CHARACTERIZATION OF THE ATOMIC SPACE H! FOR
NON DOUBLING MEASURES IN TERMS OF A GRAND
MAXIMAL OPERATOR

XAVIER TOLSA

ABSTRACT. Let p be a Radon measure on R?, which may be non dou-
bling. The only condition that p must satisfy is the size condition
w(B(z,r)) < Cr", for some fixed 0 < n < d. Recently, the author
introduced spaces of type BMO(p) and H' (i) with properties similar to
ones of the classical spaces BMO and H' defined for doubling measures.
These new spaces proved to be useful to study the L”(u) boundedness
of Calder6n-Zygmund operators without assuming doubling conditions.
In this paper a characterization of this new atomic Hardy space H'(u)
in terms of a maximal operator Ms is given. It is shown that f belongs
to H'(p) if and only if f € L' (), [ fdpu =0 and Mo f € L'(u), as in
the usual doubling situation.

1. INTRODUCTION

The aim of this paper is to characterize the atomic Hardy space H iggo(u)
introduced in [To3] in terms of a maximal operator. Throughout all the
paper u will be a (positive) Radon measure on R? satisfying the growth
condition

(1.1) w(B(z,r)) < Cor" for all z € supp(u), r > 0,

where n is some fixed number with 0 < n < d. However we do not assume
that p is doubling (u is said to be doubling if there exists some constant C
such that u(B(z,2r)) < C u(B(z,r)) for all x € supp(u), r > 0).

The doubling condition on g is an essential assumption in most results
of classical Calderén-Zygmund theory. Nevertheless, recently it has been
shown that many results in this theory also hold without the doubling as-
sumption. For example, in [Tol] a T'(1) theorem and weak (1,1) estimates
for the Cauchy tranforms are obtained. For general Calderén-Zygmund op-
erators (CZO’s) a T'(1) theorem in [NTV1], and weak (1,1) estimates and
Cotlar’s inequality in [NTV2] are proved. A T'(b) is also given in [NTV3].
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For more results, see [MMNO], [NTV4], [OP], [To2], [To3], [To4] and [Ve],
for example.

In [To3] some variants of the classical spaces BMO(mu) and H'(mu) are
introduced. These variants are denoted by RBMO(u) and Halggo () respec-
tively. There, it is shown that many of the properties fulfiled by BMO(u) and
H'(u) when p is doubling are also satisfied by RBMO(u) and H;;go () with-
out assuming y doubling. For example, the functions from RBMO(u) fulfil
a John-Nirenberg type inequality (see Section 5 for the precise statement of
this inequality), RBMO(p) is the dual of H;;,C:o(u), CZO’s which are bounded

in L?(u) are also bounded from Higzo(u) into L'(u) and from L*(u) into
RBMO(p) and, on the other hand, any operator which is bounded from
H% (1) into L' () and from L () into RBMO(p) is bounded in LP(u),
1<p<oo.

Let us remark that if x4 is non doubling and one defines BMO () and the
atomic space H,;™° () = H'(u) exactly as in the classical doubling situation
(see [GR], [Jo] or [St], for instance), then these spaces still fulfil some of the
properties stated above [MMNO]. However a basic one fails: CZO’s may
be bounded in L2(u) but not from H 3> (x) into L* () or from L™ (y) into
BMO(p) (see [Ve] and [MMNO]). For this reason, if one wants to study
the LP-boundedness of CZO’s, the spaces BMO(u) and H ™ (u) are not
appropiate. This is the main reason for the introduction of RBMO(u) and
H> () in [To3].

Before stating our main result, we need some notation and terminology.
By a cube Q C R? we mean a closed cube centered at some point in supp()
with sides parallel to the axes. Its side length is denoted by £(Q) and its
center by zg. Given p > 0, we denote by pQ the cube concentric with @
with side length p£(Q). Recall that a function f € L} (u) belongs to the

loc
classical space H;goo(/z) if it can be written as f = ), \ja;, where A\; € R
are numbers such that ), |A\;| < oo and a; are functions called atoms such
that

1. there exists some cube @Q; such that supp(a;) C Q,
2. /ai du =0,

3. Nlagl| oo (uy < m(Qi)™"
In order to recall the precise definition of Hi;go(u) we have to introduce
the coefficients Kg r. Given two cubes ) C R, we set
1
Kor=1 +/ T (),
Qr\@ 17— 2["

where Qg is the smallest cube concentric with () containing R.
For a fixed p > 1, a function b € L{, (u) is called an atomic block if

loc
1. there exists some cube R such that supp(b) C R,

2. /bduzo,
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3. there are functions a; supported on cubes Q; C R and numbers \; € R
such that b= 37"°, Aja;, and

llajllzoo ey < (1(pQ) Kqy.r)
it = 22 1Al
J
(to be rigorous, we should think that b is not only a function, but a ‘structure’

formed by the function b, the cubes R and @, the functions a;, etc.). Then,
we say that f € Hiéboo(,u) if there are atomic blocks b; such that

(1.2) F=Y b
i=1

with ), |bi|H1,00(lL < oo (notice that this implies that the sum in (1.2)
atb

1

We denote

converges in L'(u)). The H_;2°(u) norm of f is
”f”Hal;cf(u) = mfZ |bi|Ha1;2°(u)’
7

where the infimum is taken over all the possible decompositions of f in
atomic blocks.

The definition of H ;zgo(u) does not depend on the constant p > 1. The
Higgo (1) norms for different choices of p > 1 are equivalent. Nevertheless,
for definiteness, we will assume p = 2 in the definition.

Compare the definitions of the spaces H,;> () and H 1> (u): Tn Hy™ (1)
the cancellation condition 2 and the size condition 3 are imposed over the
atoms aj. On the other hand, in H a;go( ) the cancellation condition 2 is
imposed over the atomic blocks b;, and the size condition 3 is satisfied by
the “components” a; ; of b; separately for each j. It is not difficult to check
that H:®(u) = Hitb () if u(B(z,7)) ~ r for all z € supp(u), r > 0 (the
notation A ~ B means that there exists some constant C' > 0 such that
C'A<B<CA, thatis A < B < A). If the latter condition does not
hold, then H, ;,;oo(u) may be different from H: us (1), even when g is doubling
(see [To3]).

Now we are going to introduce the “grand” maximal operator Mg, which

1,
is the main tool in our characterization of H })°(u).

Definition 1.1. Given f € L} (), we set

/fwdu‘

where the notation ¢ ~ x means that ¢ € L' (1) NC'(R?) and satisfies
L. ||(10||L1(u) < ]-a
2. 0< p(y) <

1
~y -z

Mg f(z) = sup

oz

for all y € R, and
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1
d
3. ¢/ (y)| < g for all y € RY.

ly — x|

In this paper we will prove the following result.

Theorem 1.2. A function f belongs to Hi;,?o(,u) if and only if f € L*(u),
[ fdu=0 and Mg f € L' (). Moreover, in this case

1 ey 2 12y + 1Ml

Theorem 1.2 can be considered as a version for non doubling measures of
some results that are already known in more classical situations. When p
is the Lebesgue in the real line, a characterization of H>° (1) such as the
one of Theorem 1.2 was proved by Coifman [Co]. This result was extended
to the Lebesgue measure in R? by Latter [La]. Let us remark that in these
cases, in the definition of Mg, for each z it is enough to take the supremum
over functions ¢z, 7 > 0, of the form

parti) = 0 (157).

T

where 0 Z ¢ € S is some fixed function.
If

(1.3) p(B(z,r)) = r" for all z € supp(u), r > 0,

then supp(u) is a homogeneous space in the sense of [CW]. For some ho-
mogeneous spaces satisfying (1.3), Coifman, Meyer and Weiss [CW] showed
that there exists a description of H () in terms of a maximal operator
similar to the one in Theorem 1.2. They observed that a proof of this de-
scription by Carleson [Ca] using the duality H1*°(u)-BMO(u) in the case
where p is the Lebesgue measure on R™ can be easily extended to the more
general situation of homogeneous spaces.

For a measure . on R? which is doubling but which may not satisfy (1.3),
Macias and Segovia ([MS1], [MS2]) obtained a characterization of H, C;’C’o(u)
by means of a maximal operator too (see also [Uc]|). They showed that if
 is doubling, then taking a suitable quasimetric one can assume that (1.3)
holds. Their result applies not only to doubling measures on R¢, but to more
general homogeneous spaces. Since H, ;goo(u) may be different from H;t’go(u)
if 41 is a doubling measure on R? which does not satisfy (1.3), their result (in
the particular case we are dealing with) cannot be derived as a particular
instance of Theorem 1.2.

In Theorem 1.2 we only assume the size condition (1.1). The absence
of any other regularity condition on p makes impossible to extend classical
arguments to the present situation without major changes. We will not
consider any quasimetric on R¢ different from the Euclidean distance and
we are not able to reduce our case to a situation where (1.3) holds.

Let us remark that the results of [Co], [La], [MS1] and [MS2] concern not
only the Hardy space H' but also the Hardy spaces HP, with 0 < p < 1.
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However, it is not possible to extend our proof of Theorem 1.2 to p < 1
because we have obtained it by duality (following the same approach as
Carleson [Cal).

2. PRELIMINARIES

The letter C' will be used for constants that may change from one occur-
rence to another. Constants with subscripts, such as C, do not change in
different occurrences.

We will assume that the constant Cj in (1.1) has been chosen big enough
so that for all the cubes Q C R? we have

(2.1) 1(Q) < Cot(Q)"

Given a function f € L;,.(u), we denote by mq f the mean of f over Q with
respect to p, i.e. mof = m fodu.

Definition 2.1. Given o > 1 and 8 > o, we say that the cube Q C R is
(a, B)-doubling if u(aQ) < Au(Q).

Remark 2.2. As shown in [To3], due to the fact that y satisfies the growth
condition (1.1), there are a lot “big” doubling squares. To be precise, given
any point z € supp(u) and ¢ > 0, there exists some (a, §)-doubling cube @
centered at z with [(Q) > ¢. This follows easily from (1.1) and the fact that
8> a™.

On the other hand, if 8 > o, then for p-a.e. z € R? there exists a
sequence of («, 3)-doubling cubes {Q}r centered at z with £(Qx) — 0 as
k — o0o. So there are a lot of “small” doubling squares too.

For definiteness, if « and 8 are not specified, by a doubling square we
mean a (2,2%*1)-doubling square.

Now we are going to recall the definition of RBMO(y). In fact, in Section
2 of [To3] several equivalent definitions are given. Maybe the easiest one is
the following. Let f € L} (u). We say that f € RBMO(u) if there exists
some constant C such that for any doubling cube

(2.2) /Q f —mof|du < Gy u(Q)

and
(2.3) |mqof —mrf| < CiKg,r for any two doubling cubes Q C R.

The best constant C; is the RBMO (1) norm of f, that we denote as || f]|«.
Given any pair of constants 0 < «, 8, with 8 > ", if in the definition of
RBMO(p) we ask (2.2) and (2.3) to hold for (e, 3)-doubling cubes (instead
of doubling cubes), we will get the same space RBMO(u), with an equivalent
norm [To3]. In fact, RBMO(u) can be defined also without talking about
doubling cubes: Given some fixed constant p > 1, f € RBMO(u) if and only
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if there exists a collection of numbers {fg}g (i.e. for each cube @ some
number fg) and some constant Cy such that

/ |f(z) — fol du(z) < Cou(pQ) for any cube Q C R

and,
|fo — fr| < C2 Kg r for any two cubes Q C R.

The best constant C, is comparable to the RBMO(p) norm of f given by
(2.2) and (2.3).

Definition 2.3. Consider two cubes @, R C R¢ (we do not assume Q C R).
We denote

1 1
MQJ&—HMX(LMQE;:%WdM@,ﬁwwﬁ;:;W@A@>-

(see the definition of the coefficients K¢ r for notations).

Notice that £(Qr) = £(Rg) =~ £(Q) + ¢(R) + dist(Q, R), and if Q C R,
then Rg = R and £(R) < £(Qr) < 2¢(R).

It is clear that if Q C R, then Kg g = 1+ 6(Q, R). Quite often we will
treat points z € supp(u) as if they were cubes (with £(z) = 0). So for
z,y € supp(s) and some cube @, the notations §(z, Q) and d(z,y) make
sense. In some way, they are particular cases of Definition 2.3. Of course, it
may happen §(z, Q) = oo or §(z,y) = .

In the following lemma we show that d(-,-) satisfies some very useful
properties.

Lemma 2.4. The following properties hold:
(a) If £(Q) = ¢(R) and dist(Q, R) < £(Q), then 6(Q,R) < C. In particu-
lar, 6(Q,pQ) < Co2" p" for p> 1.
(b) Let Q@ C R be concentric cubes such that there are no doubling cubes of
the form 2%Q, k > 0, with Q C 2Q C R. Then, §(Q, R) < Cs.
(c) If @ C R, then

5(Q,R)<C (1+10g aR)).

HQ)
(d) If PC Q C R, then
|6(P, R) = [6(P, Q) + 6(Q, R)]| < o
That is, with a different notation, 6(P, R) = §( Q) 0(Q,R) teg. If
P and @ are concentric, then eg = 0: 6(P,R) = 6(P,Q) + d(Q, R).
(e) For P,Q,RC R?,
The constants that appear in (b), (c), (d) and (e) depend on Cy,n,d. The

constant C in (a) depends, further, on the constants that are implicit in the
relations ~, <.
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Let us insist on the fact that a notation such as a = b+ ¢ does not mean
any precise equality but the estimate |a — b| < e.

Proof. The estimates in (a) are immediate. The proof of (b) is also an
easy estimate, which can be found in [To3, Lemma 2.1], for example. The
arguments for (c) are also quite standard. We leave the proof for the reader.

Let us see that (d) holds. If P and @ are concentric, the identity (P, R) =
d(P,Q)+46(Q, R) is a direct consequence of the definition. In case P and @
are not concentric we have to make some calculations:

1
(5(P,R) = 5(P,PQ)+/P\P m
RA\FQ

dp(y)

1
= §(P,Q +/ ——du(y)-
( ) PR\PQ |y - ZP|n ( )
So we must show that
1
S = / L -s@R| <0
Pr\Pg |y - ZP\
We set
1 1 1
S < / —— du(y +/ ( + ) du(y
v =7l PO T | ou \ = arF T =gl ) W)

+/ 1 1
Ri\P | [y — 2" |y — 20["
= S1+ 5%+ 85;5.

du(y)

The integral Sy is easily estimated above by some constant C, since |y —
zp|, ly — zq| < CU(R) for y € PRAQg. An analogous calculation yields
S1 < C. For S3 we have

2P — 20| |2 — 20|
S3<C —————=dp(y) < C——+ < C,
ly—z0l>(@)/2 ¥ — 2@[" T £(Q)
and we are done with (d).
We leave the proof of (e) for the reader too. O

Notice that if we set D(Q, R) =1+ 6(Q, R) for @ # R and D(Q, Q) =0,
then D(-,-) is a quasidistance on the set of cubes, by (e) in the preceeding
lemma.

From (a) and the fact that Qg and R have comparable sizes and Qg N
Rg # @, we get that Qg and Rg are close in the quasimetric D(:,-). Also,
if we denote by @ the smallest doubling cube of the form 2*Q, k > 0, by (b)
we know that Q is not far from Q (using again the quasidistance D). So @
and @ may have very different sizes, but we still have D(Q, @) <C.

In Remark 2.2 we have explained that there a lot of big and small doubling
cubes. In the following lemma we state a more precise result about the
existence of small doubling cubes in terms of 4(-, -).
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Lemma 2.5. There exists some (big) constant n > 0 depending only on Cy,
n and d such that if Ry is some cube centered at some point of supp(u) and
a > 1, then for each x € Ry Nsupp(u) such that 6(z,2Ry) > « there exists
some doubling cube QQ C 2Ry centered at x satisfying

(24) |5(Qa2R0) - Oé| <e,
where €1 depends only on Cy, n and d (but not on «).

Proof. Let Q1 be the biggest cube centered at z with side length 27% ¢(Ry),
k > 1, such that §(Q1,2Rp) > a. Then, §(2Q1,2Ry) < a. Otherwise, k =1
and since £(Q1) = £(Ro)/2 and £(Q1,r,) < 4¢(Ry) we get

(@i, 2) < | : Co 8 &R )"

T du(y) < = Cp 16",
6Q1)/2<Iy—al,yeQ1 o 1Y — | Q)"

which contradicts the choice of ()1, assuming n > Cj 16™.
Now we have 6(Q1,2Rp) < a+ 0(Q1,2Q1) < a+ Cy16™. Thus

16(Q1,2Ry) — o] < Cp16".

Let @ be the smaller doubling cube of the form 2¥@Q;, & > 0. Then
0(Q1,Q) < Cs. Also, £(Q) < £(Ryp). Otherwise, Ry C 3Q and

3(Q1,2Ry) < 4(Q1,3Q) = 0(Q1,Q) +(Q,3Q) < C3 + 6" Co.

This is not possible if we assume 1 > C5 + 6™ Cj.
Now () satisfies the required properties, since it is doubling, it is contained
in 2Ry, and

16(Q,2Rg) — o 16(Q,2Ro) — 0(Q1,2Ro)| + [0(Q1,2Ro) — ¢

<
< 6(Q,Q1) +Co16™ < C3 + Cp16™ =: ¢3.
]

As in (d) of Lemma 2.4, instead of (2.4), often we will write 6(Q,2Ry) =
ater.
Notice that by (e) and (a) of Lemma 2.4, we get

|5(Q7R0) - Oé| S |6(Q7 2R0) - Oé| + |5(Q7 2R0) - 6(Q7R0)|
< €1+ 0(Ro,2Rp) + Cy
< 61+C+C4:=6’1.

However we prefer the estimate (2.4), because we have Q C 2R but Q ¢ Ry,
in general. So the cube 2R, in some sense, is a more appropriate reference.

Results analogous to the ones in Lemma 2.5 can be stated about the
existence of cubes () centered at some point x € Ry with () D Ry, but since

we will not need this fact below, we will not show any precise result of this
kind.

If @ C R are doubling cubes and f € RBMO(u), then |mgf — mgf| <
(14+6(Q,R)) ||f|l«- Without assuming @@ C R, we have a similar result:
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Proposition 2.6. Let Q,R C R? be doubling cubes. If f € RBMO(u), then
imqf —mrf] < (C+26Q,R)) [l

Proof. Suppose, for example, £(Rg) > ¢(Qr). Then, Qr C 3Rg.
Let 37%23 be the smallest doubling cube of the form 2% 3Rg, k > 0. We
have . .
5(R,3Rq) = §(R, Rg) + §(Rg,3Rg) < (R, Q) + C.
Thus

(2.5) Imrf —mgp fI < (1+C+ (R, Q)) || f]ls-

We also have

§(Q,3Rq) < C+8(Q,3Rq) + 0(3Rq,3Rq) < C + 6(Q, Qr) + §(Qr, 3Rq).
Since Qr and Rg have comparable sizes, 6(Qr,3Rg) < C, and so

5(Q,3Rg) < C +46(Q, R).

Therefore,
(2.6) ImQf —mgp fI<(1+C+6(Q,R)) [I£]+-
By (2.5) and (2.6), the proposition follows. O

3. THE EASY IMPLICATION OF THEOREM 1.2
In this section we will prove the “only if” part of Theorem 1.2.
Lemma 3.1. The operator Mg is bounded from Higgo(,u) into L' ().

Proof. Let b=}, \; a; be an atomic block supported on some cube R, with
Ai € R, where a; are functions supported on cubes ; C R such that ||a;||ec <
((1+4(Q;, R)) H(2Qi))71- We will show that ||M<I>b||L1(p) <C ZZ | Ai-

First we will estimate the integral fRd\ZR Mgb dp. For x € R? \ 2R and
¢ ~ x, since [bdu =0, we have

‘/bwdu‘ = /b(y) (e(y) _‘P(ZR))dN("J)‘

¢(R)
. < T du(y).
(3.1) < C /Ib(y)\ PR— du(y)
Thus
¢(R)
Mgsbdu < CJ|lb / —
/]Rd\QR sbdp < Gl RA\2R |T — zR|"T! ()

(3.2) < CHbHLl(u) <C E | Aq-

Now we will show that

(3.3) / Mga;dp < C,
2R
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and we will be done. If x € 2Q); and ¢ ~ z, then

‘/wwﬂscwmwmmmwscwmmm

So
/Q Msa; dp < Cllai|po (u) p#(2Q:) < C
2Q;

For z € 2R\ 2Q); and ¢ ~ z, we have

1
/ai‘Pdﬂ‘ < Cllaill 1w RS
Therefore,
1
Mga; dy < Clla;||z1 / ——du(zx
lm@q”u ol [ e
(3.4) < CllaillLry (1+6(Qs, R)) < C,
and (3.3) follows. O

4. AN APPROACH BY DUALITY FOR THE OTHER IMPLICATION

We have to show that if f € L*(u), [ fdu = 0 and Mof € L'(u), then

feH" ay_(1). We will obtain this result by duality, following the ideas of
Carleson [Cal. So we will prove

Lemma 4.1 (Main Lemma). Let f € RBMO(u) with compact support
and [ fdp =0. There ezist functions by, € L (u), m > 0, such that

(4.1) f(2) = ho(a +Z/%, y) du(y),

with convergence in L'(u) where, for each m > 1, Pym ~ Y, and
o

(4.2) S | < C £ o
m=0

Let us see that from this lemma the “if” part of Theorem (1.2) follows.
Consider f € L'(u) such that [ fdu = 0 and Mgf € L'(u). Assume first
that f € L*°(u) and has compact support. In this case, f € H;t’go(u) and
so we only have to estimate the norm of f.

Since RBMO(p) is the dual of H;tgo( ) [To3], given f € L'(u), by the
Hahn-Banach theorem we have

1l = sup 1(F: 9)]

llgll- <1

Since [ fdp = 0, we can assume that g has compact support and [ gdu = 0.
Then, applying the Main Lemma to g we get

f, 9)l < L/ffhodu\ Gyom() o (1) £ (2) () ()|
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Since f loym(z) f(2)] du(z) < Mo f(y), we have

(< Il IBolleoqey + D /Mcpf(y) |hm (y)| du(y)
m=1
< ey 1Rollzoouy + 1M fll L1 ()

o0
> bl
m=1

Lo ()
< C (Il + 1Mo fllLig) llgll«

That is, ||f||H;;‘g°(u) <C (Hf”Ll(u) + HM‘I’fHLl(u))'

In the general case where we don’t know a priori that f € H;zgo(u), we
can consider a sequence of functions f, bounded with compact support such
that [ fndp =0, fr = f in L'(u) and |[Ma(f — fo)ll1m — 0, and then
we apply the usual arguments. The existence of such a sequence is showed
in Lemma 9.1, in the Appendix.

The rest of the paper, with the exception of the Appendix, is devoted to
the proof of the Main Lemma.

5. THE INEQUALITY OF JOHN-NIRENBERG

In [To3] it is shown that the functions of the space RBMO(u) satisfy a
John-Nirenberg type inequality. Let us state the precise result.

Theorem 5.1. Let Q C R? be a doubling cube. If f € RBMO(u), then

Wl € Qs If ~mof| > 3} < Can(@ e (T502). a>o

where Cs, Cg > 0 are constants that only depend on Cy, n, d.

In the proof of the Main Lemma we will need a version of the above
inequality which appears to be stronger (although it is equivalent). In this
section we will state and prove this new version of John-Nirenberg inequality.

Definition 5.2. Given a doubling cube @, we denote by Z(Q, \) the set of
points z € @ such that any doubling cube P with z € P and £(P) < £(Q)/4
satisfies |mpf — mqgf| < A

In other other words, @ \ Z(Q, ) is the subset of @ such that for some
doubling cube P with z € P and £(P) < £(Q)/4 we have

mpf —mqgf| > A
Proposition 5.3. Let Q C R? be a doubling cube. If f € RBMO(p), then

W(Q\ Z(Q,N) < CLu(Q) exp (]fﬁA) . a0

where C§, Cg > 0 are constants that only depend on Cjy, n, d.
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Proof. The arguments are quite standard. For any z € Q \ Z(Q,\) there
exists some cube P, which contains z, with £(P;) < £(Q)/4 and such that
|mp,f —mqgf| > XA Then by Besicovich’s Covering Theorem, there are
points z; € Q \ Z(Q, A) such that

Q\ Z(Q,N) cUza-,

and so that the cubes 2F;, i = 1,2,..., form an almost disjoint family.
Observe that the Covering Theorem of Besicovich cannot be applied to the
cubes P, (they are non centered), however we have applied it to the cubes
2P,, which are non centered too, but fulfil the condition

T € %ZPw.

That is, the point z is “far” from the boundary of 2P,. Under this condition,
Besicovich’s Covering Theorem also holds.

Since, for each i, £(P;) < £(Q)/4 and P, N Q # O, it is easlily seen that
2P; C 1Q. Then,

H@Q\Z(QN) < ) u2R)
< ¥ [ exn(17@) — maflB) exp(-AF) du(a)

< 0 [ e (f) ~maf k) exp(-XK) du(x),
1
where k is some constant that will be fixed below. Now, we have
exp (|f(x) ~mafIk) < exp(|f(@) = mzofIk)exp (Imzqf — maf|k)

exp (1f(2) = myqf| k) exp (C £ F).
The last inequality follows from |m 9 f—mqgf| < C||f|l« (notice that the
square 7@ is (%,2d+1)—doubling).

Therefore, by Theorem 5.1 (which also holds for cubes that are (2,29+1)-

doubling instead of (2,2%+")-doubling, with constants C; and C instead of
C and C5) we have

K@\ Z(Q.X)
< Cop(-AR) ep(C ISR [ exp (160 = mr o f11) duto)

4

IN

= Cexp(=Ak) exp (C|fl+ k)
X/o u{xegQ: exp(|f(x)—m£Qf|k> >t} dt

Cu(3Q) exp(—AR) exp (CfI.K) [ G exp (_02 logt> dt.

IN

kNAI



NON DOUBLING H! IN TERMS OF A MAXIMAL OPERATOR 13

So if we choose k := Cy/2||f ||, we get

waraian scuta o (553) somwen(532).

O

6. THE “DYADIC” CUBES

In [Ca], Carleson proves a result analogous to the one stated in the Main
Lemma for p being the Lebesgue measure on R¢. He uses dyadic cubes of
side length 2~™4, where A is some big positive integer. In our proof, we will
also consider some cubes which will play the role of the dyadic cubes with
side length 2=™4 of Carleson. In this subsection we will introduce these new
“dyadic” cubes and we will show some of the properties that they satisfy
and that will be needed in the proof of the Main Lemima.

As in [Cal, we will take some big positive integer A whose precise value
will be fixed after knowing or choosing several additional constants. In
particular, we assume that A is much bigger than the constants ¢y, €1 and
7n of Section 2.

Definition 6.1. Suppose that the support of the function f of the Main
Lemma is contained in a doubling cube Ry. Let m > 1 be some fixed
integer and = € supp(p) N Ry. If §(z,2Ry) > m A, we denote by Qpm a
doubling cube (with Qg ,, > 0) such that

(6.1) 16(Qam» 2Ro) — m A] < &1

Also, Dy, = {Qim}icr, , is a subfamily with finite overlap of the cubes Q4 m,
such that each cube Q; ,, = Qy; m is centered at some point y; € supp(u)N Ry
with §(y;,2Rg) > m A, and

{z € supp(p) N Ry : 6(z,2Ry) > mA} C U Qim
i€l
(this family exists because of Besicovich’s Covering Theorem).

If 6(z,2Ry) < mA, we set Qzm = {z}. We denote by D}, the family of
cubes Q;m = {z} such that §(z,2Ry) < mA and = ¢ UZ-E];” Qim- We set
Dy = D!, UD"..

The cubes Qg m, € supp(u) N Ry (not necessarily from the family D,,)
are called cubes of the m-th generation.

Obviously, the whole family of cubes in D, has also finite overlap. Notice
that if = is a point in supp(u) such that §(z,2Ry) = oo, then £(Qzm) > 0
for all m > 1. Otherwise, there exists some mg such that £(Qg,m) = 0 for
all m > my.

It is easily seen that if A is big enough, then £(Qzm+1) < £(Qz,m)/10 (a
more precise version of this result will be proved in Lemma 6.3 below). So
U(Qzm) = 0 as m — oo.
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If A is much bigger than &1 and Qg # {z}, then §(Qzm,2Ry) =~ mA.
However, the estimate (6.1) is much sharper. This will very useful in our
construction.

Lemma 6.2. Assume that P and Q) are cubes contained in 2Ry whose cen-
ters are in Ry. Let S be a cube such that P,Q C S C 2Ry.

(a) If [6(P,2Ro) — 6(Q,2Rq)| < B, then
|6(P,5) —6(Q, )| < B+ 2.
(b) If [6(P,S) — 6(Q, S)| < B, then
|6(P,2Ro) — 6(Q,2Ro)| < B + 2&o.

In particular, this lemma can be applied to cubes P and @ belonging to
the same generation m, with 8 = 2¢; (assuming £(P), £(Q) # 0).

Proof. Both statements are a straightforward consequence of (d) in Lemma
2.4, since
5(P, 2R0) = 5(P, S) + (S(S, 2R0) + &0}
and
3(Q,2Ry) = 6(Q,S) + (S,2Rp) £ 0.
O

The constants €y and ¢; should be understood as upper bounds for some
“errors” and deviations of our construction from the classical dyadic lattice.

We will need the following result too.

Lemma 6.3. Assume that A is big enough. There exists some v > 0 such
that 7’f Qm,m N Qy,m+1 76 Q; T,y € Supp(”): then E(Qy,m—f—l) S 277A£(Qm,m)‘

Proof. We can assume Qym+1 # {y}. Let B > 1 be some fixed constant.

If U(Qym+t1) > B! UQzm), then Qpm C 3B Qym+1- So, if R, is a cube

centered at = with side length 6B £(Qy,m+1), we have Qg m, Qym+1 C Ry.
By (c) of Lemma 2.4 we get

(5(Qy,m+1,Rw) < C (1 + log (e e(Rw)

m)) < C (1 +log B).

Since
5(Qy,m+1a2R0) = 5(Qy,m+1aR$) + 5(R$52R0) + €0,
if we set B = 274, we obtain

0(Ry,2Ry) > (m+1)A—¢e1 —eo — C(1+vAlog2).
Then for v small enough we have
1
5(Rm,2R0) > (m—l—l)A—sl —g—C— §A> mA + e1.
This implies 6(Qg,m,2Ro) > mA + €1, which is not possible. O

As a consequence, we obtain
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Lemma 6.4. Assume that A is big enough. If x,y € supp(u) are such that
Qz,m N Qy,m-l—lc i (U)ith k> 1): then e(Qy,m-}-k) < 2_7Ake(Qz,m)'

Proof. By the previous lemma, £(Qy j+1) < 2774 4(Qy ;) and £(Qym+1) <
2_7A£(Q:c,m)- This gives E(Qy,m+1) < 277 Ak e(Qw,m)- O

7. THE “CONVOLUTION”

The proof of the Main Lemma will be constructive. At the level of cubes
of generation m we will construct a function h,, yielding the “potential”

Upn(z) = / (@) T () dp(y)

(to be precise, instead of one function h,,, for each m we will have N func-
tions hl,,... , Al but this is a rather technical detail that we can skip now).
The potentials U,,, will compensate the large values of f at the scale of cubes
of the generation m. So the arguments will be similar to the ones of [Ca].
However, in our situation several problems arise, in general, because of
the absence of any kind of regularity in the measure p (except the growth
condition (1.1)). For example, in [Ca] the potentials U,, are convolutions
with approximations of the identity: U, = @, * hy,. Using the previous

notation, we have

Pym(T) = om(y — z) = 2™4" (2™ (y — z)).

This is not our case. The measure y is not invariant by translations and we
don’t know how it behaves under dilations (notice that if 4 were doubling, we
would have some information, at least, about the behaviour under dilations).
We need to use functions ¢y m such that |@ymlz1(,) =1 (or at least equal
to some value close to 1). So ¢, cannot be obtained as a translation of
y.m for y' # y, neither as a dilation of ¢, ;, £ # m. In this subsection we
will show how these problems can be overcome.

We denote

o := 10eg + 10e1 4+ 1271 C,.

We introduce two new constants ai,as > 0 whose precise value will be
fixed below. For the moment, let us say that €g,e1,Cp,0 € a1 € ag K A.

Definition 7.1. Let y € supp(u). We denote by Q;,m, Q\;!m, Qz,m, @zym,

3

»,m some doubling cubes (with positive side length) centered at y such
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that
0(Qym,2Ry) =m A+ ey,
o( ;,m,2R0) =mA—a ey,
5(A11/,m,2R0) =mA—a —oxey,

(7.1) 6(Q2,m,2R0) =mA—a; —ay+e,
6(@\Z,m,2R0) =mA—a —ay—0o+e,
5(Qg,m,2R0) =mA—a1—ay—20+¢e

By Lemma 2.5 we know that if d(y,2Rp) > m A, then all the cubes Q:tl/,m’

Q\;,m, Qs > Q\?ﬁm, Q5 exist. Otherwise only some (or none) of them may
exist. If any of these cubes does not exists, we let this cube be the point

{y}-

Notice that we can only assume that the estimates in (7.1) hold for the
cubes @ wich are different from {y} (i.e. with £(Q) > 0). So if @\lem = {y},
say, then, we only know that 6(@11/”, 2Ry) <mA—a; —0o+e.

Lemma 7.2. Lety € supp(p). If we choose the constants oy, as and A big
enough, we have

1 Al 2 A2 3
(7.2) Qym C Qym C Qym C Qym € Qym C Qym © Qyym-1-

Proof. Notice first that for a1, as and A big enough, then the numbers that
appear in the right hand side of the estimates in (7.1) form an estrictly
decreasing sequence. That is,

mA—e1 > mA— o +¢q,

mA—a—€1 > mA—a; —0o+ e,
mA—a1—oc—¢e1 > mA—a; —az+¢e;
mA—a;—ay—€1 > mA—a1 —ay — 0 +eq,
mA—a1—ay—0—¢e1 > mA—a; —ag — 20 + ¢,
mA—a;—ay—20—¢1 > (m—1)A+e;.

Let us check the inclusion @;,m C Q;ym, for example. Suppose first that
ym 7 1y}, then

5(Q32/,m,2R0) =mA— a1 — Q9 + £1-
If Q\;,m = {y}, the inclusion is obvious. Otherwise,
6(@31/,m, 2Ry) =mA—a1 —0 *te.

Then 5(@;%,21%0) > 0 Z,m’2R0)’ and so Q\;m C Qi,m. Assume now
o m = {y}- Then,

0(y,2Rp) <mA—a; —as+e;.
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In this case there is not any cube @\;,m satisfying
5(@;,"1, 2R()) =mA— a1 — 0 + €1,

and so, by our convention, Q\;,m = {y}. That is, the inclusion holds in any
case.
The other inclusions are proved in a similar way. O

For a fixed m, the cubes Qy m may have very diferent sizes for different
y’s. The same happens for the cubes Q2 Nevertheless, in the following
lemma we show that we still have some klnd of regularlty This regularity
property will be essential for our purposes.

Lemma 7.3. Let z,y be points in supp(u). Then,

(a) If Qi’m N le!,m #+ @, then Qalc’m C Q\gl/’m, in particular T € Q\é,m
(b) If Q2,, N Q% # D,then Q% ,,, C Q3 ., in particular z € Q5

So, although we cannot expect to have the equivalence
1 1
Yy € Qz,m <z € Qy,ma

we still have something quite close to it, because the cubes Q}E,m and Qi’m

are close one each other in the quasimetric D(-,-), since 5(Qi,m,@}c7m) is
small (at least in front of A). Of course, the same idea applies if we change
1 by 2 in the superscripts of the cubes.

Proof of Lemma 7.3. Let us proof the statement (a). The second statement
is proved in an analogous way. Let z,y beas in (a). If £(Qy ) > £(Qy,n) (in
particular, ;,m # {y}), then wm C 3Q Q\;m (the latter inclusion
holds provided §(Q) s 2Ro) < 8(Q} - 2R0) —6"Cy).

Assume now £(Qy ,,) < Q3 ) I Qg ,, = {2}, then = y and the result
is trivial. If QL # {z}, we denote by P, a cube centered at y with side

length 34(Q} ,,,). Then, Q; ., C P, C 6QL ,, and so §(Q; ,,, P,) < 12" Cy.
Thus
0(Py,2Ry) > 4 Em,ZRO)—d( Im,Py)—so
> 6(Qpm»2Ro) — 12" Cy — &g
> mA—aq; —o+e.
Therefore, Q}’m # {y} and Q\le,m D Py D Qg O

Now we are going to define the functions ¢, ,,. First we introduce the
auxiliary functions 1y y,.

Definition 7.4. For any y € supp(u) N 2Ry, the function 1y ., is a function
such that

4 1
1. 0 < Yym(x Smin( , ),
wonl®) < T Qg Tyl
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1 . A
2. wy;m(m) - m lf T E Q:?/am \ Q17m,
3. supp(Yy,m) C Qg,m’

1 1
, .
4. [thy m(2)] < Ci2 min (ﬁ(le/’m)n—H’ ly — $|n+1>'
It is not difficult to check that such a function exists if we choose C1o big
enough. We have to take into account that 2Q§,m - Qg,m. This is due to

the fact that &( )2 2@§’m) <A4"Ch < 4( Ai,m, Qz,m) if E(A?/,m) # 0.

y,m>
In the definition of 1y y,, if le,,m = {y}, then one must take 1/4( ;,m) =
oo. If Qi,m = {y}, then we set 1, ,, = 0. This choice satisfies the conditions
for the definition of 1, ,,, stated above.
Choosing as big enough, the largest part of the L'(u) norm of 1, ,, will

come from the integral over Qi’m \ Q\}hm We state this in a precise way in
the following lemma.

Lemma 7.5. There exists some constant €2 depending on n, d, Cp, €, €1
and o (but not on ou, ay nor A) such that if Q, ,, # {y}, then

(7.3) ‘H"py,mHLl(u) - az| < e

and

(7.4) [l = [ o dnta)| < e
Q2..\0 . [y — |

The proof of this result is an easy calculation that we will skip. A direct

consequence of it is
1 1
lim —/ ——du(z) =1
az—00 Qg Q%,m\@i,m |y — .’II|"

for y € supp(p) such that d(y,2Ry) > m A.

Definition 7.6. Let w;m be the weight function defined for y € U,cpp Qijm
(these are the cubes of Dy, with £(Q; ) > 0) by

i,m = .
Zjel;n XQj,m(y)

If y € supp(p) N 2Ry belongs to some cube Q; ,, centered at some point y;,
with £(Q;m) > 0, then we set

Py,m (z) = O‘z_l Z wi,m(y) 'pr“m(aj)

If y does not belong to any cube Q;, with £(Q;,) > 0 (this implies
0(y,2Rp) < mA and Qy,m = {y}), then we set

(Py,m(w) = ail "/’y,m(x)'
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Setting w;m(¥) = xQ;.. (¥) if £(Qsm) = 0, we can write
Pym(T) = a2_1 Z Wi, (Y) Yyim (),
i

for any y.

Let us remark that a more natural definition for ¢, ,, would have been
the choice @y m(z) = @y’ ym(z) for all y. However, as we shall see, for
some of the arguments in the proof of the Main Lemma below (in Subsection
8.2), the choice of Definition 7.6 is better.

In order to study some of the properties of the functions ¢y ,,, we need
to introduce some additional notation.

T,m

Definition 7.7. Given z € supp(u), we denote by @3 a doubling cube

centered at z such that d( AE”w,m, 2Ry)) =mA—a; —ay—30 +¢e1. Also, we

denote by Qi,m and é}v,m some doubling cubes centered at x such that

5(QL 2Ry) =mA—a1 +ote,

T,m?
§(Qam 2Ro) =m A —ay +20 ¢

(the idea is that the symbols ~ and ~ are inverse operations, modulo some

small errors). If any of the cubes Q;’m, éi,m, Q\?;,m does not exist, then we
let it be the point z.

So, when é(z,2Ry) is big enough, one should think that Q\%cm is a cube a
little bigger than Q\i,m, while Q}C,m is a little smaller than Q}c,m Also, Q}c,m
is a little smaller than QL . but still much bigger than Qzm-

T,m?
Lemma 7.8. Let z,y € supp(u). For oy and a9 big enough, we have:
(@) If x € Quom and y ¢ Q\io’m, then @ym(z) = 0. In particular,
(Py,m(x) =0 zfy ¢ Qg’:,m
. e’
(b) Ify € Q;,mJ then (py,m(w) S C %
UQzm)
(c) Let e3 > 0 be an arbitrary constant. If oy is big enough (depending on
es, Co, n, d but not on «ay), then

ay' (1+e3/2)
ly — x|

-1

@y,m(x) < ify & Qi,m;

and
oy (1-e3/2)
ly — x|

(Py,m(ﬁc) > ify € Q;%,m \ Qalv,m

(d) If z € Qgg,m, then

1 1
! (z)] < Ca;! min < ) .
|(10y,m( )| = 2 e( alvo,m)n+1 |y _ x|n+1
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Notice that, in Definition 7.4 of the functions 4, ,,, the properties that

deﬁne these functions are stated with respect to cubes centered at y (Q. y,m

y’m, Qy’m...). In this lemma some analogous properties are stated, but
these properties have to do with cubes centered at = or containing = (Qzo,m.,

Qzm> Qams Q-

Proof. (a) Let zp € supp(p) and = € Quom- If @y m(x) # 0, there exists
some i with y € Qim = Qy;m and z € Q.. Then Q3 . NQ}. . # @
andsoy € Q. ,, C Q\go,m (as in Lemma 7.3).

(b) Let y € Q,, and let y; be such that y € Qy, m. We know that
1

So we are done if we see that K(leh.,m) > E(Q;,m)
As in Lemma 7.3, we have

Y€ Q= Quin N Qun # B = Qun C Quyym
Thus £(QL,,) < £(

Py;,m(z) < CO‘Q_1

yiym)-

(c) Let us see the first inequality. If y ¢ Q}c,m and y belongs to some
cube Qy; m Wwith £(Qy, m) > 0, then = ¢ églh,m because otherwise, as
in Lemma 7.3, we would get Qéum - Q}C’m However, since we assume

a1 > o, the cube Qy m
Yy € Qm,m, which is a contradiction.

is bigger than @, ,, and contains y. So

Since z ¢ lel“m and this cube is much bigger than Qy, m, if a1 is
big enough we get
! < ;' (1+€3)
lyi—=» = |y —a|
As this holds for all i with w; ., (y) # 0, we obtain

oy (1+e3)

ly — |
This inequality also holds if £(Qy, m) = 0 with e3 = 0, since in this
case y; = v.

Py,m (r) <

We consider now the second inequality in (c¢). Let y € supp(p) be
such that y € Q2 . \ Qp ;- If y € Qy;m With £(Qy,m) > 0 for some 4,

by Lemma 7.3 we get x € Q\Zl,m \ Q;i’m. Since this is satisfied for all ¢
such that w; ., (y) # 0,

Py,m Z Wy, m

71

Iy - wl"
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If a; has been chosen big enough, then £( ;um) > £(Qy;,m) and one

has
o' oy (L—es/2)
lyi —z[® = |y —=z[?
Thus
1
1— 2
(7.5) pymlz) > 2 L= /2)

IfyeQ2,,\ Q\i,m and y € Q; m with £(Q;m) = 0, then by Lemma 7.3
we also get z € Q\z,m \ Qym (in particular Q\?j’m # {y}). Then (7.5)
holds in this case too (with e3 = 0).

(d) Suppose first that y € Q;O,m. In this case we must show that

a;l
g( 31 )n+1'

To,m

oy m(z)| < C

Let y; be such that y € @y, .- We know that

oy, m (@) < C UQL y

By the definition of ¢, (z), it is enough to see that é(Q}/i,m) > K(Q}m,m).
This Vfollows Vfrom the inclusion Q;i,m > Qalco,m, which holds because
Yy € Q;hm N Q}EO’m and then we can apply Lemma 7.3 (in fact, a slight
variant of Lemma 7.3).
Suppose now that y ¢ Q}onm. It is enough to show that
-1
1 Q9
loym (@) <C =
Let y; be such that y € @, - By definition we have
—1
1 )
yem (@)l < € o= mer
We are going to see that
(7.6) ly — il < ly —a|/2.

Assume |y — y;| > |y — z[/2. Then, since z € 3Q
enough),

(7.7) HQyim) > C™' Iy — 3| > O™ Qg m)-
Notice that from the first inequality in (7.7) we get dist(z, Qy;m) <
C 4(Qy;,m)- In this situation we have Q% ., C C Qy;m C Q4 ;- This

is not possible, since by Lemma 7.3 we would have Q;O’m D Q;i’m, and

1
To,m

(for oy big

then we would get Q;O,m = ézl/z,m This would imply zy = y; and also
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. o <1 - :1 _ . . . . .
o = Yi = Qgom = Qy; m» and then y = y; which is a contradiction

because we are assuming that (7.6) does not hold.
So (7.6) is true and |y; — z| = |y — z|. Thus

1
Q9

/
Pyem(@)l < €0 5

Since this holds for any ¢ such that y € Qy, m, we get

oy m(z) < C
O

Some of the estimates in the preceeding lemma will be used to prove next
result, which was one of our main goals in this section.

Lemma 7.9. For any €3 > 0, if a1 and ao are big enough, for all z €
supp(u) we have

(7.8) [ eum@ duty) <1+

If © € supp(p) is such that there exists some cube Q € Dy, with Q > = and
£(Q) > 0 (in particular if 6(x,2Ry) > m A), then

(7.9) 1—e< /‘Py,m(w) d;j,(y)

Let us observe that if u were invariant by translations and ¢y n,(z) =
¢m(y—), then (7.8) and (7.9) would hold with e3 = 0 (choosing ||¢y,m || 1 ()
=1).

Proof. Let us see (7.9) first. So we assume that there exist some cube
Qim € Dy, containing z with £(Q; ) > 0. Since z € @, C Q! . we have

2,m?
vz{m C Qi m- In particular, £(Q},,) > 0. By Lemma 7.5 and the second
inequality of (c) in Lemma 7.8 we get

/ ym () du(y) > /Q , o Py,m () du(y)

a;l (1 —e3/2
> / . %2/) du(y)
QGn\QL, Yl

> a2_1 (g — 2e9) (1 — €3/2).

So (7.9) holds if we take a big enough.
Consider now (7.8). By (a) in Lemma 7.8 have

[eum@ duts) = [ eymla) duty).

T, m
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Thus we can write
(7.10)

[om@ae= [ emE )+ [ eyn i)

T, m

Let us estimate the first integral on the right hand side of (7.10). Using
the first inequality in (c) of Lemma 7.8 we obtain

-1

o 1+ ¢e53/2
/A  pym(@)dp(y) < /A ] o (1+es/2) 2/)du(y)
32.,\QL @2,\0h,, |y~

= 6(Qum Qi) oy (1 +e3/2)
(7.11) < ayl(ag+4o+2e;) (14¢€3/2).

Let us consider the last integral in (7.10) (only in the case Q}cm # {z}).
By (b) in Lemma 7.8 we have

Ca;!
(7.12) /Ql soy,m(af)du(y)S/Q1 m

From (7.11) and (7.12) we get (7.8). O

du(y) < CChayt.

8. PROOF OF THE MAIN LEMMA

8.1. The argument. As stated above, A is a large positive integer that
will be fixed at the end of the proof. We assume that the support of f is
contained in some doubling cube Ry, and for each integer m > 1 we consider
the family D, of “dyadic” cubes Q;m, % € I, introduced in Definition 6.1,
and we set D = |J,,~.; D Recall that the elements of D may be cubes with
side length 0, i.e. points.

For each m we will construct functions g,, and b,,. The function g,
will be supported on a subfamily D¢ of the cubes in D,,. On the other
hand, b, will be supported on a subfamily ’Dﬁ of the cubes in D,,. We set
DY = ,,>; P& and DP = J,,, DE. The cubes in D¢ will be called good
cubes and the ones in DP bad cubes (let us remark that in the family D,,,
in general, there are also cubes which are neither good nor bad).

From g,,, and b,,, we will obtain the following potentials:

US(z) = / oy (@) gm () du(y),

UB(z) = / oy () bun () duy),
Un(z) = US(z)+Ug(z).

This potentials will be successively subtracted from f. We will set

fmy1(z) = f(z) - Z Uj(z) = fm(x) — Um(z)
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and

o
(8.1) ho=1f—Y Un= Tim .
m=1
The support of the functions g, by, US, UZ will be contained in 2R,.
By induction we will show that the functions g,,, by, Up and f,, fulfil
the following properties:

(3) [gml. [bm| < C5 A f]l..
(b) m@gfm+i1| < Allf|l« if Q@ € Dy, and £(Q) > 0.

)

: 7
(c) If g Z0 on Q, Q € Dy, with £(Q) > 0, then |mem+1| < 0=

)

(d) If Q € Dy, and |mq fm| < 28—0A||f||*, then Uy, =0 and gy = by, =0
on Q.

(e) If Q € Dy, and 6(Q,2Ry) < (m — 15) A (so £(Q) = 0), then U, = 0
and g,, = b, =0 on Q.

Finally, we will see that our construction satisfies the following properties
too:

(f) If §(z,2Rp) < o0, then |ho(z)| < Co A||f||«, and if Q@ € Dy, and £(Q) =

0, then |mq fmt1| = [fmt1(2Q)| < Co Al|f ]|+
(g) For each m, there are functions g}, ... ,gY such that

N
(g.1) US(z) = Z / b m(z) g, (y) du(y), where @ m is defined below.
p=1

(g.3) The functions Zévzl |gh| have disjoint supports for different m’s.
(h) The family of cubes DP that support the functions b,,, m > 1, satisfies

the following Carleson packing condition for each cube R € D,, with
(R) > 0:

(82) > wQ) < CuR).
Q: QNR#£D
QEDE,k>m
Let us remark that if some cube @ coincides with a point {z}, then we
set mofm = fm(z). Also, the notation for the sum in (h) is an abuse of
notation. This sum has to be undestood as

Yo ow@= Y, w@+) u{re2R: {z} e D}.
Q:QC2R Q:4(Q)>0,QC2R k>m

QeDP, k>m QeDB k>m
On the other hand, the number N that appears in (g) is the number of
disjoint families of cubes given in the Covering Theorem of Besicovich, which
only depends only on d.

The functions ¢}, of (g) are defined as follows. We set D,,, = D}, U
---UDN where each subfamily D, is disjoint (recall that the cubes of D,
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originated from Besicovich’s Covering Theorem). Then we set
‘Pg,m(ﬂﬂ) = (Pyi,m(‘r)

if y € Qim with Q;m € Dh, and @} m(x) = 0 if there does not exist any
cube of the subfamily D}, containing .

First we will show that if there exist functions g, and b,, satisfying (a)-
(h) then the Main Lemma follows, and later we will show the existence of
these functions.

It is not difficult to check that if (4.1) and (4.2) hold,mi then the sum of
(8.1) converges in L}, (1) (this is left to the reader). Since the support of
all the functions involved is contained in 2Ry, the convergence is in L'(u).

Let us see now that if (b) and (f) hold, then |hqllzec(yy < CA|lf]ls
Taking into account (f), we only have to see that |ho(z)| < C A||f||« for
x € supp(p) such that §(z,2Ry) = oco. In this case, if @ € Dy is such that

z € Q, then £(Q) > 0. We are going to see that
(8.3) Imqfm| < CA|f|« for Q € Dy, k<m—1

(not only for £ = m — 1, which is a direct consequence of (b) and (f)). Take
Q € Dy, k < m—1. This cube is covered with finite overlap by the family of
cubes D,,_1. Moreover, if P € D,,,_; and PN Q # &, then £(P) < £(Q)/10
by Lemma 6.3, and so P C 2¢). Thus we get

m|dp < mldp < CAflls u(2Q) < CA|f]l« )
/Q ol < 3 /Qin,m_llflu< 11l 1(2Q) < CA[fIl (@)

and (8.3) follows (notice that, as remarked above, we have abused notation
for the cubes which are single points).

Then ho will satisfy |mgho| < C A||f||« for all Q € D containing z, be-
cause the sequence { i, }m converges to hg in L' (u). Then, by the Lebesgue
differentiation theorem we will get that |ho(z)| < C AJ|f]|« (this theorem
can be applied to the cubes () € D which are non centered because they
are doubling) for p-a.e. x € supp(p) with 6(z,2Ry) = oo. Therefore,
lhollLeo(uy < C ALl fl|

Observe that the functions g, in (g.1) originate the same potential as g;,.
In fact, they will be constructed modifying slightly the function g,, in such
a way that they are supported in disjoint sets for different m’s. By (g.2) we
have

N
SO Ighl < 2N Cs Allf] ..

m p=1

The supports of the functions b, may be not disjoint. To solve this prob-
lem, we will construct “corrected” versions (b, p = 1,... ,N) of wjn, by-
Moreover, as in the case of g,,, the modifications will be made in such a way
that the potentials UZ will not change.
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8.2. The “correction” of b,,. We assume that the functions b,,, m > 1,
have been obtained and they satisfy (a)-(h). We will start the construction
of some new functions (the corrected versions of w; y, by,) in the small cubes,
and then we will go over the cubes from previous generations. However, since
there is an infinite number of generations, we will need to use a limitting
argument.

For each j we can write the potential originated by b; as

UP(z) =) 0y4() / wi,j(y) b;(y) duly)-

1€l

For a fixed m > 1 we are going to define functions v7’;, for j = m, m—1, ... ,1
and all ¢ € I;. The functions v;"; will satisty

(8.4) supp(vj ;) C Qi

where Q; ; € D¥, the sign of v;; will be constant on @ ;, and

(8.5) / o () duly) = / wi () b (y) ds(y).

Moreover, we will also have

m

(8.6) SN i < Cu Allf |-

j=1iel;

We set v}, (y) = wim(y) bm(y) for all ¢ € I,. Assume that we have
obtained functions v/}, v/}, _1,... v} for all the 7's, fulfiling (8.4), (8.5),
and such that

m
> D I <BA|fll,

j=k+1i€l;

where B is some constant that will be fixed below. We are going to construct
’UZ}C now.

Let Qi,%x € Dy be some fixed cube from the k-th generation. Assume first
that @, x is not a single point. Since the cubes in the family DB satisfy the



NON DOUBLING H! IN TERMS OF A MAXIMAL OPERATOR 27

packing condition (8.2), for any ¢t > 0 we get

u{yEQio, ZZI?}” |>t}

j=k+14€l;
1 m
<Yy / )| du(y)
j=k+1i€l;

IN
|

P [ )bl

j=k+1icl; ¥ Qig.k

< Cs A||f]l« Y ou@ < Ciz Al ]l 1(Qig k)

t t
Q:QNQ4y k72
QED]B,j>Ic

Therefore, if we choose t = 2C12 A||f||« and we denote
= {ve o S Snmi<t)
Jj=k+14€l;

we have p(V;7",) > S1(Qio ) If we set Uik = Cho k XVi, x> Where ¢t € R is
such that (8.5) holds for i = g, then

m
Cio k

il
< ——— [ |wik(y) bx(y)| duly) <2Cs A||f]]
Vo) lwi,k (y) bk (y)| dp(y) £ 1«
By the finite overlap of the cubes in Dllf , we get

o ikl <C2Cs A|fll,
iO:QiO,kEDE
£(Qig,k)#0
where Cp is the overlap constant in the Covering Theorem of Besicovich.
Now if we take B := 2(Cpg Cg + 2C12, we will have

m
(8.7) Yo i+ Yo DI <BA|f|

i0: Qig,kEDE J=k+1i€l;
UQig,x )70
In case Qi is a single point {y}, then we set v, (y) = wi, k(y) bk (y) =
bi(y). All the cubes of the generations k+1, ... ,m that intersect Q;, x = {y}
coincide with {y} by Lemma 6.3. From (e) we get that by11(y) = bxy2(y) =

= 0, which is the same as saying that v 1 (y) = v]} o(y) =--- =0 for
all 1. So we have

(8-8) ZZ vty ()| = bk (y)| < Cs A|[f[l+ < BAf]

j=ki€l;
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From (8.7) and (8.8) we get

m
> D Wil < BA|fl.

j=k i€I;
Operating in this way, the functions v, j = m, m —1,...,1, ¢ € I}, will
satisfy the conditions (8.4), (8.5) and (8.6) (with C1; = B).

Now we can take a subsequence {my}; such that for all s € I; (i.e. for
all the cubes of the first generation) the functions {vzll’“ }i converge weakly
in L*>(u) to some function v;; € L>(u). Let us remark that the sequence
{my }r can be chosen independently of i since, by the Besicovich’s Covering
Theorem, there is a bounded number N of subfamilies Di,... , DY of D;

such that each subfamily DY is disjoint. If we denote by DY B the subfamily
of bad cubes of DY, we can write

N
m m
Z Vi1 = Z Z V4,1

; —1 . B
1ely p=1 it Q;,1€EDY

mg
i: QicpPB Vi, COnverges

and we can choose {my}; such that, for each p, >
weakly to ZZ Qs eDPP Uil
In a similar way, we can consider another subsequence of {my; }; of {my }

such that for all 7 € Iy the functions {v;n;j }; converge weakly in L*(u) to
some function v;o € L*®(u). Going on with this process, we will obtain
functions v; ;, 7 > 1, that satisfy (8.4), (8.5) (without the superscript m)
and

(8.9) D> lvigl < Cu Al

j=1 ’iEIj

Also, we have
UP @) = 3 ouis(@) [ vi0) duty).
’ite
We denote D%Z = DE.ND—m (recall D,,,0 U;];V:1 Dh,, where each subfamily
D%, is disjoint) and
)= Y vim(y).
it Qi,m €DRP

Recall also that ¢}, (z) = @ym(z) if y € Qim with Q;m € DF,, and
©h.m(z) = 0 if there does not exist any cube of the subfamily D}, containing
y. Then we have

UB()—i/w” (2) B
m(T) = b m(T) b (1) dp(y)-
p=1
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Now we set hb, = gh, + bh,, and we get

N oo
f@) =ho@)+ 33 / o () () dp(y),

p=1m=1

with C ¢y, ~ y for some constant C' > 0, and

N oo
hol + D Wbl < CA|fls,

p=1m=1
and the Main Lemma follows, by (g) and (8.9).

8.3. The construction of g,, and b,,. In this subsection we will construct
inductively functions g, and by, satisfying the properties (a)—(e). We will
check in Subsection 8.4 that these functions fulfil (f)-(h) too.

Assume that ¢1,...,9m-1 and by,...,by_1 have been constructed and
they satisfy (a)—(e). Let Q,, be the set of points x € supp(u) with é(z,2Ry) >
m A such that that there exists some Q € D,,, £(Q) > 0, with @ > z and
|mq fm| > %A. For each z € Q,, we consider a doubling cube Sy ,, centered
at z such that §(Sgm,2Rg) = mA — a1 — ap — a3 + €1, where a3 is some
big constant with 10as < a3 < A, whose precise value will be fixed below.
One has to think that S, is much bigger than Qg,m but much smaller than
Qz,m—1 (observe that all these cubes have positive side length).

Now we take a Besicovich covering of €2,,, with cubes of type Sy m, T € Qp:

O, C U Sj,m,
J
where S;, stands for Sz, m, with z; € ;. We say that a cube Q € Dy, is
good (i.e. Q € DY) if

3
Q cU358im:
J
and we say that it is bad (i.e. Q € DB) if it is not good and
Q C U QSj,m.
J

Both good and bad cubes are contained in Uj 2S;m. Roughly speaking,
the difference between good and bad cubes is that bad cubes may be sup-
ported near the boundary of Uj 25} m, while the good ones are far from the
boundary.

Now we define g, and byy,:

gm = Z Wijm MQ;. (fm),

i Qi,meprcn;,

7: Qi,m E'DTB;L
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Because there is some overlapping among the cubes in D,,, we have used
the weights w; ,, in the definition of these functions. However one should
think that g,, and b, are approximations of the mean of f over the cubes
of DS and DE, respectively.
The following remark will be useful.

Claim 1. Let Qpm € Dy, be such that either gy #Z 0, by, Z0 or Uy £ 0
on Qum. Then there exists some j such that @i,m C 48m and 50 Qpm C
45 m.

Proof. In the first two cases Qp m,m N 28, # @ for some j. In the latter case
by (a) of Lemma 7.8 and our construction, there exists some j such that

Q3 N2Sj.,#2.
éo in any case Q\% m N 28jm # @ for some j. Arguing as in Lemma 6.3,
for a3 big enough, i,t is easily checked that é(@im) < £(Sjm)/4, and so
Q3 €4S m- m
Let us see now that (e) is satisfied.
Claim 2. If Q € D, and §(Q,2Ro) < (m — 15) A (so £(Q) = 0), then
Un=9gm =bm=0o0nQ anng’DgUDﬁ.
Proof. Assume that @ = {z} and that either g, #Z 0, b, Z 0 or Uy, Z 0 on
Q, or Q € DS UDE. By the preceeding claim, Q C 485,y for some j. Then,
0(z,2Ry) = 0(z,48jm) + 6(4Sm,2Ry) % €¢
> 0(4Sjm,2R0) — €0
> 0(Sjm,2Ro) — 8" Cp — &9 > (m — %) A.
]

The following estimate will be necessary in many steps of our construction.

Claim 3. Let () be some cube of the m-th generation and x,y € 2Q. Then,
if g1+ ygm and by, ... by, satisfy (a), then

A

;IUk(x) ~ Us)| < 755 1]

We postpone the proof of Claim 3 until Subsection 8.5. Let us see that
(a) holds.

Claim 4. If Q € DS UDE, then /mgfm| < Co A||f|l«. Also, |gml, |bm| <
Cs Al fl+-

Proof. First we will prove the first statement. By Claim 2, we know that
0(Q,2Ry) > (m — 11_0)A' Let R € D,,_1 be such that Q " R # @&. We

must have £(R) > 0. Otherwise, @ = R and §(R,2Ry) > (m — 45) A >
(m — 1) A + e1, which is not possible.
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Since £(Q) < £(R)/10, we have @ C 2R. We know |mpgfm| < A|fll«
because (b) holds for m — 1. By Claim 3 (for m — 1 and R) we get

|mem‘ < |mem|+|mem_mem|

< |mrfml +Imef —mrfl+ ‘mQ (T"z—:l Ulc) - mR(mz_:l Uk) ‘
k=1 k=1

< CA|flls+|mqf —mrf|.

The term |mgf —mpgf| is also bounded above by C A || f||« because @ and
R are doubling, f € RBMO(u), and it is easily checked that §(Q, R) < C A.

The estimates on g, and b, follow from from the definition of these
functions and the estimate |mq fm| < Co A||f||« for @ € DS UDE. O

Let us prove (d) now.
Claim 5. If @ € Dy and [mqfml < 55 Allfll, then Up = 0 and g =
b =0 on Q.

Proof. Suppose that Q@ = Qpm € Dy, is such that either g, # 0, b, Z 0
or Uy # 0 on Qp . By Claim 1 we have Q4 C 4S5, for some j. By
construction, the center of S; ;;, belongs to some cube Q; ,, with |mg, ,,, fm| >

3 A||f|l« It is easily seen that 6(Qhm,4Sjm), 6(Qim,4Sjm) < C' + a1 +
a9 + a3. Thus

IMQi f = M@y f| < (C" 4201 4 202 + 203) || f |+

Since @Q;m, and Qp 4, are contained in a common cube of the generation
m — 1, by Claim 3 we get

|in,mfm - mQh,mfm| S |sz,mf - mQh,mf|

m—1 m—1

+ ‘in,m (Z Ulc) ~MQym (Z Uk) ‘
k=1 k=1

1

Al

IN

IN

and so - 5
>\7— T * on *
gy fnl 2 (3= 1) Al > 55 4111

O

The statement (c) is a consequence of the fact that if Q € DS, then Q is
far from the boundary of | J ;2Sj,m- Then Up, is very close to mqfm on Q,
since we only integrate over cubes of DS UDE in order to obtain Uy, (x) for
z € Q. On the other hand, if Q € DZ, this argument does not work because
(Q may be near the boundary of Uj 25; m, and so it may happen that we
integrate on some cubes from Dy, \ (DS UDE) for obtaining Uy, (z), = € Q.

Let us see (c) in detail.



32 XAVIER TOLSA
Claim 6. If Q € DS and £(Q) > 0, then |mgfmi1| < %A||f||*.

Proof. Consider Q;,, € D,(,;l. We want to see that U,, is very close to
MQ; ., fm on this cube. By (a) of Lemma 7.8 we have to deal with the

cube Q\f’,m

Let us see that if P € D,,, is such that PN Q?,m # @, then P € DS UDE.
Notice that P C 5%,,” Now, by the definition of good cubes, there exists
some j such that Q;,, N %Sj,m # &, which implies 5?;77% N %Sj,m # &. For

a3 big enough, we have £( A%ym) < £(Sjm), and then Q\%,m C 2Sjm. So
PeDSUDE.
Let us estimate the term

sup [(gm (y) + bm () — M@y 1 frml-
YeQ?

Recall that

gn@) +bm@) = D wnm(y) Mg, fm
h: Qp.m €DS.UDE

By the arguments above, if y € @f’,m and wp m(y) # 0, then Qp m has been
chosen for supporting g, or by,, i.e. Qpm € DS UDE. Then,

gm(y) + bm(y) - in,mfm = Z wh,m(y) (mQh,mfm - in,mfm)-
h:Qh,mEDm

By Claim 3 we obtain

1

1
- GmA+o+w@Wm@mﬁnm*

IN

1
— A i
Al

(we have used that §(Qp m,Qim) < C, with C depending on a1, az). Then
we get

(8.10) 19m5) + ba(9) = 1y fnl < 55 Al e

For z € Q;m, we have
Un(e) —may, fml < @mw—wmmﬂyf%mmmmw

(8.11) +mmmnﬂk—/%mmwmwy
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Let us estimate the first term on the right hand side. By (8.10) and (7.8)
we obtain

‘Um(x) ~ 0t [ un@ du(y)‘

= ‘ /As Pym(2) (9m (Y) + b (y) = mQ, . fm) du(y)

!
< (1 — A || £l
< (@+en) & Al
On the other hand, by (7.8), (7.9) and Claim 4, the second term on the right
hand side of (8.11) is bounded above by 3 Cg A || f||«. Thus we have

1 7
0, S| < (L4 e3) 55+ eaCa) Al < o5 AN

if we choose €3 small enough. O
Now we are going to show that (b) also holds.

Claim 7. If Q € Dy, and £(Q) > 0, then |mqfm+1| < Al fll«-

Proof. If Q € D&, we have already seen that |mq fmi1| < o5 Al f|+-

If Q € Dy, \ D, then Q N U; Sjm = @ (because £(Q) < £(Sjm) and
Qe U; 38m)- By construction, we have
3
(8.12) mQfm| < 7 Allflls

If Up, =0 on Q, then |mq frt1| = |mgfm| < %A 1 1]
Now we consider the case Q = Qpm N Uj Sjm = @ such that U, # 0 on

Q. By Claim 1 there exists some j with Q\i,m C 48 m- Recall that by (a)
of Lemma 7.8, if x € Qp 4, we have

Un@) = [ @um(®) (9m(1) + b)) ).

h,m

So if pym(z) # 0 and y € Q;m, we have Q;m N Q\i,m # @&. Therefore,
Qim C Q\?h,m. Then,

o~ 2 A
6(Qi,ma Qh,m) < C+5(Q’L,ma Q3h,m) +6(Qh,m> Q3h7m) < C+2a1+2a2 < m

Therefore, [mgq, . f — mq, . f| < % | f]l«. By Claim 1 we get
|in,mfm - mQh,mfm| S |sz,mf - mQh,mf|

m—1 m—1
+mo., (32 Un) = man,, (X U)|
k=1 k=1

(8.13) Al

IN
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Recall also that, by (d),
8
on AL -

(8.14) Mm@y fml > 50

From the definition of g, by, and (8.13), (8.14), we derive that mq, . fm
and U,,(z) have the same sign.
On the other hand, from (8.12) and (8 13) we get

4 -
< 217

So by the definition of g,, anb b,, we have

|sz mfm|

34
lgm + bll sy < 35 AN

and by (7.8) we obtain
(8.15)

Un(@)] < 35 ANl [ (@) disty) < (1 + ) 35 Al < A1

(assuming e3 small enough). By (8.12), (8.15) and since mg, ,, fm and Up(z)
have the same sign, (b) holds also in this case. O

Therefore, (a)—(e) are satisfied.

8.4. Proof of (f), (g) and (h). The statement (f) is a direct consequence
of the following.

Claim 8. If §(z,2Ry) < oo, and if Q@ = {x} € Dy, (i-e. £(Q) = 0), then
ho(z) = fmy1(z) and [ho(z)| < Co A|[f]]s-

Proof. Take m such that (m — 1) A < §(z,2Ry) < mA. By (e) we get

Un+k(z) = 0 for k > 1. Therefore, fpmi1(z) = fmi2(z) = -+ = ho(z). By
(a) we have

| fnt1 ()] < | (@) + U (2)] < |fm(2)] +2C5 (1 + e3) A|fl+-

So we only have to estimate | fp,(z)].
Take Qi,m—l € D,,—1 with z € Qi,m—l- Since K(Qz’,m—l) > 0, by (b) we
have |mq, ., fm| < A||f|l+- Applying Claim 3 we get

MQi s frn = ()| < Imq; s f— Sz )|+—||f||*

100
< 1 — X
< 0 (148, Qunn) + ) 1]
It is easily checked that §(z, Qim—1) < A+¢eo + €1. Then we get |fr,(z)| <
CA|flls- m

Now we turn our attention to (g). Given some good cube Q; , € DS with
2(Qim) > 0, we denote

Zim := Z(Qim, Al| f]+/30)
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(see Definition 5.2; roughly speaking Z; ,,, is the part of Q;,, where f does
not oscillate too much with respect to mgq, ,, f). If Qim € DS and £(Qim) =
0, we set Z; , = Qim- The set Z; ,, has a very nice property:

Claim 9. Letk > m and Q;m,m € DE. If P € Dy is such that PNZzm # 9,
then g, = b, =0 on P andPQ’D,?U'D,?.

Proof. Consider first the case £(Q;m) = 0. If P € Dy, is such that PNQ; m #
@, then £(P) < £(Qi;m)/10 = 0 and so P = Q; y,. Therefore,

1
By (e), we get by, = g, =0 on P.

Assume now £(Q; ) > 0. Let € PN Z; ;. From the definition of Z;
we have

A
(8.16) maf ~msf| < 2517l
for any S € Dpy4j, j > 1, with z € S. Also, by Claim 6 we have
7
 fr1] < = A|f ]«
Qs < o Al

Consider now P11 € Dyq1 with £ € P4q. Observe that £(Pp4+1) <
2(Qim)/10 and P11 C 2Q; . We have

|um+1fm+1| < |in,mfm+1‘ + |in,mfm+1 - um+1fm+1|

7
oSG A+ lma f = ]

m m
+ ‘in,m (; Uk) — (kZ:l Uk) ‘

By (8.16) and Claim 3 we obtain |mp,,,, fmi1| < a5A|flls- By (d), on
P41 we have g1 = b1 = 0 and also U1 = 0. Thus,

IN

Jfm+2 = fmst

on any cube Pp, 1 € D41 containing x.
Take now Py, 19 € Dpyyo With € Py,42. On this cube fp,19 = fimt1, and
then we have

Imp,, o fmi2l < Mm@, . fmiil + Mm@ fmi1 — me, o fmt1]
7
< 554 1 fll« + Mm@y f — mPy o f]

! m
e ($508) - (S50

Again by (d), we get gm+i2 = bpt2 = Unt2 = 0 on Ppyo. Thus, fi43 =
fm+t1 on Py o,
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Going on, we will obtain g;,1; = bigj = Uppqj = 0 for all j > 1 on any
cube Pp,;; € Dy,4; containing z. O

As a consequence of Claim 9, Z; ,, is a good place for supporting g,. If,
for each m, gy, were supported on |J; Z; ;,, then the supports of g,,, m > 1,
would be disjoint for different m’s. This is the idea that Carleson used in
[Ca].

So we are going to make some “corrections” according to this argument.
We have

US() = Y @uim(s) [ wim(y) 9m(0) du).
i€Im
For each Q;m, with £(Q;m) > 0 we set
XZim (y)
M(Zi,m) .

If 2(Qim) = 0, we set uim(y) = Wim(y) gm(y) = gm(y) (we do not change
anything in this case). Then US can be written as

US(@) = 3 @m(@) [ tm0) du).

1€,

ui,m(y) = /wi,m m dp -

As in the case of Ug in Subsection 8.2, if we set ’D,(,’; = ’D},’LG U---u DTJX’G
where each subfamily ’D‘ﬂ;G is disjoint, we can write US in the following way:

N
US(x) =Y / o () g% (v) du(y)

with
W=D um)
i Qi meDYC
and

<P§,m($) = Py;;m(T)

ify € Qim and Q;m € Dhy.
By Proposition 5.3, if A is big enough we have u(Z; ) > u(Qim)/2 (if
£(Qim) > 0). Then it easily checked that |[u;ml e () < 2[|gm Loy for all

i. Thus, from (a), (g.2) follows. Moreover, because of Claim 9, (g.3) also
holds.

One of the differences between our construction and Carleson’s one is
that, because of the regularity of Lebesgue measure, Carleson can treat the
bad cubes in a way very similar to the way for the good ones. We have
not been able to operate as Carleson. However, as it has been shown in
Subsection 8.2, the packing condition (8.2) is also a good solution. Let us
prove that this condition is satisfied.
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Claim 10. For any R € D,, with £(R) > 0, the bad cubes satisfy the packing

condition
> w@Q) < CuR).

Q: QNR#£D
QEDkB,k:>m

Proof. Let k > m be fixed. We are going to estimate the sum

> w@).

Q: QNR#D
QeDP

Let Q € D,? be such that QN R # &. Since @ is a bad cube, there exists some
J such that 255, NQ # @. Then we have ) C 4S5; . Since A > a1 +as+a3
and 45, N R # @, we get £(S; ) < £(R)/20, and so 4S; C 2R.

By the finite overlapping of the cubes Q in Dy, we have

> u(Q)SCu( U 2Sj,k>

Q: QNRAD ]SJ,kCQR

QeDE
<C Y u@SiK) <C >0 Sk
J:SjkC2R J:S;kC2R

Now, from the construction of g}, it is easy to check that x(S; ) < C p (Sj,kn
{ZIJJV:1 AR: O}) This fact and the bounded overlapping of the cubes S

give

> w@ < Cu(2rn {3141 £0}).

QeDE

Summing over k > m, as the supports of the functions gz are disjoint for
different k’s, we obtain

S w@ <0 Y u(R0 {36l £0}) < Cutzh) < Cuir)

Q: QNR#AD k>m p=1
QeDE k>m

8.5. Proof of Claim 3. We only need to check that

< A
> Cat [ [peala) = poatw)l du(a) < 155
k=1

Let xg E supp(u) be such that z,y € 2Qg, m- Obviously, we can assume
2(Qzym) > 0. For each k < m we set

/ (0 (&) — 2 0(1)] duz) = / oy / — Lip+ Doy
IRd\leDO,k L

zg,k
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Let us estimate the integrals I; ;. Notice that if z,y € 2Qym, then
Z,Y € 2Qg0k C %Qimk. Thus |z — 2| & |y — 2| = |zg — 2| for z € R? \ QL
So by (d) of Lemma 7.8 we have

L < Cayt =9l ,
1L,k > Qy /Rd\Ql |£L'—Z|n+1 H(Z)

—1 K(sto, )
(8.17) < Cay « io’k).

In case k > m, by Lemma 6.4 we get

zo,k"

Lp<Cayt HQo,m) < Clzayto M=k A

UQuzo.k)
Therefore,
= £(Qap,m)
(8.18) (18,4211,€<08042 A 2 7mk>A+08013a21A Lo,
k=1 k=1 (Qa:o, )

The first sum on the right hand side is < Ca, 142774 and for A big
enough and ag > 1is <1 < A/400. The second term on the right hand side
is also < A/400 if we choose ay big enough (or «; big enough since then

£(Qgom) > £(QL wo,m))- Thus

" A
CsA) Iy < 500"
k=1

We consider now the integrals I ;. By Lemma 7.8,

! <C VaZ
‘(10 (u)| — e(Q;‘O,k)TH—l
for all u € Qy,,x- Therefore,
_ ‘l' - yl -1 E(on )
IQ,kSCal/ 7;1() Cayt —2002
o, U@ 0! «Qs, )

This is the same estimate that we have obtained for I ; in (8.17), and then
we also have

= A
A Iy, < —
Cs ; 2k < 500

if we choose A and s (or a;) big enough. O

9. APPENDIX

In this section we will prove the following result, which is used in Section
4 to show that Theorem 1.2 follows from the Main Lemma.

Lemma 9.1. Consider f € L'(u) with [ fdu =0 and Mg f € L'(u). Then
there exists a sequence of functions fi, k > 1, bounded with compact support
such that [ fedp =0, fr, — f in L*(u) and ||Mq>(f FflllLiwy — 0.
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So if we consider the space

Hy(w) = {f € ') s [ fdp=0, Mof € L' ()},
with norm ||f||H$(N) = | fllz1(u) +[Ma fllL1(y), then Lemma 9.1 asserts that

functions in H} (1) which are bounded and have compact support are dense

in H}(u). In particular, H} () N H;;boo(u) is dense in H} (u).

In this section we will assume that the center of any square () may be
any point of R?, not necessarily belonging to supp(u). As in the previous
sections, the sides of the squares are parallel to the axes and they are closed.

Let us introduce some additional notation. For p > 1, we set
1
My () = sup = [ |fld
(®) @3z 1(pQ) Jq d

This non centered maximal operator is bounded above by the operator de-
fined as

(p) — L du.
MOfe) = sy oo | Vil

This is the version of the Hardy-Littlewood operator that one obtains taking
supremums over cubes () which may be non centered at z but such that
z € p~'Q. Recall that since 0 < p~! < 1, one can apply Besicovich’s
Covering Theorem and then one gets that M) is of weak type (1,1) and
bounded in LP(u), p € (1,00]. As a consequence, M, is also of weak type
(1,1) and bounded in LP(u), p € (1, 00]

Remark 9.2 (Whitney covering). Let  C R? be open, 2 # R%. Then € can
be decomposed as Q = |J;c; Qi, where Q;, i € I, are squares with disjoint
interiors, with 20Q); C 2 and such that, for some constants § > 20 and
D >1, Qi NN # & and for each square Qi there are at most D squares
Q; with 10Q; N 10Q; # @ (in particular, the family of squares {10Q;}ier
has finite overlapping).

In [To3] a decomposition of Calderén-Zygmund type adapted for non
doubling measures was introduced. This decomposition was used to prove
an interpolation theorem between (HL, (1), L' (1)) and (L*(u), RBMO()).
In [To4] it was shown that this decomposition was also useful for proving
that CZO’s bounded in L?(u) are of weak type (1,1) too, as in the dou-
bling case (this result had been proved previously in [NTV2] using different
techniques). To prove Lemma 9.1 we will use the following variant of the
Calder6n-Zygmund decomposition of [To3].

Lemma 9.3. Let f € L'(u) with [fdu = 0 and Mef € L'(u). For any
A>0,letQy={zeR: Mg f(x) > A}. Then Qy is open and |f| < 2471\
p-a.eq. in R:\ Q). Moreover, if we consider a Whitney decomposition of
Q) into cubes Q; (as in Remark 9.2), then we have:
(a) For each i there ezists a function w; € C*°(R4) with supp(w;) C 3Q;,
0 <w; <1, |whleo < CUQ:)™T such that >, wi(z) =1 if x € Q).
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(b) For each i, let R; be the smallest (6,6™1)-doubling cube of the form
6%Q;, k> 1, with R; NQS # @. Then there exists a family of functions
a; with supp(a;) C R; satisfying

(9.1) [aidn= [ ruwian

(9.2) llevil| Loo (uy w(Ri) < C levil £

(9.3) D il < BA

1

(where B is some constant).
(¢) f can be written as f = g + b, with

ng(l—zwi)-l-;ai

%
and
b= Z(fwz - a’i)a
i
and then ||g||pouy < C X and supp(b) C Q.

Proof. The set €2 is open because M(y) is lower semicontinuous. Since for
p-a.e. z € R? there exists a sequence of (2,29t!)-doubling cubes centered
at = with side length tending to zero, it follows that for p-a.e. z € R¢
such that |f(z)| > 247!\ there exists some (2,2¢!)-doubling cube Q with
Jo lfldp/u(@) > 24X and so My f(z) > A.

The existence of the functions w; of (a) is a standard known fact. The
assertion (c) follows from the other statements in the lemma. So the only
question left is the statement (b).

Notice that, since R; N Q5 # @&, we have

(9.4) [ 1£1di < Anczr

for each 1.

To construct the functions «; we would like to start by the smallest cube
R;, and go on with the bigger cubes R; following an order of non decreasing
sizes. Since in general there does not exist a cube R; with minimal side length
in the family {R;}5°,, we will have to modify a little the argument. For each
fixed N we will construct functions o, 1 < i < N, with supp(e¥) C R;,
satisfying (9.1), (9.2) and (9.3). Finally, applying weak limits when N — oo,
we will get the functions «;.

The functions o that we will construct will be of the form o = al¥ x AN

with aZN € R and AZN C R;. To avoid a complicate notation, suppose that
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the cubes R;, 1 < i < N, satisify £(R;) < £(R;j+1) (we can assume this
because we are taking a finite number of cubes). We set AY = R; and

N N
&1 = a1 XRi»

where the constant a{ is chosen so that le fwidp= [ du.

Suppose that af¥, o’ ... ,alY | (for some k < N) have been constructed,

satisfy (9.1) and Zf;ll |aj| < B A, where B is some constant (which will be
fixed below).

Let R, ,..., R, be the subfamily of cubes R;, 1 <% < k — 1, such that
Rs; "Ry, # @. As [(Rs;) < I(Ry) (because of the non decreasing sizes of
R;), we have Rs; C 3Ry. Taking into account that for i =1,... ,k—1

/IafvlduS/lfwildu

by (9.1), and using that Ry, is (6,6"!)-doubling and (9.4), we get

zj:/lfws,-ldu

™

.
£
=
AN

< O [ 1fldn < OM(6RY) < Cuih (B,
3Ry,
Therefore,
R
i {Zj\agj| > 20@} < “(2’“).
So we set

AN = Ry n {Zj|a;j| < 20@} ,

and then p(AY) > p(Ry)/2.
The constant af is chosen so that for af = a) Xay we have [af du =

[ f wi dpp. Then we obtain

1 2
lay| < m/lfwklduﬁm/lfwkldu
k
2

< — dp < CisA
S i g 102 O

(this calculation also applies to k = 1). Thus,

EAEDY || < (2C1a + Ci5) 1
J

If we choose B = 2Cy4 + Ci5, (9.3) follows for the cubes Ry,... , R,.
Now it is easy to check that (9.2) also holds. Indeed we have

10 (| oo gy 14(Ri) < Claf¥ | u(A}Y) = C

/Q fw du‘ < C 'l || L1 (uy-



42 XAVIER TOLSA

Finally, taking weak limits in the weak-* topology of L% (u), one easily
obtains the required functions ;. The details are left to reader. A similar
argument can be found in the proof of Lemma 7.3 of [To3]. O

Using the decomposition above we can prove Lemma 9.1 partially. This
will be the first step of its proof.

Lemma 9.4. The subspace H}(u) N L*®(u) is dense in Hy(u).

Proof. Given f € HL(u), for each integer k > 0, we consider the generalized
Calderén-Zygmund decomposition of f given in the preceeding lemma, with
X\ = 2k, We will adopt the convention that all the elements of that decom-
position will carry the subscript k. Thus we write f = gx + b, as in (c) of
Lemma 9.1. We know that gy is bounded and satisfies [ gy du = 0 (because
[ b dp = 0). We will show that gy — f in L'(x) and Mo (gk— f)ll1(uy — 0
as k — oo too.

It is not difficult to check that by tends to 0 in L!(u). Indeed, if we set
Q = {M(Q)f(:c) > 2k} then p(%) — 0 as k — oo, because f, Mof €
L'(p). Thus

k—o0
[iddu<2 S [1rwsldn <o [ if1dn =0,
i k

and so g, — f in L(u).
Let us see that || Mebg||11(,) — 0ask — oo. We denote b; p = f w; — ;.-
Then we have

[ Mabell gy <D I1Mabiklri()-
i

The estimates for each term |[Mab; |[11(,) are (in part) similar to the ones
in Lemma 3.1 for estimating Mg over atomic blocks. We write

[MebikllLr < / Mgb; i, dp
]Rd\QRi,k

95) + [ Ma(fuidut [ Maoisdu
2R; 1 2R; i
Taking into account that [ b; y du = 0, it is easily seen that
/ Mebipdp < Clbigllprw < Clf wikllp
RI\2R; 4,

(the calculations are similar to the ones in (3.1) and (3.2)).
Let us consider the last term on the right hand side of (9.5) now. By (9.1)
and (9.2) we get

/2R Mo dp < ||ai k| Lo #(2Rik) dp < C || f wikll L1 (-
i,k
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We split the second integral on the right hand side of (9.5) as follows:

[ Mo(rwiydn= [ s
2R; & 2R; £t \2Qi 2Q;,k

As in (3.4), we have
1

/ Mo(fwi)di < Cllfwislorgn [ S S
2R; £ \2Qi k 2R; £ \2Q; |z zQi,kl

< Cllf wigllpi (1 + 6(Qik, Rik))

< Cllf wikllprw-

Finally we have to deal with f2Qi . My (f wig)dp. Consider z € 2Q); , and
@ ~ x. Then ,

0 | et =|[owi s < 0 Mos @)
because C ¢ w; , ~ = for some constant C' > 0, since for y € R¢ we have
1
< w; < < ———
0 <wikp(y) < ely) < 2
and
[(ewir) W] < 19" (W) wik )] + lo(y) wi g (Y)]
< 1 C

!
ly — znt1 + ly — z[n ‘wi,k(y”'

Recall that |w; ,(y)| < Cl(Q;x) " and supp(w;r) C 2Q;x. Then we get
|w;,k(y)| < Cly—a| ! forall y € R Thus |(pwix) (y)| < Cly — =z "L
So (9.6) holds and then

Mo (f wig)dp < C Mo f dp.
2Qik 2Qi.k

When we gather the previous estimates, we obtain
[Mabi kL < Cllf wikllpi +C /Q M f dp.
2Qi,k

Taking into account the finite overlap of the cubes 20Q); ;, (recall that they
are Whitney cubes covering ), we get

| Mabg |1y < C /Q (1f] + Ma f) du £2%5 0,
k

and we are done. O

Proof of Lemma 9.1. Take f € H}(u) N L% (u). Consider the infinite in-
creasing sequence of the cubes Qy, = 4™k [—1,1]¢ that are (4,4"*!)-doubling.



44 XAVIER TOLSA

Let w be a C*° function such that x[_; 1j4(z) < w(z) < x[_g,94(z) for all z.
We denote wy,(z) = w(4 Vez) (s0 xg, (7) < wk(z) < x20, (z)) and we set
— XQk /
=wg f — wy f du.
Je =wp f 100 kS dp

It is clear that f; is bounded, has compact support and converges to f in
L'(u) as k — oo. We will prove that

1) 1Ml = gy < O|[msave [ apan

+ Mo ((1 —wy) f) dp.
4Qk

Finally we will show that the terms on the right hand side of (9.7) tend to

0 as k — oo and we will be done.
Let us consider first the integral of Mg (f — fi) over R? \ 4Q;. We set

/ Mo(f — fi)dp < / Mof du +/ Mo fidp.
RI\4Qy, RANAQy RINAQy,

We only have to estimate the last integral on the right hand side. Take
r € R\ 4Qg, ¢ ~ z and let 3o € 2Q; be the point where ¢ attains its
minimum over 2@ (recall that we assume ¢ > 0 and ¢ € C'). We denote

cr = [wg fdp/p(Qr) and then we set

/fwdu = /f(y) (0(y) — ©(vo)) du(y)
- / wi(y) F() (0(y) — e(u0)) dys(y)

A / (0(y) — o(w0)) duly) = I — .
Qr

Let us consider the function ¥(y) = wk(y) (¢(y) — ¢(y0)). This function
satisfies

0 <%(y) < p(y)
and

') < Jwk(y) @' @)+ [wi ()] 1ey) — e (yo)]

1 o AQw) 1
ly — z|n 1 + C4(Q) ly — z[rt1 =C ly— $|n—|—1'

Therefore C 1) ~ x for some constant C > 0 and so |I1| < C Mg f(z). For Iy
we use a cruder estimate:

<

2(Qr)
L <C _—
| 2| = |Ck|N(Qk) |y0 _ $|n+1
Thus we obtain

Mo fi(z) < C Mo f(z) + C |ek| n(Qx) £(Qx)

lyo — x|+t
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Since 1
— _du(z) < C Q)Y
/Rd\4Qk lyo — ="+ Hlr) < CHQw)
we get
/ Mofedy < C Maf dp + C o] 1(Qy)

RA\4Qy, RI\4Qx

(9.8) = C M@fdquC‘/wkde‘-
RI\4Qy,

Now we have to deal with f4Qk Mas(f — fx) dp. For z € 4Qy we write

(9.9)  Mo(f — fo)() < Mo((1 —wy) )(@) + Mo (M'(‘;’;L) qu) ().

Since Maxq, (z) <1 and Q is (4,4""!)-doubling, we get

1) [ (i %0, ) (@) duta) < Clal = ‘ [ fdu‘ .

From (9.8), (9.9) and (9.10) we derive (9.7).
Now we have to see that the terms on the right hand side of (9.7) tend to
0 as k — oo. Since f, Mg f € L' (i), by the dominated convergence theorem

lim ‘/wkfdu‘—l—/ Mg f dy = 0.
k—o00 RI\4Qy,

Let us turn our attention to the third term on the right hand side of (9.7).

Take z € 4Q and ¢ ~ z. It is easily seen that C wy, ¢ ~ z for some constant
C > 0. So we get Mg (wy, f)(7) < C Mg f(z) and then for any r € R?,

X4Qy. (2) Mo ((1=wy) f)(2) < X1, (x) (Ma f(2)+Ma (wy f)(z)) < C Mo f ().

Therefore, if we show that xuq, () Ms((1 —wg(z)) f)(z) tends to 0 point-
wise as k — oo, we will be done by a new application of the dominated
convergence theorem.

For a fixed z € R%, let ko be such that z € %Qk for k£ > ky. Notice that
if p ~ 2 and y & Qy, then |p(y)| < C/L(Qk)"™. Thus

‘/w(x)(l —wi(2)) f(z) du(z)| < [l (11— wk) @l Lo )

Ml
< CHQ
Then we get
yigu (@) Ma (1 — wp(@)) f)(a) < ¢ L0 ooy

2(Qp)™
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