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Abstract

In this paper two models of queueing networks with finite waiting spaces
are presented. They are similar to Jackson networks in that they have
Poisson arrivals and exponential service time and obey Markovian routing.
The two models are compared and it is shown how the coupling from the
past algorithm can be applied to the network models to obtain samples
from their stationary distributions. The paper contains several simulation
examples.
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Introduction

This paper is devoted to the study of simulation of queueing networks,
and showing that samples from the stationary distribution of the number
of customers in the network can be obtained in a reasonable amount of
time. The queueing systems considered are of Jackson type, i.e., they have
Poisson arrivals and exponential service time and obey Markovian routing.
What distinguishes them from usual Jackson networks is that each queue
has a finite waiting space.

Simulation of such systems will hopefully yield some useful information
about bottlenecks, i.e., nodes in the network where congestion is likely
to occur, and predict the behaviour of the queueing system when some
fundamental parameters change, for instance, increased waiting spaces or
faster service rates.

This goal is achieved in several steps, as follows. Chapter 1 contains some
basic theory presented for completeness but can be skipped bymost readers.
In Chapter 2 we present the class of queueing networks to be studied, and
we show how to model them as general birth and death processes. The
state space for such a process has a natural partial ordering, and we will
later use this ordering in constructing an algorithm for obtaining samples
from the stationary distribution of customers in the network. The algorithm
is the coupling from the past algorithm treated in detail in Chapter 4.
Chapter 3 contains the explicit construction of the general birth and death
process used to model the queueing network. The essence of Chapter 4
is to describe and to adapt the coupling from the past algorithm to our
queueing networks. The algorithm enables us to obtain samples from the
stationary distribution. In Chapter 5 the simulations are presented, and
the chapter begins with an analysis of the performance of the simulation
algorithm for large networks possessing special structure. After that follows
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2 Introduction

an analysis of certain interesting networks. The remaining chapter contains
a discussion on limitations of the queueing network model and possible
feasible extensions of the model for future research.

1 COMMENTS ON PERFECT SIMULATION

Perfect simulation is a term for algorithms that generate samples from an
unknown stationary distribution of a Markov chain. In recent years the
most celebrated algorithm has been the coupling from the past algorithm
(CFTP), but other algorithms exist. Earlier perfect simulation was referred
to as exact simulation.

In general we speak of MCMC � methods when we take samples from a
Markov Chain

���������
	��
at some time points ��������������� If the Markov chain is

ergodic and admits the stationary distribution � , we canobtain samples from
a distribution close to � by observing the chain

���������
	��
at some distant time

���� . This strategy, although intuitively clear and often easily implemented,
suffers from somemajor drawbacks. First, the generated samples are usually
biased and not from the stationary distribution � . Secondly, in order to
control bias, an appropriate time � has to be determined, which may be
analytically and empirically difficult.

The coupling from the past algorithm, suggested by Propp and Wilson[10],
resolves this problem by first telling us when to stop, and secondly, the
obtained sample is an unbiased sample from � . For an overview of different
algorithms and a survey of applications where perfect simulations have
fruitfully been used, see Wilson[14] and Dimakos[5].

2 COMMENTS ON QUEUEING THEORY

Classical queueing theory dates back to Erlang (1878–1929)who investigat-
ed the loss probability in a telephone switching system with a finite number
of available channels. Requests, such as telephone calls or arriving cus-
tomers, are accepted only if sufficient resources are available to deal with
them. The resources are modelled as queues with finite waiting spaces and
each queue is served by a number of servers emptying the queue and thus
freeing resources. Requests are visualised as customers arriving in a queue
and they are accepted if the waiting space has vacant positions. For a brief
overview of queueing networks, consult Søren Asmussen’s contribution to
[2]. A detailed treatment of the topic can be found in Wolff[16].

The objective is to compute quantities like the probability that an arriving
customer is rejected, estimatedqueue lengths, service times, averagewaiting

�
Markov Chain Monte Carlo



Introduction 3

times, etc. For a service provider it is often interesting to know what the
mean queue lengths are as a time average, so that system capacity is not
wasted, while customers using the resources have other measures of quality
of service.

Current research is focused on queueing networks with finite buffers with
different types of workload and blocking schemes. The particular kind of
network studied depends on the application. For a classification of the
available literature andmodels of queueing networks in manufacturing, see
Rao et al.[11]. Blocking occur when a station has not enough free resources
to handle a request, an arriving customer, and several blocking mechanisms
have been suggested to model different realistic behaviours. The blocking
schemes ranges from expunging blocked customers from the system, to
letting them wait at different stations or placing them in a waiting orbit.

Closed form expressions for the stationary distribution of the customers in
such systems are only available in a limited number of models, and huge
effort has been put into approximative algorithms for calculating it and
estimate the errors in the calculations.





Chapter 1

Basic theory

The aim of this chapter is to establish the notations and conventions used
throughout the paper, as well as to formally define and present basic
theorems and definitions.

The statements of Section 1.1 are given for completeness only. They can
be found in any textbook on Markov theory and may be skipped by most
readers. For proofs of theorems and such, we refer to Norris[9]. The last
section contains important results from coupling theory which are crucial
in the analysis in subsequent chapters. For a careful treatment of coupling
theory and stochastic domination we refer to Lindvall[7].

We shall always let � denote a discrete index, ������� or ����� , while  is
a continuous one, 	��
�� or 	��
 . Consequently,

���� �� 	��
will denote a

Markov chain in discrete time and
� �������
	��

one in continuous time. Further,�
will always denote a dimension,

� ��� , and � a
�
-dimensional vector of

bounds,
� � ��� � ������� � ��� � ���

�
�

We write ���� for the
�
-dimensional (finite) space

��� ������� � � ���! �"#"#"$ �%� ������� � � � � �
The &('*) unit vector in �

�
� , or ���� and 


�
for that matter, is always denoted

by +-, , &��/. ������� � � .

5



6 Basic theory

1.1 MARKOV THEORY

Definition 1.1 For a state space � , a intensity matrix, � ��� �����
	���� ���� , is a
matrix with elements satisfying� ����� � ������� for all � ��� .� � ����� � for all � ��� � � such that �"!�#� .�#$ ���� �%��� � �

for all � � � .
Wewill use the word ‘rate’ interchangeably with ‘intensity’ in the remaining
of this paper.

Definition 1.2 Associated with the intensity matrix is a semigroup of
transition matrices, & � �'� ()��� �  � 	 �*� ���� �  � � �
where

& �
is the unique non-negative solution to the backward equation

�
� 
& � ��� & � � & � ��+��

and + is the identity matrix +��,�.-0/ ��12��3 	 �*� ���� .
A direct consequence of the semigroup property is that

&54 � � � &647& � , for
all 8 �� � � .
Let 9 be a probability measure on � .
Definition 1.3 We say that

��� � � �
	��
is a Markov chain on � with initial

distribution 9 and intensity matrix � if
���':�;9 and for all � � � ,��� �� � "�"#" �   , � � ������� �*�  �<�

P = ���?>A@CB �D�  � �5E � ��B ��������������� ���?> ��� )F �G(2� > � � >A@CB��   � � �   � �

In Chapter 3 we shall construct the Markov chain
��� � � �
	��

from a specified
intensity matrix � . For general state spaces we must make further assump-
tions about � , e.g. that it is non-explosive, but for finite state spaces these
conditions are all satisfied. See Brémaud[4] for a thorough treatment of the
subject.

Definition 1.4 A state � � � is accessible from � ��� if there exists a �H �
such that ( �I� �  � H � . If every state � is accessible from every other state � ,
then the chain, and its intensity matrix, are said to be irreducible.
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Suppose thatwe start the chain at time 0 in state � , i.e., the initial distribution
is 9 ��� � for some � ��� .
Definition 1.5 The return time to state � is defined by

� � ������� �  H �	� � � � ����
08 �  � �
4 !�D��� �

We say that a state � is recurrent if
P � � � � ��� � �/. �

and transient otherwise. If � is recurrent and E � � � � 	 � � we say that � is
positive recurrent.

Theorem 1.1 Let
���������
	��

be an irreducibleMarkov chain on � with intensity
matrix � . Then every state in � is either (positive) recurrent or transient, and
we say that the chain is (positive) recurrent or transient, accordingly.

Since we shall restrict our attention to Markov chains with finite state
spaces, typically � � � �� , we note the following theorem:

Theorem 1.2 If � is finite and
��� � � �
	��

is irreducible, then
��� � � �
	��

is positive
recurrent.

Definition 1.6 An irreducible, positive recurrent Markov chain is called
ergodic.

Theorem 1.3 Let
��� � � �
	��

be an ergodic Markov chain on � with initial
distribution � and intensity matrix � . Then the distribution of

� �
does not

depend on �H � iff � is a solution to

� � � ����������� �
� ��� � �

��������� �
� � � � � �A� � � ����� (1.1)

or, more compactly,
� � � � �

Equation (1.1) is sometimes referred to as the full (or global) balance
equation.

Definition 1.7 A probability measure � that is a solution to (1.1) is called
the stationary distribution of theMarkov chain

��� � � �
	��
with intensitymatrix� .
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The next theorem states that the limiting distribution of an ergodic Markov
chain is the stationary distribution.

Theorem 1.4 Let
���������
	��

be an irreducible, recurrent Markov chain on �
with intensity matrix � and stationary distribution � . Then for the induced
semigroups

� & � � �
	��
we have� �������� (2��� �  � � � �������� P � ����� � � � � � � � � � � � ���

regardless of the initial state � ��� .
We note that this implies that � � � � � � ��� ����� P 	 ��� � � � � for � �,� ,
regardless of initial distribution 9 . The ‘only if’ part of Theorem 1.3
means that we have no hope of obtaining a sample from the stationary
distribution by simply observing

��� � � �
	��
at a predefined time  , unless� � � � �
	��

is stationary from the start. The coupling from the past algorithm
in Chapter 4 will enable us to obtain such samples by a clever choice of
starting times of

���������
	��
.

1.2 COUPLING THEORY

Definition 1.8 On � � �
�
� we use the standard partial ordering 
 , defined

by ��
 � if � , �� , � for all &��/. ��������� � . (1.2)

We will use the convention of writing ��� � if ��
 � and � !�#� .
We note that this partial ordering causes the state space to have unique
minimal element � � �*� ��������� � � . Note that if � � ���� we also have

���#��� � ��� � � ��� � � � � � �
Definition 1.9 Let

�
and

���
be two random variables on � . We say that

�
is stochastically dominated by

���
, written

� :
 ���
, if

P
��� 
#� � � P

� � � 
 � � � for all � �����

The following is Strassen’s celebrated theorem.

Theorem 1.5 For two random variables on � , � and
���

, then
� :
 ���

if
and only if there exists a coupling

���� � ���� � of � and
���

such that

�� 
 �� �
a.s., where

�� :� � � �� � :� � � �



Chapter 2

Queueing systems,
Jackson networks

For a queueing network with
� � . stations, let � , �  � be the number of

customers in queue &��/. ������� � � at time  , and let

��� � ��� � �  � ��������� � � �  ���

denote the state of the queueing network at that time. One distinguishes
between open and closed networks. In a closed queueing network the total
number of customers in the system is constant, i.e., the state space ��� of � �
is

��� � �
� � � ������� � � � � � �

�
� �

�
�
, 1 � � , � some constant � �

We shall only consider networks where customers may enter and eventually
leave the system. Such a network we call open, and we model

� � � � �
	��
as a

continuous time Markov chain with the special structure defined below. It
is intuitively clear what we mean by open, but a formal definition is found
in (2.3).

2.1 OPEN JACKSON NETWORKS

Let us first define the general birth and death process we shall use as a
model of our queueing networks.

9



10 Queueing systems, Jackson networks

Definition 2.1 Let
���������
	��

be a general birth and death process on � , where
� � �

�
�

or some finite subset thereof. This means that
���������
	��

is a Markov chain on� and its intensity matrix � � � �A����	 �*� ���� has non-zero transition intensities� ��� , � !� � , only for transitions of the form

1. � to ����+-, , which is interpreted as an external arrival
at queue & . These transitions occur with intensity�%� � ������� �	� , � � � .

2. � to � � +-, , a departure from queue & that leaves the
network, which occur with intensity ��, � � � . That is, we
have �%� ������� � � � , � �
��+ , � .

3. � to ��� � +� � +-, � , a transfer of a customer from queue
& to � , which occur with intensity � ,�� � � � . That is,
the elements of the intensity matrix are � � ����� � � ����� �
� ,�� � �
��+ , � ,

(2.1)

where & ��� � � . ������� � � � .
In our networks the arrival process at station & is a Poisson process
with intensity � , , and the service times at station & are independent
and exponentially distributed. The service times at different stations are
independent of each other and of the arrival processes.

Definition 2.2 A Jackson network is a queueing network with the structure
above and is modelled by the general birth and death process

� � �����
	��
on

�
�
� with transitions as in (2.1), where

1. � , � � � �	� , ,
2. � , � � � ��� , � � , � �D9 , � � , � ( , , and
3. � ,�� � � � ��� ,�� � � , � �D9 , � � , � ( ,�� ,

(2.2)

when & ��� � � . ������� � � � and ( ,�� is the probability that a departure from
station & goes to station � . We will use the convention to denote � , � � � by
� , when the former does not depend on � , i.e., is constant. Consequently,
� ,�� � � , � emphasize that � ,�� � � � depends only on � through � , .
The probability that a departure from station & leaves the system is

( , � . �
�
�
� 1 � ( ,�� �
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�� �����

� ��
������
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 � ������ � 
	�����

Figure 2.1. A simple 3-station queueing network with state-
dependent service rates, ��������� . In this model  "!$#&% since
we do not have external arrivals to station 3, and likewise')( #*% and +", ! #-+ ( ,.#-+ ! ,/#0% .

We shall also assume that the service rate at station & can be written

9 , � � � �

�
1 1 � 2 ,

� � � where 2 , � � � � � for � � . �

The definition of a Jackson network is rather general in the sense that
it allows the service rate at station & , 9 , , to depend on the number of
customers, � , , present. This covers the situation when a queue is attended
by more than one server. An example of a Jackson network is shown in
Figure 2.1.

Definition 2.3 An open Jackson network is a Jackson network where the
routing probabilities ( ,�� , where & ��� � � . ������� � � � , satisfy:�

For all � � � . ������� � � � there exist & � & ����������� &43�� � . ��������� � �
such that

� ,�"*( ,#, B " ( , B ,65�"#"�" ( ,87 �'H � �
which means that every queue � is (indirectly) supplied
with customers from the outside.�
For all & � � . ��������� � � there exist � � & ����������� &43�� � . ��������� � �
such that

( ,�, B "*( , B ,65�"#"#"�( ,87 � " � � � +� � H � �
which means that every queue & has an (indirect) way of
expunging customers from the network.

(2.3)

In the following we shall assume that every Jackson network is open and
thus omit the word ‘open’ from the definitions.

A common type of Jackson network occurs when we have single-server
queues.
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��� ���

� � � �
Figure 2.2. This simple network (tandem queue) illustrates
how blocking of customers can occur when a station has a
finite waiting space.

Definition 2.4 A Jackson network with single-server queues is modelled by
the general birth and death process

� �������
	��
on �

�
� with transition intensities

1. � , � � � �	� ,
2. � , � � � ��� , -0/ 1 ��� � 3
3. � ,�� � � � ��� ,�� -0/ 1 ��� � 3 ,

(2.4)

where & ��� � � . ������� � � � .
We shall focus on queueing networks with a structure similar to the Jackson
network, so we refer to networks defined by Definition 2.2 as standard
Jackson networks whenever distinction is necessary. The networks we shall
consider consist of queues with finite buffers, and we first give an informal
description of such a system.

Let us first consider a network of two queues in series. The first queue has
Poisson arrivals at intensity � � and a server which works with rate 9 � . The
second queue has a finite waiting space that can accommodate at most

� �
customers, and its server works with rate 9 � . See Figure 2.2. We impose
a blocking mechanism for the first server, such that a customer finishing
service at the first station, is looped back to the first server and receives
a new independent service time whenever the secondary queue is full. In
queueing theory context this is commonly referred to as repetitive blocking.

To generalise further, consider a network of
�
queues where queue & has a

finite waiting space of size
� , . A customer that finishes service at station &

choses to transfer to station � with probability ( ,�� and leaves the network
with probability ( , . Suppose that the chosen queue � is full, i.e., ��� � � � ,
then the customer remains at station & an exponential amount of time
before a new routing attempt is made. Note that it is possible for a retrying
customer to chose another station than the original one. We say that we
have a repetitive blocking mechanism with random destination, as opposed
to a ‘fixed destination’ where the destination is determined after the first
service time and cannot be altered later.

We are now ready to formally define our first model of such a network.
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Definition 2.5 Let ��� �
�
be a vector of bounds and denote the state space

� �� by � � . A bounded Jackson network of Type 1 is modelled by the general
birth and death process

� � � � �
	��
on � � with transition intensities

1. � , � � � � � ,C-C/ 1 ����� � 3
2. ��, � � � �D9 , � � , � ( ,
3. � ,�� � � � �D9 , � � , � ( ,�� - / 1 � ��� � 3 ,

(2.5)

where & � � � � . ������� � � � .
Compare with (2.2).

A slightly different network will be obtained if we let those customers who
depart from station & , and are heading towards station � , leave the system
when they find queue � full, i.e., ��� � � � . This is the essence behind:
Definition 2.6 Let ��� �

�
be a vector of bounds and denote the state space

� �� by � � . A bounded Jackson network of Type 2 is modelled by the general
birth and death process

� �������
	��
on � � with transition intensities

1. � , � � � � � ,C-C/ 1 � ��� ��3
2. ��, � � � �D9 , � � , ��� ( , � $ �� 1 � ( ,�� - / 1 � 1 � � 3��
3. � ,�� � � � �D9 , � � , � ( ,�� - / 1 �	��� � 3 ,

(2.6)

where & � � � � . ������� � � � .
The difference between a Type 1 and a Type 2 bounded Jackson network
may seem subtle regarding the definitions, but the difference in behaviour
is substantial. For instance, the number of customers in a Type 1 network
dominates the corresponding number in a network of Type 2, in a sense
that soon will be made precise (glance ahead at Figure 2.4).

2.2 STATIONARY DISTRIBUTION

For these models of queueing networks our next step is to show how one
can obtain the stationary distribution. First we note that we are only
considering open Jackson networks, and we quote the following theorem
from Walrand[13]:

Theorem 2.1 A Jackson network is irreducible if and only if it is open.

This combined with Theorem 1.2 tells us that a bounded Jackson network is
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ergodic. For a standard Jackson network a necessary and sufficient condi-
tion for positive recurrence (and hence ergodicity) is given in Theorem 2.2.

For a standard Jackson network the stationary distribution � of
� �������
	��

can be calculated directly. Let the intensities be as in (2.2), and let � , be
the net flow of customers entering queue & . If every customer eventually
is served, then stationarity should mean that the average flow of customers
finishing service at station & must equal � , . This heuristic argument tells us
that under stationarity, we should have

� , � � , �
�
�
� 1 � � � ( � , � & ��. ������� � � � (2.7)

This system of equations is sometimes called the detailed balance equations,
and when the chain

� � � � �
	��
is irreducible, it has a unique nonnegative

solution
�
� � ����������� � � .

Define normalising factors by

� , � . �
�
�
1 �%1 �

1 ��
1 1 �

� ,9 , � � � � &��/. ������� � � �

Theorem2.2 Anopen standard Jacksonnetwork
��� � ���
	��

is positive recurrent
(and hence ergodic) iff � , � � for &��/. ��������� � .
The stationary distribution � of

��� � � �
	��
is given by

� � � � �
�
�

, 1 � � ,
� � , � � where � , � � , � � .

� ,
1 ��
1 1 �

� ,9 , � � � � (2.8)

A brute-force proof of this statement is to check that this particular
expression for the stationary distribution is a solution to the full balance
equation (1.1).

Definition 2.7 For a single-server Jackson network, 9 , � � , � � 9 ,C-0/ 1 � � � 3 ,
we define the traffic intensity � by

� , � �$,9 , � &�� . ��������� � ��� � �
� ��������� ��� � � �

If
�������

is ergodic, i.e., if � , � . for & � . ��������� � , then the stationary
distribution � is given by

� � � � �
�
�

, 1 � � ,
� � , � �

�
�

, 1 � �
1 �, � . � � , � �
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Unfortunately, for bounded Jackson networks the explicit solution for the
stationary distribution is hard to find since the balance equation (1.1) is
hard to solve.

Definition 2.8 When � � � � � � � � � � � "�"#"�� � � � ��� , the stationary distribution is
said to be on a product form. A network of queues with such a distribution
is said to be a product-form network.

A remarkable feature of such networks is that under stationarity at any
given time the number of customers at a station is independent of the rest
of the network. This is not the case for bounded Jackson networks. A
network with finite waiting spaces at the stations has product form, if for
instance customers that find a station full, immediately skip that station and
continue as if they had received service there. Such a network is sometimes
said to have a jump-over blocking scheme. According to [3] a formal proof
of the product form of � can be found in Aarssen and van Dijk[1].

For the bounded Jackson networks neither the departure process of served
customers nor the departure process of rejected customers is Poisson, but
we note the following.

If the net-arrival process at station & in a bounded Jackson network of Type
2 is Poissonian, i.e., there is no inflow of customers from any � part of the
network, then � , � � , and we can calculate the marginal distribution ��� ���,
of a bounded Jackson network of Type 2 as in (2.8) but with

� , �/. �
� ��
1 � 1 �

1 ��
1 1 �

� ,9 , � � � � � � ���, � � , � � .
� ,

1 ��
1 1 �

�$,9 , � � � � � , � � ������� � � , � (2.9)

Wewill use this distribution for comparison with the estimated distributions
obtained by simulation.

Before we leave the discussion on the stationary distribution, we note that
in a stationary standard Jackson network the fraction of time during which
queue & contains ��, customers is � , � � , � . The fraction of arrivals to queue &
who see � , customers there is also � , � � , � . For Poisson arrivals this feature is
known as the PASTA � -property of a Poisson process, but it is still valid for
a standard Jackson network in equilibrium where the net-arrival processes
are not Poisson. This result is called the Arrival theorem for Jackson
networks. Boucherie and van Dijk[3] contains a survey of when the arrival
theorem is valid for queueing networks with blocking.

�
Not even from � itself.�
Poisson Arrivals See Time Averages; see Wolff[16].
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2.3 DOMINATION RESULTS

To be able to construct the algorithm for obtaining samples from the
stationary distribution � we need some domination results. Impose on � �
the partial ordering 
 of (1.2). The element � represents an empty queueing
network, and � is the state when every queueing position is occupied and
every server is busy. Certainly, every other configuration of customers must
necessarily lie between these two states.

Lemma 2.3 Let
���������
	��

be a bounded Jackson network on � � with intensities
as in (2.5) or (2.6). Then for ����� �<� � , such that ��
 � , we have

� , � � � � � , � � � �
� , � � � � � , � � � � and

� ,�� � � � - / � � ��� � 3 � � ,�� � � � �
Proof: Direct identification yields

� , � � � � � , -C/ 1 � ��� � 3 � � , -0/ ��� ��� � 3 �	� , � � � �
� � � �, � � � � 9 , � � , � ( , � 9 , �� , � ( , ��� � � �, � � � �
� � � �, � � � � 9 , � � , � � ( , � $ �� 1 � ( ,�� -C/ 1 � 1 � � 3 �� 9 , �� , � � ( , � $ �� 1 � ( ,�� - / ��� 1 � � 3 � � � � � �, � � � � and
� ,�� � � � � 9 , �� , � ( ,�� -0/ � � ��� � 3 - / 1 � ��� � 3 � 9 , � � , � ( ,�� -0/ � � ��� � 3 -0/ 1 � ��� � 3

� � ,�� � � � -0/ � � ��� � 3 �
where the superscript on the departure rate signifies the typeof the bounded

Jackson network. Note that � � � �, � � ��� � � � �, � � � for all � ��� � . �

Theorem 2.4 If
� �������
	��

is a bounded Jackson network with
��� � � , then� �

is stochastically increasing in  , i.e.,
� � :
 � � � 4 for all  � 8 � � �

Proof: Let
��� � � �
	��

and
� ���� � �
	��

be two independent copies of a bounded

Jackson network. We construct a coupling
� �� � � ����� � of ��� � �

and
��� � �

such

that if
�� � 
 �����

, then �� � 
 �� �� � for all  � � �
This coupling is obtained by letting the bivariate Markov chain

� �� � � ����� �
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have, when
� ���� � ����� � � � ����� � , transition intensities as follows

from to with intensity� ��� � � � �
��+-, ��� � +-, � � , � � �� ��� � � � �
��+-, ��� � � , � � � � � , � � �� ��� � � � � � +-, ��� � +-, � ��, � � �� ��� � � � ����� � +-, � ��, � � �5� ��, � � �� ��� � � � �
��+� � +%, � � ��+� � +%, � � ,�� � � � - / � � ��� � 3� ��� � � � �
��+� � +%, � � � � ,�� � � � - / � � 1 � � 3� ��� � � � ����� � +� � +-, � � ,�� � � �5� � ,�� � � � -2/ � � ��� � 3 �

(2.10)

It is clear that
�� � :� � �

and
����� :� ����

, and
�� � 
 �����

for all  � � if �� � 
 �����
.

Now, fix 8 H � and let
�� � � � and ����� � �� 4 :� � 4

. This makes
�� � 
 �� � � 4

and Theorem 1.5 gives the statement.
�

An explicit construction of the coupling (2.10) is the subject of Chapter 3,

and when using it we will start the bivariate chain
������ � ����� ���
	�� in � ���� � ����� � �� � � � � .

Theorem 2.5 Let
��� � � �� � �
	��

be a bounded Jackson network of Type 1 and��� � � �� ���
	��
one of Type 2, where both have the same arrival intensities � , ,

service rates 9 , � � , � and routing probabilities ( ,�� . Then
� � ���� :
 � � � ��

for all  � � �

Proof: From the definitions we have that � � � �
� � � � � � � �

� � � , and � � � �,�� � � � �
� � � �,�� � � � , � �	� � � , & � � . ������� � � � . We noted in the proof of Lemma 2.3 that

� � � �, � � �"� � � ���, � � � for all � � � � and & � . ��������� � , and in the same manner

as the proof of Theorem 2.4 we can construct a coupling
������ � ����� � of � � � � �� �

and
� � � ���� �

, such that

�� � :� � � � ��
and

�� �� :� � � � ��
(note the order),  � � �

and if
�� � 
 �����

, then

� � � �� :� �� � 
 �� �� :� � � � �� � for all  � � �
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������� � � � ��� � � ���

� ����� � � �
	�� 
Figure 2.3. This simple network (tandem queue) illustrates
the difference between a Type 1 and a Type 2 bounded
Jackson network. The secondary service rate is very small,
so in a Type 1 Jackson network congestion will occur at the
first station. The buffer sizes are given by �$# ���6%����8%�� .

Take for instance

from to with intensity� ����� � � � ��+-, ��� � +-, � � � � �, � � �� ����� � � � ��+-, ��� � � � � �, � � �6� � � � �, � � �� ����� � � � � + , ��� � + , � � � � �, � � �� ����� � � � � � � +-, � � � � �, � � � � � � � �, � � �� ����� � � � � +-, ��� � � � � �, � � �5� � � � �, � � �� ����� � � � ��+ � � + , � � ��+ � � + , � � � ���,�� � � � - / � � ��� � 3� ����� � � � ��+ � � + , � � � � � ���,�� � � � - / � �51 � ��3� ����� � � � � � ��+� � +%, � � � � �,�� � � �6� � � � �,�� � � � -0/ � � ��� � 3
�

The theorem states that a Jackson network of Type 1 tends to have more
customers at every station. Consider for instance the network in Figure 2.3,
and note that this is one of the situations where we actually can calculate
the stationary distribution of the number of customers at the first station,
� � , for the bounded Jackson network of Type 2. Since the first station is

a single-server queue, the traffic intensity is � � .���� and � � ���� , according
to (2.9), is

� � ���� � � � � . � �
. � � � B � � �

1 � � .
. � ��� ���

� .
� �

1 � � � � , � � ������� �#. � �

Figure 2.4 shows the estimated stationary distributions ���� � �� and �� � � �� for the
network in Figure 2.3.

2.4 COMMENTS ON THE MODELS

We saw that the number of customers in a bounded Jackson network
of Type 1 dominates the corresponding number in a network of Type 2.
This can be generalised a little bit further by defining a bounded Jackson
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Figure 2.4. The estimated distributions ��
� ,��, and ��

� ( �, of
the bounded Jackson network in Figure 2.3 obtained from
50,000 samples. The dark bars correspond to estimates of
� � ,��, ����� , �-# � �����	� ���8% , which dominate the estimates of
� �
( �, ����� (white bars).

network where some stations may dispose of the customers they cannot
transfer. Let

�
�
 �

be a bounded Jackson network of type � , � � . � � , and�
a general birth and death process on � � where

� , � � � � � � � �, � � � ��� ,�� � � � � � � � �,�� � � � ��� & ��� � � . ������� � � � �
and

��, � � � ��� � � �, � � � for & ��
 ���, � � � ��� � ���, � � � for & !��
 �
where 
 is some subset of

� . ������� � � � . Then �
is a network of a mixture of

Type 1 and Type 2 stations. In the same way as we proved Theorem 2.5 one
can show that

� � ���� :
 ��� :
 � � � ��
for all  � �

if
� � ���� :
 � � :
 � � � ��

.

A remark concerning a bounded Jackson network of Type 2 is that by
definition a customer decides where to go next before departing from the
present station. Suppose that ( ,�, H � for some & � � . ������� � � � . When queue
& is full, no customers will recycle from & to & even if their own departure
would leave room for their admittance. If this is not desirable, then point 2
in Definition 2.6 can be replaced by

� , � � � �D9 , � � , � � ( , �
�
�
� � B� �� �
( ,�� - / 1 �51 � � 3�� �
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and the theorems in this paper are still valid.

Althoughwe have not especially treated themulti-server casewewould like
to emphasise the versatility of the model. Recall that 9 , � � � � $ 1 � 1 � 2 , � � � .
If we take for instance

2 , � . � H � � 2 , ��� � � ����� � H � �
and all other 2 , � � � are zero, we have a situation where station & works at
rate 2 , � . � until the buffer is two-thirds full. At that point a spare server is
activated, increasing the service speed to 2 , � . � � 2 , ��� � � ����� � .

2.4.a MARKOVIANROUTING

The way customers flow in a network is regulated by a routing mechanism,
a protocol regulating which paths the customers should use to travel from
one station to another. With this in mind, Markovian routing is very crude.
For instance, as a model of a computer network it may not be adequate if a
message (customer) originating from, say, a computer (station) should not
be allowed to cycle infinitely through the system.

A way to solve this problem is to assign classes to customers, where
each class represents a different routing scheme, i.e., letting the transition
probability ( ,�� depend on the current class of the customer. To generalise
further, it is possible to allow customers to change classes during their
passage through the networks, i.e., the transition probabilities take the
form ( ��3,�� �
the probability that a


-type customer when finishing service at station &

goes to station � and gets assigned the class � .



Chapter 3

Poisson calculus

This chapter is devoted to the construction of a
�
-dimensional birth and

deathprocess
� � � � �
	��

on � � , describing a bounded Jackson network treated
in Chapter 2. This will eventually lead us to the construction of the coupling
used in (2.10).

3.1 POISSON REPRESENTATION

Take
� ��� , � ���

�
and let � � � � �� . Let � ��� , ������� � � , be independent,

homogeneous Poisson processes on 
 , with intensities � ��� , respectively.
That is:

1. For all � � . and 8 � �  � � "#"�" � 8  �   � 
 � , the random
variables � �I� � 8�, ���,�	 , &�� . ������� � � , are independent.

2. For 8 �  , � �I� � 8 �� 	 is Poisson distributed with expected value�  � 8 � �%�I� .
This is rather over-parameterised since most of the intensities � ��� will be
zero, but it is a convenient notation. The intensities � ��� , for � ��� � � � , are
those of a general birth and death process on � � found in (2.1). Define the
shifted processes �

4
� ��� by
�
4
� ��� �*� �� 	 ��� ��� � 8 � 8 �  	 � 8 �� � � �

We will now construct a continuous time Markov chain
��� � � �
	��

from
transitions of a discrete time chain

���  �  	��
and a sequence of time-points���  �  	��

, which in turn are generated by the processes � ��� , ����� � � � .
21
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PSfrag replacements����� �������� �
	� ��� �
�� ��� ������� �
������ �
�

0 ��
Figure 3.1. When ��� #0� , the pair � , ��� , is determined by
the first arrival in one of the Poisson processes ����� , ��� �"! .
The figure shows six of those processes, ����# � B ��� ��� ���$��# �&% ,
and the first arrival was in � ��# �&' at time � , #)( , thus� , #*� ! , + , #,+-�/.0( .

Choose an initial state, say � ��� � , by letting
� � � �

and
��� � � , and let

� � � � 
for  � � �  � �  � � � �

where
���  �  	 � and � �  �  	 � are given recursively as follows:

1  � � � � ���2 	�� 34 5 ��
��76 �98 > �;: > � � � � �=<2	 � .�> ?@
�  � � � �  � 1  � ��� � � � � � � � 8 > � : > � � � � � 1  � � 	 � . ���

Consult Figure 3.1.

Let � � � � � $ �����BA���� � � ��� . The joint distribution of �  � � and 1  � � , conditioned
on the values of

�  �D� and �  ��8 is then
P
���� � � � � � 1  � � H  E �� �D� � �  � 8 � �

� P
���� � � �#�6E �� �D� � P � 1  � � H  E �� � � � (3.1)

� � �I�� � � �BC � �D � � � �
Note that the distribution does not depend on

� 
, that

�  � � and 1  � � are
conditionally independent, and that

1  � � E �  is exponentially distributed
with mean .���� ���  � . See Brémaud[4] for details.

By the construction, these properties imply that the evolution of the process
from time 8 , ��� � � 4 � �
	�� E � 4 , and the process up to time 8 , ��� � �

4
� 1 � E � �

, are
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independent, and � � � � � � 4 	�� E � 4 :� ��� � � �
	�� E � � �
Thus,

� � � � �
	��
is a homogeneous Markov chain and the intensities of

transitions, for � !�#� , are
� ������ � .  P

� � 4 ��� � � 4 � � � � � � � ������ � .  P ����� � ��� � � � � � � �%�I� �
Identifying the intensities � ��� as those given in (2.1) we see that

� �������
	��
have the right transition intensities.

We finish this section by noting that according to (3.1),
�  � � can be written

�  � � ��� ���  ���  � � � � � � � �
for some deterministic function � and

� �  �  	 � a sequence of random
variables such that

P
� � ���� ���  � � � � �6E �  � � � : > � �� � � �� � (3.2)

In the next section we shall derive an expression for � and construct the
Poisson processes � ��� .

3.2 THE TWO-DIMENSIONAL POISSON EMBEDDING

Our next task is to construct the Poisson processes corresponding to those
� �I� with non-zero intensities. To this end we shall use a two-dimensional
Poisson process. Take � H � and let � be a Poisson process on 
 �  � � � � 	
with expectation measure � , the Lebesgue measure. This means that for
disjoint sets � ��� � ���������	�  ��
 � 
 �  � � � � 	 � , the Borel � -field,

1. the random variables �
� � � � ,. . . , � � �  � are independent, and

2. �
� � � is Poisson distributed with expected value � � � � .

The process � �� � ��� defined by

� �� � ��� � 8 �� 	 � �
��� 8 �� 	  � ��� � 	 � � � � � � � � � � � � 8 � 

is a one-dimensional Poisson process with intensity
� � � � � . See Figure 3.2.

By dividing the region 
 �  �*� � � 	 into horizontal strips we can construct
several independent Poisson processes with constant intensities.

We want � , the total intensity of transitions from state ���'� � , to be
constant for every � . To achieve this we allow the chain

� � � � �
	��
to

have quasi-transitions, i.e., transitions from � to itself, so that the total
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Figure 3.2. The two-dimensional Poisson process � is
used to construct two dependent, one-dimensional Poisson
processes, � � � # ��� and � � � # ����� with intensities � and ��� respec-
tively. The processes � � � # ����� and � � ��� # ��� are independent
since they are derived from two disjoint sets of � .

intensity out of � is fixed. Consider a bounded Jackson network of Type 1,� � ���������
	��
. Examination of the transition intensities in (2.1) and (2.5)

tells us that we can write the transitions out from � as follows:
from to with intensity� � � + , -0/ 1 � ��� �A3 � ,� � � + , -0/ 1 � 	  3 2 , � � � ( ,� � � � + , � + � � - / 1 � 	  3 -0/ 1 � ��� � 3 2 , � � � ( ,�� �

(3.3)

for � � . ������� � � , , & � � � � . ������� � � � . To see this, consider for instance the
intensity with which

���
goes from � to � � + , . This is

� �� 1 � -0/ 1 �
	  3 2 , � � � ( , � ( ,

1 �� 1 � 2 ,
� � � � ( ,�9 , � � , � ����, � � � �

The other cases are similar. Equation (3.3) is the same thing as extending
the transition intensities of (2.5) with the pseudo-transition intensities

� � � � �
�
�
, 1 �

� � , -0/ 1 � 1 � � 3
�

� �� 1 �
� -0/ 1 � �  3 2 , � � � ( , �

�
�
� 1 � -0/ 1 � �

�� 1 � 1 � � 3 2 , � � � ( ,�� ���
for all � � � � . Note that � � � � is not an element of the intensity matrix � ,
since the value of � � � � does not affect the stationary distribution. Now,
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� � � � � � � � � � $ � ������� � �%��� � � , � � � � � , where � � � � ��� � which are defined

as

� , �
� ��
1 1 � 2 ,

� � � ( , � ,�� �
� ��
1 1 � 2 ,

� � � ( ,�� � , �
�
�
� 1 � � ,��

� �
�
�
, 1 � � , � �

�
�
, 1 � ��, � �

�
�
, 1 � � , �

By dividing the region 
 �  � � ���0	 into horizontal strips of width � , , ��, , and
� ,�� , for & � � � � . ������� � � � , we can construct independent Poisson processes
��� � , ��� � and ��� � � , & � � � � . ������� � � � , with corresponding intensities. We
can use these processes in the same manner as the processes � �I� earlier to
govern the evolution of the Markov chain

�
. From (3.1) we see that

P
� �� � � �D�
��+ , E �� �D� � � � � � �������� � � � � � ,

� � (3.4)

if � , � � , , and
P
� 1  � � H  E �  ��� � � C � �D � � � � C � ��� �

Thus, we can construct the chain
�

by letting the time increments
� 1  �  	 �

be i.i.d. exponentially distributed with expected value . � � , i.e., letting���  �  	��
be a Poisson process with intensity � , and by letting an i.i.d.

sequence
� �  �  	 � , uniform on � � ���0	 , independent of � �  �  	��

, determine
the jumps of

���  �  	 � . If �  � � � � and �  falls in the interval corresponding
to � , , say, then �  ���
��+-,C-C/ 1 ����� � 3 �
and analogously if �  falls in an interval corresponding to some ��, , � ,�� , all
in accordance to (3.3). Note that

���  ���  �  	 � is nothing but the enumeration
of the points of � , where

� , � � , � � for & � . .
With the philosophy that one should not try to explain with words what is
best understood as a picture, we encourage the reader to consult Figure 3.3
for the construction of

���  ���  �  	 � and consider an illustration in Figure 3.4
of how this can be used to model a simple, bounded Jackson network.

For a bounded Jackson network of Type 2 the situation is completely
analogous, but instead of (3.3) we have:

from to with intensity� �
��+-, - / 1 ����� � 3 � ,� � � + , - / 1 � 	  3 2 , � � � ( ,� � � � + , � + � -C/ 1 � ��� � 3 � -0/ 1 � 	  3 2 , � � � ( ,�� �
(3.5)

for � � . ������� � � , , & � � � � . ��������� � � .
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Since we are going to use it in the following chapter, we establish the
following notation.

Definition 3.1 For a bounded Jackson network
�

on � � we define a
transition rule as a deterministic function � � � �  #� � ���0	�� � � that maps���  ���  � � � on �  � � , � � � , where � �  �  	 � is an i.i.d. sequence of random
variables uniform on � � ���0	 .
To summarise this section, we can construct the birth and death process���������
	��

starting at � at time
� � � �

, by generating the independent i.i.d.
sequences

� 1  �  	 � and � �  �  	 � , where 1  is exponentially distributed with
expected value . � � and �  is uniform on � � � � 	 , � � . . We let

� � � � 
for

�  �  � �  � � (3.6)

and �  � � � �  � 1  � ��  � � � � ���  ���  � � � �

3.3 COUPLING OF TWO BIRTH AND DEATH PROCESSES

We will show how the results in the previous section can be used to
produce the coupling in (2.10). Let

� � � �������
	��
and

��� � � ���� ���
	��
be

two independent identical bounded Jackson networks on � � . We want to

construct a coupling
���� � � ����� � �
	�� of � and

���
such that when

�� � 
 �����
then

���� 
 �� �� � for all  � � �
Let

���� � � �
	��
be constructed from

����  �  	��
according to (3.6), and the aim is

to couple
�

and
���

by a coupling
� ��� � ���� � of ���� �� 	�� and � ��� �  	��

.

Suppose that
�� � ��� 
 � � �����

. Then
�� � � � ���� � ��� �

for some � uniform
on � � � � 	 , where � is the transition rule of Definition 3.1 for this particular

bounded Jackson network. Thus, the probability of a transition of
� ��  �  	��

from � to ��� +-, - / 1 � ��� � 3 , say, is � ,�� � by (3.4). If that transition occurred,
then � � � ��� � � � ��+-, - / ��� ��� � 3 since � is deterministic. The same is true for
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the other transitions, so by letting
���� � � � � ������ ��� �

we have produced the
coupling:

from to with probability� ����� � � �
��+ , -C/ 1 � ��� � 3 � � ��+ , - / ��� ��� �A3 � � , � �� ����� � � � � + , -C/ 1 � 	  3 � � � + , - / ��� 	  3 � 2 , � � � ( , � �
and

� ����� � � �
� � + � � + , � -0/ 1 � 	  3 - / 1 � ��� � 3 �� � � +� � +%, � - / ��� 	  3 -0/ � � ��� � 3 � 2 , � � � ( ,�� � � �
if the network is of Type 1, and

� ����� � � �
� � + � - / 1 � ��� � 3 � + , � -0/ 1 � 	  3 �� � � +� -0/ � �	��� � 3 � +-, � - / ��� 	  3 � 2 , � � � ( ,�� � � �

(3.7)

if the network is of Type 2. It is clear from (3.3) or (3.5) that
��  :� � 

and���� :� ���
. Examination of the possible transitions reveals that

��  
 �� �
for all � H � � when �� � 
 �� �� �

Generate independent i.i.d. sequences
� 1  �  	 � and

� �  �  	 � , as in (3.6),
and let

�� � � ��  � �� �� � �� � � for
�  �  � �  � � � where �  � � � �  � 1  � � �

and ��  � � ��� � ��  ���  � � � � �� � � � � � � �� � ���  � � � �

The probability of a transition of
����� � ���� � from � ����� � to � � � + , � � � + , � ,

say, is
� ,
� - / � ����� � 3 -C/ 1 � ��� � 3 � .

� � ,C- / � ����� � 3 � .
� �

� � � �
since � 
 � . For a transition from

� ����� � to � � � + , ��� � the corresponding
probability is

� ,
� -0/ � � 1 � � 3 -0/ 1 � ��� � 3 � � ,

�
� . � -0/ � � ��� � 3 � -0/ 1 ����� � 3 � .

�
� � � � �6� � � � ��� �

From (3.2) we see that the transition intensity of
� ������

from � to � !�D� is
� �I� ��� � � � P � � � � ���  � � � � � � �
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so that the transition intensity of
� ���� � ����� � from � ����� � to � � � + , ��� � + , � , say,

is

� ��� ����� ��� P ��� � � � ���  � � � ��� � � ���  � � ��� � � � ��+-, ��� � +-, ��� � � .� �
� � � � � � � � �

For a transition from
� � � � � to � � ��+-, ��� � the corresponding intensity is

� .�
� � � � � � � � � ��� �	� � � �6� � � � � �

Identifying these intensities with the ones given in (2.10) tells us that we
have established our desired coupling.

To conclude, we can construct the coupling
� ���� � ����� � such that

�� � 
 �� �� �  � � � if �� � 
 �� � �

This coupling corresponds to two bounded Jackson networks subject to the
same arrivals of customers.





Chapter 4

Coupling from the past

4.1 FUNDAMENTALS

Let us retain the notation of our earlier chapters and construct the con-
tinuous time Markov chain,

� � � � �
	��
from

� �  �  	��
and

� �  �  	��
, according

to (3.6); recall that for a sequence of i.i.d. variables
� �  �  	 � uniform on� � � � 	 �  � � � � ���  ���  � � � �

for some transition rule � � � �  #� � � � 	 � � � . The objective is to find the
stationary distribution of

��� � � �
	��
when it is ergodic, which will always be

the case for the queueing networks we consider. Basically, the coupling
from the past algorithm relies on two intuitive ideas and a clever trick to
make things work. First, consider a setting where several Markov chains
all obey the same transition rule, � , and suppose that at time

� �
they are

simultaneously started from every possible state in � � . Letting all the chains
have the same sequence of transition times

���  �� 	 � while the chains evolve
through time, we couple two chains whenever their trajectories intersect:

���� � � � � � � � � �
� � � � �� � �  � � � ����� � � � ��� when

�� !� ���
� � � �� � �  � � � ���� � �  ��� when

�� � � �
.

This yields a coupling of our continuous time Markov chains
��� �����
	��

, and
the key point is that eventually all chains will have coalesced and all initial
effects, i.e., dependence on initial state, have worned off. One would think
that the common state of the chains at some time after the last coalescence
is a sample from the stationary distribution, but, alas, this is not true.

31
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Before that problem is resolved, we note that things could be simplified
significantly by imposing some restrictions on � � and � . First we equip � �
with the partial ordering in (1.2), and recall that for � and � ,

� � ��� � ��� � �<� � � � � �$� � �
Now, with the coupling (3.7) the chain is monotone, i.e., for all

�  
 � �
we have ��� � ��
 �� � � � �
whenwe let

���  �  	��
and

� � � �  	��
have the samedriving sequence

� �  �  	 � .
In that case, only two chains have to be run:

���  �  	��
starting in � , and� ��� �  	��

starting in � . When these two chains have coalesced, by necessity,
so must all the others.

Here is the promised neat trick. Instead of running the chains forward in
time to get a sample of the stationary distribution at some random time� 8 > , we start the chains

� � � � �
	 4
at time points 8 � � , to get a sample

� �
at the fixed time

�
. Done properly, we will obtain a sample

� �
distributed

according to � , from which the chain can continue.

In order to maintain a natural enumeration of events and time-points, we
have to go through some trouble of notation. What we want to do is to run
a Poisson process � on 
  � � � �0	 and enumerate the points according to� �  ���  �

� 1 � � glance at Figure 4.1.

Let � be aPoisson process on 
 �  � � � � 	 and let ���  ���  �  � � , �  � � � �  , be
the corresponding enumeration of points. Let

�*� 8 �  �  	 � be an increasing
sequence of real numbers such that 8 �� � � as � �

� � , and put8 � � �
. Let �

4 >
, � � �

, denote the independent Poisson processes
��� � 8  �)8  � � �  � � � �0	 and � 4 > be the number of events of �

4 >
. Finally,

let �
� � �

and define �
 ���

4 > ���  � � , the number of events of
��� � 8  � � 	  � � ���0	 ; see Figure 4.1.
Denote

� ,, � � � �D� � � , � � � � � , � � � � � � ���  ��� � � � & � � � � � � � � �
Then for an initial state

� 4 >
at time 8  , � 4 � � � �
	 ��
	

> � � 4 > �
, � � & � � .

From the monotonicity of the chain, and since � 
#��
 � , � � �<� � , we have
by induction that

� �
�
 � � � 
 �

�
�
 � � � 
 � � �  � � � ��� � �<� � � � H � �

and if
� �
�
 � � � � �

�
�
 � � � , we immediately see that

� �
�
 � � � is the constant

mapping for every � ��� � . If we try larger and larger values of � until� �
�
	
> � � � � � � ��	 > � � � � � �

, then the sample
� �

has exactly the distribution
� .
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Figure 4.1. The construction of � ++* �-,.* �	*0/ � . In the interval1 2 * � 2 *43�, � , we have 576 > events, and the total number of
events from

2 * to
2 � is 5 * .

Theorem 4.1 The algorithm described above makes
� �
�
	
>
the constant

mapping almost surely, as � � � , i.e.,


 � � � � � P
� � ��� ��� � � ��	 > � � � � � � �/. � � � � � � �

Proof: This proof mimics the one found in Propp and Wilson’s original
paper [10] for discrete time Markov chains. First notice that for � � �

,
�
 � �

4 > � �  � � . Thus, � 4 > is a stopping time with respect to
���  �  � � ,

and since
���  �� � � and

� �  �� � � are independent we conclude that �

is

independent of
� �  �  � � . Further, if ��H � then �  � � almost surely. The

function
� �
�
 � " � depends only on � � , �

�
, 1 �  , so �

�
�
	
>
is a constantmapping

almost surely if
� �
�

is a constant mapping almost surely, as � � � .

Since the chain is ergodic there exists a � such that for all states � � � in � � ,
P
���  � � E � � �

 � � � � � � H � . Thus, the probability of
� 
� �
 � � � � " � being a

constant mapping is positive, say, 8 H � . The chain run from time
� � "�� to�

gives the mapping

� �
�
 � � " � � �

�
� �

� � � ��
 � � " ��� � �

�
� � � "#"#" � � � �


� � � ��

 � � " � �
The events 9

� � � , � � � �� ,��
� " � � constant : � &�� . ������� � � �

are independent, and each of themhas a positive probability of occurring, so
the probability that at least one of them is constant is 1 by Borel-Cantelli’s
second lemma. But if one of them is constant, at time

� & , say, then
� �
�
 � " � � �

�
� ,

� " � � constant, for all � H & .
�
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Theorem 4.2 If the algorithm terminates with probability . , then the output
state

���
is distributed according to � .

Proof: This proof is a continuous-time version of the proof found in
[10]. Let

� �  �� � � and � �  �  � � be independent sequences of i.i.d. random
variables constructed as the enumeration of points of a Poisson process on


 �  � � ���0	 . Let � :��� and define

�
�
 � �

�
�
 � � � � � � � � ��

 � � ��� � � � . � � �������
� � � �

�

if
�
�
 �  � � �  � � � � �/. � � �������

By construction we have
����� � for every  � �

. Now, since
� �
�
 � " � is

with probability one a constant mapping for large � , � �

converges almost

surely to this constant, say,
� �

. The sequence
� � �  �  � � is almost surely

increasing, so
�
�
�
�

� �
[a.s.] as  � � , where

� �
by construction has

distribution � . �

4.2 SIZE OF TIME-STEPS

Let & be the smallest value of � such that the two chains
� �����

and
������ �

have coalesced when started from
��� 4 � > � ���4 � > � � � � � � � . A question that

remains to be settled is how to choose the sequence of starting times
� 8  �  � �

so that & is as small as possible, and
� 8 � , is not too large. It turns out that

letting 8 �  follow a geometric sequence is a good strategy, and we will in
the following use 8 �  � � � �

 � . � � � � � �
This gives an upper bound on the total number of transitions of

��� � � ���� � ,
� � ��� "�"#" � � � , , in the sense that the expected number of transitions is
never larger than four times the number of transitions used if the sequence� �  ���  �� � � was known beforehand.

A schematic view of the algorithm is shown in Figure 4.2 and a realisation
of a simulation of a 5-station, bounded Jackson network illustrated in
Figure 4.4 is shown in Figure 4.3. The sequence of starting points used is8 �  � � � �  � . � .

4.3 OTHER ALGORITHMS

The number of iterations for the algorithm before it terminates depends
on the observation

� �
. It is important to note that an impatient user who

interrupts the algorithm and only collects observations with short running
times, i.e., a low number of iterations, introduces bias. Interruptible
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&�� �
repeat

&�� & � .�
� 8 � ,�����

4
� �� � ���� � �

� � � ��� � �
while

� � � do
� � ���� � � � � � ���� ��� �

 �
� � � ��� � � � � ��� ��� ��� �

 �
��� � � .�
�
� � 1 � 

end
until � � ���� � � ��� ���
return � � ����

Figure 4.2. Algorithm for CFTP sampling.

algorithms for perfect simulation have been developed; see for instance
Fill[6].

Wilson[15] has formulated an enhancement of the coupling from the past
algorithm which removes the necessity of storing the random numbers� �  �

�
�
4
� (or the random seeds generating them) for later reuse. This

modified algorithm can be usedwith a single streamof for instance hardware
generated random numbers, and is thus called the read once coupling from
the past algorithm.
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Figure 4.3.a.
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Figure 4.3.b.
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Figure 4.3.c.
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Figure 4.3.d.
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Figure 4.3.e.
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Figure 4.3.f.

Figures 4.3.a–j show realisations of a CFTP simulation of the 5-station,
bounded Jackson network in Figure 4.4, for starting points

2�� * # � � � * � �)� ,��� � . The trajectories show the total number of customers in the system for
� ��� � and � � �� � , where the latter start in � , which equals �8%�% .
	�� �8%$# �	 %
customers in the system. The simulation when started at

2 � , � made the two
chains � � � � ����6 � B�� and � � �� � ����6 � B�� , started in � and � respectively, coalesce
by time 0, and the output state � � # � �� # ��� %�	�	 � � is a sample from the
stationary distribution � .
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Figure 4.3.g.
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Figure 4.3.h.
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Figure 4.3.i.
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Figure 4.3.j.
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Figure 4.4. An example of a bounded Jackson network with
5 stations, where  # ��� � � ��%���%���%�� , � # � � � � � � � � � � � � � , and
the only nonzero routing probabilities are � , ! # �

( ! # �
and � !�� # � !�� #0% � � .





Chapter 5

Simulations

This chapter is devoted to the study of the CFTP algorithm when applied to
bounded Jackson networks. In the first sectionwe examine the performance
of the sampling algorithm in order to determine how large a network can be
simulated in a reasonable amount of time. Networks of different size, but of
certain structures, are simulated and the number of iterations is plotted for
each network. The objective of the following section is to simulate various
Jackson networks with different arrangements and parameter settings to
show the richness of the model and characteristics of the bounded Jackson
networks. The networks are not to be considered as realmodels of computer
networks, but more as an indication of what can be achieved by simulation.
The section consists of several subsections, where the first treats a central
server system with the objective of finding how well the internal flow
of customers in the network can be approximated by Poisson processes.
The next subsection concerns bottleneck behaviour for a 5-station Jackson
network, and the last one concerns simulation and evolution of the general
birth and death process

� �������
	��
when it is stationary at time 0.

5.1 PERFORMANCE

The performance of the algorithm is measured in terms of simulation time
for various queueing networks with a certain structure. To find a way of
systematically testing different kinds of networks, let a

�
-station, bounded

Jackson network be as follows:

�
We have equally sized buffers, i.e.,

� � � � � � "�"#" � ���
in the bounds

vector � � � � � ��������� �#��� .

39
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�
Every node is a single-server queue and has the same arrival intensity
of customers, and every customer has the same service rate, i.e.,
� � �/"#"�" ��� � and 9 � � "#"�"*9 � .�
The network corresponds to a complete graph with uniform routing,
i.e., ( 1 � � . � � � � . � , for all � �  � � . ������� � � � . This means that a
customer, upon leaving a queue, has a uniform probability of going
to any other queue or leaving the network entirely.

As we increase the number of stations
�
in the network, we measure

the simulation time of the algorithm before it terminates and outputs an
observation from the stationary distribution. The actual simulation time is
not a good measure since it is too dependent on computer architecture and
changes in work load during the simulation. Instead, as a first performance
measurewe take thenumber of iterations, or transitions of theMarkov chain� � � � ���� �

��
	 4 � � , where & is the smallest value of � such that
� ��� � ���� �

��
	 4 � > has
coalesced by time 0. As

�
increases, the total intensity of transitions in the

network, � , increases, so the number of iterations should be of magnitude
� E 8 � ,2E . The particular choice of 8 �  we shall use is

8 �  � � � �
 � . � �

and if & does not depend on
�
then we should see a linear growth in the

number of iterations as
�
increases. In Figure 5.1 we see the total number of

iterations of the algorithm for
�
-station, bounded Jackson networks, where�

ranges from 2 to 200. The intensities and buffer sizes are given by

� , � � �59 , � � � ( ,�� � .� � . , and
� , �/. � � for all & � � � � . ������� � � � �

We also plot the mean value of & as a function of
�
in Figure 5.2.

From the figures we find rather surprisingly that the number of successive
starting-points 8 �  stabilises to a fixed value, regardless of the number
of stations in the queueing network. As a consequence, the number of
transitions grows as � which is linear in the number of stations.

To get an understanding of how the number of iterations before termination
of the algorithm depends on the connectivity of the network, we adjust the
routing probabilities as follows:�

Fix a probability ( .�
For each station & � � . ��������� � � take � independentBernoulli variables

+#, � ��������� +#, � �
� . with probability (�

with probability . � ( .
�
Let ( 1 � �D+ 1 ��� $ �, 1 � + 1 , .
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Figure 5.1. For a � -station network, we measure the mean
number of transitions of � ��� � � �� � ����6 � � , where � is the
smallest number of � such that the chains � � �� and � � �� �
have coalesced when started from

2�� * . The mean value is
taken for a sample of 100 observations.
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Figure 5.2. The same simulation as in Figure 5.1, but we plot
the mean value of � for the 100 observations taken. It seems
that for ��� �6%�% , the number of attempts, � , has stabilised
and the chains � ��� � and � � �� � coalesce when started from2 ��� # � � ��� .
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Figure 5.3. For a � -station network, we measure the mean
number of transitions of � ��� � � �� � ����6 � � , and again themean
is taken for a sample of 100 observations. The simulation
corresponding to � #0% is only run for values of � up to 168,
and most of them fall outside the frame of the picture.

We examine the total number of iterations of the algorithm for some values
of ( and

�
, and compare the result with the one obtained earlier for the

same values of
�
.

Figure 5.3 shows the total number of iterations and Figure 5.4 the mean
value of & . Apart from when ( � �

, all simulations tend to need the same
number of time-steps to make the two processes

� �
and

� ��
coalesce, for

large
�
. When ( � �

the network consists of
�
queues with no connections

between them, and since � , � � and 9 , � � , we have � , � . for every
queue.

Suppose that we could calculate the traffic intensity, � , , at every node in
the network. When the net input rate � , into a station & is greater than
the service rate 9 , we have a drift towards a large number of customers in
the queue, and intuitively, the coalescence of the minimal and the maximal
processes should occur early, which yields a small value of � and a low
number of iterations before termination of the algorithm. The same should
be true when the input rate is smaller than the service rate, and the worst-
case scenario would be when � , � 9 , so that � , � . . For a standard
Jackson network these traffic intensities could be calculated by first solving
the balance equations (2.7) and using the solution � , in � , � � ,�� 9 , . A
bounded Jackson network should have a smaller traffic intensity at each
node, since the arrival intensity at each node is at most � , and we have
departures from the network due to failed transfers between queues. For
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Figure 5.4. The same simulations as in Figure 5.3, and we
see that the number of attempts made, � , for simulations
corresponding to � # % � � , � # % � � and � # % � � , settles
at the same value as in the case � # � . When � # %
the network consists of � parallel M/M/1-queues and the
parameter settings are such that ��� # � for � # � � ���	� � � .

a standard,
�
-station Jackson network corresponding to the bounded ones

above, the traffic intensity is

� , � � � � � . �9 � � � . � ( � � . � �
and for symmetry reasons, the traffic intensity is the same at all the nodes in
the network. We note that the traffic intensity is increasing in ( , and since( � �

implied � � . , the heuristic argument above tells us that we should
expect fewer attempts for networks with large values of ( .
We now adjust the arrival intensity to the system, let � , � . , & � . ������� � � ,
and perform the same simulation as given above. We examine the total
number of iterations of the algorithm for some values of ( and

�
, and

compare the result with the one obtained earlier for the same values of
�
.

Figures 5.5–5.7 show the mean number of iterations, the mean number
of attempts and the traffic intensity for a corresponding standard Jackson
network. Here ( � �

yields a queueingnetwork consisting of parallel queues
with traffic intensity � , � � ��� , and for ( � �

, ( � � � � , ( � � � � and ( � . ,
the number of attempts seems to settle at a common level as

�
increases.

The asymptote of case ( � � � � is unknown. The value ( � � � � makes the
traffic intensity approach 1 as

�
increases, and yet the case ( � � � � required

the largest number of attempts, so the traffic intensity cannot by itself be
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Figure 5.5. This plot shows the mean number of transitions
of � ��� � � �� � ����6 � � , for a sample size of 100. The simulation
corresponding to � #0% makes the queueing network consist
of � parallel queues with traffic intensity % � � .
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Figure 5.6. The same simulations as in Figure 5.5, and we
see that the number of attempts made, � , for simulations
corresponding to � # � , � #0% � � , � #*% � � , and � #*% , settles
at a common value, which is greater than the value when
 # �

.
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Figure 5.7. The traffic intensity for the standard Jackson
network when  0# � , �-# �

and each node is connected
with ��� � others, on the average. When � #&% � � the traffic
intensity tends to 1 as � increases.

used to explain the number of attempts before termination. We also note
that apart from the case ( � �

, the number of iterations (and attempts) was
smaller when � � � .
We conclude, however, that the number of time-points, 8 �  � � � �  � . � ,
attemptedbefore the chains

��� � � �
	 4 � > and ������ � �
	 4 � > coalesced before time
0, seems to settle down as

�
increases, and thus, the time before termination

of the CFTP algorithm, as measured in the number of transitions, grows
only linearly for large

�
. The conclusion is that it is feasible to use the CFTP

algorithm to obtain samples from the stationary distribution even for large,
bounded Jackson networks.

5.2 EXAMPLE OF NETWORKS

5.2.a CENTRAL SERVER SYSTEMS

A special family of bounded Jackson networks with a certain structure are
those we call central server systems, where we imagine

� � . parallel queues,
which are connected to a central server of high capacity. This is assumed
to be a model of a computer network where each queue corresponds to a
physical machine and the customers are jobs or processes at that computer.
Some jobs at a computer are forwarded to the central server; see Figure 5.8.
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1
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d
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Figure 5.8. This network consists of � � � computers and
a central server which is supposed to take care of special
requests the computers cannot handle.

Let the network be of Type 2 and � , the arrival intensity at computer & ,
& � . ��������� � � . . The stationary distribution of the number of customers in
the queue at computer & is obtained from (2.9) with � , � � ,���9 , , and 9 ,
is the service rate at computer & . When the buffer size,

� , , at computer & ,
&��/. ������� � � � . , is large compared to the expectednumber of customers, the
departure process from the computer should be Poisson-like with intensity
� , � � , when the network is stationary. Small buffers as compared to
the intensities of arrivals would reject jobs from entering the network and
thus yield a smaller value of � , , and also a less Poisson-like departure
process. The net flow of jobs to the central server is a superposition of the
departure processes from the computers, and we shall investigate how the
distribution of customers at the central server queue depends on the buffer
sizes

� � ������� � � � � and � , and compare the distribution with the distribution
when the arrival process at the central server is a Poisson process with

intensity
$ � � �, 1 � � , ( , � .

If the departure process from station & is Poisson, then the routing proba-
bilities ( , � correspond to Bernoulli sampling of the process, which makes
the arrival process from queue & to the central server still a Poisson process
with intensity � ,7( , � . Thus it suffices to investigate the case ( , � � . for
&��/. ������� � � � . .
To start slowly, let

� � � and
� , � . 9 , � � ( , � �/. and

� , � � � � for &�� . ������� � � � . � (5.1)

Let the server be given by the parameters

� � � � 9 � � � � . ( � �/. and
�#� � . � � � (5.2)

Let
� � � � �
	��

denote the bounded Jackson network of Type 2 and
�
�
 � � � �

the � '*) sample, obtained with the CFTP algorithm, from the stationary
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Figure 5.9. The correspondence between the estimated sta-
tionary distribution, obtained from 50,000 perfect samples,
and the distribution when the arrival process is Poisson at
intensity 2.
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Figure 5.10. This figure is the same as Figure 5.9, but where the service
rate at the central server is � ! # � � % (left) and � ! # � � � (right). The
goodness of fit measure is � # � � � 	 and � # �8%�� respectively.

distribution, � . We estimate � as

�� � � � � .
�


�
, 1 � - / :�� ��� � � �?1 � 3 �

and we denote the estimated marginal probabilities � � � � � by �� � � � � ; we
have

�� � � � � � .
�

�
, 1 � - / : � ���� �

� �?1 1 3 � � � . � � � � �

Figure 5.9 shows ���� , the estimated, stationary distribution of customers at
the central server, based on � � �

� � � � � observations, as compared with the
distribution when the arrival process is Poisson with intensity � � � � � � � .
The correspondence is good, as should be expected since equation (2.9)
applied to queue & , & � . � � , yields � , ��� , � �	����
 "$. � � �

�
. Now, � , � � , �
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is the fraction of time queue & is full, and since the arrival process is
Poisson, it is also, by the PASTA-property, the fraction of arrivals who
find queue & full. Thus, almost every arrival enters the system and under
stationarity the departure process from station & is almost Poisson with
intensity � , � . � � , � � , ����� � , . The superposition of the departure processes
from stations 1 and 2 is thus close to a Poisson process with intensity
� � � � � � � . The � � -statistics of goodness of fit between the estimated
distribution and the approximate distribution is


 � �
� ��
, 1 �

� �� � � & �6� ( , � �( , � � � � � � �

where ( , is the probability of (2.9) with �
� � � � ��� � � � . Since 


:� � �
with . � � degrees of freedom, the observed value of 
 corresponds to a
p-value of

� ��
 � 

�
. The behaviour of the queue at the central server is thus

essentially the same as if the arrival process were a Poisson process.

Now, let the parameters be as in (5.1) and (5.2), but with
� � � � � � � .

Then � , � � , � � . � . � ��� � 
�� , and the fraction of arrivals who cannot
enter the system is not negligible. The departure process from one of the
first

� � . stations under stationarity is thus a stuttering process with an
intensity approximately � , � . � � , ��� , ��� . The superposition of many such
departure processes should form a Poisson-like process; Figure 5.11 shows
the distribution of customers at the central server for different values of

�
.

The parameters for the first
� � . stations are as in (5.1), but the central

server has parameters

� � � � 9 � � � � . � � � . � ��� ( � � . and
�#� � . � � �

The � � -statistics of goodness of fit, 
 , for comparison between the estimated
distributions and (2.9) when the arrival process is Poisson at intensity

�
� � $ � � �, 1 � � , � . � � , ��� , ��� are shown in the table below:

� 9 � �
�



� � � . � � � . � � � �
� � .�� � � � �	����� . � ��� .
�
�

� . � � �
� ����� . � � . 

The p-values are absurdly small, so the fit between the distributions is bad.
One may argue that the discrepancy is only due to the huge number of
observations made, and that the distributions are essentially the same when
examining the graphs in Figure 5.11. But nevertheless, the arrival process is
not a Poisson process. We note, though, that themore computers connected
to the server the more similar to a Poisson process is the superposition of
departure processes, and that the correspondence is worse when the central
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Figure 5.11. The correspondence between �� ! for various
numbers of computers connected to the server, together with
the distribution when the arrival process is Poisson with
intensity � ! #���� � ,��� ,  "����� � � � ���8� ��� (labelled ‘Adjusted
distribution’). The sample size used was � # � %���%�%�% .

server is overloaded. The last feature is expected, since the arrival process
has long inter-arrival times when the central server is congested.

5.2.b BOTTLENECK BEHAVIOUR

Recall the right-hand plot of Figure 5.10, where the service rate at the
central server was smaller than the average arrival intensity. Had the
network been a bounded Jackson network of Type 1, then a congestion of
customers would have occurred at the computers connected to the server,
yielding an even lesser inflow of customers to the system. This short
subsection is an illustration of how bottlenecks in a network affect the
overall performance. For Type 1 networks the impact could be severe.

Consider the 5-station, bounded Jackson network summarised by the
parameters

� � � ��������� �	� � � � . �#. � � � � � � � � 9 �����������*9
� � � � � � � � � � � � � �
and routing probabilities given by the matrix

� ( ,�� 	 �
�����

� � . � �
� � . � �
� � � . ��� . ���� � � � �
� � � � � �

������
�

Station 3 is a bottleneck and for a vector of bounds ��� � . � ��. � ��. � �#. � �#. � � ,
say, we compute an estimate of the stationary distribution. A Type 2
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network will dispose of those departures from stations 1 and 2 that cannot
be transferred to station 3, but in a Type 1 network the first two stations
will be clogged by those customers.

We concentrate on two scenarios. In the first one, every node in the network
has an average offered load smaller or equal to the service capacity, and we
compare the difference between networks of Type 1 and of Type 2. This
comparison is also made in a slightly overloaded situation, where 9 � � . � � .
In the second scenario we re-examine the first scenario but change the
service rate 9 � to

9 � � � � �
1
� 1 � 2 �

� � � � where 2 � � . � � 2 � � � � �/. � 2 � � � � � � � � � �

i.e., we have two servers at the bottleneck station, such that the maximum
service capacity at the station is the same as for the single server in the first
scenario. In the overloaded setting we have 2 � � . � � 2 � � � � � � � � .
In Figure 5.10 we saw what distribution of customers we can expect at
the bottleneck for a network of Type 2. It turns out that for a Type 1
network the bottleneck node is more congested. The reason for this is
that no customers are released from the first two stations until there is a
vacant position at the bottleneck. Thus, if the bottleneck node becomes full,
customers will clog the primary stations and as soon as a departure occurs
at the bottleneck one of those customers will fill the vacant position. The
result is that the bottleneck will have long runs where it is saturated and it
cannot settle down until the primary stations by chance become empty or
receive customers with exceptionally long service times. Figure 5.12 shows
the estimated stationary distribution of customers at station 3 obtained
from 50,000 samples, and Figure 5.13 contains a trace of queue lengths for
the bounded Jackson network of Type 1.

The network of Type 1 contains more customers on the average than the
network of Type 2 as Theorem 2.5 stated. The network of Type 2 can
manage the offered load whereas the network of Type 1 has a drift towards
a large number of customers. When the service rate decreases to 9 � � . � � ,
the overloaded situation, things go from bad to worse.

Simulating the second scenario where we have a double server at station 3,
we obtain Figure 5.14, and we note thatwhen the number of servers changes
the networks tend to be even more congested by customers.

5.2.c ANALYSIS OF TRACES

This short section will illustrate the type of analysis that can be made by
analysing traces of theMarkov chain

��� � � �
	��
describing a bounded Jackson
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Figure 5.12. Estimated distributions of the stationary num-
bers of customers at the bottleneck station in a 5-station
bounded Jackson network.
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Figure 5.13. A trace of queue lengths � � , ������� , � � ( ������� and
� � !�������� for a bounded Jackson network � � � � of Type 1
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Figure 5.14. Estimated distributions of the stationary num-
bers of customers at the bottleneck station in a 5-station
bounded Jackson network with a double server at station 3.

network, where
��� :� � , a sample obtained by the CFTP algorithm.

Consider the network of Type 2 treated in the previous subsection, where
the service rate 9 � was chosen so that it balanced the offered load of
arriving customers. The arrival process depends on 9 � since the service rate
determines the distribution of customers at the station, on which in turn the
arrival process depends.

Let
���������
	��

be the trace for the single-server system and
��� �� ���
	��

be the
trace when station 3 has two servers, both started in (different) samples
from their respective stationary distributions.

Let 


denote the sojourn time for customer � , i.e., the time spent in queue

plus time spent when receiving service. Measuring consecutive sojourn
times for customers at station 3 up to time <#H � in both processes gives
us sequences of samples

�


 ��� 1 � and

�


� ��� � 1 � for

��� � � 2� 1 � and
������ � 2� 1 � .

Assuming that customers are served in the order of their arrival times,
which in queueing theory is called FIFO � discipline, we may also calculate
the samples of waiting times

���  ��� 1 � and ��� � ��� � 1 � , i.e., the sequences of
times that consecutive customers spend queueing.

In Figure 5.15 we let < � . � � � � � and obtained � � . � � � � samples of�


 �

and
���  �

for chain
� � � �

. For the second chain we got � � � . � � � . .
The plots show the empirical sojourn time distributions and the empirical
waiting time distributions for both chains based on these observations. We
note that thewaiting time for the double-server case is stochastically smaller

�
First In First Out
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Figure 5.15. Empirical distribution of sojourn time of customers at
station 3 (left) and waiting time in queue at the same station (right). Both
plots contain the distributions in the single-server and the double-server
cases for the bounded Jackson network of Type 2.

than in the single-server case, i.e., ���
�� � , whereas for the sojourn time

we have �
�� � � . This is in fact a general result.

Now, consider again the 5-station networks of Section 5.2.b. By analysis of
traces for the different networks, each started in a stationary initial state, we
can estimate the blocking probabilities, i.e., the probability that an arriving
customer finds a station full. Since we do not have an arrival theorem
for our networks, we will notice that the fraction of arrivals that finds the
bottleneck station full is not the fraction of time it is full, i.e., ���
	����� . One
can argue that in a Type 1 network no arrivals find � � customers at station � ,
but we count a customer as blocked each time a routing attempt is made and
failed. Running simulations for the two scenarios we obtain Figure 5.16.

We note that in the Type 2 networks the estimated blocking probability is
close to �� � 	�� � � , while in Type 1 networks �� � 	�� � � seem to underestimate the
blocking probability.

5.3 COMMENTS ON THE SIMULATIONS

In stochastic simulation studies there is always a note on generation of
pseudo-random numbers, and now it is time for ours. The program gen-
erating all simulations was implemented in C making use of the SPRNG
(Scalable Parallel Pseudo Random Number Generator) library for gener-
ating pseudo-random numbers. More specifically, what was used was the
48 bit linear congruential generator with prime addend, which has period �����
and has passed all of a series of standard statistical tests for randomness.
The generator constructs sequences of pseudo-random numbers 	���������� �
according to the recursive relation

�!�#"%$��&��' �)(+* 	�,.-0/1� ��� �325476+8:9
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where � is a multiplier and ( is a prime. Different streams of random
numbers use different primes ( . Further information and documents on the
performance are available at the www-site [12].



Conclusions

To conclude, the twomodels of open bounded queueing networks, given by
Definition 2.5 and Definition 2.6, have different properties for instance in
the number of customers at different stations. They can readily be simulated
with the coupling from the past algorithm, and samples from their stationary
distributions can be obtained even for quite complex queueing networks
in reasonable amounts of time. In Chapter 5 some simulations indicated
that the number of attempts of starting times rather surprisingly may be
independent of the size and connectivity of the network. It was determined
in those cases by the arrival and service rates.

It is our firm belief that these models can be successfully used to model
various physical queueing networks and help in predicting qualitative
performance of interest.

The two models can be combined to form queueing networks where the
stations obey the routing scheme of either a Type 1 station or a Type 2.

Future research should include some extension of the models to cover
closed networks and possibly different routing schemes. It should be
fruitful to relax the assumptions made on the arrival processes and service
times.

During a workshop in perfect simulation held in Denmark in 1997, a
joint work between Lund and Wilson [8] was presented. They considered
a storage system, a dam, which was exposed to stochastic amounts of
rainfall at random times according to a Poisson process. The dam can be
thought of as a single queue with a continuous amount of customers. Their
generalisation to an infinite damwould lead us back to the ordinary Jackson
network, but their work indicates that some relaxation of the exponential
service times should be feasible.
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