Similarity problem for certain martingale uniform
algebras*

S. V. Kislyakov

The long standing question about similarity to a contraction of every poly-
nomially bounded operator was recently settled by a counterexample in Pisier’s
paper [Pil]. For the history of the problem, the reader may refer to the same
paper. We also mention [D-P] and Ki2] for other expositions.

In different terms, the result of Pisier can be stated as follows: there exists a
bounded but not completely bounded (the definition is given below) homomor-
phism ¢ : C4 — B(H), where C4 = {f € C(T) : f(n) = 0for n < 0} is the
disk algebra, and B(H) is the algebra of all bounded operators on Hilbert space.
It is a natural to ask whether C4 can be replaced here by other proper uniform
algebras. This question was mentioned in [Pi2].

We remind the reader that a uniform algebra is a closed subalgebra A of C'(X)
that contains the constant functions and separates the points of X; A is said to
be proper if A # C(X). A bounded linear map T : A — B(H) is completely
bounded if there is a constant C such that for every n, every matrix {¢;;}1<ij<n
with entries in A, and every vectors z1,..., %y, y1,... ,Yn € H we have

| Z (pi)zs vl < CSUP {35 (¢) Hlar, ( Z”%” 1/2 Z llall*) 1/2

where M, is the space of (n X n)-matrices endowed with the norm of B(f2).
(Throughout, angular brackets stand for the scalar product in a relevant Hilbert
space, which is sometimes indicated explicitly, like this: (-,-)x). The best possible
constant C' is denoted by ||T||cp-

The conjecture that every proper uniform algebra admits a bounded but not
completely bounded homomorphism to B(H) looks quite natural. However, this
has not yet been proved or disproved. The situation resembles that of the Glicks-
berg question before it was solved in the positive in [Kil]. Glicksberg asked in
1964 if every proper uniform algebra is uncomplemented in C'(X). It turned out
finally that this can be proved by transferring an argument suitable for the disk
algebra to the abstract setting; however, in most of the specific examples, the
uncomplementedness had been apparent prior to [Kil].
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To transfer Pisier’s counterexample to a uniform algebra A, it would suffice,
e.g., that the disk algebra be completely isomorphic to a quotient algebra of A,
and again, in many specific cases this can indeed be ensured. For instance, if
U C C" is a bounded strinctly pseudoconvex domain with smooth boundary,
and A is the algebra of all functions analytic in U and continuous in U, then
Theorem 5.12 in [Kh] can be used to construct such a quotient. That theorem is
about bounded analytic extension to U of bounded functions originally defined
and holomorphic on a section of U by some analytic manifold; the complete
isomorphism mentioned above follows from the fact that extension is done by a
linear operator.

However, for an abstract uniform algebra A a similar statement is unavailable.
Moreover, any reasonable approach seems to require the existence of certain traces
of complex analytic structure on an abstract algebra A; the problem is that these
must be produced basically from “nothing”. In [Kil] a statement of this sort
was really found for the setting of the Glicksberg question, but that statement is
insufficient in our situation, though enabled Pisier to prove a partial result (see
[Pi2, Theorem 5.1]).

The purpose of this note is to present another partial result. In it the condition
imposed on a uniform algebra A is quite mild: A must only possess a nontrivial
bounded point derivation. The drawback is that a bounded but not completely
bounded homomorphism to B(H) will be constructed not on A itself, but on a
certain martingale extension of A.

The most well-known example of a martingale extension is the algegra of
Hardy martingales. Consider the infinite product T. This space has a natural
filtration of o-algebras: the n-th o-algebra consists of the sets depending on
the first n coordinates only. A martingale adapted to this filtration is called a
Hardy martingale if for each n the conditional expectation of it relative to the
n-th algebra is analytic (i.e., it belongs to H') in the variable z,. The Hardy
martingales with limit function continuous on TV constitute a uniform algebra
‘H; it is natural to refer to H as to a martingale extension of Cy4.

In an unpublished preliminary version of [Pil], as an intermediate step towards
the counterexample for the disk algebra, it was shown that H admits a bounded
but not completely bounded homomorphism to B(H)). (In the final publication,
the disk algebra result was proved directly, which made the statement for H
trivial.) It turns out that this martingale construction of Pisier can be carried
over to an abstract setting. Some modifications of Pisier’s arguments are needed,
but they are really slight, so that the proof of the main result (Theorem 1 below)
is not entirely new. Nor does the statement tell us too much in fact, but it gives
some hope in further attempts to resolve the problem for an abstract uniform
algebra under minimal assumptions.

Also, Theorem 1 suggests that it would probably be interesting to study the
problem in question for Cole-type uniform algebras, i.e., proper algebras for which
every point of the maximal ideal space is a peak point (see [Br], [Ba]). Such an
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algebra has only zero bounded point derivations.

Now, we pass to formal presentation. Let A be a uniform algebra on a compact
space X, and let ;1 be a probability measure on X multiplicative on A. Consider
the product space (X, u®) = (X, u)Y with the natural filtration {A4,}, i.e., A,
is the o-algebra of sets depending on the first n coordinates only, n =1, 2,....

The martingale extension Mart (A, p) of A relative to p is the space of all
det

f € C(X®) such that for each n the function E,f = (Ef|A,) is in A as a
function of the n-th variable if the values of the preceding variables are fixed. We
also put dpf =E, f —E,_1 f.

The multiplicativity of u on A immediately implies that E, (fg) = (E, f)(E,g)
if f,g € Mart (A, p) (it is convenient to verify this first for functions depending
on a finite number of variables, and then to pass to the limit). Thus, Mart(A, u)
is a uniform algebra on X*°.

Now consider a linear multiplicative functional ¢ on A (¢ may or may not
be related to the above measure p). A linear functional ¢ on A is called a ¢-
derivation if ¥(fg) = o(f)v(g) + ¥(f)e(g), f,g € A. The main theorem will
say that if for some ¢ the algebra A has a nonzero bounded @-derivation, then
some martingale extension of A admits a bounded but not completely bounded
homomorphism to B(H). In fact, we shall give a more detailed statement, for
which some preparations are needed.

On the disk algebra Cy, evaluation at the center of this disk is a multiplicative
linear functional (we denote it by ¢), and the mapping ¢ : f — f'(0) is a bounded
(norm 1) ¢-derivation. Next, if m is normalized Lebesgue measure on T, then

o(f) = / F(2)dm(z), $(f) = / f(2)zdm(z), f€Ca.

We claim that in the abstract setting the situation is similar.

If ¢ is a bounded nonzero (-derivation on an arbitrary uniform algebra
A C C(X), it is easily seen that 1) varnishes on the constant functions; so,
the restriction of ¢ to the ideal I = {f € A : ¢(f) = 0} is also nonzero. There is
no loss of generality in assuming that ||¢|/]| = 1.

Lemma 1. Under the above assumptions, there is a representing measure v for
¢ and a sequence {fn,} C 1, ||fnll <1, such that

1° f, = F € L*(v) a.e. with respect to v;
2° |[F|=1 ae. and Fv L A;
3° Y(g9) = [y gFdv, g € A.

This fact seems to be well known. We present the proof for the sake of
completeness. Let a measure 7 represent a norm 1 extension of ¥|; to C'(X). We



choose a sequence {f,} C I,|fs| <1, such that [ f,dn — 1. Let F be a weak
limit point of this sequence in L?(|n|). There is no loss of generality in assuming
that f, — F in L?(|n|) and a.e. relative to n. We have

1= [ Pay=| [ Fan < [ du =1,

whence Fp & v > 0 and |Fl=1 v-ae.
If g € A, then gf, € I; therefore

[ odv= [ gpan=1tm [ gfudn=1tmu(sf,
= lim o(g)¢(fn) = #(9),

i.e., v represents ¢. Hence, for every g € A we have

/ gFdv = lim / gfndv = lim o(g)e(fa) =0,
n—00 n—0o0

ie, Fv L A. In particular, [ Fdv = 0. By conjugation, [Fdv = 0, i.e.,

the measure Fv (which is none other than 7) is orthogonal to the constants.

Combined with the fact that n = Fv represents 9|; (by construction), this yields

3°. O
A measure v as in Lemma 1 will be called a point derivation measure.

Theorem 1. Let A be a uniform algebra on a compact space X, and let v be a
point derivation measure for A. Then there exists a bounded but not completely
bounded homomorphism from A; = Mart(A,v>°) to B(H).

Proof. We extend the functionals ¢ and 1 mentioned in Lemma 1 to L'(v) in
accordance with the formulas ¢(g) = [ gdv and ¢(g) = [, gFdv. Next, let ¢,
and v,, be the operators that act in the n-th variable on functions defined on X*°
as ¢ and v, respectively.

We denote by K an auxiliary infinite-dimensional Hilbert space, and put

H2(K, I/OO) = C]OSLZ(K’Voo)K X Al,
H*(K,v™®) = clospz(k pe) K ® A
(on the right in the latter formula, the bar stands for complex conjugation).
Let Q : L*(K,v™) — H?*(K,v*™) be the orthogonal projection. For f €

H>®(v*®) (the latter space is the w*-closure of A; in L*®(v*°)), we define the
operators

M; : H*(K,v™) — H*(K,v™), Msg = fg,



and
of - f{Q(Kvl/oo) — ﬁQ(K: Voo)’ Uf(g) = Q(fg)

Clearly, My, My, = My, ;,. We claim that also 0,04, = 0y, ,. For this, we observe
that

h 1L H*(K,v™®), f € H®(v*) = fh L H*(K,v™). (1)

(Here and below the orthogonality relation is understood in terms of the Hilbert
space sesquilinear duality, and not in the bilinear sense as in the proof of Lemma
1.) Indeed, h | H?(K,v™) if and only if for every u = > z; ® ii; € K ® A; we
have

0= /(h,in ® U;) gdv™® = /Z%’(fl, x;) g dv™. (2)

But fu; € H*®(v*°) because u; € Aj; substituting these products for the u; in
(2), we obtain (1).
From (1) we deduce the formula

Q(f9) =Q(fQg), [fe H>v™), g€ L*(K,v™). (3)

The relation oy, 05, = 0y, is a consequence of (3).
Now (as in [Pil], [D-P], [Ki2]) we invoke a sequence {V,},>1 of operators on
K satisfying the canonical anticommutation relations:

1<n, k< oo.

(Not to expand the reference list, we remark that a construction of such operators
was outlined in [D-P] or [Ki2].) It is well known and easily seen that ||Xa; V|| =
(Z|ey|?)'/? for every complex scalars ;. We fix a uniformly bounded sequence
N = {Nn}n>0 of measurable scalar functions on X such that 7, depends on the
first n coordinates only (accordingly, 7y = const). For every f € H®(v*>), we
define an operator D} : H*(K,v™) — H?*(K,v™) by the formula

n>1
or, equivalently,

(D), v) = / gnnlwn(&f><vnu,v>xduw, "

UEK®A1, ’UGK@AL



(We remind the reader that v, is ¢ acting in the n-th variable; before the bound-
edness of D? is proved, in the first definition we also should restrict ourselves to
u € K ® Al)

We claim that nothing changes in (4) if on the right we replace u or v (or
both) by E, ;u and E, ;v (respectively). Indeed, it suffices to show this for
u=rQ®a,v=yQ® S, where 2,y € K, o, 3 € A;. But since 1,_1¢,,(E, f) depends
only on the first n — 1 coordinates, we have

(D), ) = / S st (B ) B (Ve 0} el

n>1
— [ 3 e (B B (@B) Vo, )™
n>1

Now, E,_; is multiplicative on A;; consequently,

En—l(@ﬁ) = (En—loé)(En—lﬂ) =K, (Oé]En—lﬁ) =K, (ﬂ]En—la)-

This proves the claim.
We define a mapping

7. H® (™) — B(H*(K,v™®) & HY(K,v™))

m(f) = ( (8:’ AZZ),

and prove that 7" is a bounded homomorphism. After this we shall verify that
for some choices of the sequence 7 (in particular, for n; = 1) 7" is not completely

bounded. (Observe also that 77(1) = id.)
To show that n is a homomorphism, it suffices to prove that
D}Ilfz = O'le?Q + D?lez.

For this, we use the above observation concerning formula (4), and also the
fact that 1 is a @-derivation. Specifically, ¥, (E,(fif2)) = (En—1 f)n(E, f2) +
Y (Ey f1)E,—1 f2, whence

(DF, p, (u); v)

by the formula

- / > 1l (B o) (Vi B (f10))

n>1

+ wn (]En fl) <Vn(En,71 (fQ’U,)), ’U)K]dl/oo

— [ B ) Vi Fro) i + (D, My, 0)

n>1
= QLD (), v) + (D}, Mpu, ),
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which is the required relation (in the last line we have used (3)).
Now, we check the continuity of 7n”7. For this, it suffices to show that the
mapping f + D7} is bounded.

Recalling the formula ||Sa, V.| = (£]an[?)/? for every complex scalars a,,
we see that (Y |®(V,)|?)/2 < ||®|| for every ® € B(K)*. In particular,
D [(Vaz,y)x)? < Jzllyl, @,y € K, ()
where | - | stands for the norm in K.

We denote by H},(¢%, ™) the space of all #2-valued { A, }-adapted martingales
z for which

f
el 2 [ sup Byl dr™ < oo
X g

(We emphasize that, except for the measure v, no structure related to the algebra
A is involved in this definiton.) We refer the reader to the book |G| for the theory
of this space and for the facts used below (the case of £?-valued martingales does

not differ from the scalar case treated in [G]).
0

Lemma 2. If u € H*(K,v®),v € H*(K,v™®), then x = {(Vou,v)g}n>1 €
H;, (0%,v%°) and
[ll1ar < Cllull 2w 0] 2 s 00)-

Proof. 1t is easily seen that E;(Viu,v)x = (VoEju,Ejv)k. (First, consider the
case where u € K ® A;,v € K ® A, and then pass to the limit.) Consequently,
by (5),

sup [|E;z(-)[lee < sup [Eju(-)|[Ejv()]
j j

< sup [Bu(:) sup [Eyv(.)
J J

Integrating, we see that
27, ,00 12 27,00 1/2
follae < ([ Toup juPan) " [lsup [Byolan) "
j j

and the lemma follows from the standard L2-estimate for the martingale maximal

function.
]

Recalling (4) and the duality between the martingale spaces H},(¢*,v*°) and
BMOy(£2,v%), we see that the continuity of the mapping f +— D} will follow
from the estimate

1) 019 (B fenllsrmon e,y < Cllflloos (6)

n>1



where f € H®(v*) and the e, denote the basic unit vectors of £2. To take the
constants into account, we define

1y llBaton (€2, v°°) = |[lyll| + (/ lyOll72dv)"72,

where
) 1/2
ol = (sup 12y = Eucrylle)?lo)

Now, for y = 3 1 M19n(En f)en the estimate ([ ||ly(-)|[7.dv>)"* < O f]loo is
quite clear:

[ Sl Pae = [ 3 i)

<y / o f 2™ = [[f12ey < IFI12

We show that |||f||| < C||fl]lc, again using the fact that i, (E, f) = ¥, (d.f),
and that the latter function depends only on the first n — 1 coordinates:

E;illy — Ej-ryll”

2

=E|| Y ealtn-1¥n(dnf) — Eio1 (hn-1%n(dnd))]

n2j

62

< CE; (3 n(da ) + 3 By 11t (0 )]

n>j n>j
< (B (X ldnf ) + BB 1 (3 ldn )
n>j n>j

< CB|f —Eja fIP + BB f —E; 1 )
<dIflIP < C"|| fII%.

It only remains to prove that for certain choices of the 7, (in particular, for
N, = 1) the operator 7|4, is not completely bounded. Fixing z,y € K and
puttingu =1-z,v =1-y in (4), we see that

w0(,,) 000 = @ @



where the operator 7, : H*(v*) — B(K) is given by the formula

1,0 = Y[ new @Dy, (®)

s>1 *©

Formula (7) implies that it suffices to show that T;,| 4, is not completely bounded.
We observe that if 7: A; — B(K) is completely bounded, then for every n, ¢,
every (n x n)-matrices ai, ... ,ay, and every o, ..., € A; we have

||Zak®7 o)z < [I7lles Sup 1) ara(t) | ar,.- (9)

Indeed, if y = (y1,... ,ya) € £2(K) and if ax{af;}1<ij<n, then

I3 ® 7ol = anz%mk il
- Z”Z Zazy ak y]”2
ZII.%II ||T||cb Sup. IIZakak Wi,

and (9) follows.
We want to disprove (9) for the operator (8). This is quite similar to a part
of the arguments in [Pil], [D-P], or [Ki2], so that we skip some calculations.
Consider the functions f, occurring in Lemma 1. Fixing n, we put a(t) =

falt) (1 € X®°;k=1,...,£). Then
Ty(en) = [ meoads®(£)Co,

and (9) becomes

14
w(fn)|H I;(ak ® Cr) / "kld”ooHBuz(K»

. (10)
< ||T;||ep sup H E ag fn(t ‘
— || 77” th P k ( k)

As in [Pil] (and [D-P], [Ki2]), we realize Ci,...,Cy by matrices of size 2¢ x 2
(so that K in (10) must be replaced by ¢2,), and put a; = Cy, 1 < k < £. then
the supremum on the right in (10) does not exceed v//. Assuming, e.g., that

f Nk—1dv™ is nonzero and independent of k, and passing to the limit as n — oo,
we obtain

0
HZ@@C,CH < C||T; ||V
P B2, (£2,))

We refer the reader to [Pil], [D-P], [Ki2] for a standard calculation showing that
the right-hand side in the above inequality is at least ¢/2.
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