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Abstract
The kind of necessary density condition in C known for sampling and
interpolation in the LP space of entire functions with a subharmonic
weight, is extended to the case of a 2-homogeneous, plurisubharmonic
weight function in C*. The method is by estimating the eigenvalues of
a certain Toeplitz concentration operator, using asymptotic estimates
for the Bergman kernel of independent interest.
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1 Introduction

The Shannon sampling theorem in Fourier analysis states that if f € L?(R)
is bandlimited to W Hz (i.e. f(z) = [ f(t)e ?™*dt = 0 for |z| > W) then
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and
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This not only says that the sample values f(k/2W) determine f, but also
that the reconstruction of f from the values is stable. The proof follows
from the fact that the functions e27@(*/2W) form an orthogonal basis for
L*([-W, W)).

If f is bandlimited to W then it is an entire function of exponential type
not exceeding 27rW, which also belongs to L?(R). The sampling theorem
says that all such functions can be reconstructed from the values in the
regularly spaced points k/2W. If we want to consider irregular sampling at
a sequence of points {\;} instead, we want to have an inequality of the type
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to be able to reconstruct the function in a stable way. Now look at the
Fourier transform g(z) = f(z), which is supported in [-W, W]. We have
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A sampling inequality of the above kind is therefore equivalent to that

A/ |dx<2‘/ ) 2™ e g <B/ z)|?dx,

for every g € L2([—W, W]). The system of functions e?™** satisfying such
an inequality will not be an orthogonal basis in general, but the functions
will form what is known as a frame in L?([-W,W]). Questions like this
were considered e.g. by Duffin and Schaeffer in [DS52], where they proved a
sufficient condition for some quite regularly spaced set of points {A;} to be
sampling.

The sampling theorem is of great practical importance for e.g. data trans-
mission. It is a fair question to ask if the sampling rate (known as the
Nyquist rate) cannot be improved in some way, for instance by very irregu-
lar sampling or by considering multiband functions instead. Landau studied
this problem in [Lan67b] and [Lan67a], as well the more general problem in
R"™. He used density conditions introduced by Beurling ((CMNW89]) for the
similar sampling problem for bounded functions (also known as balayage),
and showed that in fact the Nyquist rate is the best possible.

For another example of a frame problem, consider the functions

_ _; i ()2
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in L2(R). They are known as Gabor wavelets, or in quantum mechanics
as canonical coherent states. These functions are used a sort of “localised”
Fourier transforms to reproduce functions f € L%(R).

The space L%(R) is actually canonically isometric to the Bargmann-Fock
space F' of entire functions with norm

1912 = 57 [ 1£IPe 12 < o0,

where the isometry is given by the so called Bargmann transform (see [DG88]
for all the details). In the space F' we have the reproducing kernel By, (z) =
e* /2 5o that

f(w) = (f, By) = % /f(z)emz/ze—zp/z

for every f € F. If we have a set {¢,, 3, } of Gabor wavelets, it turns out that
in order to be able to represent any f € L?(R) as > CkPay b, With square
summable coefficients ¢, the functions ¢,, 3, should constitute a frame, i.e.

ANFIP < D o1(F am) P < BIFI?, | € LAR).
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If this is the case, the procedure of finding ¢; and reconstructing f is stable.

Now, the Bargmann transform Up is unitary and it turns out that it maps
. 2 .

the function ¢, 5, to e~ (Wil /4Bwk, where wy, = ay + ibx. Hence ||f||%2(R) =

U5 £]% and

(fr@arbn) = (UBS, Uppay i) = e 14U, By, ) = e 1 Ug f(wy,),

so that the frame inequality for ¢, p, in L?(R) is equivalent to the sampling
inequality

AlFIP <D 1 (wp) P2 < B f|1?, feF.

In[DG88], Daubechies and Grossmann studied this frame and sampling
problem for some lattices of points {ma + inb : m,n € Z}. It was known
that ab < 27 was a necessary condition for the sampling inequality to hold
for a lattice. They conjectured that ab < 27 was a sufficient condition for
any lattice, and obtained numerical estimated of the sampling constants in
some concrete cases.

Just as in the case of bandlimited functions, it is natural to ask if the
sampling can be made more efficient by sampling in an irregular set of points.
The problem was considered by Seip and others in a series of articles [Sei91],
[Sei92], [SW92], [BOY5], [OS98]. The conclusion was that the criterion sug-
gested by Daubechies and Grossmann was in fact both necessary and suffi-
cient not only for lattices, but for arbitrary discrete sets. In fact, it is even
valid in the generalised Fock spaces where we have the weight function e™%,
with ¢ subharmonic, instead of e~171’/2, The precise formulations will be
given in the next section.

In this paper we will extend this to 2-homogeneous, plurisubharmonic
weight functions ¢ in C", and show that a natural generalisation of the
density condition is necessary for sampling. We will formulate the theorems
in the next section. The case ¢ = «|z|? is also covered by the calculations
in [Sei91], but not stated therein.

The method we will use is the one employed by Landau in [Lan67a).
It consists in studying functions “concentrated” on compact sets, and it
will lead us to a study of the Bergman kernel in the Fock space (where
the weight function ¢ is not necessarily 2-homogeneous). We will prove a
number of results of independent interest, concerning asymptotic behaviour
of this kernel.

Estimates of the Bergman kernel in Fock spaces in C" have also been
considered by Delin [Del98]. The kind of asymptotic behaviour we are inter-
ested in has also been studied by e.g. Bouche [Bou90] and Tian [Tia90] in the
different context of metrics on line bundles on compact complex manifolds.

The paper is organised as follows. In the next section we will formulate
the problem we are working on more precisely, and state the main theorems.



In Section 3 we will discuss the method, introduce a concentration operator
and demonstrate its connection to the sampling problem. In Section 4 we
will investigate the asymptotic behaviour of the Bergman kernel, and in
Section 5 we will treat the more general sampling problem in L? spaces.

2 Sampling and interpolation

Let ¢ be a plurisubharmonic function in C", and define the weighted LP-
norm of f by

wwp=/u%p%m

for p < 00, and ||fc,p = Sup,ecn |f(2)|e ). We let F5 be the space of
entire functions with || f|],,, < oco.

A sequence of distinct points I' = {;} C C" is said to be sampling for
the space Fj, 1 < p < oo, if there are positive constants A and B such that
for any f € F}

(1) ANfIB, < D0 1) Pe 08 < BIIfD .

v €T

[ is said to be sampling for F3° if Asup |f(2) le=#(2) < SUP,, 1 | £ (v;) e~ %0,
The middle term in (1) is by definition the norm of {f(v;)} in I},. The
sequence I is called interpolating for Fj, 1 < p < oo, if for any sequence
{c;} € I, there is a function f € F} such that f(7;) = ¢;. Finally, a sequence
of points is uniformly separated if the infimum of distances between distinct
points is strictly positive. The infimum is called the separation constant,
which we will always denote by d;. Hence we can refer to a uniformly
separated sequence as dp-separated.

The following two theorems, due to Berndtsson, Ortega-Cerda and Seip,
characterise the sampling and interpolating sequences in C (the Laplacian
is here defined as A = §2/020z). The proofs are found in [BO95] (the
sufficiency of the density condition) and [OS98] (the necessity).

Theorem (A). Let ¢ be a subharmonic function satisfying
@) 0<m<Ad(x) <M

for all z € C, for some positive constants m and M. A sequence I' C C is
sampling for Fg if and only if it contains a uniformly separated sequence T
which is also sampling and satisfies
"N D(z; 2

lim nf jnf 72 02D 2

r—oo zeC fD(z;r) Ad T
If 1 < p < oo then T is in addition a finite union of uniformly separated
sequences.



Theorem (B). Let ¢ be a subharmonic function satisfying (2). A sequence
I' C C is interpolating for F£ if and only if it is uniformly separated and
satisfies
I'nD(z 2
lim sup sup #—(z,r) < —.
r—oo  2€C fD(z;T) Ag T

The type of density conditions considered in the two previous theorems
were, as we have mentioned, introduced by Beurling.

We now want to study the corresponding problem in C". Consider first
the simple example with ¢(z) = a1|21|? + as|ze|? in C2. If we want a lattice
{(a1w1, agws) : w1, we € Z X iZ} in this space to be sampling, we can start
by considering functions f € Ff, of the special type f1(z1)f2(22). We see that
the lattice must be sampling in one variable in both directions independently,
and the condition for this is by the theorems above that 1/a? > 2a4 /7 and
1/a3 > 2ay/w. But the asymptotic number of points from the lattice in
a big ball B(z; R) in C? is |B(z; R)|/a%a3, which therefore should exceed
|B(2; R)|-4a1 ap /7. The latter expressions involves not Ay but (i00p)™. In
our context, we therefore define the lower and upper densities of a sequence
I" with respect to ¢ as

D=(T) = liminf inf L1 B&ET)
¥ r—oo zeCn fB(z;T)(Zaa(p)n

and

. #I'N B(z;r)
D} (T) = limsup sup —————".
(‘0( ) r—oo zeCn fB(z;r)(zB&p)"

We see that D, (I') > « if and only if for all e > 0

#T' N B(z;r) > (a —¢) /B( . )(iaé(p)n

for all sufficiently large r and all z.

It is clear that a density condition of this kind can never be sufficient in
C" when n > 1. To see this, consider again p(z) = ay|z1|? + as|zz|? in C?
and I' a lattice. This lattice can be arbitrarily sparse in one direction, but
still fulfil a density condition of the type D (I') > a by being dense in the
other direction. If the lattice is sparse enough in the z; direction, then it will
be interpolating in that direction. In this case we can actually find a nonzero
function fi(z1) € F§1|z1|2((C) which is zero in all the points {ma; + ina; :

m,n € Z}. Then f1(z1)f2(z2) € F2 for any fy € F§2|z2‘2(C), but it is zero
in all the lattice points, which contradicts the sampling inequality.
The theorems we will prove are the following. The proofs will follow at

the end of Section 5.



Theorem 1. Let ¢ be a 2-homogeneous, plurisubharmonic function which
is C? outside the origin. If a sequence T' is sampling for F8,1<p< oo,
then it contains a uniformly separated subsequence T which is also sampling
and satisfies

3) D (') >
If 1 < p < oo then T is in addition a finite union of uniformly separated
sequences.

Theorem 2. Let ¢ be as in the previous theorem. If a sequence I' is inter-
polating for F5, 1 < p < oo, then it is uniformly separated and satisfies

@ DHE) < ——.

It seems very likely that the strict inequalities should hold in Theorem 1
and Theorem 2, but it is still an open question in C".

It may look like we demand more smoothness from ¢ than we do from
¢ in Theorem (A) and Theorem (B). If ¢ satisfies the properties in The-
orem (A) we can however simply smooth it, without changing the density
condition, and even assume that A¢ is uniformly Lipschitz. If we try to do
that in our setting, ¢ will lose the homogeneity property.

We can remark that it actually follows from our theorems below that
the choice of the balls B(z;7) to measure density is not essential. We get
the same result with any smooth set, or more generally a set where the
boundary has measure zero.

To study the left inequality in (1) we will start with the case p = 2. Since
the point evaluations in the space F(g are bounded (by Lemma 7 below) we
see that if the mass of a function f is very concentrated to a compact set €2,
then the contribution to the sum in (1) from those values of I" outside of §2
is correspondingly small. If there were very many such functions f we could
expect to find one which was zero in all the points of I' 2. If this were true
for arbitrarily large sets 2, the left inequality in (1) would be difficult to
satisfy. This is the technique use by Landau in [Lan67a] and Seip in [Sei91].
The way to study functions concentrated on a certain set is by means of the
concentration operator which we will now introduce. But before that, one
last word on notation. We will write f < g if there is a constant C' such
that f < Cyg.

3 A concentration operator

In this and the next section we will assume that we have positive constants
so that

(5) midd|z|> < iddp < Midd|z|?,



(as positive currents) and that ¢ is C? except at a finite number of points.
Let B, be the Bergman kernel for the space Fg. Then B,(z,() is holo-
morphic in z,

B@(Z,C) = B(p(Caz)
and

Pof(2) = [ BolesOF (Q)e 0

is the orthogonal projection from La onto Ff,. We define the Toeplitz con-
centration operator T , with symbol x by

Tyof(2) = Pp(xf)(2) = /f(C)X(C)Bcp(z,C)e_Q‘p(O.

If x is a bounded function with compact support, the operator T, , is
compact. This follows from the fact that its kernel belongs to L?, since the
reproducing property of the Bergman kernel implies that

L [ OB (02020 = [ (O By(¢. e,
e Jen o

where the last integral is bounded by Theorem 10 below. We shall see that
Ty, is also of trace class.
If f is an eigenfunction of T} , with eigenvalue A, then

6) MIFIZ, = (Tyohs £) = (s Pof) = (cf. f) = / X(@)| (=) 220,

so if x is the characteristic function of a set €2, the eigenvalue measures the
concentration of the mass of f to Q.

We will denote the eigenvalues of Ty , by Ay (x, ), ordered in a non-
increasing sequence (counted with multiplicity)

M06e) > A e) > Xalx, @) > -

If x is the characteristic function of the set Q, we will also write A, (€, ).
The following two lemmas is the connection between sampling or inter-
polation and the concentration operator.

Lemma 3. Assume that the dg-separated sequence T' is sampling for the
space F3, and let N = #T N B(z;r + 00/2). Then An(B(z;1),¢) < 7, for
some v < 1 independent of z and r.

Proof. Let f,, be the orthonormal eigenfunctions connected with the eigen-
values A\, (B(z;7),¢), and let f = ZTZZ:O ¢m fm be a linear combination of
the N + 1 first eigenfunctions. Since we have N points in I' N B(z;7 + 69 /2)
we can choose ¢, not all zero such that

N
FQO =" cmfm(©) =0, €T N B(z7 + 60/2).
m=0
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Since I' is sampling we then see that

Alf1E, < ST IFapPe®0) = ST |f(yy)2e 2000,

v €T v €B(z5r+60/2)

and as in Lemma 7 below we have

(7) fpPe o0 <o | (w) Ze260)
B(v300/2)

(where C depends on dp). Hence we get

A
- f 2 S/ f w 2672()0(’(1))
S, < [ i)

N
— 113, — / @)@ = 172, =3 emPAm,
Zr m=0

3

where the last equality follows as in (6). But ”f”%,w = Zﬁ:o lem|? so we
get

SN lemPAm

N
Zmzo |Cm|2

Let y=1—-A4/C. O

A
AN(B(z; 1), ) < <l-5

In the next proof we will need the following formulation of the Weyl-
Courant Lemma:

(®) Amlx@) = min =~ max (Tyef f)= max = min (Tyef,f)
112, =1 112 =1

where E and F are subspaces of Fg.

Lemma 4. Assume that the §g-separated sequence I' is interpolating for the
space F(Z, and let N = #I' N B(z;7 — 09/2). Then An(B(z;r),@) > 7, for
some v > 0 independent of z and r.

Proof. IfT is interpolating for F5, a standard application of the closed graph
theorem (see e.g. [Hof62, p. 196]) shows that interpolation can be performed
in a stable way. If we write 'NB(z;7—00/2) = {(1,...,(n} we can therefore
find functions fi with fx(¢x) = 1 and fx(¢) = 0 for all other ¢ € "\ {(x},
and such that || fx]|3 , < Ce™2#(), k=1,...,N.



If we let F' = SPaﬂ{fk}szl we see that any f € F can be written f =
Sohe1 Ckfr = Yooy £ (Ck) fr, S0 that

N N
1f 2 < D 1R - fillze < O 1f (Ge)le ¥

k=1 k=1

1/2
<cC / ) [2e—2¢(w)
Z( LA

1/2
¢ ( / |f(w)|26‘2“"”))
B(z;r)

(Tageryofs f) = / 1f (w)[2e=2#)
B(z;r)

IA

by (7). But since

as in (6), we then get that (TB(Z;T)’(pf,f)/HfH%,(p >1/C for any f € F. We
finish the proof by appealing to (8). O

From Lemma, 3 it follows that if I' is sampling for Ff,, then

#I'N B(z;"' + 50/2) > #{km(B(z;T)a(P) P Am > 7}a

and from Lemma 4 that

#I N B(z;r = d0/2) < #{Am(B(27),0) : Am > 7},

if T is interpolating for F3. Since #I'N B(z;r 4+ 60/2) = #T' N B(zr) +
O(r>»~1) when I is umformly separated, we can prove the necessity of the
density conditions (3) and (4) by demonstrating uniform estimates in z for
#{\n(B(z;7),0) : A, > v} when 7 — o0.

If F' is a biholomorphism, we have the formula

(9) Byor(2,¢) = det F'(2) By (F(2), F(¢))det F'(C),

where F'(z) is the complex Jacobian matrix. From this it is not difficult
to see that in particular, the operators Tx( 1) and T, ,(x,) have the same

eigenvalues. We therefore want to have uniform estimates in z for
#{Am(B(2;1), 0(k ) : Am > 7}, k — oo.

In particular if ¢ is 2-homogeneous, we want to have uniform estimates for
#{Am(B(2;1),k%0) : Ay > 7}, k — 0.

In Theorem 13 and Theorem 15 below we will show the latter kind of es-
timates for plurisubharmonic functions ¢ (not necessarily 2-homogeneous).



The estimates will follow from comparisons between the traces of the oper-
ators Ty g2 and T2 1o ) = T} g2 0 Ty p2ge

The operator T} 2, is compact if x is bounded with compact support,
but is not self-adjoint on Li%. It is self-adjoint when restricted to F,c2 , but
the kernel x(()Bj2,(2,(¢) is not the canonical one, which is holomorphlc in
the first variable and anti-holomorphic in the second. All the same, we have
the trace formula

(10) S s k9) = [ (2B, 2)e 5400

For this formula to be true, it is actually sufficient that T, ;2 is self-adjoint
on its image F,?z(p, but in this case it also follows from the reproducing
properties of the Bergman kernel. To see this, note that if we restrict T, ;2

o Fk%@ it is given by the kernel K(z,¢) = 3 Apfm(2) fm(C), where

K(5,0) = Py (X()Big (7)) ()

— / By (¢, w)x(@) Brag (2, w)e ¥ dm(uw).

Hence we can use the reproducing properties of the Bergman kernel to see
that

/K z,2)e e 20z // w) B2, (2 w)Bkz(p(w,z)e_%z‘p(w)e_%%(z)
— [ x(Bia(w,wpe 00,

and since the last integral is bounded by Theorem 10 below this implies that
T, k2, is of trace class and that (10) holds.
The operator T)? k2o is given by the kernel

[ X B e, 0) B, Oxtwle 2w,
and we have the corresponding trace formula
ZA?H(X,k&p) = // X(Z)Bk2(p(z,w)Bk2(p(w,Z)X(w)e—2k2§0(w)e—2k2¢p(z)
(11) = / / |Bk2(p(z,C)‘2X(Z)X(C)e—2k2w(z)—2k2w(0_

If x is the characteristic function for an open and bounded set in C",
we notice by (6) that 0 < \,, < 1 and we will see that asymptotically the
eigenvalues will be either close to 0 or 1. What we will show is actually that
for a given § > 0 we have

(12) (1=0) ) Al K20) <D A (x, ko)
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for k large enough. If we define the number Sy by >°, ~ Am = Sy - Am
for 0 < v < 1 it follows from this that -

A=) A< DA+ D A,

Am >y Am <y
S SRR S
Am > Am <y

so that S, < §/(1 —~). Hence

#{)‘m(Xak2(P) D Z )\m(Xak2(P)
Am >y

(13) > (1 - %) > Amlx: Ko),

and with v/ > v

(14) #{)‘m(x,k2<»0) 2 Am > '7} =
= #{ 06 K0) : Am > 7T+ #Am(GE0) 1 = A > 7}

1 1
<5 > Am(x,k%o)+; > AmloK)

Am > Y'>Am >y

1 1
S > Anlx K*9) + S D Am(x: k)

1 0 )
<\o+—F—H A (X, K2 p)-
(7’ y(1 =) 2 m
We will use this inequality to get a good estimate from above by first choos-
ing +' close to 1 and then § very small by letting k be large.

To make use of (13) and (14) we need a good estimate of the trace of
T, k>, in (10). We also need a good estimate of the trace of T)?,k2 in (11)
to obtain (12). To this end we will estimate the Bergman kernel.

®

4 Estimates of the Bergman kernel

We make the same assumptions on ¢ as in (5) in the previous section. To
estimate the Bergman kernel, we will need a few lemmas. The following can
be found e.g. in [Ber97].

Lemma 5. Let B = {z € C" : |z| < 1}, and let ¢ be plurisubharmonic in
B. Let - -
My = {v <0:00v=00¢}

11



and put ay = supy;, v(0). Assume that u € LY (B) satisfies
/ luPe™® <1 and sup|dulPe P? < 1.
B B

Then
|u(0)[PeP?(0) < P

where C is a universal constant.
The next lemma is a minor elaboration of Lemma 3 in [Del98].

Lemma 6. Assume that w is a positive, d-closed (1,1)-current satisfying
w < Midd|z|? on a neighbourhood of a smooth, strictly pseudoconvez star
shaped domain for some M > 0. Then there exists a plurisubharmonic
function 1 on the domain such that 00y = w, and ||[¢||p~ < C - M, where
the constant C only depends on the dimension and the domain.

Proof. Let p,, be an approximative identity, which only depends on |z|.
Define

W™ = Zw;’fkdzj Ndzg, Wij = Wik * pm-
gk
Then w™ is a smooth, positive form. Let 8 be the standard Kahler form
B =i00|z|?, and T, translation by —z. On our domain D we have
1/2

lw™ | zoo(py = sup [ D [w]y(2)]” <sup Y [wih(2)]
z€D ok z€D ok

<C sup y w(z)

=C sup <w A Bn—l, Tsz)

z2€D

< C sup (Midd|z|> A B L, 7, pm)
z€D

=C sup M | 1,pm = CM,
zeD

where the inequality in the second line follows by positivity of w and in the
fourth line by the assumption that Mid0|z|? — w is positive.

The Poincaré lemma implies that we can find 4™ such that du™ = ™.
To be precise, we can decompose u™ and write d(ufy + ugy) = w™, where

1
ugh =y ( /0 tw;?k(tz)zjdt) dzy, ufy = ufy,
gk

and Oufy = 0 = éugfl by bidegree reasons. Hence both |ug ||z~ (p) and
[uT’ |l (p) are bounded by [[w™ || g (py < CM.

12



By Theorem 2.6.1 in the book [HL84] by Henkin and Leiterer we can
solve iGv™ = ugy with [[v™{|c1/2py < Cllugh llLe(py < CM. Now let 4™ =
2Rev™. Then i90y™ = 8(i0v™) — 8(i0v™) = dug", + éﬁ"h = w™. Since
||¢m||Lo<>( p) is bounded by CM for every m and w™ converges to w, we can
find a function ¢ in D which satisfies the same bound and solves {00y =
w. U

By the assumptions on ¢ we get an estimate on the point evaluations in
the space Fj from the two previous lemmas.

Lemma 7. If f € F§ where i00¢p < Mi00|z|* (as positive currents) then
|f(2)|PeP¥() < C’/ |f(w)[Pe PP,
B(z;1)

where C only depends on M, p and the dimension.

Proof. We may assume that z = 0. By Lemma 6 we can find a function
which solves i00vy = i0d¢ in the unit ball B and satisfies [|9)|| 0 (5) < CM.
We therefore find that the constant ay in Lemma 5 is greater than or equal
to —C' M, and conclude that

fOPe 70 <0 [ fupe 7). O
B(051)

We will now prove a uniform bound for the Bergman kernel. To do
this, we will use the following estimate for solutions to the O-equation
from [Ber97].

Theorem 8. Let D be a pseudoconvez domain in C* and let ¢ € PSH (D)
be smooth. Let f be a 0-closed (0,1)-form in D and let u be the solution to
ou = f of minimal norm in Lé(D). Let Q be a positive (1,1)-form. Then

[ tueto < [ (1fhe b
D D

for all positive and smooth functions w such that
100w < w(i00¢p — Q).

Here |f|q denotes the norm of the form f with respect to the metric
defined by 2. With the help of this we can show that the Bergman kernel
decays rapidly off the diagonal.

Proposition 9. We have the estimate
By (2,C)| < Okl ¢ -7 0(O) kT |2=(]

for the Bergman kernel, where T is proportional to the lower bound of i00yp
and C depends on the upper bound.

13



Proof. Fix z € C*, and let f(w) = By2,(2,w) € F,fz(p. We will use Lemma 7
for f in a small ball centred at (. By a translation we may assume that
¢ =0, so let us define

Flw) = k(). $lw) = Kp(w).

Then we still have i00p < Mi00|z|? and we get
R F(0)Pe 0 = | f(0) P70,

By Lemma 7 we have that

FO)Pe2P0) < /

1F w) 2627 = / 1f (w) 2o~ 0),
B(0;1) B(0;1/k)

so that in general
15 k=2 By2y (2, 2¢-2k0(C) < B2, (z,w 2 2k%p(w)
k%p ~ k%p
B(¢1/k)

When |z — (| is small, say |z — (| < 8/k, we can estimate the right hand
side of (15) by
/ | By (2, w) Pe™ W) dm(w) = Byo,y (2, 2)
Cn

= sup  |f(2)] S KD,
11l 12,,=1

where the last inequality follows by Lemma 7 again. Hence we get that
|Bk2<p(za C)'z < Ck4n32k250(4)+2k2<p(z)

when |z — (| < 8/k.
When |z — (| > 8/k let 6 = |z — (|/2 and estimate the right hand side
of (15) as

(16) k™27 |Byo, (2, )2 2¢O < /| |>6|Bkzga<z,w)|2e—%z*’(“dm(w).

_ Choose x € C* such that x = 1 outside B(2;6), x = 0 in B(z;6/2) and
[0x(w)|? < Cx(w)/§?. Then

(17) / ‘6|Bkz¢(z,w) o2 / Byo, (2, w)| x(w)e 259
zZ—w|>

= ‘/Bkz z,w) f(w)x (w)ef%ztp(w)
fEC’)((C"\B z ;0/2))

J1fPxe= e =1

2
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Now, the last integral is the Bergman projection of fy, i.e.

2
‘ [ st fixte 0w = Bay (10

We have P2, (fx)(A) = f(A)x(A) — u(A), where u(}) is the solution of
minimal norm in L3, p t0 Ou = d(fx). In particular for A = z we have
x(A) =0 so
|Pro o (fX) (2)] = Ju(2)[*.

In B(z;0/2) the function u is holomorphic. Since 1/k < §/4 we have
B(z;1/k) C B(z;0/2) and as above Lemma 7 implies that
(18) ulz)fPe 200 <o [ puge w0,

B(z,1/k)
We will use Theorem 8 to estimate this integral. Let () = %8513290,
p(§) = kT - dist(¢, B(2;6/3)),

for some constant T to be chosen below, and w(¢) = e *&). We then have

22

100w < k*T?widp A Op < i wido|z|?

and since mid0|z|? < i00p we get
100w < w(i00k>p — Q),
as needed in Theorem 8, if T2/4 < m/2. On the set B(z;1/k) C B(z,6/3)
we have w(§) = 1, so by Theorem 8 we have that
a9 e [ e g [ e # o
B(z,1/k) B(z,1/k)
< | FEX(O) e Ou(e)
C\B(2,6/2)

<o [ FOP () Tge 52O kT30
Cn\B(2,6/2) d k
C ooy } C oy
— 6_2k2 2, kT6/6/‘f(§)|2X(§)e 2k%p(€) _ 5_2k2 2, kTS/6

by the properties of y and the definitions of f and p. Tracing back through
equations (16), (17), (18) and (19) we see that

k}_2n|Bk2<p(Z, C)|26—2k2cp(() 5 k2ne—kT6/662k2cp(z) — k2ne—kT|z—C|/1262k2ap(z)’

when |z — (| > 8/k. O
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We are now ready to prove the first convergence property of the Bergman
kernel which will help us in studying the trace formulas in the previous
section. The example to keep in mind is ¢(z) = k*|z|>. Then the Bergman

kernel is B(z,() = 2"n "k*" 62’“23'4, and we actually have
E2"B(z, z)e” " 12P dm(z) = 2" (082%™ /n!
in this case.

Theorem 10. We have that

n

k2" Byo, (2, 2)e~ 2 ¢ dm (2) — - (1009)" (2)
w"n!
pointwise wherever @ is C?, and the left hand side is moreover uniformly

bounded for every k and z.

Proof. For the convergence, we will use the fact that

(20) By(z,2) = sup |f(2)
11121

and by a translation we may assume that z = 0. The boundedness is the
first, easier part of Proposition 9 when z and ( are close together. Here it
can of course be proved in only on step using (20) and Lemma 7.

Assume that ¢ is C? in a neighbourhood of the origin. By the positivity
of i00¢ and the change of variables formula (9) for the Bergman kernel we
can then make a linear change of variables so that i00¢(0) = i00|z|?. What
we want to prove in this case is that

k™2 By, (0,0)e 2¢O 5 gnp
In the ball B(0;7) we can write
p(2) = h(z) + |2|* + q(2),

where h is a pluriharmonic polynomial of degree two, h(0) = ¢(0) and
q(z) = o(|z|?). We thus have

12¢(2) — 2|z[* — 2h(2)| < ¢*(7)7?

in B(0;7), for some function ¢(7) such that ¢(0) = 0 and ¢(r) is continuous
and non decreasing. The function ¢(7)72 is then increasing, so given k we
can choose the unique 7 = 7(k) so that ¢(7)72k? = 1. Then 7 is a strictly
decreasing function of k¥, 7 — 0 when k& — o0, and in B(0;7) we get the
estimate

12k%p(2) — 2k2|22 — 2k2h(2)| < K22 (1)7% = (7).

16



Let us write h(z) = Re H(z) where H is holomorphic and let F(z) =
F(z)e ¥ H(2) for a given f € Fk22(p. Then |F(0)|2 = |£(0)|2e~2*¢(©) and by
subharmonicity

1
k72n‘F(O)|2 < C_/ |F(z)|26—2k2\2\2,
k,7 J B(0;7)

where

Chr = an/ o= 2k22l? _ 2—n/ o2l
’ B(0;7) B(0;kT)

Since k%72 = 1/¢(1) — oo as k — oo, this tends to 2 "7". Meanwhile,

/ |F(z)|2€—2k2\z\2 _ / ‘f(z)‘Qe—kah(z)—QkQ\zP
B(0;7) B(0;7)

< &0 [ 1fpe ),
B cn
where ¢(7) — 0 as k — oco. In view of (20) this proves that

lim sup k2" Byz,, (0, O)e*2k2‘p(0) <27 ™.
k—o0

For the reverse estimate, choose x € Cg° which is compactly supported
in B(0;1) and satisfies y = 1 in the smaller ball B(0;1/2). With 7 as above,
let g(z) = k"x(%z)esz(z). Then

o, < | o
3T

< / 2 o~ 2k2 2[2 —e(r)
~ JBO)

P / 1212,
B(0;kT)

which converges to 27"7". We also have |0g(2)]? < C’ii:e?kzh(z) and
d9(z) = 0 except when 7/2 < |z| < 7, so by Hormander’s L?-method
[Hor90, Section 4.4] we can solve du = dg with

2
/ |u(z)|2€—2k2<p(2) < C/ ﬂegkz’h(z)ie_%z(p(z)
cn T/2<|2|<T

T2 k2
an
<C e—2k2\z|2+c(r)
— k272
T/2<|2|<T
—k%7%/4
n€ c(T)
SO T e

17



which tends to 0 since k272 = 1/¢(7) — oo as k — oco. By the estimates for
f above applied to u we also have

k—2n|u(0)|26—2k2<p(0) 5 eC(T)/ |u(z)|26—2k2cp(z) 0.

Hence G(z) = g(z) — u(z) is holomorphic and

GO o 19(0)] — |u(®)]
1Gll2k20 — Ngll2,k20 + [[wll2,k2¢

By the estimates for g and u we conclude that

lim inf k~2" By, (0, 0)e 2" #(0) > ony

k—00

and the proof is complete. O

When we are not on the diagonal, the decay of the Bergman kernel
obtained in Proposition 9 implies the following.

Theorem 11. We have that

n

B [Biay(z O e 00 K Odm(z,0) — s (i00¢)"

! {e=¢}

weakly as positive measures on C* x C",

// (2,0) | Byl ) 290 -2K20(0) _y 2 / 9(z2)(i09)" (2)

w"n!

for every g € C.(C* x C").

Proof. By the reproducing properties of the Bergman kernel we have
/ |Biay (2, )" e ¢Cdm(¢) = / By (2,0) By (¢, 2)e 0 dm(¢)
= Bya,(z,2).

Using this we can write
(21) K // g(z, C) |Bk2tp(za C) ‘2 6_2’62(‘0(2)_2]6299(0 =
k_Q”/g(z, 2) B2 (2, z)e—QkQW(Z)dm(z)

// 2, Z Z C ‘Bkz Py C)‘z —2k2 w(z )—2k2<p(C)_

By Theorem 10 and dominated convergence we know that

n

k_Q"/g(z,z)Bkz(p(z,z)e_2k2""(z)dm(z) — ] /g(z,z)(ia&p)"(z),

18



so we need to estimate the last integral in (21).

Fix € > 0 and choose § > 0 such that |g(z,2z) — g(z,{)| < € when
|z — ¢| < §. We split the last integral in (21) into the integrals over the
domains where |z — (| < § and |z — (| > 0 respectively. The function g has
compact support, so assume that g = 0 for |z| > R. The first of these two
integrals can then be estimated by

ek [ ([ 1Big 0 ¢ #e0dn(o)) e # o dnz) -
|z|<R cn
e-k2n/ Bkzw(z,z)eﬂkz“’('z)dm(z),
|z|<R

which is bounded by a constant times € by Theorem 10.
The other integral we estimate with the help of Proposition 9 as

2sup|g| - k7" / / | Byay(z,¢)| 2K 0(O=24%(2)
|z|<R, |z—(|>6

< Csup |g| L2 // k4ne—2kT\z—C|
|2|[<R, |2—¢|>8

= Csup |g|/ / k2ne2kTICI
|z|[<R J|(|>d

which tends to 0 as kK — oco. Hence the remainder term in (21) is bounded
by a constant times ¢ for large k, with € > 0 arbitrary. O

With the help of the decay of the Bergman kernel we obtained in Propo-
sition 9 we can also calculate the dual space of Fj. If we let Fo>° be the
subspace of F)° consisting of functions f such that |f (z)le ) — 0 as
z — 00, we get the following theorem which we will use in the next section.

Theorem 12. The Bergman projection P, projects LY, boundedly onto F5
for 1 <p <oo. For1<p < oo we have (F})* = F}, with 1/p+1/q =1,
and furthermore (Ff,o’o)* =F,.

Proof. Let us first see that the Bergman projection is well defined on L%,
With 1 <p < oo and f € LY, we get by Proposition 9 and Holder’s inequality
that

P, f()| = \ / B¢<z,c>f<c)e—2w<<>dm<c>\

ge¢<z>/|f(g)|ew<<>eQT|Z<|dm(c)
e

< e‘P(z)

67T|z~|)

P . H ’
L? La
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which shows in particular that P,f € FZ°. For 1 < p < oo if follows that
/ P, £ (2)Pe P Edm(z) < / / F(Q)Pe P52 din () dm(2)
= [1s@pere® ( / epT'”'dm(z)) dm (),

so that P, is bounded into F§ for 1 < p < oc.

To show that P, is surjective, we want to show that P,f = f for f € FJ.
By Lemma 7 we have that F} C F(SO’O C F° for 1 <p < oo, so it is enough
to show that P, acts reproducingly on FZ°. To see this we will approximate
[ € FZ° by functions in Ff,.

Take a radial cutoff function x € C° with x(z) = 1 when |z| < 1, and
X(z) = 0 when |z| > 2. Let x,(z) = x(2/n) and write

an = P(p(an) +K(5Xn/\f)a

where K (_5Xn A f) as in the proof of Theorem 11 is the Li-minimal solution
to Ou = Oxn A f. Since we have the uniform bound (5) from below on 90y,
a theorem in [Ber97] implies that

Y —p(z 2 —p(z 1
K (Oxn A f)(2)|e™?%) S sup [0xn A f(2)|e™#E) S I Flloo.p-
If we let f, = P,(xnf) we thus have that f, € Fg, and

£ (2) = Fa(2)-e#® < |f(2)=xnf (2)]- €775+ xnf (2) = Po(xnf) (2) -7,

Hence
(22) sup|f£(2) — fu(2)le™?®) < [|flloop

uniformly in n, and |f(z) — f.(2)|e#*®) = 0 uniformly on compacts.
Let us fix z. By Proposition 9 and (22) we have that

IPo(f = fa)(2)] <
/ F(Q) = Fa(OlBy (2, Q) e + / 1£(C) = Fa(OlI By (2, ) e
ICI<R

ICI>R

< ew(Z)/ 17(C) = fn(C)]e @ TIz=¢ 4 ew(Z)/ e~ Tlz—=¢l
IKI<R (e

>R

If we first choose R big enough to make the second term small, and then
n to take care of the first term, this will be small. Since f,, € Fg we have
P,f, = fn. Hence

|Pof(2) = £(2)] < [Po(f — fn)(2)] + [fn(2) = f(2)],
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which tends to 0, and we have indeed that P, f(z) = f(z) for every z.
Now, let 1 < p < oo and take L € (F5)*. Then L can be represented by
g € L so that

L(f) = (f,9) = (Pof,9) = ([, Ppg)

for every f € F). Hence L can be represented by P,g € FJ. Furthermore,
if we have h L F} for h € F{, then h = P,h L L% so that h = 0. We get
that (Fp)* = F{.

It remains to show that (Fgo’o)* = Fé, so take L € (Fgo’o)*. Notice
first that with the same approximation functions f, as above, we see that
F(g is dense in FSO’O. For f € ch we have |Lf| < C”f”Fgo,O < C'|fl2,» by
Lemma 7. Hence there is a g € (Fj)* = Ff, so that Lf = (f,g) for every
fe Fz. We want to show that in fact g € F(},, and for that it is enough to

check that
‘ / hge ¢

for every compactly supported h € Lg°. But if h is compactly supported we
have h € Li so that

‘/Egemp

For f € Fgo’o we now have || f — fy|| o0 — 0, with f;, € Fz as above. Hence
©

< Clhllre

= [(h, 9)| = |(h, Pog)| = [(Pph, g)]

= |L(Poh)| < C||Pohllpge < C'|[hllLe -

ILf = (9| < |L(f = fu)l + [{fn = £59)1,

which tends to 0 since g € F(},. We see that L(f) = (f,g) on FSO’O. To show

that g is unique, we must check that g 1 F,;° 0 implies that g = 0. But it is
a simple calculation to check that P, maps compactly supported functions
in L* into Fgo’o. We then have that (g,h) = (Ppg,h) = (g9, P,h) = 0 for
every compactly supported A € L, which implies that g = 0. O

We are now ready to address the question of the asymptotic behaviour
of the number of eigenvalues.

Theorem 13. Let x be the characteristic function for an open, smooth and
bounded set in C*, and let 0 < v < 1. Then we have

2" =
Jim #0006 Ke) > 9} K72 = 2 [ (oo
—00

7n!

for the number of eigenvalues of the concentration operator T, j2,.
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Proof. The proof will follow the discussion at the end of Section 3, and
use the estimates (13) and (14). Recall that these estimates followed from
equation (12) for the traces, so we must start there. Fix § > 0 and € > 0 so
small that at least v < 1/(1 + ¢).

We can approximate the function y with 0 < xo < x so that xg €
C.(C™). By the trace formula (11) we then have

B Y A0 ke) > B // | Bz, (2, O)| xo(2)x0(¢)e 2792 -226(6)

and by Theorem 11 this tends to 73‘&—7:1' [ x3(2)(i00¢)"(z). In the same way
we have by (10) that

E72 " Amx, Koe) = k0 / X(2)Byay (2, 2)e~ 2 ¢

which tends to % [ x(2)(i00¢)"(z) by Theorem 10. Since our set is
smoothly bounded, we can choose xg so close to x that

(1-46/2) / x(2)(i080)"(2) < / () (i000)"(2).
We then have that
(23) (1=0)> " Am(x: K20) <Y A2 (x, ko)

for large k, which is (12).

We will now use (14) to estimate the number of eigenvalues from above.
Let 4/ = 1/(1 + €), and now choose § = ve2/(1 + €). Since 7 > « by the
assumption on € we have from (14) and (10) that

1 0
#{ A (6k9) = A > 7} BT < KT (— + 7) Am (X, k%

Do, K%) ) e ) LAk

= (1+ 2e¢) k2"/x(z)Bk2(p(z,z)e2k2‘p(z)

for large k. By Theorem 10 it follows that

n

2 _
lim sup #{Am (X, £*¢) : Am >} - 77" < (1 + 2€) x(2)(i09)" (2).
k—o0 n"n!
With the same ¢, and k large enough, we get from (13) and (10) that
#FOmOGE Q) : Am >} BT > BT (1= €)Y Am(x: K0)
— =9k ™ [ X&) Bag (e, 2)e 00,

and hence by Theorem 10 that

n

2
s e 2 . .. 2n o
lim inf #-{ A O, K7) : Am > 7} k7" 2 (1 - €) 2

/ x(2)(i080)"(2).

Since € was arbitrary, the theorem follows. O
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With the help of the last theorem, we are finally able to prove the den-
sity conditions for sampling and interpolation sequences. We will discuss
uniformly separated sequences in F(g here, and defer the general discussion
to the next section.

Corollary 14. Let ¢ € C?(C*\ {0}) be a 2-homogeneous plurisubharmonic
function. If the uniformly separated sequence ' is sampling for the space
Fs%? then

2n

n!’

D (T) =

If the uniformly separated sequence I' is interpolating for the space Fg, then

D) <

mnl’

Proof. Remember that D~(T') > -2 if and only if for all € > 0

#I'N B(z;1) > ( in - 6) / (100)"
B(z;r)

7!

for all sufficiently large r and all z. We saw in Section 3 that for a 2-
homogeneous function ¢ it is enough to show that

n
OB, K9) a9} ok > (2] [ (iodrr
T B(z1)
for all large k and all z. The estimate DT(I') < -2 for interpolation
sequences is the opposite one.

If ¢ is 2-homogeneous and C? outside of the origin, it automatically
satisfies (5), so that we can use Theorem 13. Since we however want our
estimates to be uniform for all balls B(z;1), we need to be a bit careful.

In Theorem 11 the convergence depends on the diameter of the support
and the supremum norm of the function g in the statement of the theorem.
Since we only consider balls B(z;1) this poses no problem.

The constants and the rate of convergence in Theorem 10 depend on
the modulus of continuity of the second derivatives of ¢. In this case all the
second derivates will be uniformly continuous, and the convergence uniform,
outside any ball B(0; 7). Hence we get by Theorem 13 that

2" =
FOM(BED\BO:7), k) : A >0}k 20— 2 (i90¢)"
TN J B(%1)\B(0;7)

uniformly for all z.
We want to see that we can subtract the ball B(0;7) without changing
the estimates too much. We can choose 7 such that

/ (i0p)" < ¢ / (i08p)"
B(0;7) B(z;1)
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for all z. With x as the characteristic function for B(z;1) \ B(0;7) we
then see by the formulas in the proof of Theorem 13 that the estimates for
k203" A (B(2;1), k%) differ very little from k273" A\, (x, k2¢), and the
same for the squares of the eigenvalues. Most importantly, this difference is
uniform in z, and can be made arbitrarily small by choosing 7 small enough.
If we continue in the proof of Theorem 13 this will imply that the number
of eigenvalues greater then v will differ very little irrespective if we consider
the eigenvalues A\, (B(z;1),k%p) or Am(x,k%p). Since we have a uniform
estimate of the latter number, we have it also for the former. Alternatively,
we could go through the proof of Theorem 13 and see that by the way
we choose the radius 7 here we will have the analogue to formula (23) for
Am(B(2;1), k%), uniformly in z, which means that we will have the wanted
uniform convergence. O

For a general x we will of course not have that the eigenvalues will
accumulate to 0 and 1 only. Instead we have the following statement.

Theorem 15. Let x € C.(C") be a nonnegative function. Then for every
v > 0, except possibly for a countable sequence, we have

n

9 _
: 2 . 1.—2n — . n
Jim #{Am (O K°) > 7} - k gy /X >7(Zf‘3‘8<p)

for the eigenvalues of the operator T, y2,.

Proof. First of all we see that if x1 > x2 > 0 are two compactly supported
and bounded functions, then for any f € F(Z

(Tyrof> F) = O, f) = / xi|f[’e%¢ > / X2l fI?e7%? = (T o f, f)-

From equation (8) above it follows that A, (x1,9) > Am(x2, ) for every
m. We want to use this to compare the eigenvalues of T, ;2 to eigenvalues
corresponding to characteristic functions, so fix ¢ > 0 and let n be the
characteristic function of the set {z : x(z) > v+ €}. Then x > (v +¢€)n so
that

#{m (6 K20) > 7} > #{Am((y + )n, K*0) > 7}
= #{Am(n, k*0) > /(v + €)}

and by Theorem 13 we know that

n

#{Am(n, K@) > v/(y+€)} - k7" — % /77(2'3(%)"-

Hence

n

9 _
@9 Hminf#On(k) > k> 2 [ oder.
k—o0 7Tnn| X>'7+€
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For the reverse estimate, let instead 1 be the characteristic function of
the set {z : x(2) >v—¢€} and M =supx. If T} y2,f = Af with A > vy and
[1fll2,52¢ = 1 then

A= (Tyaaoh D) = [ x- (@ =mlfPe ™+ [ xonlfpe s
<= Ol By + [ Ml
so that
(25) (Tamaof, 1) = [ Ml fPe ™% > c.

If we let N = #{\n(x,k?p) > v} we see that there are N linearly indepen-
dent functions which satisfy (25). The Weyl-Courant Lemma in (8) then
implies that Ay (Mmn, k%p) > ¢, so that

#{m (6 E20) > 7} = N < #{ A (Mn, k2 p) > €}.

Since

n

#{m(Mn, k2 p) > €} = #{hn(n,k*p) > ¢/M} -

/ n(i09p)"

w"n!
by Theorem 13, we get that

n

2 _
(26)  lmsup 0ok >} k< [ b
k—00 TNt X>Y7—€

By combining (24) and (26) and letting ¢ — 0 we find that

H 2 —2n __ i/ cAA n
Jm #{m (x, ko) > 7} k7 = XM(ZGW)

for every 7 such that fxzv(ia&o)” =0. O

In the previous theorem we can interpret the left hand side as the integral
over the interval (vy,00) of the measure with a point mass of weight k=27 in
all the points A, (X, k%¢) on the real axis. A more general statement would
then be the following.

Theorem 16. Let x € C.(C") be a nonnegative function. Then

v = ]{:_2n : Z 5)\m(X7k2§0) — Xx (28590)”

as positive measures on the open positive half azis, i.e.
/dek - /f o x (109¢)"

for every continuous function f with compact support in (0,00).
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Proof. If t > ty then

#Om6E29) >t} k72 < #{0m(x, K2p) > o} - k20

and by (the proof of) the previous theorem

A =
timsup 4 (x,K79) > to} -k < = [ (iodp)
k—o0 7l fy >t

Hence the measures vy have uniformly bounded mass on any interval (¢, 00).
It is therefore safe to approximate f with a smooth function so we may
assume that f € C° and is compactly supported in (0, c0).

If we let N, x(t) = #{Am(x, k*p) >t} then —k2"N, x(t) is a primitive
distribution to v, i.e.

Whor ) = (—k~20N! (1), £) = (k=2 Ny / £ (k2 Ny 4 (8).

By Theorem 15 and dominated convergence we get

[ rans [T (5 [ @00re) = [ £oxtssere)

which is what we wanted to prove. O

5 Sampling and interpolation in F}

In Corollary 14 we have proved the density criterion for uniformly separated
sequences in Fg. In this section we will prove the remaining statements in
Theorem 1 and Theorem 2 and show that the density criterion in Fj follows
from the one in Fg.

The following lemma should be compared to Lemma 7. It is a small
modification of Lemma 1 in [OS98].

Lemma 17. If f € F} where i00p < Mid0|z|? (as positive currents), ¢ is
C? except at a finite number of points and r > 0, then

r/p
V(fTee)E) < O ( [ 7 |pe—w<w>) ,

in every point z where @ is smooth and f(z) # 0.

Proof. We can assume that z = 0. Since ¢ is smooth except at a finite
number of points, we can rotate the axes in C" so that the vectors ey, ..., e,
are the coordinate directions and ¢(\e;) is smooth when [A| < 1.
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Let fj(A) = f(Xe;) and ¢j(A) = ¢(Xej). In Lemma 1 in [OS98] the
result in one variable is proved assuming that ¢; is smooth and that Ay is
uniformly bounded. Hence we get that

aiZj(|f|r6“")(0)‘ - ‘%(Ujl%’%)(m‘
T/p
: (/|A|<1‘fj|”e‘p“’f(z\))
r/p
) (/ ‘f\”e”*”(xej)) .
[Al<1

If we now use Lemma, 7 on the integrand in the last line, we see that

T/p
R AT— < p,—PP
s )<0)‘N(/B o TP )

whence

B(0;2)

T/p
IV(IfI"e™™) )] = 2[0(|f["e™™)(0)] S (/ Ifl”e_””(w)> : O

The right inequality in the sampling inequality (1) is a consequence of
the separation property of the sequence. The way to see this is first to notice
that if I is a finite union of uniformly separated sequences, then

Z |F (7;)[Pe P% () < Z/ |pefp<p

v; €L v;€T B(vj31)

s

by Lemma 7. The following proposition is then proved exactly as in [OS98].

Proposition 18. If1 < p < oo we have

Yo 1F ()P0 S fIp

Yi el

for all f € FY if and only if T can be ezpressed as a finite union of uniformly
separated sequences.

As a consequence of the bound on the gradient, we just as in [OS98] get
the two following propositions.

Proposition 19. If I" is a sampling sequence for F5, then there exists a
uniformly separated subsequence T' C T which is also sampling for F}.

Proposition 20. If T is an interpolation sequence for Fb, then it is uni-
formly separated.
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By Proposition 18, Proposition 19 and Proposition 20 we see that it is
sufficient to consider uniformly separated sequences I'. In the case p = 2,
Theorem 1 and Theorem 2 are now completely proved by Corollary 14.

To treat sampling sequences for FZ° it is enough to look at Fy ’0, since
I' actually is sampling for F2° if and only if it is sampling for Fy° 0 In one
direction it is indeed clear. Assume on the other hand that I is sampling for
Fy° 0, Having this sampling inequality is equivalent to that the restriction
operator R : Ff,o’o — l?po’o defined by

Rf ={f(m)} = {{f; Bo(s %))}

is injective and bounded, with closed range. This is in turn the same as
saying that the adjoint operator R* : I, — F, defined by R*({c;}) =
chBw(z,'yk)e*Q‘p(W) is bounded and surjective. By duality again, this
means that R™ : F2° — [7° is injective and bounded, with closed range,
which means that I' is sampling for F2°.

There is an alternative characterisation of sampling sequences, close in
spirit to Beurling’s original dual formulation of balayage in [CMNW89]. We
formulate it in the following lemma.

Lemma 21. The uniformly separated sequence T is sampling for F5, 1 <
p < oo, if and only if there is a K > 0 such that every g € (F5)* = FJ can
be represented as

9.f =Y afwe 2, {eedly < Klgllgg,
k€T

where q is the dual index to p. T is sampling for Fgo’o if and only if the
above holds with g € Fé.

Proof. We will only consider 1 < p < oo. The same arguments work for
Fg*° and F.
To show that the condition is sufficient, consider

1 fllpe = sup |g.f]|
llgllg,p=1

C e[St

llgllg.e=1

(S iare ) (e i)’
K (E \f(zk)|Pe—pr(zk))1/p,

which is the left sampling inequality. The right inequality is, as above, a
consequence of the separation property of I'.

IN

IN
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To show the necessity, we remember that I' being sampling is equivalent
to that the restriction operator R : F5 — I is bounded and injective, with
closed range. Therefore, R has a bounded inverse with |R!|| < K < oo,
and every L € (Fb)" can be written L = (Lo R™') o R, with ||Lo R7!| <
K||L||- Since Lo R™! is an functional on a closed subspace of 1, it can be
represented by {c} € ld. O

The following proposition is a modification of a proposition in [0S98].

Proposition 22. If the uniformly separated sequence T' is sampling for
F8,1<p< oo, then T is sampling for Fz for all small € > 0.

—elz|??

Proof. We will only consider 1 < p < oco. The same arguments work for the
spaces Fo>’ and F}.
Assume that T' is sampling for Fj. Take f € F376|Z|2, and let f,(w) =

f(w)e2ewz 22" By Lemma 7

E— 2
‘fz(w)‘P — |f(w)‘p . g2peRew 2 2pe|z|
N ”f||12),w*e\z\2ep(p(w)fpdw|2 . g2peRew-z—2pe|z|?

_ .2 2
||f||121,w_6‘z‘26p<p(w)e pelw—z[*—pe[z|*

Hence

_ 2 _ 2
A e )

so that f, € Fb.
By Lemma 7 all point evaluations in F} are uniformly bounded. By
Lemma 21 we can therefore write

fo(w)e W) = Z cr(w) fo(ye)e 290%),

where 3 |c(w)|9e™9°(%) < K for every w. In particular with w = z, we
have

|f(z)|e—<p(z)+e\z|2 — el ‘ZCk(z)f(’Yk)e%w'2_2€|2‘26_2¢(7’“)

< S Jew(@) 1S () e €=M el g 2e ),

AN

so that
|f(z)‘2e—2go(z)+2e|z|2 < Z |f(7k)|2€_2¢(7k)+26‘7’“|26_5|Z—’7k|2
23 lew(z)[Pe 20wl le
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If ¢ < 2 then l& C li and
Z ok (2)|2e 20—z nel® < Z |y (2)|2e200)
< (Z |cx (2 |qe—qw(7k)> /q_

If ¢ > 2 we use Holder’s inequality with the dual indices 1 = ¢/2 and
1/ro=1—1/r1 =1—2/q. We get

Z |Ck(z)|2e—2§0(7k)e—€|25—’)/k‘2 (Z |Ck |qe q‘ﬂ(’)%)) 2/q

1-2
( o apels W) /e

In either case this is bounded, and we find that

2—2 2¢|2|2 -2 2€|vx,|? —elz—y|?
/‘f )2e 2+l < § | f () 22000+ /eez W,

which is the left sampling inequality. The right inequality is, as above, a
consequence of the separation property of I'. O

For interpolation we have instead the following, as in Theorem 3.3 in the
article [MT99].

Proposition 23. If the uniformly separated sequence I is interpolating for

Fb,1 <p < oo, then T is interpolating for F> otelz]2? for all small € > 0.

Proof. As we remarked in the proof of Lemma 4 we can perform the in-
terpolation in a stable way. We can therefore find f; € FJ such that
fe(j) = 6;5e?%) and || fglp.p < C for every k. Let

Gi(2) = fi (z)e2€Z'W*2€|7k|2e*¢(7k)’

and take {v;} € lcp+€|2|2

interpolating function in F?

We now claim that G(z) = ) vyGi(z) is an

ptelz|2”

It is clear that G (v;) = 3 vkGr(v;) = v f;(v;)e ?1%) = v;, so we need to
estimate the norm of G. Lemma 7 implies that | fx(2)]e” ) < || frllp.o < C,
and hence

2
|G(z)|26—2cp(z)—25\z\2 —2Lp )—2¢|2|?

Z vpfi(z 262 e —2¢l | g —o(7k)

< (Z |,Uk|ef<p(7k)76|7k|2|fk(z)|e*w(Z)e*€\Z*7kl2)2
<C- Z ‘vk|26*2w(7k)*2€\7k|2e*€|2*7k|2 . Z e dle—ml?,
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Since I' is uniformly separated the last sum is bounded, and we get the
estimate

1GIB, s S S o [2e 20002 / e—elr—ml?

which is bounded since {v;} € li+€|z|2. O

In Corollary 14 we have proved the density conditions in Theorem 1 and
Theorem 2 for sequences in Fg. The density conditions for the spaces Fjb
now follow from Proposition 22 and Proposition 23.
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