs to M(A), zhzr < I
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and (I — z42r)A is dense in A. We write TnA. The set of all elements affiliated with A
will be denoted by A”".

Let A be a C*-algebra, B € C*(H). The set of morphisms Mor(A, B) consists of
all 7 € Rep(A, H) such that 7(A)B is dense in B, where Rep(A, H) is the set of all
nondegenerate representations of A on H. In particular, Mor(A, CB(H)) = Rep(A4, H). If
¢ € Mor(A, B), then ¢ can be uniquely extended to a mapping from A" to B".

The notions of multiplier algebra, affiliated elements are independent of the choice of
embedding of C*-algebras into B(H) (see [Wor4]).

Let A be a C*-algebra and T1,...,T, be elements affiliated with A. We say that A is
generated by Ti, ..., T, if for any Hilbert space H, B € C*(H) and any m € Rep(A, H)
the condition 7(7;)nB, i = 1,... ,n implies 7 € Mor(A, B). In what follows we will use
the following sufficient condition for a C*-algebra A to be generated by elements affiliated
with A.

Theorem 2. Let A be a C*-algebra and T1,...,T, be elements affiliated with A. The
subset of M(A) composed of all elements of the form (I + T;T;)™' and (I + T;TF)7",
1=1,...,n will be denoted by I". Assume that

1. Th, ..., T, separate representations of A: if v1, @ are different elements of Rep(A, H)
then ©1(T;) # ©o(T;) for somei=1,... n.

2. There exist elements r1,... ,rx € I' such that the product r1 ...r; € A.
Then A is generated by Ty, ... ,T,.

Remark 1. A C*-algebra A is generated by Ti,...,T,nA with ||T;|| < oo for all i =
1,...,n if and only if A is unital and A coincides with the norm closure of all algebraic
combinations of I, T1,... ,T,.

Unfortunately, there is no canonical way for given unbounded operators 77, ... ,7}, on
H to construct a C*-algebra A generated by 73,... ,T,nA. Moreover, even the existence
of such C*-algebra is not guaranteed. See [Wor4| for other discussion on C*-algebras
generated by affiliated elements.

3. The complexity of unbounded representations of x-algebras. In this section
we shall extend the notion of x-wild problem to unbounded representations. We restrict
our attention to finitely generated unital x-algebras.

Let A be a unital x-algebra generated by elements ¢; ... ,t,, t],...,%; and relations
wj(ty, ..., t, 11, ..., 1) =0, j=1,...,m. (1)
Here w; are polynomials over C in the noncommuting variables ti,... ,t,, t7,... ,; and

e, where e is the unity of 2.



Let D be a dense linear subspace of a Hilbert space H. A family of closed operators
Ty,...,1T,,Tr,... ,T) defined on D is called a representation m of A on D if D is invariant
with respect to all operators of the family, D is a core for T;, T, + = 1,... ,n and the
relations

wi(Ty, ..., T, 17, ..., T))p =0, j=1,...,m.

hold for any ¢ € D with the identity operator on H instead of the unity e. We denote
by Rep,,,,(A) the category of unbounded representations of 2. The objects of Rep,,,; ()
are representations defined above and the morphisms of Rep,,,,(2) are bounded operators
C € B(H, H ) intertwining representations 7 and 7 which act on Hilbert spaces H and H
respectively, i.e.

CT,CT,C CT;CT/C, i=1,...,n

(we write C' € I(m,7)). We say that two representations 7; and 7o are unitarily equivalent
if there exists a unitary operator of H () onto H(my) such that U € I(m,m) and U ! €
I(mg,m). In this case we write m =~ .

Proving that the problem of unitary classification of bounded representations of a *-
algebra A is x-wild we construct a unital x-homomorphism ¢: A — CB(H)®C*(F;) which
generates a full functor Fjy: Rep(C*(F2)) — Rep(2). In order to include unbounded rep-
resentations we shall replace the above x-homomorphism by “x*-homomorphisms” into the
set of affiliated elements (CB(H)® C*(F3))" (here H is not necessarily finite-dimensional).

Namely, let ¢: A — (CB(H) ® C*(F,))" be a unital mapping from A to (CB(H) ®
C*(F3))" such that there exists a dense linear subset D of C B(H) ® C*(F,) satisfying the
following conditions:

e D is invariant with respect to ¥(T;),i=1,... ,n,
o wi(Y(tr),. .., v(tn), Y1), ... ,¥(t,)*)a=0, j=1,...,m, a€D,
e D is a core for ¥(t1),... ,¥(ts).

In the sequel, whenever we write a x-homomorphism ¢ from A to (CB(H) ® C*(F3))" we
mean a unital mapping ¢: A — (CB(H) ® C*(F3))" satisfying the above conditions.
As before, the mapping 1 generates a functor F,: Rep(C*(F2)) — Repy,, (A):

o Fy(m)(t;) = (id ® 7)(¢(t;)) for any representation m € Rep(C*(Fz)), where id @ 7 is
the unique extension to the affiliated elements,

o F,(A) =1Q A for any A intertwining 7y, .



If 7 is a representation of C*(F3) on a Hilbert space H(w) then Fy(m)(t:), i =1,...,n
define a representation of % on D = {(id ® 7)(D)y,¢ € H @ H(m)}, which is dense in
H ® H().

Consider the following two properties:

P.1. The functor Fy is full.
P.2. ¥(t1),...,9¥(t,) generate CB(H) @ C*(F3).

Theorem 3. P.2 = P.1.

Proof. To prove the statement it is enough to show that given an operator C' € B(H),
a representation m € Rep(C*(F3)) such that CFy(m)(t;) C Fy(m)(t:)C, CFy(m)(t:)* C
Fy(m)(t;)*C, we have C =1 ® A, where A € I(m, ).

We first show that C' commutes with (id ® 7)(a) for any a € CB(H) ® C*(F,). Define
the following set:

Cid®m)(a) = (id ® 7)(a)C,
Clid®m)(a*) = (id® 7)(a*)C
Here B = CB(H) @ C*(F;). B¢ is a C*-subalgebra of M(*B). Let us show now that
Bec = M(%B).
(1) B¢ is nonempty, since the z-transforms zy,), z:;(ti), 1=1,...,n belong to Be.

B = {CLEM(%):

(2) B¢ separates representations of B. Indeed, let 7, o are two different represen-
tations of 8. Assuming that 7,(g) = m(q) for any ¢ € B we get 1 (2p(,)) = T2(2ps:))s
i =1,...,n which implies m (¢(t;)) = m2(¢(¢;)) for any i = 1,... ,n. Since 9¥(t1),...9¥(t,)
generate B, we get m = my. A contradiction.

(3) B is strictly closed. In fact, let {z,} € B strictly converge to z, i.e. ||a(zr—2z)|| =
0 and ||(z)y — x)a|| — 0 for any a € B. If 7 € Rep(B, H), we get ||m(zra) — 7(za)|| — 0
and

(m(zy) — m(x))m(a)p =0, a€B, p€ H.
Since 7 is a nondegenerate representation of B, the set {m(a)p: a € B,p € H} is dense
in H and we deduce that

(m(xy) —w(x))p =0, @€ H.

Therefore, if C(z)) = 7(x))C we get Cr(z) = n(x)C and = € Bg.
According to [Word|[Proposition 2.2] (Stone-Weierstrass Theorem), (1), (2), (3) imply

B = M(B)

and hence [C, (id® 7)(a)] = 0 for any a € CB(H) ® C*(F,). This gives C = I ® A, where
[A,m(a)] = 0 for any a € C*(F3) and hence the functor Fy is full. O
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We shall see below (Example 2) that the inverse implication is not true in general.

In the sequence we shall consider classes R of representations from Rep,,,;(2) which
are closed with respect to the direct sum and taking subrepresentation, i.e. R satisfies the
following conditions:

a) if m € R and m; ~ 7y then my € R;

b) if (7 )xen is a family of representations from R, where A is a countable set of indexes
then @ycamy € R;

c)if my ®@m € Rthenm, € R, i =1,2.

Definition 2. Let 2 be a unital x-algebra generated by t1, ... ,t, and relations (1). We say
that a class R C Rep,,,,(~A) is x-wild if there exists a x-homomorphism 1: A — (CB(H)®
C*(Fs))" such that (id®@m)(1)) belongs to R for any m € Rep(C*(Fz)) and ¥(t1), ... , ¥ (tn)
generate the C*-algebra CB(H) @ C*(Fs).

Proposition 1. The class of bounded representations of A is x-wild if and only if A is
x-wild.

Proof. Assume that there exists a x-homomorphism v¢: A — (CB(H) ® C*(F;))" such
that the operators (id ® 7)(¥(;)), 7 = 1,...,n are bounded for any 7 € Rep(C*(F))
and ¥(t1),...,9¥(t,) generate B = CB(H) @ C*(F,). Clearly, ¥(t;), i = 1,...,n are
bounded. Then it follows from [Wor4, Example 1] that 9B is unital and coincides with the
norm closure of all algebraic combinations of I, t(t1),...,%(t,). This implies that H is
finite-dimensional and 1) is a *-homomorphism from 2 to CB(H) ® C*(F2). Moreover, by
Theorem 3, the functor generated by v is full which means that the x-algebra 2 is *-wild.

Conversely, suppose that 2 is *-wild. Then there exists a *-homomorphism : 2 —
CB(H) ® C*(F,) with dim H < co. Let B be the norm closure of the set of all algebraic
combinations of I, 1(t), ... ,¥(t,). Then B is a C*-subalgebra of C B(H)® C*(F;). Since
A is x-wild, w((A)) = 7(CB(H) @ C*(F,))' for any representation 7 of CB(H) ® C*(F3)
(see the proof of [0S, Theorem 50]). This implies 7(B) = 7(CB(H) ® C*(F,)). By
[0S, Lemma 14], the inclusion i: B — CB(H) ® C*(F,) is a surjection, and hence B =
CB(H) ® C*(F;). Since the C*-algebra CB(H) ® C*(F3) is unital, by Remark 1, we see
that v(t1),...,9¥(t,) generate CB(H) ® C*(F,) in the sense of affiliated elements. The
proof is complete. ]

Let 2 be a *-algebra generated by t1,...,t, and relations (1). We say that a class
R C Rep,,,,(A) is manageable if there exists a separable C*-algebra % (unital or non-
unital) and 71, ... , T,, n B such that B is generated by T3, ... , T, and if any representation
7 € R is generated by a representation of 9B, i.e. if there exists 7 € Rep(B, H) such that
m(t;) =7(13),i=1,...,n (see [Word]).



Proposition 2. Let R be a manageable class of x-representations of . Let B be the C*-
algebra defined above. Then R is x-wnild if and only if there exist a C*-ideal J and a Hilbert
space H such that

B/J ~ CB(H) ® C*(F). 2)

Proof. Let R be x-wild. Then there exists ¢: A — (CB(H)QC*(F3))" such that ¢(t,),. ..,
¥(t,) generate the C*-algebra CB(H) @ C*(F;) and (id ® m)(¢) € R for any represen-
tation m € Rep(C*(F2)). Let us take my an embedding of C*(F;) into B(Hp). Let 7
be the representation of B such that 7o(7;) = (id ® mo)(¥(¢;)), ¢ = 1,...,n. Since
Ti,...,T, generate B and id ® m is injection, by [Word]|[Proposition 4.5] there exists
7' € Mor(®B,CB(H) ® C*(F3)) such that

= (d®m)r'

and ¢¥(t;) = «'(T;). Then since ¥(t1),...,9¥(t,) generate CB(H) ® C*(F,), applying
[Word4|[Proposition 3.2] we conclude that 7'(*8) = CB(H) ® C*(F3) and hence there exists
a *-ideal J = ker 7’ such that (2) holds. The converse is obvious. O

Remark 2. If we have a x-homomorphism ¢: A — (CB(H) ® C*(F;))" which gener-
ates a full functor F, : Rep(C*(F2)) = R C Rep,,;(A), then the problem of unitary
classification of x-representations R of 2 is difficult and contains as a subproblem the
problem of unitary classification of all representations of C*(F,). Namely, the representa-
tion ((id @ m)(¥)(t1),...,(#d @ m)(¥)(tn)), 7 € C*(F3), is irreducible iff 7 is irreducible,
two such representations are unitarily equivalent iff the corresponding representations of
C*(F,) are unitarily equivalent.

Proposition 3. Let B be a C* -algebra with the property (2), in particular, a *-wild
unital C*-algebra, let ¢: A — (CB(Hy) @ B)" be a unital x-homomorphism such that
Y(t1),. .. ,¥(t,) generate CB(Hy)®@B. Assume that the representation ((id®@m)(1(t1)), - - .
(tid @ m)(¥(tn)) belongs to a class R C Rep,,,,(A) for any m € Rep(B). Then R is x-wild.

Proof. By the assumption, there exists a *-homomorphism ¢: B — CB(H;) ® C*(F)
such that

QO(‘,B) = CB(H1) ® C*(IQ). (3)

If we prove that (id ® ¢)(¢(t;)), i = 1,... ,n generate A = CB(Hp) ® CB(H;) ® C*(F),
the assertion follows.

Let H be a separable Hilbert space and m € Rep(A,#H). Then there exists a unitary
operator V € B(#H) and a representation p € Rep(C*(F3)) such that 7 = V (idg, ® idg, ®
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p)V L. Let C € C*(H) with the property 7((idg, ® ¢)(¥(t:;)))n C. Then (idgy, ® idy, ®
p)((idm, ® ©)(¥(t;))) n VICV =: C. Since p := (idy, ® p)(y) is a representation of B,
idg, ® p € Mor(CB(Hy) ® 98B,C). From this and (3) we conclude that idy, ® idy, ® p €
Mor(A,C) and m € Mor(A,C). The proof is finished. O

Let R be a class of Rep,,,;,(2), and let H and H, be separable Hilbert spaces, dim H =
oo. We denote by R(H) the set of all representations 7 € R acting on H = H ® H,.
Assume that there exists a *-homomorphism ¢ : A — (CB(H) ® C*(F,))". We shall
write Ry () for the subset of those representations 7 € R(H) which are generated by ¢
ie. Ry(H) = {((m)(®(t1)),...(m)(¥(tn)), ™ € Rep(CB(H) ® C*(F2))}. Then R(#H) and
Ry (H) are complete subsets of (C¥ ® CB(H))". We recall that a set of representations R
in (CN @ CB(H))" is complete if

a) R is closed under the adjoint action of isometries: if 7 € R and V' is an isometry
such that VV* € I(n,n) then V*7V € R;

b) R is closed under V-direct sums: if 7, € R for all A € A (A is denumerable set)
then V(@ eamy)V* € R for any unitary operator V : @ xeaH — H.

To formulate next result we recall the definition of the C*-algebras of continuous opera-
tor functions and continuous operator functions vanishing at infinity defined on a complete
set K.

For any complete set R in (C¥ ® CB(H))" we define mappings F : R — (CB(H))"
such that F(V*7V) = V*F(m)V for any 7 € R and every isometry V with VV* € I(m, 7).
In this case F' is called operator function on R. Following [Worl] we denote the set of all
such mappings by F(R). A function F' € F(R) is said to be bounded if F(7) € C¥N @ B(H)
for any m € R. We endow R with the topology of almost uniform convergence and define
continuous operator functions on R to be

C(R) = {F € Foounaea(R) | R > 7 — F(7) € (CN ® CB(#))" is continuous}.

So defined set is a C*-algebra with unit (see [Worl]). A representation p of C(R) is

called singular if it is disjoint with any representation of the form p,(F) = F(7), m € R,
FeC(R).
Continuous operator functions vanishing at infinity are defined as follows

Co(R) ={f € C(R) | p(F) = 0 for any singular representation 7 }.
Cwx(R) is a C*-algebra ([Worl]).
Proposition 4. If ¢ is a x-homomorphism such that the property P.2 holds then
Rep(CB(H) ® C"(F2), H) 37 = (7(¢(t:)))is € Ry(H)
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1s a homeomorphism and
CB(H) ® C*(F,) ~ Co(Ry(H)).
Proof. Tt follows from [Wor4, Theorem 6.2] and the fact that
CB(H)® C*(F) ~ C(Rep(CB(H) @ C*(F3), H).
U

Corollary 1. If R is a x-wild class of representations then there exists a complete subclass
R of representations acting on a Hilbert space H such that Coo(R) ~ CB(H) ® C*(F2) for
some Hilbert space H.

Remark 3. In the contrary with Proposition 4 the structure of the set R(#) is not neces-
sary isomorphic to Rep C(R(#)). The C*-algebra Coo(R(H)) can be very small and even
trivial. But if R(#) is locally compact (see [Worl] for the definition) then the mapping
R(H) > 7 — pr € RepCo(R(H)) is a homeomorphism and in this case one can prove
that R is *-wild iff Co(R(H)) contains an ideal J such that

Coo(R(H))/J =~ CB(H) @ C*(F3).

4. Examples

Example 2. Unbounded representations of the commutative algebra with two
generators. Let 2A = C[z;, 23] be the commutative unital algebra of complex polyno-
mials in the real variables x;, x5. It is known that any irreducible integrable represen-
tation 7 of the algebra is one-dimensional. Recall that for Clzi,xs] a representation
7 = (X; = X7,X, = X3) is integrable if spectral projections of X; and X, commute.
An equivalent condition (see [N]) is that X;Xsp = X9 X ¢, where ¢ belongs to a dense
domain, invariant with respect to the operators of the representation and consisting of
analytic vectors for X, Xy. The result which was given without proof in [ST1] is that
non-integrable representations have more complicated structure and the classification of
such representations contain as a subproblem the problem of unitary classification of rep-
resentations of the x-algebra &, (see Example 1). We repeat relevant material from [ST1].

Let o, # > 0. Consider representations m of Gy in a Hilbert space H such that
l|m(a)|] < a, ||7(b)]| < B and 7(a),w(b) > 0. Then there exists the unique unital C*-
algebra B, s which makes the diagram

B

Y

™

Go—"~ B(H)
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commutative for any such x-representation 7 of G5. We write
Bas=C"(a,b;a>0,0>0,|la]| <o,||Bl] < PB).

Consider the following construction, analogous to the one in [Schm|. Consider p,q €
M3(®B, ) given by

e pa 0 e 00
p=| pa e ub |, g=1 0 0 O
0 wb Xe 0 00

here A\, u € R are such that 1/2 < p < 3/4, e is the unit element in B, 3. Let wy,
we € My(M5(Ba,p)) ~ Ms(Ba,s) be defined by

i(es —2q) 0 es—2p  —2(p—p?)'~?
w1 = o W2 = 2\1/2 ’
0 €3 —2(p —p?) 2p —e3
where ez is the unit element in M3(2B,,4). Since 1/2 < p < 3/4, the element w, is well-
defined.
Let H be an infinite-dimensional separable Hilbert space and let {fy,k € Z} be an

orthonormal basis in H. Let P; be the projection onto C{(f;) and v be the shift operator,
i.e., vfy = frt1, k € Z. We define now vy, vs, v3 € L(H) © Mg(B,,3) by

v =vQe; vV2=v(—P)®es+vP®w,
’U3:’U(I—Pl—P2)®€5+UP1®?U1+UP2®TU2,

here eg is the unity in Mg(B,g)-
Finally, we define operators U, and Uy € L(H) ® L(H) ® Mg(*Ba,p) C L(H) ® Bag,
H=a% H®H by

1

+o0
U=v®E, Uy=(Y P)@u+Pou+() P)ouv

1=—00 =3

Here E is the unity in L(H) ® Ms(Ba ). Ui, Uy are easily seen to be unitary elements
of M(CB(H) ® %a,ﬁ)-

Proposition 5. There exist selfadjoint elements X1, Xo n CB(H) ® Ba,ps such that Uy,
Uy are the Cayley transforms of X1 and Xy respectively.

Proof. We denote by A the C*-algebra C B(H)®*B, . According to [WN][Proposition 5.1,
Theorem 5.2], it suffices to show that (I — U;)A is dense in A, i = 1,2. Suppose for the
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moment that the statement is false. Then (I — U;)A is a proper right ideal in A and there
exists a pure state on A such that f((I — U})a) =0, for any a € A ([D, Theorem 2.9.5]).
Using the GNS procedure we can construct a representation m € Rep(A, H) and a cyclic
vector ¢ € H such that f(a) = (¢ | 7(a)y) for all @ € A. Thus

0=f(I=U)a)= (¢ |7l -U)m(a)p) = (I —7(U)g | w(a)p)

Since ¢ is a cyclic vector, m(A)p is dense in H. This implies (I — 7(U;))¢ = 0 and hence
¢ € ker(I — n(U;)). Any nondegenerate representation 7 of CB(H) ® B, is of the form
Vid ® moV* where 7 is a nondegenerate representation of B, g. It is easy to check that

ker((id®m)(U;) —I) = {0}, for any my. A contradiction. By [WN][Proposition 5.1], Uy, Us
are the Cayley transform of selfadjoint operators X;nA and XsnA respectively. Moreover,
D(X;)={—-U;})CB(H) ® Bap, i =1,2. O
Proposition 6. ¢: Clzy,25] 3 z; = X; € (CB(H) ® Bap)" is a x-homomorphism.

Proof. Let us consider the following set A, = [Uy, Us]A, where A = CB(H)®*B,,3. Using
a simple computation one can show that

[Ul,UQ]:P3’1)®P31)®(€6—w2)+P2U®P2’U®(€6—UJ1)

0
and Q11 =P3@ PR ((e6 —w2)/2) + P,Q P, ® ( 33 0 ) € A is the projection of A onto

A1 1. Define now
D= (Ul* - I)(UQ* - I)(I— QI,I)A'

The proposition follows from the following lemma.

Lemma 1. D is dense in A, D is a core for X1, Xo and X1 Xoa = X3X4a, for anya € D.

Proof. The proof is similar to that of [Schm][Lemma 9.3.2, 9.3.3, 9.3.4]. We begin by
showing that X, Xoa = Xy X a for any @ € D. By definition of the projection i1, we
have (I — Ql,l)[Ul, UQ] = (I — Ql,l)[Ul — I, U2 — I] = 0 which 1mphes

[Uf -1, U; _I](]_Ql,l) =0

and
(U =DU; = DNb=(Us = I)(Uy =1)b, be (I —Qu)A.

Let a € D. Then a = (Uf —I)(Uy — I)b = (Us — I)(Uf — I)b with b € (I — Q11)A.
Remembering that each element of D(X;) is of the form (I —U})a, a € A, i = 1,2, we see
that a € D(XlXQ) N D(XQXl) and

b= ((X2 —1)/20)((Xy —9)/21)a = (X1 —4)/20) (X2 — 0)/2)a
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which implies Xy X a = X Xsa for any a € D.

To prove that D is a core for X; and X, we have to show that D = (I—z}z)'/?D;, where
D; is a dense subset in A, here z; is the z-transform of X;, i =1,2. Let U; — I = V;|U; — [|
be the polar decomposition of U; — I (see [WN][Proposition 0.2]). Then V; € M(A) and
V; is unitary because (U; — I)A and (U — I)A are dense in A. One can check that
VI =2z = ilUi = I|/2 = i(U; = I)Vi/2. Since D = (Uf = (U — I)(I — Q11)A =
(Us — 1)U —I)({ — Q1,1)A4, it is sufficient to show now that (U —I)(I — (Q),,1)A is dense
in A for 4 = 1,2. This follows by the same method as in the proof of Proposition 5 and
completes the proof of the lemma and the proposition. O

O
Theorem 4. The functor Fy is full.

Proof. Let Hy, Hy be two separable Hilbert spaces and m; € Rep(®B,.4, H;), i = 1,2. Then
7; = idy, ®; is a representations of CB(H;)®B,3, ¢ = 1,2. Let C be a bounded operator
intertwining representations (71 (X;), 71(X2)) and (72(X1), T2(X2)) i.e.

C71(X1) C7a(X7)C, Cm(X2) C7a(Xy)C (4)
where 7;, ¢ = 1,2 are the extensions to affiliated elements. (4) implies now

We write C' as an infinite matrix (¢, m)n.mez and 71 (U;), 72(U;) as Uy, U, respectively. We
set also v, = v, v, = 01 for n < 1 and v, = v3, 0, = v3 for n > 3. Since CU; = Ulc, we
get cpm = Cp—1,m—1. From CU, = UQC it follows that ¢y mvm = Uncpm and

CnymV1 = Cn—rm—rUm—r = Un—rCpn—rm—r = V1Cn—rm—r = U1Cn,m
forn—r <1, m—r <1. Similarly,
CnmVs = U3Cpm, foranymn,meZ,
Cn,m¥U2 = Cn_(m_g)’gvg = ’Un_(m_Q)Cn_(m_Q),Q = V1Cnym = Cp,mU1 for any n < m.

This gives ¢ mvvh(vi—ve) = 0, k,1 € Z. It will cause no confusion if we use the same letter
I to designate the identity operator in different Hilbert spaces. From the construction of
the operators vy, vy, v3 we obtain v; —vy = vPL@ (I —wy), vy 'w3(v) —v3) = VP @wo (I —wy).
If W denotes the Hilbert space where the operators w, ws act, one can easily check that
(I — w))W 4+ wo(I — w;)W is dense in W and (v; — vo) H @ W + vy 'vs(vy — v)H @ W
is dense in P,H ® W. Then, since vfP,H @ W = Py, oH ® W, we see that l.s {vf((v; —
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vo)H @ W + v7 wz(vy — vo)H @ W), k € Z} is dense in H ® W. From this it follows that
Cnym = 0 for n < m. Using the same arguments applied to the relations CU; = Uz-*C,
t = 1,2 we deduce that ¢, ,, = 0 for n > m. Hence, C is diagonal with ¢, , on the diagonal
and such that ¢, ,v; = 9iCyn, Con¥f = Ofcpn @ = 1,2,3, 1e., C = I ® C', where C! is a
bounded operator intertwining (v;, v})?_; and (9;, 97)3_,. We write C! as an infinite matrix

n,m € Z. From C'v; = 9;C" it follows that c}l,m = ct n,m € Z.

with entries c? n—1,m—1

n,m?
From C'vy = 9,C" and Clvy = 93C' we obtain

1 — .l ; 1 — ol
C3 ;W1 = Cyjy JF 2, CyoWi=WiCy,
1 _ .l ; 1 — el 1 el
C3 ;W2 =C3y JF 2,3, C33wp=1aCz3, C3,Wa=W1C3,.

Taking into account that ¢, ,, = ¢;_; ,, 1, We have ¢3 ;(w1 —1) =0, j # 2, ¢ j(wa—1) =0,

j # 1,2. Tt follows from the construction of wy, we that (w; — 1)W + (wy — 1)W is dense
in W. Hence, c¢; ; = 0, j # 1,2. Similarly, the relations (C*)*o; = v;(C")*, i = 1,2,3 give
c;,Q =0,7 #1,2. Thus ¢p; =0, j # 2 and finally ¢, ,, = 0 for n # m. This prove that
C' = I ® C?, where C? is a bounded operator intertwining (w;, wy, w;, w}) and (wy, e,
Wy, w3), i.e., C?w; = w;C? and C?*w} = w;C? i =1,2. We write C? = (¢2,,)nm=1,2- The

n,m
relation C*w; = ,C? implies ¢} , = ¢35, = 0 and ¢ ;¢ = ¢¢} ;. From this and C?wy = w,C?
it follows that ¢ ;p = pc? ; and ¢, (p—p?)'/? = (p—p?)"/2c3,. Since (p—p?*)'/? is invertible,

we obtain from the last two equalities that ¢} = ¢3,, i.e., C* = I ® C?, where C? is such
that C%p = pC? and C3¢ = GC3. We leave it to the reader to verify that the last two

cC* 0 0
relations imply that C*= | 0 C* 0 . This finishes the proof. O
0o 0 C*

Corollary 2. There erists a *-homomorphism ¢: Clz1, 2] — (CB(H) ® C*(F2))" such
that the corresponding functor Fy is full.

Proof. One can show easily that the C*-algebra B, 3 is *-wild and there exists a *-
homomorphism ¢: B, s — M,(C*(F3)), n > 0, which generates the full functor F,, from
the category Rep(C*(F3)) into the category Rep(B,). Setting ¢ = ¢ o ¢, we obtain
that ¢ is a *-homomorphism from C[z;, 22| to (CB(H) ® C*(F2))" and the corresponding
functor is full. O

Remark 4. ¢: C*(F) > u; —» U; € M(CB(H) @ Bop) C (CB(H) @ Bup)", i = 1,2
is a *-homomorphism and the corresponding functor F, is full. However, U;, U, do not
generate CB(H) @ B, g, because CB(H) ® B, s is a non-unital C*-algebra.

Example 3. Consider the x-algebra A = (z1,25 | [z1,[21,22]] = 0,2] = z;,i = 1,2).
Clearly, any representation of the commutative algebra C[zy, x5] is a representation of the
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x-algebra 2. It follows from the preceding example that non-integrable representations can
be complicated, i.e. the problem of unitary classification of such *-representations contains
as a subproblem the problem of unitary classification of representations of the C*-algebra
C*(F).

In this example we show that the class of representations = defined on a domain formed
by analytic vectors for m(x1) and m(x2) is *-wild.

Let, as before, o, § > 0 and let B, 3 = C*(a,b;a > 0,b > 0, ||a|| < o, ||b]| < 5). On
the Hilbert space H = Ly(R, dx) we consider the multiplication operator ¢ by x and the
operator of differentiation p = i%. Let a1, ay denote the following elements in M;(B, 3)

Ae 0O 0 0 a b
a; = 0 )\26 0 s a9 = a 0 0
0 0 Azeé b 0 0

where \; € R, with \; # A;, ¢ # j, e is the unity of B,4. Since ¢, p n CB(H), there
exist uniquely defined selfadjoint elements X; = e3 ® ¢ and Xy = a1 ® p + a2 ® Iy such
that Xy, Xo n M;3(B,,s) @ CB(H). Here ej is the unity of M;(B,,5) and Iy is the identity
operator on H.

Proposition 7. ¢: A3 z; » X; € (M35(Bas) ® CB(H))" is a x-homomorphism.

Proof. Let G be the Heisenberg group, i.e., the group of matrices of the form

o =

1 T
g=g(t,s,T)=1| 0 s |, t,s,reR
0 1

Then u: G — B(H) defined by
u(g(t,0,0)) = €™, u(g(0,s,0)) = e"P, u(g(0,0,r)) = eI

is a unitary representation of G on CB(H). By [WN], given a unitary representation u
of a real Lie group in a C*-algebra A, there always exists a dense in A domain ® which
is invariant with respect to operators of infinitesimal representation of the Lie algebra
and is their essential domain. Let D = M5(B,3) © ®. Clearly D satisfies all the required
conditions: D is dense in M3(%B,,3)@CB(H), D is a core for X;, X, and [ X1, [X1, Xs]]la =0
for any a € D. O

We denote now by R the set of all representations 7 of & on a Hilbert space H, defined
on a dense invariant domain consisting of analytic vectors for m(z1), 7(z2).
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Theorem 5. R is a x-wild class of representations.

Proof. Let id be the identity representation of M3(CB(H)) on H @ H & H. Given a
representation 7 of B, 5, (7 @ id)(X1), (7 @ id)(X2)) defines a representation from the
class R, where 7 ®id is the unique extension to affiliated elements of B, s @ M3(CB(H)) =
M;3(B,5) ® CB(H).

To prove that R is %-wild it is sufficient to show that X, Xs n M3(B,s3) ® CB(H)
generate the C*-algebra M3(B,,5) @ CB(H). By Theorem 2, the statement will be proved
once we prove that X, X, separates representations of Ms5(B,4) ® CB(H) and that
(I +X3) 7'+ X7)7' (I + X3)7" € M3(Ba,5) @ CB(H).

We realize B, s as an algebra of operators in a Hilbert space H. Let F' be the Fourier
transform operator in H = Ly(R,dz). Then F = I3, ® F is a bounded operator acting on
the space (H@®H ®H)® H and such that FX; F ' =13 ®@p, FXiF '=a1®q+a; @Iy
(here I3, is the identity operator on H®HGH). The operator (14¢*) 1 (1+p*) " (1+¢*) !
acting on H is integral with the kernel K (z,y) = 1(1+ z?)e~*=¥/(1 + y?)~" as is easy to
check. Moreover, this operator is positive with finite trace which implies that it is compact.
Therefore, r = I3, ® (In + ¢*) '(Ig + p*) ' (Ig + ¢*) ™' € M3(Ba ) ® CB(H). Let

s=(I+(@m®q+ae1)") ' (I+1¢%).

Clearly, s is bounded. Moreover, s is affiliated with M;(®B,3) @ CB(H). This is due to
the following lemma.

Lemma 2. Let A be a C*-algebra, SnA, v € M(A). Assume that [v,zg] = [v, 25| = 0.
Then there exists TnA such that

Ta =vSa, for any a € D(S).

Proof. We shall use [Wor2][Theorem 2.3]. Let

1/2

a= (I —2525)' 2, b=wzg, c=vzg, d= (I — 2525)"2

One can easily see that a, b, ¢, d € M(A), ab = cd, the sets a*A = aA, dA = d* A are dense

in A.
For Q = d —c* we have Q*Q — I — z5zs +v'vzgzs 0
b a 0 I — 2525 +vv*zs2g
Let m be an irreducible representation of A on a Hilbert space H,, id the canonical
representation of M,(C) on C2. Since (I — z525)'/2A, (I — z52%)'/2A are dense in A and
v*vzizg, vv*zgzs > 0, one can easily deduce that the range of (id @ 7)(Q*@) is dense in

H, which implies that (id ® 7)(Q) is dense in H,. Using [Wor2|[Proposition 2.5] we see
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that Q(A @ A) is dense in A ® A. By [Wor2|[Theorem 2.3] there exists an element 7" 1 A
such that dA = (I — z%25)"/?A is a core of T and T(I — z%z5)"?x = vzgx for any = € A.
Since (I — z%25)Y2A = D(S), Ta = vSa for any a € D(S). O

It is known that multipliers are the only bounded elements affiliated with a C*-algebra.
Therefore s € M(M3(Bas @ CB(H)) and srs € M3(B,3 Q@ CB(H)). On the other hand,

srs=F(I+ X)) I+ X)) I+ X))~ F™!

which yields (I+X2) ' (I+X?)"{(I+X2)™' € M;3(Bas)QCB(H). Since B, 4 is a *-wild
C*-algebra, we conclude that R is #wild class of representations due to Proposition 3.
The fact that X, X, separate representations follows from [NT]|[Theorem 3] and the fact
that any representation of M3(B,5) ® CB(H) is of the form V(7 ® id)V, where V is

a unitary operator, 7 is a representation of ‘B, g and ¢d is the identity representation of
M;3(CB(H)). The proof is done. O

Example 4. Let B be an algebra and let py, ps, p3, ps be idempotents in B such that
p1+ po+ p3 + ps = 0. Idempotents with this property were studied in [BES1]|. They arise,
in particular, in the study of logarithmic residues in Banach algebras (see also [BES2]). In
[BES1] it is shown that non-trivial zero sums of four idempotents do not exist in Banach
algebras, however, there are unbounded idempotents in a Hilbert space having this prop-
erty. Unbounded representations of a k-algebra generated by idempotents pi, ps, p3, ps
and pi, ps, ps, ps satisfying p; + pe + p3 + ps = 0 were discussed in [ST2]. In this example
we shall see that the class of representations defined in [ST2] is *-wild. Let p = (p1 +p2)/2,
q= (p3+p4)/2, 7 = (p1—p2)/2, s = (p3—pa)/2 (we have p; = p+7,pa =p—7, p3 = ¢ +s5,
ps = q — s). Direct computation shows that they satisfy the following relations:

pr=r(1—p), ps=s(—1—-p),
= p(l—p), s*=—pp+1). ©)

We assume additionally that

pr* =rp, ps* = sp, p=7p, (6)

and denote by 2 the x-algebra generated by p, ¢, r, s and relations (5)—(6). We define R C
Rep,,,,,(2A) as follows: a family of closed operators (P, @, R, S) on a Hilbert space H belongs
to R iff there exists a linear dense subset ® C H such that & C H,(P,Q, R*R, 5*5),
® is a core for the operators R, R*, S and S* and relations (5)—(6) hold on ®. Here
H,(P,Q, R,S) denotes the set of analytical vectors for P, Q, R, S. It was proved in
[ST1] that a subclass R of R defined by the condition ker P # {0} is manageable, i.e.
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there exists a C*-algebra A and elements p, ¢, 7, s n A generating A and such that
R = {(x(p),n(q),n(r),n(s)) | = € Rep(4)}. Moreover, all such representations were
classified up to a unitary equivalence.

Let now Ay 3 = C*(a,b : ||a|| < «, ||b]| < B}. Let H be a separable infinite dimensional
Hilbert space with an orthonormal basis {ey }xcz, let Py be the orthoprojection onto C{ey ),
k € Z. We consider operators v, w defined by ver = exy1, vexrr1 = e if k is even and
wey = egy1, Wegr1 = e if k is odd. Clearly, (Pog + Pogy1)H (respectively (Pogy1+ Pogr2)H)
is invariant with respect to v (respectively w).

Let now

- e 0 . e 0
p= Zk#o(_l)kaPk ® ( 0 e ) » 4= Zk;ﬁo(_l)kkpk ® ( 0 ) )

(&

e 0 e 0 O
r = 2k + 1) v Py, — 2kv P P,
7= (D pz0(2k + 1)v Py U2k+1)®(0 e>+v 0®(0 9% 0>,

. e 0 e e a+1b
s = (Zk;éO(Qk + 1)’UJP2]H_2 — (Qk' + 2)P2k—|—1) (34 + ’IUP() X .
0 e 0 e e
Here e is the identity element in A, 3. We write H for the Hilbert space generated by the
basis elements f, = e, Pe,, n € Z, n# 0, fo = ey P eg D ey. Direct verification shows that
P, @, R, S are affiliated with C B(H)®.A, g and separate representations of C B(H)®.Aa,s-
0
Moreover, since (I +5°)~" =2, (1 +4%)"'P® (e) , (I+p*)t e CB(H)® Aup-
e
Therefore, by Theorem 2, P, @, R, S generate the C*-algebra CB(H) ® A, -

Let @, be the orthoprojection onto a subspace of H generated by {fx};__, and let
D=1ls {a®b|a€ CB(H),a=QuaQ, for some n € Nb € A, z}. Then D is dense in
CB(H) ® A, and invariant with respect to p, ¢, 7, 5, D is a core for the elements p, ¢,
7, § and p, q, 7, § satisfy relations (5)—(6) on D. Moreover, any representation (m(1)(p)),
w(¥(q)), m((r), m(1(s))) belongs to R, where 7 is a representation of CB(H) ® Aa -
From this it follows that the class R is x-wild.
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